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Abstract

In this paper a unified probabilistic framework for solving inverse problems in the presence of epistemic and

aleatory uncertainty is presented. The aim is to establish a flexible theory that facilitates Bayesian data

analysis in experimental scenarios as they are commonly met in engineering practice. Problems are addressed

where learning about unobservable inputs of a forward model, e.g. reducing the epistemic uncertainty of

fixed yet unknown parameters and/or quantifying the aleatory uncertainty of variable inputs, is based on

processing response measurements. Approaches to Bayesian inversion, hierarchical modeling and uncertainty

quantification are combined into a generic framework that eventually allows to interpret and accomplish this

task as multilevel model calibration. A joint problem formulation, where quantities that are not of particular

interest are marginalized out from a joint posterior distribution, or an intrinsically marginal formulation,

which is based on an integrated likelihood function, can be chosen according to the inferential objective

and computational convenience. Fully Bayesian probabilistic inversion, i.e. the inference the variability

of unobservable model inputs across a number of experiments, is derived as a special case of multilevel

inversion. Borrowing strength, i.e. the optimal estimation of experiment-specific unknown forward model

inputs, is introduced as a means for combining information in inverse problems. Two related statistical

models for situations involving finite or zero model/measurement error are devised. Multilevel-specific

obstacles to Bayesian posterior computation via Markov chain Monte Carlo are discussed. The inferential

machinery of Bayesian multilevel model calibration and its underlying flow of information are studied on the

basis of a system from the domain of civil engineering. A population of identically manufactured structural

elements serves as an exemplary system for examining different experimental settings from the standpoint

of uncertainty quantification and reduction. In a series of tests the material variability throughout the

ensemble of specimens, the entirety of specimen-specific material properties and the measurement error

level are inferred under various uncertainties in the problem setup.

Keywords: uncertainty quantification, inverse problems, Bayesian inference, hierarchical modeling,

probabilistic inversion, borrowing strength, Markov chain Monte Carlo
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1. Introduction

Main characteristics and challenges of inverse problems in engineering sciences subsume the following

issues. Firstly, the ever-growing complexity of physical modeling increases the computational expense of

deterministic forward simulations. Secondly, uncertainty is omnipresent and calls for an adequate mathemat-

ical formalism of representation and management. Thirdly, since data are commonly scarce or prohibitively

expensive to acquire, the available information has to be carefully handled. An abstract inverse problem

statement thus reads as follows. By analyzing a limited amount of data the endeavor is to optimally learn

about unknown forward model inputs that are subject to epistemic uncertainty and aleatory variability.

This includes deducing fixed albeit unknown forward model parameters as well as hyperparameters that

determine the distribution of variable model inputs. Such a universal formulation describes a class of inverse

problems that has hardly been satisfactorily solved yet. Our goal is therefore to develop a rigorous and

extensive framework for formulating and solving such inverse problems in support of data analysis for engi-

neering systems. The focus of this research is on experimental situations as they are typically encountered

in this field. We emphasize aspects of uncertainty quantification and information accumulation. In order to

establish a sound conceptional and computational basis for solving those problems one has to complement

ideas and techniques that have been developed in different academic disciplines and scientific communities

so far. This involves inverse modeling, Bayesian statistics and uncertainty quantification. In the following

we will shortly survey relevant theories and practices.

In the first place we rely on the Bayesian approach to classical inverse problems [1, 2]. When a physical

theory or a computational solver relates physical parameters to measurable quantities, i.e. the forward model,

classical inversion is the process of reasoning or inferring unknown yet physically fixed model parameters from

recorded data [3, 4]. Bayesian inference establishes a convenient probabilistic framework to accomplish this

conventional type of parameter estimation and data assimilation. At least since the advent of the personal

computer it is nowadays widely used in engineering applications [5, 6]. The stochastic paradigm provides

a natural mechanism for the regularization of ill-posed problems, however, it requires the specification of a

prior and a noise model. Hierarchical inversion is an extension of the classical framework that allows to set

parameters of the prior and the noise model in a data-informed manner [7, 8]. While epistemic uncertainty

is naturally incorporated, a shortcoming of these types of parameter estimation is that they do not account

for aleatory variability.

In the second place hierarchical statistical models serve as the main tool for the analysis of complex

systems. Those are systems that are hierarchically organized at multiple nested layers. Prominent instances

include random and mixed effects models [9]. Historically those models were developed in social and biological
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sciences e.g. for purposes of educational research [10, 11] and pharmacokinetics/dynamics [12, 13]. Some

recent reviews about the methods that were developed in these fields can be found in [14, 15]. Hierarchical

modeling can be viewed from a more frequentist [16, 17] or a more Bayesian perspective [18, 19]. At

the present day it is mature area of research that establishes sort of an overarching theme in modern

multidisciplinary statistics. Dedicated chapters can be found in numerous standard references for Bayesian

modeling and inference [20, 21]. A general observation is that hierarchical models may be complex in their

probabilistic architecture whereas only little forward modeling takes place.

In the third place we respect the uncertainty taxonomy that is prevalent in risk assessment and deci-

sion making. According to this classification one distinguishes between epistemic and aleatory uncertainty

[22, 23]. On one side, epistemic uncertainty refers to the ignorance or lack of knowledge of the observer

and analyst. By taking further evidence this type of uncertainty is reducible in principle. On the contrary,

aleatory uncertainty or variability refers to a trait of the system under consideration. It is a structural ran-

domness of irreducible character. Uncertainties can be accounted for in distinct mathematical frameworks

and especially the representation of ignorance is the subject matter of ongoing debates [24, 25]. Graphical

statistical models such as Bayesian probability networks establish a powerful and widespread tool of uncer-

tainty characterization [26, 27]. In risk-based decision making Bayesian belief networks have been adopted

for their strength and flexibility in uncertainty modeling [28, 29] and their elegant mechanisms of information

aggregation [30, 31].

In the fourth place probabilistic inverse problems constitute a challenging class of inverse problems that

is of theoretical and practical relevance alike. While classical inversion is concerned with estimating uncer-

tain yet physically fixed parameters in a series of experiments, i.e. identifying an epistemically uncertain

quantity, probabilistic inversion deals with inferring the distribution of such forward model inputs that vary

throughout the experiments, i.e. quantifying their aleatory variability. Previously established approaches

to this interesting type of problems with latent/hidden variable structure subsume various approximate

solutions. A frequentist technique that is premised on the simulation of an explicitly marginalized likeli-

hood is proposed in [32]. There are also attempts to compute approximate solutions based on variants of

the expectation-maximization algorithm within a linearized Gaussian frame [33] or with the aid of Kriging

surrogates [34]. A methodological review of this school of probabilistic inversion is found in [35]. These

methods are only partly Bayesian and suffer from the deficiency of providing mere point estimates.

The potential of hierarchical models as instruments of statistical modeling and uncertainty quantification

have barely been acknowledged for the purposes of inversion in a classical sense. Hierarchical and probabilis-

tic inversion are first steps towards preparing the Bayesian framework for the treatment of more realistic

experimental scenarios. These approaches do not fully exhaust the inferential machinery of hierarchical

models and the probability logic of Bayesian networks, though. In this contribution we thus aim at bridging

that gap by developing a coherent Bayesian framework for managing uncertainties in such undertakings.
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By drawing on the statistical theory of hierarchical models, we cast inversion under parameter uncertainty

and variability as Bayesian multilevel calibration. This embeds a joint and a marginal problem formula-

tion of Bayesian inference under uncertainty, both of which can be numerically solved with plain vanilla or

specialized Markov chain Monte Carlo methods.

This new formulation of multilevel inversion is especially well-adapted to the challenges that engineers

are frequently faced with. It naturally allows for sophisticated uncertainty modeling which comprises both

epistemic and aleatory uncertainty. The inclusion of the former is straightforward whereas the introduction

of the latter is an extension to classical parameter estimation. It also promotes a pervasive “blackbox”

point of view on the forward model. While this is inevitable in many complex applications, it is not readily

compliant with traditional hierarchical models. Previously established strategies of enhanced uncertainty

quantification, e.g. hierarchical and probabilistic inversion, emerge as special cases of the proposed general

problem formulation. This also offers the opportunity to cope with probabilistic inversion within a fully

Bayesian setting. Beyond these extensions some fundamentally new possibilities are suggested. Based on

the probabilistic calculus of multilevel models, we develop a novel formulation of multilevel inversion in the

zero-noise and “perfect” data limit. The statistical effect of “borrowing strength” or “optimal combination

of information” is transferred and applied to inverse problems.

The article is organized as follows. In Section 2 we will elaborate a general Bayesian framework for

the treatment of uncertainty and variability in inverse problems. This is followed by a discussion about

Bayesian inference in the context of multilevel inversion in Section 3. Thereafter Section 4 will provide an

extension of the framework that will allow for handling “perfect” data. Probabilistic inversion and borrowing

strength will be placed in context in Sections 5 and 6, respectively. Dedicated Bayesian computations based

on Markov chain Monte Carlo are reviewed in Section 7. Lastly in Section 8 we will conduct a selection of

numerical case studies, where by considering various experimental situations and uncertainty setups the very

potential and the computational challenges of the devised modeling paradigm will become transparent.

2. Bayesian Multilevel Modeling

Due to the lack of a unified terminology, we define a hierarchical or multilevel model as “an overall

system model that is hierarchically composed of deterministic and stochastic submodels”. Important types

of submodels comprise physical models of the deterministic system components (Section 2.1), prior descrip-

tions of parameter uncertainty and variability (Section 2.2) and residual representations of forward model

prediction errors (Section 2.3). From these submodels we will assemble a generic Bayesian multilevel model

(Section 2.4). This will represent the overall system under consideration including its deterministic and

probabilistic aspects.
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2.1. Forward Model: Deterministic Subsystem

A so-called forward model is a mathematical representation of the physical system or phenomenon under

investigation. More formally the forward model is a function

M : Dm × Dx × Dζ × Dd → Dỹ

(m, x, ζ, d) 7→ ỹ = M(m, x, ζ, d),
(1)

that maps inputs (m,x, ζ, d) ∈ Dm ×Dx ×Dζ ×Dd from its domain to outputs ỹ ∈ Dỹ from its codomain.

Forward model arguments (m,x, ζ, d) constitute physical parameters, while its responses ỹ are predictions

of observable quantities.

We distinguish between four different types of forward model inputs. They differ in their (un)certain

nature when a number of experiments is carried out. There are fixed albeit unknown model parameters

m ∈ Dm that are subject to epistemic uncertainty, two different types of inputs x ∈ Dx and ζ ∈ Dζ that

are subject to aleatory variability and well-known experimental conditions d ∈ Dd.

2.2. Prior Model: Input Uncertainty

Forward model inputs d constitute perfectly known conditions that prevail during experimentation. In

line with this they are deterministic arguments of the forward model. Experimental conditions may differ

throughout the experiments, i.e. each of the experiments i = 1, . . . , n is conducted being subject to an

experiment-specific condition di.

Proper forward model parameters m are constant throughout the experiments i = 1, . . . , n, yet they

have unknown values. In Bayesian fashion the available prior or expert knowledge about the true parameter

values is represented as a random variable or vector

M ∼ πM (m). (2)

The Bayesian prior distribution πM (m) quantifies a subjective degree of plausibility or belief about the true

parameter values m. This is the Bayesian account for epistemic uncertainty. The uncertainty is reducible

in the sense that Bayesian data analysis gives rise to a posterior probability model.

Forward model inputs ζ are subject to a form of variability that is well-known, e.g. it could be ascer-

tained in previous experiments or due to prior considerations. Rather than being constant throughout the

experiments i = 1, . . . , n, these variable inputs take on experiment-specific realizations ζi, all of which are

unknown. The corresponding Bayesian prior representation is as mutually independent random variables

Zi ∼ fZ(ζi; θZi), for i = 1, . . . , n. (3)

Distributions fZ(ζi; θZi) specify prior knowledge about the experiment-specific unknowns that is of struc-

tural quality. They are prescribed by well-known hyperparameters θZi ∈ DθZ
, e.g. shape, scale and de-

pendency parameters, that possibly differ across the experiments. Due to stochastic independence, the
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appropriate joint Bayesian prior model follows as

(Z1, . . . , Zn) ∼
n∏

i=1

fZ(ζi; θZi). (4)

This is a Bayesian conception of aleatory variability, i.e. an uncertainty that is of structural nature. Here-

inafter this probability model will also be referred to as prescribed uncertainty. It is irreducible in the sense

that by Bayesian data analysis of the experiments i = 1, . . . , n “past” realizations ζi can be inferred in

principle, whereas the knowledge about “future” realizations ζi′ in further experiments i′ = n+1, . . . , n+n′

cannot be improved. “Future” realizations still feature a structural uncertainty Zi′ ∼ fZ(ζi′ ; θZi′ ) that is

prescribed by hyperparameters θZi′ ∈ DθZ
.

Another Bayesian notion of a similar type allows to account for forward model inputs x that are subject

to a sort of variability which itself is unknown. For 1 = 1, . . . , n these variables take on experiment-specific

realizations xi, neither of which are known. Bayesian prior modeling is build upon conditionally independent

random variables

(Xi |ΘX = θX) ∼ fX |ΘX
(xi |θX), for i = 1, . . . , n. (5)

The conditional probability distribution fX |ΘX
(xi |θX) represents a structural kind of prior knowledge about

the experiment-specific unknowns. Its determining hyperparameters θX ∈ DθX
, e.g. location, dispersion

and correlation parameters, themselves are fixed yet unknown. Hence these hyperparameters are priorly

modeled as a random vector

ΘX ∼ πΘX
(θX). (6)

The Bayesian prior distribution πΘX
(θX) constitutes the subjective prior belief or available prior knowledge

about the true hyperparameter values. In the statistical literature hyperprior elicitation is exhaustively dis-

cussed especially for variance hyperparameters [36–38]. Consequently the joint distribution of the unknowns

of this prior model is given as

(X1, . . . , Xn,ΘX) ∼
(

n∏

i=1

fX |ΘX
(xi |θX)

)
πΘX

(θX). (7)

The joint prior distribution of experiment-specific realizations follows by marginalizing Eq. (7) over the

hyperparameters θX . Then one has

(X1, . . . , Xn) ∼
∫

DθX

(
n∏

i=1

fX |ΘX
(xi |θX)

)
πΘX

(θX) dθX . (8)

This is a form of exchangeability [39, 40] that realizes some “similarity” of the intermediate variables, i.e. the

joint distribution of the sequence (X1, . . . , Xn) equals the one of (Xτ(1), . . . , Xτ(n)) for any index permuta-

tion τ : {1, . . . , n} → {1, . . . , n}. In the present form Eq. (8), exchangeability establishes another Bayesian

approach to aleatory variability. Unlike the prescribed uncertainty in Eq. (4), this form of uncertainty is
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partially reducible in the sense that the “fuzziness” inherent in Eq. (8) can be reduced by learning about θX

in “past” experiments i. “Past” realizations xi can also be inferred, however, even if the hyperparameters

θX would be known, the realizations xi′ of “future” experiments i′ would still carry the structural prior

uncertainty Xi′ ∼ fX |ΘX
(xi′ |θX).

In short, on the one hand we have parametric priors πM (m) and πΘX
(θX) that in Eqs. (2) and (6) em-

body knowledge about global unknowns m and θX . On the other hand we have structural priors fZ(ζi; θZi)

and fX |ΘX
(xi |θX) that encapsulate structural prior knowledge about the problem, and that for i = 1, . . . , n

establish the prior model of experiment-specific unknowns xi and ζi through Eqs. (4) and (8).

2.3. Residual Model: Output Imperfection

Besides a representation of forward model input uncertainty and variability, an integral constituent

of statistical approaches to inversion is a residual representation of forward model output discrepancy or

imperfection. Due to measurement errors, numerical approximations and general inadequacies, even if all

inputs (m, xi, ζi, di) were perfectly known, predictions ỹi = M(m,xi, ζi,di) are expected to deviate from

real observations yi. These imperfections can be accounted for by a statistical data model

yi = ỹi + εi = M(m, xi, ζi, di) + εi, for i = 1, . . . , n, (9)

where residual terms εi ∈ Dε are assumed to be realizations of random variables Ei ∼ fE(εi; Σi). Commonly

one employs normal distributions fE(εi; Σi) = N (εi; 0,Σi) with mean 0 and possibly experiment-specific,

symmetric and positive-semidefinite covariance matrices Σi. Consequently, through a change of variables

whose Jacobian determinant equals one, observations are viewed as outcomes yi of random variables

(Yi |M = m, Xi = xi,Zi = ζi) ∼ fE

(
yi − M(m, xi, ζi, di); Σi

)
, for i = 1, . . . , n. (10)

For given values of the direct forward model inputs (m, xi, ζi, di), data are viewed as random variables

(Yi |m, xi, ζi) with conditional distributions f(yi |m,xi, ζi) = fE(yi − M(m, xi, ζi, di); Σi). Note that

f(yi |m, xi, ζi) = f(yi |m, xi, ζi, θX) is independent of θX .

The specification of the residual model, i.e. quantifying the parameters of Σi, is an essential part of

calibrating the forward model and the experimental apparatus. In many experimental situations a model

of the prediction error is not known a priori, though. Nevertheless, the structure of the prediction error

model can be selected [41] and its parameters can be introduced as unknown hyperparameters that undergo

calibration [42]. This also includes systematic forward model deviations [43, 44]. Moreover one could treat

the form of the forward model M itself as uncertain/random [45, 46] and select the most plausible class via

Bayesian model selection [47, 48]. By adding another layer of uncertainty on top of the outlined setup and

at a higher associated cost, the aforementioned principles of assessing structural and parametric forward

model uncertainty can be readily applied in multilevel models [49].
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Based on random variable transformations, in Section 4 we will extend the framework by a model for

analyzing “perfect” observations ỹi = M(m, xi, ζi, di) in the zero-noise limit |εi| → 0. This mathematical

formulation will explain the variability in the data exclusively by a Bayesian prior model of input variability

as outlined in the preceding Section 2.2.

2.4. Multilevel Model: Overall System

We start from the premise that if not denoted or stated otherwise, random vectors and variables are

(conditionally) independent, e.g. the global forward model parameters M and the hyperparameters ΘX

are understood to be priorly independent. Thus π(m, θX) = πM (m)πΘX
(θX) applies for their joint

prior distribution. Note that this is not a necessity of the formulation, though. Moreover, we strictly

reserve conditional notation for the stochastic dependency of random variables on outcomes of other random

variables, e.g. the aleatory variables (Xi |θX) are conditionally dependent on realizations ΘX = θX . The

stochastic variables (Yi |m, xi, ζi) are conditioned on random outcomes M = m, Xi = xi and Zi = ζi,

nonetheless they depend on deterministic quantities di and Σi, too. Similarly the aleatory variables Zi are

dependent on θZi in a way that is not explicitly indicated. In order to keep track of all stochastic and

deterministic relations the index i serves as a bookkeeping mark.

Deterministic aspects of the system are covered by the forward model Eq. (1). Parametric priors in

Eqs. (2) and (6) and structural priors in Eqs. (3) and (5) represent input uncertainty and variability. The

model Eq. (10) condenses basic assumptions regarding the prediction error. Altogether those submodels are

combined into a greater model of the whole system. The overall probability model is summarized as

(Yi |m, xi, ζi) ∼ fE

(
yi − M(m, xi, ζi, di); Σi

)
, (11a)

M ∼ πM (m), (11b)

Zi ∼ fZ(ζi; θZi), (11c)

(Xi |θX) ∼ fX |ΘX
(xi |θX), (11d)

ΘX ∼ πΘX
(θX). (11e)

Adopting a subjectivist viewpoint, this complex probability model Eq. (11) formalizes degrees of belief of

how the data have been realized in the experiments i = 1, . . . , n. According to our previous definition it is

a generic Bayesian multilevel model. An intuitive representation of this multilevel model is provided by a

directed acyclic graph (DAG) [26, 27] such as shown in Fig. 1.

3. Inference in Multilevel Models

We will now discuss statistical inference. In particular we will demonstrate how conditioning on the

observables and marginalization out nuisance are elegant inferential tools of Bayesian multilevel inversion.
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Figure 1: DAG of the generic multilevel model. Vertices symbolize known ( ) or unknown ( ) quantities, while directed

edges represent their deterministic ( ) or probabilistic ( ) relations. Global parameters (m, θX) are subject to epistemic

uncertainty, whereas experiment-specific realizations (⟨xi⟩, ⟨ζi⟩) are subject to aleatory variability. Known quantities comprise

the data ⟨yi⟩ just as well as experiment-specific knowns (⟨θZi
⟩, ⟨di⟩, ⟨Σi⟩) located at different levels of the hierarchy.

A pivotal joint problem formulation will be devised. Afterwards an intrinsically marginal problem variant

will be presented in Section 3.1.

In the following ⟨qi⟩ denotes a sequence ⟨qi⟩1≤i≤n = (q1, q2, . . . , qn). Summarizing the available para-

metric and structural prior knowledge in Eqs. (11b) to (11e), the joint prior of the entirety of unknowns

(m, ⟨xi⟩, ⟨ζi⟩, θX) factorizes as

π
(
m, ⟨xi⟩, ⟨ζi⟩, θX

)
=

(
n∏

i=1

fX |ΘX
(xi |θX)

)(
n∏

i=1

fZ(ζi; θZi)

)
πΘX

(θX)πM (m). (12)

This prior depends only on the collection of experiment-specific hyperparameters ⟨θZi⟩. With the model

of single observations in Eq. (11a) one can formulate a conditional distribution for the total data ⟨yi⟩. For

given values of the unknowns (m, ⟨xi⟩, ⟨ζi⟩) this yields the product f(⟨yi⟩|m, ⟨xi⟩, ⟨ζi⟩) =
∏n

i=1 fE(yi −
M(m,xi, ζi,di); Σi). It depends on experiment-specific knowns (⟨di⟩, ⟨Σi⟩).

With that said, one can derive the joint posterior of the totality of unknowns (m, ⟨xi⟩, ⟨ζi⟩, θX) by

conditioning on the acquired data ⟨yi⟩. By virtue of Bayes’ theorem one obtains

π
(
m, ⟨xi⟩, ⟨ζi⟩, θX |⟨yi⟩

)
=

1

C

(
n∏

i=1

fE

(
yi − M(m, xi, ζi, di); Σi

)
)

π
(
m, ⟨xi⟩, ⟨ζi⟩,θX

)
. (13)

This posterior Eq. (13) is implicitly dependent on experiment-specific knowns (⟨θZi⟩, ⟨di⟩, ⟨Σi⟩). It is the

central object in Bayesian multilevel model calibration.

The model evidence C is the total probability of the realized data ⟨yi⟩, given the underlying multilevel
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model. When introducing the notation d⟨qi⟩ = dq1 dq2 . . . dqn one can write this as

C =

∫

Dm

∫

Dn
x

∫

Dn
ζ

∫

DθX

(
n∏

i=1

fE

(
yi − M(m, xi, ζi, di); Σi

)
)

π
(
m, ⟨xi⟩, ⟨ζi⟩, θX

)
dmd⟨xi⟩ d⟨ζi⟩dθX . (14)

For the Bayesian computations that will be reviewed in Section 7, the factor of proportionality C does not

have to be computed explicitly. For that reason it will be occasionally omitted from now on.

One may define a likelihood in order to write the joint posterior Eq. (13) in the familiar textbook-

form π(unknowns|data) ∝ L(unknowns; data)π(unknowns). Regarded as a function of the unknowns

(m, ⟨xi⟩, ⟨ζi⟩), the joint likelihood evaluates the densities in Eq. (10) for the collected data ⟨yi⟩ by

L
(
m, ⟨xi⟩, ⟨ζi⟩; ⟨yi⟩

)
=

n∏

i=1

fE

(
yi − M(m, xi, ζi,di); Σi

)
. (15)

Apart from its functional arguments and the data it also depends on the total number of experiment-specific

knowns (⟨di⟩, ⟨Σi⟩). It does not depend on θX , though.

Subsequent to formulating the joint posterior Eq. (13) the marginal of the quantities of interest (QoI) is

obtained by integrating out nuisance [50, 51]. For instance, given that (m, θX) are declared QoI and the

latent variables (⟨xi⟩, ⟨ζi⟩) are considered nuisance, the correspondingly marginalized posterior becomes

π
(
m, θX |⟨yi⟩

)
=

∫

Dn
x

∫

Dn
ζ

π
(
m, ⟨xi⟩, ⟨ζi⟩, θX |⟨yi⟩

)
d⟨xi⟩d⟨ζi⟩. (16)

Similarly, provided that hidden variables (⟨xi⟩, ⟨ζi⟩) are proclaimed QoI and (m, θX) are deemed nuisance

parameters, appropriately marginalizing the posterior distribution gives

π
(
⟨xi⟩, ⟨ζi⟩|⟨yi⟩

)
=

∫

Dm

∫

DθX

π
(
m, ⟨xi⟩, ⟨ζi⟩, θX |⟨yi⟩

)
dm dθX . (17)

3.1. Marginalized Formulation

A common scenario is that inferential interest focuses on the global parameters (m, θX). In this par-

ticular case, instead of marginalizing the joint posterior distribution Eq. (13) as in Eq. (16), based on an

integrated likelihood function one can formulate an inherently marginal problem [52–54]. One therefore

constructs a marginalized observation model

(Yi |m, θX) ∼ f(yi |m, θX), for i = 1, . . . , n, (18a)

(M ,ΘX) ∼ π(m, θX) = πM (m) πΘX
(θX). (18b)

The marginalized model consists of the prior distribution Eq. (18b) of the QoI (m, θX) and the probability

model Eq. (18a) of the observations yi. By integrating out the aleatory variables (xi, ζi) in the following

way, one can obtain the marginal distributions of the observations

f(yi |m, θX) =

∫

Dx

∫

Dζ

fE

(
yi − M(m, xi, ζi, di); Σi

)
fX |ΘX

(xi |θX) fZ(ζi; θZi) dxi dζi. (19)
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These distributions are conditional on (m, θX) and dependent on (θZi , di,Σi). Following this, one can

easily formulate an integrated or marginalized likelihood. Evaluated for the actual data ⟨yi⟩ and seen as a

function of the QoI (m, θX) this version of the likelihood reads as

L
(
m, θX ; ⟨yi⟩

)
= f

(
⟨yi⟩|m, θX

)
=

n∏

i=1

f(yi |m, θX). (20)

It is the likelihood function corresponding to the case of eliminating all intermediate unobservables (⟨xi⟩, ⟨ζi⟩)
with Eq. (19) on the likelihood rather than on the posterior level. Note that frequentist inference of (m, θX)

could be based on this integrated likelihood formulation. Fully Bayesian inference, however, proceeds by

formulating the corresponding posterior distribution. With the prior Eq. (18b) and the likelihood Eq. (20),

the posterior is obtained on grounds of Bayes’ law

π
(
m,θX |⟨yi⟩

)
=

1

C
L
(
m, θX ; ⟨yi⟩

)
π(m,θX). (21)

One can easily derive that the normalizing constant C equals Eq. (14) and show that the posteriors Eqs. (16)

and (21) are identical. This means that, as far as the inference of (m, θX) is concerned, the two problem for-

mulations Eqs. (11) and (18) are equivalent. Those problem formulations pose different numerical obstacles,

though. In Section 7 we will discuss Bayesian computations and their multilevel-related issues.

3.1.1. Monte Carlo Integration

In Eq. (20) the marginalized likelihood L(m, θX ; ⟨yi⟩) is a product of integrals f(yi |m, θX). Most often

it is not possible to perform the marginalization in Eq. (19) analytically. Still it can be approximately

computed through deterministic or stochastic schemes of numerical integration.

The density f(yi |m, θX) can be evaluated for arbitrary arguments yi and for fixed values (m, θX) . A

simple numerical means to that end rests upon stochastic integration via the Monte Carlo (MC) method

f̂(yi |m, θX) =
1

K

K∑

k=1

fE

(
yi − υ̃

(k)
i ; Σi

)
, with





x
(k)
i ∼ fX |ΘX

(x
(k)
i |θX),

ζ
(k)
i ∼ fZ(ζ

(k)
i ; θZi),

υ̃
(k)
i = M(m,x

(k)
i , ζ

(k)
i , di)





for k = 1, . . . , K. (22)

For k = 1, . . . ,K forward model inputs x
(k)
i and ζ

(k)
i are independently sampled from their population

distributions fX |ΘX
(x

(k)
i |θX) and fZ(ζ

(k)
i ; θZi), respectively. In turn responses υ̃

(k)
i = M(m, x

(k)
i , ζ

(k)
i , di)

are computed accordingly. For evaluating L(m, θX ; ⟨yi⟩) as a function of the unknowns (m, θX), one has

to simulate Eq. (22) for the observations yi that were taken in the experiments i = 1, . . . , n. Thus a simple

MC-based estimator of the marginalized likelihood is given as

L̂
(
m,θX ; ⟨yi⟩

)
=

n∏

i=1

f̂(yi |m, θX). (23)
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The stochastic simulator Eq. (23) may be costly and numerically inefficient in terms of the number of

runs K of the deterministic model. It should be understood as an instructive proof for the feasibility of

computing the marginal posterior Eq. (21). In practice more advanced simulators, e.g. based on importance

sampling, can be applied in similar fashion [55, 56]. More generally speaking, any method for computing

the model evidence in classical Bayesian inference is applicable [57].

4. Zero-Noise & “Perfect” Data

In Section 2.3 the residual model was introduced as a representation of the discrepancy between model

predictions and measurements. This conditional model had equipped the data space Dỹ with a probability

measure. As a consequence, in Eq. (11a) observations were regarded as yi = ỹi +εi with a random outcome

εi. However, experimental situations may occur where direct access to

ỹi = M(m, xi, ζi, di), for i = 1, . . . , n (24)

is granted, e.g. due to noise-free measurements and a “sufficiently accurate” forward model [58]. The data

⟨ỹi⟩ is then only explained by uncertainty of the forward model inputs as described in Section 2.2, without

being subject to prediction errors. Hereafter we will refer this scenario as to involve “perfect” data [59, 60].

A statistical model that is appropriate for “perfect” data can be formulated as

(Ỹi |m, θX) ∼ f(ỹi |m, θX), for i = 1, . . . , n, (25a)

(M ,ΘX) ∼ π(m, θX) = πM (m) πΘX
(θX). (25b)

As before, Eq. (25b) embodies the available prior knowledge about the unknowns (m, θX). Conditional

random variables in Eq. (25a) are constructed by forward uncertainty propagation as follows. The inde-

pendent input uncertainties (Xi |θX) ∼ fX |ΘX
(xi |θX) and Zi ∼ fZ(ζi; θZi), that are defined for given

(θX , θZi), are propagated through the forward model M, while the inputs (m, di) are fixed. The density

of the resulting random variables (Ỹi |m,θX) = M
(
m, (Xi |θX), Zi, di

)
at ỹi ∈ Dỹ is found as

f(ỹi |m, θX) =

∫

Dx

∫

Dζ

δ
(
ỹi − M(m,xi, ζi,di)

)
fX |ΘX

(xi |θX) fZ(ζi; θZi) dxi dζi, (26)

where δ denotes the Dirac delta distribution. This endows the response space Dỹ with a proper probability

model. Inspecting Eqs. (19) and (26) reveals that the marginal model Eq. (18) approaches the “perfect” data

model Eq. (25) in the zero-noise limit ∥Σi∥ → 0. With the distributions f(ỹi |m,θX), that are conditioned

on (m, θX) and dependent on experiment-specific knowns (di, θZi), one can formulate the corresponding

likelihood function as

L
(
m, θX ; ⟨ỹi⟩

)
= f

(
⟨ỹi⟩|m, θX

)
=

n∏

i=1

f(ỹi |m, θX). (27)

12



For given data ⟨ỹi⟩ it is viewed as a function of the unknowns (m, θX) that also depends on (⟨θZi⟩, ⟨di⟩).
As usual Bayesian data analysis proceeds by conditioning on the data ⟨ỹi⟩. With the prior Eq. (25b) and

the likelihood Eq. (27) the posterior follows through Bayes’ rule

π
(
m,θX |⟨ỹi⟩

)
=

1

C̃
L
(
m, θX ; ⟨ỹi⟩

)
π(m,θX). (28)

The factor of proportionality C̃ in the posterior density Eq. (28) is given as the marginal probability density

of the effectively acquired data ⟨ỹi⟩. It thus writes C̃ =
∫∫

L(m,θX ; ⟨ỹi⟩) π(m,θX) dmdθX .

4.1. Kernel Density Estimation

The likelihood function L(m, θX ; ⟨ỹi⟩) in Eq. (27) is grounded on probability densities f(ỹi |m, θX).

Likelihood evaluations therefore require forward uncertainty propagation Eq. (26). In the majority of cases

this complicated problem can only be approximately solved. A possible approach is to use MC uncertainty

propagation in combination with kernel density estimation (KDE) [61].

Let KH(ỹ) = |H|−1/2 K(H−1/2ỹ) be the scaled kernel that is defined by a kernel function K and the

symmetric and positive-definite bandwidth matrix H. A KDE of the density f(ỹi |m, θX) in Eq. (26) as a

function of ỹi and for fixed values of (m, θX) is given as

f̂(ỹi |m, θX) =
1

K

K∑

k=1

KH

(
ỹi − υ̃

(k)
i

)
, with





x
(k)
i ∼ fX |ΘX

(x
(k)
i |θX),

ζ
(k)
i ∼ fZ(ζ

(k)
i ; θZi),

υ̃
(k)
i = M(m, x

(k)
i , ζ

(k)
i , di)





for k = 1, . . . ,K. (29)

Analogously to Eq. (22), for k = 1, . . . , K forward model inputs x
(k)
i and ζ

(k)
i are randomly drawn from

their parent distributions fX |ΘX
(x

(k)
i |θX) and fZ(ζ

(k)
i ; θZi) and responses υ̃

(k)
i = M(m, x

(k)
i , ζ

(k)
i ,di) are

computed. Subsequently the sample (υ̃
(1)
i , . . . , υ̃

(K)
i ) serves as a proxy for the distribution f(ỹi |m, θX).

Estimating L(m, θX ; ⟨ỹi⟩) is based on evaluating the KDE in Eq. (29) for arguments (m, θX) and for

the observations ỹi corresponding to experiments i = 1, . . . , n. On these grounds, the likelihood function

L(m, θX ; ⟨ỹi⟩) is approximated as

L̂
(
m,θX ; ⟨ỹi⟩

)
=

n∏

i=1

f̂(ỹi |m, θX). (30)

Similarly to Eq. (23) this is an expensive statistical estimation program that involves forward uncertainty

quantification and tends to require a high number K of calls to the forward code. Further challenges

intrinsically related to computing the posterior Eq. (28) of the “perfect” data model will be discussed in

Section 7.
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5. Probabilistic Inversion

The introduced Bayesian multilevel model Eq. (11) acts as a toolkit for statistical model building. It

forms some kind of superstructure that embeds a variety of stochastic inverse problems as special cases. In

this section we will show how different well-known types of inverse problems are obtained by omitting global

parameters and/or experiment-specific variables accordingly.

Classical or simple Bayesian inversion is concerned with the estimation of fixed yet unknown parameters

m of the physical simulator [3, 4]. The related DAG is pictured in Fig. 2a. In this context the term “simple”

merely refers to the degree of sophistication of the input uncertainty model. As a matter of fact classical

inversion may not be a simple problem at all. It typically calls for a high number of forward solves. The

engineering community therefore relies on customized strategies in order to ameliorate the computational

burden to Bayesian inference in real-case problems. This includes the employment of polynomial chaos

expansions as forward model substitutes [62–64], advanced stochastic simulation techniques [65, 66] and

forward model reduction methods [67, 68].

Probabilistic inversion features a more elaborate two-level representation of input uncertainty [69, 70].

Rather than aiming at an unknown constant m, inference concentrates on the hyperparameters θX that

determine the variability of ⟨xi⟩ through fX |ΘX
(xi |θX). A DAG belonging to probabilistic inversion is

depicted in Fig. 2b. Building upon probabilistic inversion one may have variable inputs ⟨ζi⟩, the distributions

of which fZ(ζi; θZi) are prescribed by ⟨θZi⟩. Unless experiment-specific realizations of those variables are

of inferential interest, they act as additional nuisance parameters impeding the inference of the QoI. The

correspondingly extended DAG is provided in Fig. 2c. Of course, more complex modeling scenarios can be

envisaged. An application example where inference targets both parameters of the type m and θX , in the

presence of additional nuisance parameters ⟨ζi⟩, can be found in [59, 60].

The problem that we call probabilistic inversion shall not be confused with the identically named problem

of finding an input distribution of a forward model given its output distribution [71, 72]. Commonly

engineering applications do not allow to exercise this type of uncertainty backpropagation. The amount

and structure of the data being available do not permit to fully specify a response distribution while expert

knowledge refers to physical parameters instead.

At this point we have a closer look at probabilistic inversion. It results from removing the forward model

inputs m and ⟨ζi⟩ from the overall system Eq. (11) and from declaring θX as QoI and ⟨xi⟩ as nuisance

variables. For the sake of completeness we summarize the associated multilevel model as

(Yi |xi) ∼ fE

(
yi − M(xi, di); Σi

)
, (31a)

(Xi |θX) ∼ fX |ΘX
(xi |θX), (31b)

ΘX ∼ πΘX
(θX). (31c)
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(a) Simple inversion. (b) Probabilistic inversion. (c) Additional nuisance.

Figure 2: Various DAGs. Simple inversion, i.e. the estimation of an unknown m, is visualized in (a), whereas (b) shows a

DAG of probabilistic inversion, i.e. the inference of θX that governs the variability of experiment-specific xi. An upgrade of

probabilistic inversion, where a prescribed uncertainty has been introduced in nuisance variables ζi, is depicted in (c).

Joint Bayesian inference is accomplished by conditioning on the realized data ⟨yi⟩. Up to a normalization

factor, according to Bayes’ law the posterior density is given as

π
(
⟨xi⟩, θX |⟨yi⟩

)
∝
(

n∏

i=1

fE

(
yi − M(xi, di); Σi

)
)(

n∏

i=1

fX |ΘX
(xi |θX)

)
πΘX

(θX). (32)

Equivalent to integrating out nuisance ⟨xi⟩ from the joint posterior Eq. (32) as in Eq. (16), one can base

inference of θX on an inherently marginal problem formulation [32, 35]. Similar to Eqs. (19) and (20) the

marginalized likelihood function for that case is derived as

L
(
θX ; ⟨yi⟩

)
= f

(
⟨yi⟩|θX

)
=

n∏

i=1

∫

Dx

fE

(
yi − M(xi, di); Σi

)
fX |ΘX

(xi |θX) dxi. (33)

With the marginalized likelihood function Eq. (33) and the marginal prior distribution Eq. (31c), the unscaled

version of the marginal posterior reduces to

π
(
θX |⟨yi⟩

)
∝ L(θX ; ⟨yi⟩) πΘX

(θX). (34)

Exemplary comparisons of the numerical efficiency for sampling joint posteriors of the form Eq. (32) and

marginal posteriors of the form Eq. (34) are found in [69, 70].

Approximate two-stage approaches have been proposed for inferring aleatory parameter variability in

inverse problems, e.g. the context of random fields [73–76]. In the first stage n separate inverse problems are

solved, i.e. for each experiment i = 1, . . . , n an estimator x̂i of the realization xi is computed. As a second

step the hyperparameters θX are identified by statistical analysis of the estimates ⟨x̂i⟩. However, two-stage

methods suffer from the dependence on a sufficient amount of data available for both of the stages and their
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tendency to overestimate second-order central moments [14, 15]. Those issues are due to a fundamental

inconsistency in treating epistemic and aleatory uncertainty.

Classical inverse problems are sometimes phrased within a hierarchical frame [7, 8]. Formally this is a

special case of probabilistic inversion with n = 1. The intermediate unknowns x1 are commonly the QoI in

this type of hierarchical inversion. Their prior π(x1) =
∫

fX |ΘX
(x1 |θX)πΘX

(θX) dθX decomposes into a

conditional distribution fX |ΘX
(x1 |θX) and a marginal one πΘX

(θX). However, other than in probabilistic

inversion, Eq. (31b) is not interpreted as aleatory variability. Instead it can be viewed as leaving the prior for

x1 incompletely specified [7], i.e. relaxing the assumption of a parametric prior π(x1; θX) = fX |ΘX
(x1 |θX)

for a specific value θX . Alternatively Eq. (32) suggests that the prior hyperparameters θX can be estimated

along with x1. The prior in this case is given as π(x1, θX) = fX |ΘX
(x1 |θX) πΘX

(θX). For solving ill-posed

problems this can be seen as an automatic determination of the regularization parameters [8].

6. Combination of Information

In the preceding Section 5 we declared the hyperparameters θX as QoI and latent quantities ⟨xi⟩ as

nuisance. When this choice is reversed, i.e. proclaiming ⟨xi⟩ as the QoI and treating θX as nuisance, then

the Bayesian multilevel model Eq. (31) allows for an optimal type of inference [77]. This effect is sometimes

referred to as optimal combination of information or borrowing strength. To our best knowledge, it has

been pointed out for the first time in [78]. As we will see, the term “optimal” has to be understood with

respect to the total amount of information processed, e.g. the acquired data and the available parametric

and structural prior knowledge. Optimal combination of information seems to be largely understudied in

inverse problems with missing data structure. By taking the marginal viewpoint of Eq. (34), the additional

advantages that the joint formulation Eq. (32) offers are often overlooked.

Based on the hierarchical model Eq. (31), in this section we will show how to “borrow strength” in inverse

problems. The optimal inference of a specific xi0 for some i0 ∈ {1, . . . , n} is demonstrated. We pursue three

different estimation programs in order to investigate how inferring xi0 can be accomplished by wholly or only

partially utilizing the informational resources. In Section 6.1 we will present a simple Bayesian updating

approach, in respect to which the principle and mechanism of borrowing strength is emphasized by means of

multilevel inference in Section 6.3. Beforehand we will devise a sequential filtering approach in Section 6.2

that will serve as an illustration of the underlying flow of information.

6.1. Simple Updating

In this first approach, inference of xi0 will be solely based on the single observation yi0 , the informa-

tional content of fE(yi0 − M(xi0 , di0); Σi0), the structural prior fX |ΘX
(xi0 |θX) and the parametric prior

πΘX
(θX). Utilizing the prior information one can formulate a Bayesian prior distribution for xi0 . By
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marginalizing over the hyperparameters θX this reads as

π(xi0) =

∫

DθX

fX |ΘX
(xi0 |θX)πΘX

(θX) dθX . (35)

This compound distribution represents the uncertainty that xi0 priorly carries. Ensuing from the prior

Eq. (35), analyzing the piece of data yi0 is accomplished by constructing the corresponding posterior. It is

proportional to π(xi0 |yi0) ∝ fE(yi0 − M(xi0 ,di0); Σi0)π(xi0). We remark that the approach is formally

reminiscent of hierarchical inversion as discussed in Section 5.

While the observation yi0 that is directly associated to xi0 has been analyzed, the evidence that ⟨y̸=i0⟩
carry about θX , and in turn about xi0 , has not yet been taken into consideration. Put another way,

the hierarchical problem structure has been respected by formulating Eq. (35), however, it has only been

partially exploited for learning about the QoI xi0 .

6.2. Sequential Filtering

For the second estimation scheme, which will be based on sequential updating, we introduce the simpli-

fying notation ⟨q̸=i0⟩ = (q1, . . . , qi0−1, qi0+1, . . . , qn). In a first step probabilistic inversion is accomplished

by estimating θX with the data ⟨y̸=i0⟩. Similarly to Eq. (35), the resulting posterior π(θX |⟨y̸=i0⟩) can be

translated into a mixture distribution

π
(
xi0 |⟨y̸=i0⟩

)
=

∫

DθX

fX |ΘX
(xi0 |θX)π

(
θX |⟨y̸=i0⟩

)
dθX . (36)

It represents the uncertainty in xi0 following the analysis of ⟨y̸=i0⟩ but prior to analyzing yi0 . Thereupon

the second stage of the filtering program consists in utilizing Eq. (36) as a Bayesian prior for inferring

xi0 by inverting yi0 . Bayesian updating yields the posterior distribution π(xi0 |⟨y̸=i0⟩, yi0) ∝ fE(yi0 −
M(xi0 , di0); Σi0) π(xi0 |⟨y̸=i0⟩).

Information-wise, the estimation of θX has been initially based on the data ⟨y̸=i0⟩, its conditional

distributions fE(yi −M(xi, di); Σi) for i ̸= i0, the structural knowledge fX |ΘX
(xi |θX) and the parametric

prior πΘX
(θX). While inheriting the obtained information about θX by means of Eq. (36), the observation

yi0 has been eventually inverted for xi0 .

6.3. Multilevel Inversion

A full hierarchical analysis constitutes the third type of estimation. By formulating the joint poste-

rior Eq. (32) of the collectivity of unknowns (⟨xi⟩, θX) and marginalizing over nuisance (⟨x̸=i0⟩,θX), the

posterior distribution of the QoI xi0 can be written as

π
(
xi0 |⟨yi⟩

)
=

∫

Dn−1
x

∫

DθX

π
(
⟨xi⟩, θX |⟨yi⟩

)
d⟨x̸=i0⟩dθX , (37)
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where d⟨x ̸=i0⟩ = dx1 . . . dxi0−1 dxi0+1 . . . dxn. Note that when the joint posterior Eq. (32) is computed,

other marginals than Eq. (37) can be extracted similarly.

In terms of estimating xi0 , the structure of the posterior Eq. (37) reveals that all the different pieces of

information have been “optimally” combined during a joint learning process. From an informational point

of view, the total data ⟨yi⟩, their conditional distributions fE(yi −M(xi, di); Σi), the structural knowledge

fX |ΘX
(xi |θX) and the hyperprior πΘX

(θX) have been completely synthesized. This implies that inferring

xi0 “borrows” information encoded in the observations ⟨y̸=i0⟩. A DAG-based visualization of the underlying

flow of information is provided in Fig. 3. The deeper reason for borrowing strength to happen is the partial

reducibility of the uncertainty model Eq. (8), i.e. the exchangeability of aleatory variables ⟨xi⟩.

Figure 3: Optimal combination of information. A Bayesian network representation of probabilistic inversion is shown.

Known ( ) and unknown ( ) quantities are related by probabilistic ( ) relations. The “upstream” ( ) and “downstream”

( ) flow of information towards a specific xi0 is indicated. This is a form of borrowing strength.

7. Bayesian Computations

Generally Bayesian posteriors feature an analytic closed-form expression only on a rare occasion. Specif-

ically this applies to posteriors of the form Eqs. (13), (21) and (28). Notwithstanding the above, posteriors

can be explored by means of Markov chain Monte Carlo (MCMC) [79, 80]. Principally this readily refers

to posteriors stemming from multilevel inversion. The Metropolis-Hastings (MH) algorithm and the Gibbs

sampler are prototypical MCMC techniques. In Section 7.1 we will review the MH algorithm and discuss

classical MCMC key issues in Section 7.2. Additional computational key challenges posed by Bayesian mul-

tilevel model calibration will be discussed in Section 7.3. Some more sophisticated MCMC samplers that

are suitable in a multilevel-context are surveyed in Section 7.4.

7.1. The Metropolis-Hastings Algorithm

MCMC is based on constructing a Markov chain such that its invariant distribution equals the posterior.

Let π(q) be the prior and π(q |⟨yi⟩) the posterior density of some QoI q. A Markov chain with equilibrium

distribution π(q |⟨yi⟩) is generated by initializing at q(0) and repetitively proceeding as follows. Given a
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state q(t) that the Markov chain has taken on in some iteration, in the following iteration a candidate state

q(⋆) ∼ P (q(⋆) |q(t)) is randomly sampled from a proposal distribution P (q(⋆) |q(t)). In the MH correction

step the proposed state is approved as the new state q(t+1) = q(⋆) of the Markov chain with probability

α
(
q(⋆), q(t)

)
= min

(
1,

π(q(⋆) |⟨yi⟩)P (q(t) |q(⋆))

π(q(t) |⟨yi⟩) P (q(⋆) |q(t))

)
. (38)

Otherwise the proposal will be rejected, i.e. the Markov chain remains in its state q(t+1) = q(t) of the

preceding iteration. It is important to note that due to the MH acceptance probability Eq. (38), the

algorithm calls for the computation of posterior ratios only. Thus for MCMC sampling the scale factors in

Eqs. (13), (21) and (28) can be dropped and only unscaled posterior densities have to be evaluated.

Random walk Metropolis sampling rests upon local proposals, e.g. candidate states are sampled from a

Gaussian distribution q(⋆) ∼ N (q(⋆); q(t),Σq) that is centered around the current state q(t). The covariance

matrix Σq determines the “stepsizes” of the algorithm. Independence MH sampling is based on nonlocal

proposals whose distribution q(⋆) ∼ P (q(⋆)) is independent of q(t), e.g. sampling candidate states from the

prior q(⋆) ∼ π(q(⋆)) or from some suitable approximation of the posterior q(⋆) ∼ π̂(q(⋆) |⟨yi⟩).

7.2. Classical Key Challenges

The performance of MCMC methods is governed by the mixing properties of the underlying Markov

chain, i.e. the speed of convergence of the Markov chain towards the targeted posterior. As to which degree

MCMC samples are autocorrelated has a determining influence on the convergence speed and their quality

as posterior representatives. Hence MCMC algorithms are designed and tuned in pursuit of rapid mixing.

Depending on the specific problem at hand, this may be a tricky business which requires to employ and

combine sophisticated and highly specialized sampling schemes. Typically MCMC sampling calls for a high

number of program iterations which in turn demands a high number of forward model runs for evaluating

the likelihood function in the MH correction Eq. (38). Beyond that, careful convergence diagnostics are

of particular importance for MCMC methods. One has to assess when the Markov chain has reached its

stationary distribution, i.e. when it has lost any dependence on its initialization. Even though there are

advanced convergence test [81, 82], e.g. Gelman-Rubin diagnostics for multiple over-dispersed chains [83, 84],

we remark that from a pessimistic point of view any convergence diagnostic is heuristics [85]. Furthermore

MCMC suffers from difficulties in exploring high-dimensional and multimodal posteriors.

7.3. Multilevel-Related Challenges

Multilevel posteriors can be readily sampled by means of classical MCMC techniques as they are com-

monly applied in “simple” Bayesian inversion. However, on top of the classical bottlenecks that were discussed

above, one is faced with multilevel-specific MCMC challenges. The posteriors Eqs. (13) and (21), which are

appertain to the joint and the marginal variant of multilevel calibration, are different in nature. Accordingly,
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sampling these posteriors pose different computational burdens. The former requires a sampling scheme that

performs efficiently in high-dimensional parameter spaces, whereas the latter suffers from computing the in-

tegrated likelihood Eq. (20). Similarly the posterior Eq. (28) of the “perfect” data model imposes forward

uncertainty quantification for the computation of the likelihood Eq. (27).

Likelihood functions of the form Eqs. (23) and (30) suffer from another severe difficulty. It is well-

known that statistical estimations of the likelihood ratio introduce an additional random component into

the Markov chain transition kernel [86, 87]. Consequently the steady-state distribution of the chain may be

modified. Therefore free parameters of the algorithm have to be chosen endeavoring high posterior fidelity,

i.e. the degree as to which the induced long-run distribution conforms with the true posterior [59, 60].

7.4. Advanced MCMC Samplers

Summarized Bayesian multilevel model calibration requires an enormous number of forward model runs.

Therefore in the statistical literature a wide range of advanced MCMC techniques, dedicated to posterior

exploration in classical hierarchical models, have been devised. Some enhanced Gibbs sampling methods in

this context are reviewed in [79] and references therein. However, in view of engineering problems they may

not meet the challenges those applications usually pose. This is due to the inescapable “blackbox” character

of the forward solver and nonconjugacy. Generally not all of the parameters will have full conditionals of a

standard form that can be easily sampled. Despite that this paper does not focus on computational facets

of uncertainty quantification, a short outlook on potentially efficient MCMC implementations is given.

Data augmentation is a powerful MCMC technique that aims at enhancing the numerical efficiency

of posterior computation by introducing missing data as auxiliary variables [88, 89]. Note that the joint

posterior Eq. (13) can be seen as an augmented form of the marginal one Eq. (21). Thus data augmentation

naturally emerges in the context of Bayesian multilevel inversion. It has been beneficially applied for solving

multilevel inverse problems within the domain of aerospace engineering [59, 60]. Vice versa, there are

dedicated MCMC schemes for directly computing marginalized posteriors of the form Eq. (21), e.g. MC

within Metropolis sampling [55, 86] or pseudo-marginalization [90]. The Hamiltonian Monte Carlo (HMC)

algorithm is a sampler whose performance is remarkably efficient in high-dimensional parameter spaces and

for highly correlated posteriors [91, 92]. Since multilevel models are higher-dimensional and correlated by

definition, the HMC is a promising MCMC candidate in this context. Yet the HMC still occurs to be highly

underacknowledged in Bayesian inference in general and for hierarchical models in particular.

8. Numerical Case Studies

In order to illustrate the power and versatility of the devised framework we conduct a selection of

computer experiments. This shall be seen as a proof of concept and benchmark of the proposed methodology
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in the context of engineering applications. A system of identically designed structural components functions

as the basis for probing a range of experimental scenarios. Specifically we deal with an ensemble of simply

supported beams that are tested in a series of three-point bending experiments. By multilevel analysis of

measured beam deflections we highlight how different inferential goals, e.g. probabilistic inversion, residual

calibration or optimal combination of information, can be achieved in the presence of material variability

and uncertainties in the experimental setup. Keeping deterministic modeling simple and intuitive will allow

us to focus on uncertainty quantification aspects that are the essential subject matter of this research.

Incidentally we learn about the computational obstacles that must be overcome when aiming at “real-world”

applications.

The forward problem will be shortly introduced in Section 8.1. Around this submodel, that covers

the deterministic features of the system, Bayesian multilevel models will be built to capture uncertainty

and variability. Probabilistic inversion, i.e. deducing the material variability throughout an ensemble of

similar specimens, will be tackled in Section 8.2. The subsequent Section 8.3 will deal with residual model

calibration. In Section 8.4 the impact of prescribed uncertainties in the test conditions will be investigated.

In Section 8.5 borrowing strength will be utilized in order to ideally estimate the material characteristics of

a single specimen by using information obtained from the other specimens.

8.1. Mechanical Model

The system under consideration is an ensemble of identically manufactured beams i = 1, . . . , n with

well-known lengths Li and rectangular cross sections with widths bi and heights hi. Yet the completed

beams are only similar in the sense that we assume variability in the elastic moduli Ei across the ensemble,

e.g. due to slight irregularities in the fabrication process. For each single beam i the Young’s modulus Ei

is assumed to be constant along the main beam axis. The deflections ṽi(si,j) of a simply supported beam i

under a concentrated point load Fi at midspan can be easily derived in Euler-Bernoulli beam theory. For

positions si,j along the beam axis with 0 ≤ si,j ≤ Li/2 and j = 1, . . . , ni the deflections follow as

ṽi(si,j) =
Fisi,j

48EiIi

(
3L2

i − 4s2
i,j

)
, for 0 ≤ si,j ≤ Li/2, (39)

where the moment of inertia is given as Ii = bih
3
i /12. Likewise a symmetric expression holds for positions

si,j along the main axis with Li/2 ≤ si,j ≤ Li. A single simply supported beam is visualized in Fig. 4.

Together with its symmetric counterpart, the algebraic formula Eq. (39) constitutes the deterministic

submodel of the system under consideration. When a load Fi is applied to a beam i with physical dimensions

li = (Li, bi, hi) and an elastic modulus Ei, these relations predict the deflections ṽi = (ṽi(si,1), . . . , ṽi(si,ni))

at positions si = (si,1, . . . , si,ni). We denote this as

ṽi = M(Ei, Fi, li, si). (40)
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Figure 4: A simply supported beam.

When beam deflections are measured in three-point bending tests for each member i = 1, . . . , n in the

population, multilevel inversion allows for optimal data analysis in experimental situations where the inputs

of Eq. (40) are subject to uncertainty.

8.2. Probabilistic Inversion

We begin with Bayesian probabilistic inversion, on the basis of which we demonstrate how one can

quantify the material variability within the ensemble of beams in a series of bending tests. A numerical ex-

periment is therefore set up as follows. We consider a number of n = 100 beams with well-known dimensions

Li = 1 m and bi = hi = 10 cm. Beams are subjected to concentrated loads Fi = 30 kN that are applied at

midspan. For i = 1, . . . , 100 Young’s moduli Ei are independently sampled from a lognormal distribution

LN (Ei |µE , σE) with mean µE = 15 GPa and standard deviation σE = 3 GPa. This corresponds to a coef-

ficient of variation cE = 20 %. After having set up the experiment, the hyperparameters θE = (µE , σE) as

well as beam-specific moduli Ei will be treated as unknowns. At ni = 3 positions si = (si,1, si,2, si,3) with

si,1 = 25 cm, si,2 = 50 cm and si,3 = 75 cm beam deflections ṽi = (ṽi(si,1), ṽi(si,2), ṽi(si,3)) are computed

according to Eq. (39). In order to take measurement uncertainty and forward model imperfection into ac-

count, we perturb the predictions ṽi with noise terms εi = (εi,1, εi,2, εi,3). Those terms are independently

sampled from Gaussian distributions N (εi; 0,Σi) with Σi = σ2
i I3 and σi = 0.1mm. Eventually vi = ṽi +εi

represent the pseudo data that will become analyzed with respect to the QoI θE = (µE , σE).

In many circumstances expert knowledge about the QoI θE is available prior to analyzing the data. This

knowledge can be accounted for by eliciting a suitable prior distribution π(θE). Herein we employ a proper

Bayesian prior π(θE) = π(µE) π(σE) with independent marginals. As measured in units of GPa those

marginals are given as uniform distributions π(µE) = U(0, 100) and π(σE) = U(0, 30). This is supposed to

represent an experimental situation where one cannot elicit informative priors, nonetheless one is confident

enough to assign this weakly informative and flat prior with its upper and lower bounds.

Ultimately probabilistic inversion can be summarized as the estimation of the QoI θX ≡ θE with the de-

flection measurements ⟨yi⟩ ≡ ⟨vi⟩. Beam-specific Young’s moduli ⟨xi⟩ ≡ ⟨Ei⟩, that are not of immediate in-

ferential interest, are considered nuisance to that end. Experimental conditions ⟨di⟩ ≡ ⟨(Fi, li, si)⟩, that the

experiments where subject to, and prediction error models ⟨Σi⟩ are assumed to be known. The distributions
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fX |ΘX
(xi |θX) ≡ LN (Ei |µE , σE) and πΘX

(θX) ≡ π(θE) represent the available structural and parametric

prior knowledge, respectively. The emerging posterior will be of the form π(θX |⟨yi⟩) ≡ π(θE |⟨vi⟩). It can be

directly sampled or accessed via the QoI-marginals of the joint posterior π(⟨xi⟩, θX |⟨yi⟩) ≡ π(⟨Ei⟩, θE |⟨vi⟩).
A DAG corresponding to probabilistic inversion is provided in Fig. 2b.

8.2.1. MCMC

Generally we employ a joint rather than a marginal problem formulation. For the fidelity reasons

that were discussed in Section 7.3 this allows exact posterior computation where an approximation is only

introduced in as much as MCMC sampling is concerned. Moreover a joint posterior features a richer

structure which will provide new insights into multilevel inversion. All computations will be serially done

on a contemporary Intel Xeon CPU.

The joint posterior π(⟨Ei⟩, θE |⟨vi⟩) is sampled by means of a blockwise random walk Metropolis algo-

rithm. A practical problem of random walk samplers in high dimension is to carefully tune the proposal

distribution. For complex multivariate posterior distributions this is a cumbersome procedure that poses

severe difficulties. However, in multilevel inversion one can advantageously exploit the “symmetry” of the

problem in the latent variables. Assuming that separate inverse problems i with 1 ≤ i ≤ n are not severely

ill-posed, latent variables of the same uncertainty type are expected to behave similarly in the sense that

their marginal posteriors resemble one another. Moreover, due to the indirectness of borrowing strength,

their mutual correlations are expected to be rather small. Along these lines the “effective dimensionality”

is lower than the number of unknowns suggests. This discussion motivates that MCMC updates are done

in blocks ⟨Ei⟩ and (µE , σE). We find that with Gaussian jumping distributions the algorithm can be eas-

ily tuned in such a way that blockwise acceptance rates range between 20% and 40%. Avoiding lengthy

convergence times in high-dimensional problems requires smart initialization, too. Again we proceed by

exploiting the structure of the multilevel system. The block ⟨Ei⟩ is initialized with solutions of separate

inverse problems, while two-stage estimates are used in the hyperparameter block (µE , σE).

In order to assure duly completed posterior exploration we perform a number of convergence checks.

The algorithm is initialized in regions of the parameter space that had not been visited before and the

convergence behavior of the Markov chain is monitored. We detect that the chain eventually reaches the

same posterior modes again. In Fig. 5 trace plots of a converging Markov chain are shown for its µE and

σE components. They have been initialized at µ
(0)
E = 50 GPa and σ

(0)
E = 15 GPa, i.e. in the middle of their

priorly admissible intervals. While the mean hyperparameter µE directly converges as shown in Fig. 5a, we

observe a different behavior for the spread hyperparameter σE . From Fig. 5b it can be seen that the latter

chain tends to higher values prior to attraction towards the posterior mean. For the given initialization this

is a systematic effect that indicates a posterior correlation in the hyperparameters (µE , σE). Eventually the

Markov chain converges within ca. 400 MCMC iterations. Apart from such visual inspections we generally
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rely on Gelman-Rubin diagnostics for parallel chains [83, 84].
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Figure 5: Trace plots of a converging Markov chain. For n = 100 the converging Markov chain is shown for µE in (a)

and for σE in (b). Being initialized at µ
(0)
E = 50GPa and σ

(0)
E = 15GPa the Markov chain converges within ca. 400 MCMC

iterations. In equilibrium the Markov chain samples the posterior around its mean.

In Fig. 6 the MCMC sample autocorrelations are plotted for the QoI (µE , σE) and for an intermediate

variable Ei with i = 1. It can be seen how the autocorrelation function (ACF) drops until it becomes

indistinguishable from zero. This behavior governs the quality of the sample as a posterior representative.

Especially the ACF of Ei shown in Fig. 6c motivates more efficient updating schemes in future research.
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Figure 6: Sample autocorrelation functions. For a run with n = 100 the MCMC sample autocorrelation function is plotted

for µE in (a), for σE in (b) and for E1 in (c). The sample autocorrelation determines the effective MCMC sample size.

8.2.2. Results: Posterior Marginals

We analyze the data ⟨vi⟩1≤i≤100 as well as its subconfigurations ⟨vi⟩1≤i≤10, ⟨vi⟩1≤i≤20 and ⟨vi⟩1≤i≤50.

This allows to assess how the number of experiments n influences the identification of the QoI. For each

of the runs N = 107 MCMC iterations are performed. As a general rule we discard the initial 1% of the

total number of iterations of each Markov chain as a burn-in period. The total algorithm runtime adds up
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to t = 3.85 h for n = 10 and to t = 4.66 h for n = 100. The resulting posterior marginals of µE and σE

are shown in Fig. 7. A statistical summary of these marginals can be found in Table 1, where the mean,

mode, standard deviation (SD) and coefficient of variation (CV) are listed. With increasing number of

processed experiments n, Bayesian point estimates (mean, mode) approach the true values µE = 15 GPa

and σE = 3 GPa while measures of estimation uncertainty (SD, CV) expectedly decrease.
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Figure 7: Posterior marginals of the QoI. Corresponding to various numbers of experiments n, the marginal posterior

densities of µE and σE are shown in (a) and (b), respectively. For increasing n, the posterior uncertainty in estimating the

QoI θE = (µE , σE) with µE = 15GPa and σE = 3GPa steadily decreases.

Table 1: Summary of the QoI posterior marginals.

µE [GPa] [ ] σE [GPa] [ ]

mean mode SD CV mean mode SD CV

n = 10 15.98 15.43 2.06 0.13 4.73 3.54 3.55 0.75

n = 20 15.48 15.36 0.74 0.05 3.18 2.90 0.65 0.20

n = 50 15.20 15.17 0.46 0.03 3.17 3.08 0.37 0.12

n = 100 15.02 15.00 0.30 0.02 3.02 2.97 0.24 0.08

8.2.3. Results: Two-Dimensional Posteriors

Showing posterior marginals may hide possibly existing dependency structures or the lack thereof. Those

constitute a substantial result of Bayesian data analysis, though. Hence Fig. 8 shows two-dimensional poste-

riors where interesting correlation properties were discovered. The two-dimensional posterior of (µE , σE) is

plotted in Fig. 8a. According to the posterior probability model these two parameters are correlated with a

linear Pearson coefficient of correlation rµE ,σE
= 0.40. Note that these parameters were assumed to be inde-

pendent in accord with their prior model. The joint posterior Eq. (32) can also feature a correlation between
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hyperparameters and experiment-specific parameters. In Figs. 8b and 8c the two-dimensional posteriors of

(µE , Ei) and (Ej , Ei) with i = 50 and j = 75 are imaged.
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Figure 8: 2D posteriors of (µE , σE) and (µE , E50). The two-dimensional posteriors of (µE , σE), (µE , E50) and (E75, E50)

are shown. Being priorly independent the components µE and σE are seen to be correlated a posteriori. The linear Pearson

coefficient of correlation amounts to rµE ,σE = 0.40.

8.3. Residual Calibration

There are situations where the strong assumption of known residual variances Σi = σ2
i I3 is somewhat

restrictive. Thus we generalize multilevel inversion as in Section 8.2 by treating σE ≡ σi as a global unknown.

In units of mm the corresponding parametric prior is set to a uniform distribution π(σE) = U(0, 0.5).

Otherwise the experimental setup of probabilistic inversion is used.

The standard deviation σE of the residual model N (εi |0, σ2
EI3) is introduced as an extra unknown in the

model Eq. (31) and in the posterior Eq. (32). Consequently the joint prior is given as π(⟨Ei⟩, µE , σE , σE) =

π(σE)π(µE)π(σE)
∏n

i=1 LN (Ei |µE , σE). For the joint likelihood function one has L(⟨Ei⟩, σE ; ⟨vi⟩) =
∏n

i=1 N (vi |M(Ei, Fi, li, si), σ
2
EI3). Brought together this leads to a joint posterior density that has the

shape π(⟨Ei⟩, µE , σE , σE |⟨vi⟩) ∝ L(⟨Ei⟩, σE ; ⟨vi⟩) π(⟨Ei⟩, µE , σE , σE).

We sample from this posterior by appending a block for the additional unknown σE in the MCMC

updating scheme. In order to assess the influence of the amount of data on the final results, independent

runs are performed for n = 10, 20, 50 and 100. In Fig. 9 the relevant posterior marginals for the inference

of the residual model σE are shown. A short summary of the these marginals is provided in Table 2. The

higher the number of analyzed experiments n, the better the true value σE = 0.1mm has been revealed.

This proves that one can indeed estimate the parameters of the prediction error model in the context of

multilevel calibration. If this is not of interest for its own sake, it still avoids the requirement of perfect

knowledge of the error variance. In addition we observed that introducing an uncertainty in the residual

model hardly affects the inference of the QoI in probabilistic inversion.
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Figure 9: Posterior marginals of σE .

Table 2: Summary of the σE -marginals.

σE [10−5 m] [ ]

mean mode SD CV

n = 10 11.00 10.23 1.90 0.17

n = 20 8.68 8.38 1.01 0.12

n = 50 10.65 10.50 0.77 0.07

n = 100 9.97 9.90 0.50 0.05

8.4. Uncertain Conditions

In the following we describe an experimental situation where the inference of the QoI θE is hampered

by additional uncertainties in the experimental conditions. Experimental conditions are formally treated as

nuisance parameters with prescribed uncertainties. More specifically, we do not assume that the loads Fi

are perfectly known anymore. In contrast, we assume that they are ζi-type variables, i.e. they are uncertain

yet they follow a known distribution. This represents a well-known situation where the loads Fi that the

testing machine actually applies can only be imprecisely adjusted. In fact, while a targeted load in each

experiment is chosen, the physically realized load Fi may be uncertain. This is accounted for by a prescribed

distribution N (Fi; µFi , σ
2
Fi

) where µFi is the targeted load and σFi represents the degree of uncertainty that

is inherent to the test machinery.

The setup for conducting a numerical experiment is similar to the one specified in Section 8.2. For

n = 50 beams we set the beam dimensions li and measurement positions si as before. Elastic moduli

Ei are randomly drawn from LN (Ei |µE , σE) as previously detailed. In contrast to plain probabilistic

inversion, for i = 1, . . . , n experiment-specific loads Fi are independently sampled from normal distributions

N (Fi; µFi , σ
2
Fi

) with µFi = 30 kN and σFi = 3kN. This equates to a coefficient of variation cFi = 10 %. Note

that such a high degree of uncertainty is unlikely to be encountered in a real-case experiment. It is used

here to accentuate the results presented below, though. The realized loads Fi will be treated as unknowns

whereas the hyperparameters θFi = (µFi , σFi), i.e. the targeted load and its uncertainty, will be treated as

knowns. In accordance with Eq. (39) synthetic measurements vi = ṽi + εi are generated again. The prior

distribution π(θE) = π(µE) π(σE) is also chosen as previously stated.

The problem of probabilistic inversion under additional prescribed nuisance reads as follows. The hy-

perparameters θX ≡ θE are the QoI whereas experiment-specific unknowns ⟨xi⟩ ≡ ⟨Ei⟩ and ⟨ζi⟩ ≡ ⟨Fi⟩
are considered nuisance. With measurements ⟨yi⟩ ≡ ⟨vi⟩ the QoI can be inferred. Experimental-specific

knowns consist of the hyperparameters ⟨θZi⟩ ≡ ⟨θFi⟩, the experimental conditions ⟨di⟩ ≡ ⟨(li, si)⟩ and the

residual covariances ⟨Σi⟩. Parametric Bayesian prior knowledge is given by πΘX
(θX) ≡ π(θE) whereas
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fX |ΘX
(xi |θX) ≡ LN (Ei |µE , σE) and fZ(ζi; θZi) ≡ N (Fi; µFi , σ

2
Fi

) are structural prior distributions.

Within a joint approach a posterior of the form π(⟨xi⟩, ⟨ζi⟩,θX |⟨yi⟩) ≡ π(⟨Ei⟩, ⟨Fi⟩, θE |⟨vi⟩) arises. Even-

tually one is interested in the QoI-marginals π(θX |⟨yi⟩) ≡ π(θE |⟨vi⟩) only. A DAG corresponding to this

experimental situation is shown in Fig. 2c.

8.4.1. Results: Hyperparameters

We sample the joint posterior π(⟨Ei⟩, ⟨Fi⟩, θE |⟨vi⟩) where nuisance variables ⟨Fi⟩ are explicitly accounted

for. In a blockwise manner MCMC sweeps are accomplished for (µE , σE), ⟨Ei⟩ and ⟨Fi⟩ which constitute

different blocks. Blockwise proposal distributions are again adjusted in order to obtain acceptance rates in

between 20 % and 40 %. Each Fi in the block ⟨Fi⟩ is initialized at F
(0)
i = µFi , i.e. the structural prior mean.

Other than that initialization, convergence checks and burn-in are accomplished as before. For N = 107

MCMC iterations the total computation time amounts to t = 7.18 h. The resulting posterior marginals of

µE and σE can be seen in Fig. 10. A statistical summary is provided in Table 3 where the mean, mode, SD

and CV of the marginals are itemized.
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(a) Posterior marginal of µE.
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Figure 10: Posterior marginals of the QoI. The marginal posteriors of µE and σE are provided in (a) and (b), respectively.

Three experimental scenarios are investigated: the proper treatment of the additional uncertainty, an idealized situation where

one would precisely know the loads, and the case of a parsimonious model where the uncertainty remains unrecognized.

Table 3: Summary of the QoI posterior marginals.

µE [GPa] [ ] σE [GPa] [ ]

mean mode SD CV mean mode SD CV

proper treatment 15.47 15.41 0.51 0.03 3.17 3.05 0.46 0.14

oracle scenario 15.16 15.13 0.47 0.03 3.26 3.15 0.39 0.12

ignorance scenario 15.65 15.60 0.52 0.03 3.61 3.51 0.43 0.12
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We try to assess the impact of the uncertainty that had been introduced in the loads Fi on the estimation

of the QoI θE = (µE , σE). To that end we pursue the following two strategies. First of all we estimate the QoI

while treating the realized loads Fi as if they were part of the experiment-specific knowns di. This “what-if”

or “oracle” scenario actually describes the hypothetical situation that we met in plain probabilistic inversion.

It does not describe the realistic scenario of uncertain conditions ζi that we are actually investigating. Yet

this way of proceeding sheds light on how the prescribed uncertainty in the loads affects the inference of the

QoI. For N = 107 and t = 4.33 h the results to probabilistic inversion are added to Fig. 10. With respect

to this idealized situation, one can reassess the previous results of properly treating the loads as uncertain.

The introduction of the uncertainty in the loads had actually shifted the posterior modes and raised the

level of estimation uncertainty accordingly.

Second of all we investigate the case that the uncertainty N (Fi; µFi , σ
2
Fi

) in the applied loads Fi is simply

disregarded. Either it has not been recognized by mistake or it has been intentionally dropped by making

simplifying assumptions in favor of a parsimonious model. Rather than treating the loads as belonging to

the unknowns ζi, we erroneously treat them as such experimental conditions d≈
i that only approximately

describe the prevailing conditions di. While the data has been created under di, data analysis is carried

out under d≈
i . This describes a situation where the experimenter targets a load F≈

i = µFi , but the testing

machine actually realizes Fi. If this uncertainty N (Fi; µFi , σ
2
Fi

) is not accounted for or not recognized at

all, the analyst will accomplish inference under the spurious assumption that the loads had taken on their

targeted values F≈
i during experiment execution. For N = 107 and t = 3.75 h the resulting posteriors

are added to Fig. 10. Our interpretation is that dropping the uncertainty of Fi corrupts the estimation of

the QoI and results in misleading estimates of posterior uncertainty, whereas the proper treatment of all

uncertainties yields results that are closer to the idealized “oracle” scenario.

8.4.2. Results: Intermediate Variables

Sampling the joint posterior π(⟨Ei⟩, ⟨Fi⟩, θE |⟨vi⟩) of the entirety of unknowns provides further interesting

insights. Apart from the QoI-marginals one can examine the posterior model of experiment-specific loads

Fi, notwithstanding that they are considered nuisance. Fig. 11 contains two different posteriors involving

some Fi. In Fig. 11a the posterior marginal of a pinpoint load Fi is shown for i = 23. The identification

of specifically applied loads Fi is subject to rather high levels of posterior uncertainty. This is an issue of

statistical identifiability. When both Ei and Fi are uncertain and various combinations of these can explain

the observation vi equally well, then those combinations (Ei, Fi) cannot be distinguished a posteriori. Of

course, the reason is that only the ratio Fi/Ei in Eq. (39) can be identified. It is therefore interesting to

investigate the posterior correlation between the load Fi and the modulus Ei of an experiment i. The two-

dimensional posterior of (Ei, Fi) for i = 20 that is shown in Fig. 11b serves as an example. Posterior mass

is assigned to suitable parameter constellations (Ei, Fi) that well-explain the measurement vi. As expected
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the posterior is strongly correlated with a linear coefficient of correlation rF20,E20 = 0.99.
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(a) Posterior marginal of F23.
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Figure 11: Posteriors of intermediate variables. In (a) the posterior marginal of F23 and its structural prior

N (F23; µF23 , σ2
F23

) with µF23 = 30 kN and σF23 = 3kN are shown. The posterior is centered around the actual value

F23 = 27.24 kN. The two-dimensional posterior of (F20, E20) with rF20,E20 = 0.99 is shown in (b).

8.5. Borrowing Strength

As pointed out in Section 6, Bayesian multilevel modeling allows for “optimal combination of information”

or “borrowing strength”. Here we demonstrate this inferential mechanism and investigate its underlying flow

of information for the previous application example. The Bayesian model of probabilistic inversion Eq. (31)

is considered. However, as opposed to probabilistic inversion we declare experiment-specific elastic moduli

⟨Ei⟩ as the QoI whereas the hyperparameters θE are considered nuisance. Herein we highlight the optimal

inference of a single Ei0 for some i0 ∈ {1, . . . , n}.

The experimental setup is similar to the one described in Section 8.2. For n = 50 beams, elastic moduli

Ei are randomly sampled from LN (Ei |µE , σE). Beam dimensions li, measurement positions si and the

applied loads Fi are chosen as before. With Eq. (39) beam deflections ṽi are predicted. Synthetic data

vi = ṽi + εi are generated by perturbing the predictions ṽi with noise. For this purpose noise terms εi are

independently sampled from Gaussian distributions N (εi; 0,Σi). We choose Σi = σ2
i I3 with σi = 0.1mm

for i ̸= i0 and σi0 = 0.1 cm. The latter describes a comparably large deviation that differs from the setup

of Section 8.2. This choice serves the purpose of clearly illustrating the inferential mechanism of optimal

combination of information.

Eventually optimal combination of information reads as the following problem. With noisy data ⟨yi⟩ ≡
⟨vi⟩ an experiment-specific xi0 ≡ Ei0 has to be ideally estimated, i.e. taking all available sources of infor-

mation into account. The hyperparameters θX ≡ θE as well as ⟨x ̸=i0⟩ ≡ ⟨E̸=i0⟩ are considered nuisance

to that end. Experiment-specific knowns are ⟨di⟩ ≡ ⟨(Fi, li, si)⟩ and ⟨Σi⟩. The resultant posterior will be

of the form π(xi0 |⟨yi⟩) ≡ π(Ei0 |⟨vi⟩). Subsequent to formulating the joint posterior π(⟨xi⟩, θX |⟨yi⟩) ≡

30



π(⟨Ei⟩, θE |⟨vi⟩), the QoI-marginals can be easily extracted. Other than that, the experimental setup of

probabilistic inversion is adopted. Thus the experiment can be visualized by the DAG in Fig. 2b, too.

8.5.1. Results: Information Accumulation

We conduct simple updating, sequential filtering and multilevel inversion for estimating Ei0 , as introduced

in Section 6. First of all we start with the simple Bayesian updating approach that was introduced in

Section 6.1. By the method of composition we draw K = 105 samples (E
(1)
i0

, . . . , E
(K)
i0

) from the mixture

prior π(Ei0) that corresponds to Eq. (35). With this sample the mixture prior can be evaluated as the

corresponding one-dimensional KDE with Gaussian kernel functions. The posterior π(Ei0 |vi0) results from

conditioning on the piece of data vi0 . This univariate posterior is explored in N = 105 MCMC iterations for

which the program execution time amounts to t = 5.86 h. The final result of this simple updating approach

is shown in Fig. 12a.

Second of all we conduct the sequential Bayesian filtering program that was proposed in Section 6.2.

In N = 107 MCMC iterations that take t = 3.95 h, probabilistic inversion for estimating θE is executed

with the data ⟨v̸=i0⟩. MCMC samples from the resultant posterior π(θE |⟨v̸=i0⟩) are used to sample the

compound distribution π(Ei0 |⟨v ̸=i0⟩) in Eq. (36) via the composition method. Subsequently a lognormal fit

to these samples acts as the prior for Ei0 . This prior and the arising posterior distribution π(Ei0 |⟨v ̸=i0⟩, vi0)

are plotted in Fig. 12b. In t = 0.01 h of execution time N = 105 MCMC samples of the univariate posterior

were sampled. By comparison of the two posteriors in Fig. 12, the shrinkage of the posterior uncertainty

from π(Ei0 |vi0) to π(Ei0 |⟨v̸=i0⟩, vi0) becomes apparent. Both posteriors follow from conditioning on the

data vi0 , they update different priors π(Ei0) and π(Ei0 |⟨v ̸=i0⟩), though. In the first place this proves that

Bayesian priors are a valid source of information. Moreover, this principally shows how learning about Ei0

can be indirectly supported by the evidence that ⟨v ̸=i0⟩ contains with regard to θE .
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(a) Simple updating.

elastic modulus Ei0 [GPa]

p
ro
b
a
b
il
it
y
d
en

si
ty

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25
compound prior π(Ei0 |〈v 6=i0〉)
posterior π(Ei0 |〈v 6=i0〉, vi0 )
true value

(b) Sequential filtering.

Figure 12: Bayesian updating and filtering. The mixture prior π(Ei0 ) and the posterior π(Ei0 |vi0 ) of simple updating

are shown in (a). Sequential filtering is based on the more informative mixture prior π(Ei0 |⟨v̸=i0 ⟩) and the corresponding

posterior π(Ei0 |⟨v̸=i0 ⟩, vi0 ) that are given in (b).
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Lastly we perform Bayesian multilevel analysis as described in Section 6.3. Sampling the joint posterior

π(⟨Ei⟩, θE |⟨vi⟩) allows to straightforwardly extract samples from its marginal π(Ei0 |⟨vi⟩) in Eq. (37). This

is accomplished in t = 4.57 h for N = 107 algorithm iterations. The posterior and the previous inferential

distributions relevant for Ei0 are plotted in Fig. 13. In addition to that Table 4 recapitulates the different

approaches. Results are also provided from a second series of runs that were independently carried out on

top of the first one. The motivation is to show that borrowing strength is a not a random but a systematic

effect. The accumulation of information concerning Ei0 manifests in the progressively decreasing uncertainty

in the distributions. At every stage of the estimation plan, a certain proportion of the available information

has entered the analysis and has been translated into a gain of knowledge related to Ei0 . Only the multilevel

posterior π(Ei0 |⟨vi⟩) entirely aggregates the available information.
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(a) Summary of the 1st series.
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Figure 13: Accumulation of information. In (a) and (b) the estimations of Ei0 are summarized for two series of runs. The

true values are Ei0 = 13.96GPa and Ei0 = 16.35GPa in the 1st and 2nd series, respectively. Uncertainties in identifying these

values reflect the amount of information processed in simple updating, sequential filtering and multilevel inversion.

Table 4: Posterior summaries of estimating Ei0 .

1st series: Ei0 [GPa] [ ] 2nd series: Ei0 [GPa] [ ]

mean mode SD CV mean mode SD CV

simple updating: 15.23 14.31 2.38 0.16 19.02 17.30 3.93 0.21

sequential filtering: 14.82 14.32 1.83 0.12 16.58 16.07 2.03 0.12

multilevel inversion: 14.75 14.37 1.79 0.12 16.47 16.12 1.85 0.11

The assumption of well-known loads Fi may be overly optimistic in experimental practice. As done

in Section 8.4 one could attach an additional prescribed uncertainty to those model inputs. In doing so

we expect similar results accompanied by a weakening of borrowing strength. Furthermore we expect an

indirect form of borrowing strength also to occur for the inputs of a prescribed uncertainty type. Actually the
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prescribed uncertainty model does not permit for learning about a specific Fi0 by borrowing strength directly

from ⟨v ̸=i0⟩. However, by optimally estimating Ei0 also learning Fi0 would be indirectly strengthened.

9. Conclusion & Outlook

Bayesian multilevel model calibration has been developed as a consistent and comprehensive framework

for managing uncertainties in inverse problems. At the core of the such problems a forward model relates

physical parameters to observable quantities. This deterministic model has been surrounded by a proba-

bilistic representation of uncertainty, variability and error. For this purpose classical Bayesian inversion,

hierarchical statistical models and the predominant epistemic/aleatory conception of uncertainty have been

utilized. The inferential rationale of multilevel inversion, based on the conditioning, marginalization and

transformation of probability measures, has become transparent by laying the research focus on aspects of

uncertainty quantification and information accumulation. Fully Bayesian probabilistic inversion and bor-

rowing strength have been suggested. Furthermore we have originally elaborated on the “perfect” data limit.

Our developments were driven by the challenges of engineering applications and they ultimately allow for

optimal data analysis in intricate situations where evidence is scarce and uncertainty prevails.

An ensemble of structural elements of the same type, for all of which virtual tests are performed and

pseudo data are gathered, served as the basis for investigating a variety of experimental scenarios. The

amenities of Bayesian multilevel inversion were demonstrated by exercising inference in the chosen example

applications under realistic uncertainty configurations. Probabilistic inversion, i.e. the identification of

material variability throughout a population of specimens, was accomplished and it was investigated how the

amount of data influences the estimation uncertainty . The constraints of perfectly known residual variances

and experimental conditions were loosened. In this context we calibrated the forward model prediction

error and we studied how the objective of probabilistic inversion is impeded by additional uncertainties

in the experimental conditions. Optimal combination of information, i.e. the ideal inference of specimen-

specific properties, has been introduced as a byproduct of the joint formulation of multilevel inversion.

Especially in the engineering community this is an aspect that is often overlooked. We examined the

underlying inferential mechanisms and we identified the computational obstacles, e.g. costly evaluations of

the marginalized likelihood function or the curse of high-dimensionality.

In conclusion, innovative techniques must be developed in order to overcome these difficulties for solving

“real-world” problems. Future research therefore includes the following items. For the marginal problem, nu-

merically efficient and acceptably accurate approximations of the integrated likelihood have to be developed.

Advanced MCMC techniques, that are custom-tailored for the specific structure of multilevel posteriors, have

to be devised for the joint problem. In this connection a numerical study involving HMC is in progress. For

both the marginal and the joint variant of multilevel inversion, the application of dedicated metamodeling
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techniques promises drastic speedups. It will also be interesting to study the applicability and performance

of optimal transportation approaches [93, 94] to classical Bayesian inference in the context of multilevel es-

timation. Another research question concerns the role of multimodality and severe ill-posedness of separate

inverse problems in Bayesian multilevel inversion.
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