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Model Spaces of Regularity Structures

for Space-Fractional SPDEs

Nils Berglund and Christian Kuehn

February 25, 2017

Abstract

We study model spaces, in the sense of Hairer, for stochastic partial differential equations
involving the fractional Laplacian. We prove that the fractional Laplacian is a singular kernel
suitable to apply the theory of regularity structures. Our main contribution is to study the
dependence of the model space for a regularity structure on the three-parameter problem
involving the spatial dimension, the polynomial order of the nonlinearity, and the exponent
of the fractional Laplacian. The goal is to investigate the growth of the model space under
parameter variation. In particular, we prove several results in the approaching subcriticality
limit leading to universal growth exponents of the regularity structure. A key role is played
by the viewpoint that model spaces can be identified with families of rooted trees. Our proofs
are based upon a geometrical construction similar to Newton polygons for classical Taylor
series and various combinatorial arguments. We also present several explicit examples listing
all elements with negative homogeneity by implementing a new symbolic software package
to work with regularity structures. We use this package to illustrate our analytical results
and to obtain new conjectures regarding coarse-grained network measures for model spaces.

Submitted version

2010 Mathematical Subject Classification. 60H15, 35R11 (primary), 05C05, 82B20 (secondary).

Keywords and phrases. Stochastic partial differential equations, regularity structures, fractional Lapla-

cian, nonhomeomorphic rooted trees, subcriticality boundary.

1 Introduction

Our main starting point in this work are stochastic partial differential equations (SPDEs) of
the form

∂tu = ∆ρ/2u+ f(u) + ξ , ∂t :=
∂

∂t
, (1.1)

where ∆ρ/2 := −(−∆)ρ/2 is the fractional Laplacian for ρ ∈ (0, 2], f is a polynomial defined in
(1.2), ξ = ξ(t, x) is the noise (which we shall often take as space-time white noise as discussed
below), u = u(t, x) and (t, x) ∈ [0,+∞)× Td, where Td is the unit torus in Rd so that we work
with periodic boundary conditions. We also write f explicitly as

f(u) :=

N∑
j=0

aju
j , (1.2)

where the degree N will be restricted, depending upon the dimension d. The technical develop-
ment of this paper starts in Section 2. Here we outline the origins of the questions of this work
and provide a formal overview of our results.

There are several motivations to study (1.1). First of all, the case α = 2, corresponding to
the classical Laplacian, has been studied in great detail for the deterministic system (ξ ≡ 0),
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under various names for different polynomial nonlinearities such as the Allen–Cahn equation [2],
the Nagumo equation [34], the Fisher–Kolmogorov–Petrowski–Piscounov equation [15, 30], the
Ginzburg–Landau equation [12] or as normal forms (or modulation/amplitude equations) for
bifurcations of PDEs [26]. Recently, there has been considerable interest to extend the scope
to either the stochastic case (ξ 6≡ 0) or to include other differentiable operators, such as the
fractional Laplacian, which is a nonlocal operator; see [11, 1] or Section 3 for one precise def-
inition of the fractional Laplacian. Hence, it is a natural theoretical question, how stochastic
terms and nonlocal operators can be combined. For very rough stochastic driving terms ξ al-
ready existence and regularity questions for (1.1) are nontrivial. Indeed, pursuing the classical
route to re-write (1.1) in a mild formulation [37] using the semigroup t 7→ et∆

ρ/2
can lead to a

fixed-point problem, where the products in the polynomial (1.2) are not well-defined as u may
only have the regularity of a generalized function (or distribution). This issue not only appears
for the classical stochastic Allen–Cahn equation (α = 2, ξ space-time white noise, d ∈ {2, 3},
N = 3) but also in many other SPDEs such as the Kardar–Parisi–Zhang equation [28, 21],
the Φ4

3-model [24], and several other SPDEs. To overcome this problem for different classes of
SPDEs, Martin Hairer developed a unified theory of regularity structures in combination with
a renormalization scheme [22]. The basic idea is to consider an abstract algebraic structure,
the regularity structure, in which we may solve a suitable fixed-point problem. Furthermore,
this solution procedure is compatible with taking limits of a smoothed version of the original
problem and reconstructing a “physical” solution from objects in the regularity structure [22].
A key ingredient of the fixed-point argument is that under a parabolic space-time scaling, the
heat semigroup associated to the classical Laplacian is regularizing of order two, i.e., we essen-
tially gain two derivatives after a convolution of a function/distribution with the heat kernel.
This smoothing effect compensates the rough driving by ξ for certain, so-called subcritical,
nonlinearities. A related theory achieving the definition of low-regularity products of functions
uses paracontrolled distributions [27, 18], developed by Gubinelli and co-authors, and has also
been applied to several classes of SPDEs [20, 19]. Also in this theory, one makes use of the
smoothing properties of differential operators in the SPDE.

Remark 1.1. In this paper, we focus on the theory of regularity structures. However, since we
study a space of functions, the space of modelled distributions, which can be used to expand
the solution of the SPDE (1.1) as a series, it is expected that our results could be re-interpreted
in the context of paracontrolled calculus in future work. ♦

From the theory of fractional differential Laplace operators, or more generally Riesz–Feller
operators, and associated ideas developed in the context of Lévy processes and anomalous
diffusion, it is known that the fractional Laplacian has less smoothing properties than the
classical Laplacian. Hence, it is natural to ask, how this restricts the class of SPDEs tractable
via regularity structures.

A second key motivation to study (1.1) arose out of recent work [5] by the authors of this
paper, where the key object of study was the FitzHugh–Nagumo SPDE

∂tu = ∆u+ u(1− u)(u− p)− v + ξ ,

∂tv = g(u, v) , (1.3)

where p ∈ [0, 1
2 ] is a parameter and g(u, v) : R × Rm → Rm is linear. The main problems to

apply the theory of regularity structures to (1.3) are to deal with multiple components and
especially the missing spatial regularization properties as the v-components do not contain a
spatial differential operator. In [5], this problem is overcome by introducing a spatially non-
smoothing operator for the v-components and then working through the required Schauder
estimates for this operator again by modifying the relevant parts of [22]. One may argue that
it could be more convenient to try to follow the classical strategy developed for hyperbolic
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conservation laws [13] and introduce a viscous regularization

∂tu = ∆u+ u(1− u)(u− p)− v + ξ ,

∂tv = δv∆v + g(u, v) , (1.4)

prove existence and regularity for (1.4) and then consider the limit δv → 0. Albeit appealing,
this approach does not seem to work well in combination with regularity structures as δv∆ is
a regularizing operator of order two for any δv > 0 but has no spatial regularization properties
for δv = 0. Hence, one idea is to replace δv∆ by ∆ρ/2 and consider the limit ρ → 0 instead.
This strategy seems more suited to work with regularity structures but we are still lacking a
full understanding of one-component reaction–diffusion SPDEs with polynomial nonlinearities
and involving the fractional Laplacian. This paper provides the first steps to fill this gap.

Additional motivation arises from the theory of regularity structures itself. The theory
does require certain nonlocal operators, even when working with the classical Laplacian, so
working with general nonlocal operators seems natural and could lead to a better understanding
of regularity structures. Furthermore, the algebraic results on regularity structures recently
announced in [23], developed simultaneously to the present work and available as first versions
in [8, 9], are also relevant as one may ask, how the viewpoint of rooted trees as regularity
structure elements may be exploited further. We remark that we are going to study a problem,
where the exponent of the fractional Laplacian ρ allows us to approach the border between
subcritical SPDEs with finite renormalization group (i.e. super-renormalizable SPDEs) [21] and
infinite-dimensional renormalization groups.

From the perspective of dynamical aspects of the SPDEs (1.1) and (1.3), it is known that
solution properties can change considerably if external noise is added [3, 17] or standard diffusion
is replaced by a jump process [29, 33]. Hence, combining and comparing these two aspects is
definitely going to lead to new applications.

In this paper, we focus on the parametric problem for building the regularity structure,
i.e., we only study the model space of the structure, not yet the renormalization procedure,
which might simplify anyhow due to the very recent results in [23, 8, 9]; however, a detailed
renormalization study of (1.1) is still expected to reveal interesting effects, e.g., in the context
of large deviations [25, 4]. There are three key parameters for (1.1), whose influence we would
like to study:

• the spatial dimension d ∈ N,

• the polynomial degree N ∈ N,

• the fractional exponent ρ ∈ (0, 2],

where the choice of interval for ρ is motivated by the regularization of the FitzHugh–Nagumo
problem as well as the representative horizontal cut through the Feller–Takayasu diamond [29];
in particular, our results also hold for Riesz–Feller operators with asymmetry parameter θ and
|θ| 6 min{α, 2 − α} but we do not spell the results out to simplify the notation. There seems
currently to be no detailed study available covering the parametric dependence of regularity
structures, so we hope that giving this dependence more explicitly for a key example such
as (1.1) helps to solidify the general understanding of regularity structures. The main results
of our work can be summarized in a non-technical form as follows:

1. We verify that the fractional Laplacian falls within the class of singular integral operators
considered by Hairer. We determine for which parameter values the SPDE (1.1) fulfils the
local subcriticality condition, which is necessary for the application of regularity structures
to construct solutions; the main condition for space-time white noise is

ρ > ρc = d
N − 1

N + 1
;
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see Section 3 and Theorem 4.3.

2. We study the model space TF and its dependence on the three parameters N, d, ρ analyt-
ically. There are several interesting results for space-time white-noise:

(a) We relate the number of negative homogeneities to solutions of constrained Diophan-
tine equations for rational ρ; see Proposition 4.8.

(b) We prove that the number of negative homogeneities in the index set diverges like
(ρ− ρc)

−1 as ρ approaches the subcriticality limit from above; see Theorem 4.12.

(c) We prove that the number of negative-homogeneous elements of the model space
diverges in the subcriticality limit like (ρ− ρc)

3/2 exp(βNd(ρ− ρc)
−1) as ρ↘ ρc with

an explicitly computable constant βN ; see Theorem 4.18 and Theorem 4.20.

(d) We determine statistical properties of the negative-homogeneous elements of the
model space viewed as rooted trees, such as the asymptotic relative degree distri-
bution (Proposition 5.4) and the homogeneity distribution (Proposition 5.3). In
particular, we show that all trees are obtained by pruning a regular tree of degree
N + 1 of at most N − 1 edges.

For a more general noise, we have the following result:

(e) For any value of (ρ,N, d), there exists a choice of noise such that the SPDE (1.1) is
subcritical and its model space has elements of homogeneity of 0−, i.e., 0−κ for any
sufficiently small κ; see Proposition 4.14.

3. We study numerically the statistical properties of elements in TF viewed as rooted trees
using graph-theoretical measures. We implement a symbolic software package to compute
with the rooted trees. Based upon computing several benchmark examples, we conjecture
a number of statistical limit graph properties. These conjectures include the existence of
limits of coarse-grained graph measures as well as the existence of a limiting probability
distribution of negative homogeneities formed (for ρ ∈ Q) similar to a fractal construction;
see Section 6.

In summary, the approach towards the theory of regularity structures in this paper is quite
different from previous works using the theory. Here we focus on the parametric structure of
the model space and SPDEs approaching the subcriticality condition in a parameter limit. This
approach is similar to strategies employed in statistical physics to capture “universal” exponents
as well as to parameter studies in dynamical systems. This view reveals that there is a lot to
be learned just by studying the model space as an object itself.

The paper is structured as follows: In Section 2, we review some basics about regularity
structures and fix the notation. In Section 3 we provide the details for the singular kernels,
as introduced by Hairer, in the context of the fractional Laplacian. In the main Section 4, we
construct the model space TF for (1.1), we determine the subcriticality boundary, and we study
the growth of the number of elements in TF . In Section 5, we derive several statistical properties
of the model space near the subcriticality boundary. In Section 6, we present the computations
carried out by the new symbolic computation package.

Notations: If x ∈ R, then bxc denotes the largest integer less than or equal to x. We write |x|
to denote either the absolute value of x ∈ R or the `1-norm of x ∈ Rd, while ‖x‖ denotes the
Euclidean norm of x ∈ Rd. If A is a finite set, then |A| stands for the cardinality of A. We use
the notation supp(f) for the support of a function f , and f � g to indicate that f/g is bounded
uniformly above and below by strictly positive constants. For the identity mapping on a set or
space we write Id.

Acknowledgments: We would like to thank Romain Abraham, Marie Albenque and Kilian
Raschel for advice on the combinatorics of trees. CK has been supported by the Volkswagen-
Stiftung via a Lichtenberg Professorship.
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2 Regularity Structures

We briefly recall the basic notions from [22] to fix the notation. Furthermore, this section
separates out the parts of the theory of regularity structures that are required to consider
the fractional SPDE (1.1), i.e., to build the regularity structure associated to (1.1). Let T =
(A, T ,G) denote a regularity structure. The index set A ⊂ R is locally finite, bounded below
and with 0 ∈ A, the model space T = ⊕α∈ATα is a graded vector space with Banach spaces Tα,
and G is the structure group of linear operators acting on T , such that for every Γ ∈ G, α ∈ A,
τ ∈ Tα one has

Γτ − τ ∈
⊕
β<α

Tβ . (2.1)

Roughly speaking, one has to view T as containing abstract symbols representing basic functions
or distributions, while G links together different basis points for general abstract expansions of
functions or distributions. Two basic examples are the polynomial regularity structure (see
Example 2.1 below) and rough paths [16]. It is standard to require that T0 is isomorphic to R
with unit vector 1 as well as Γ1 = 1 for all Γ ∈ G. It will become clear later on that the index
α can be associated to “regularity” classes. Given another regularity structure T̂ = (Â, T̂ , Ĝ),
one writes T ⊂ T̂ if A ⊂ Â, there exists an injective map ι : T → T̂ such that ι(Tα) ⊂ T̂α
for all α ∈ A, ι(T ) is invariant under Ĝ, and j given via j(·) := ι−1(·)ι is a surjective group
homomorphism from Ĝ to G. We endow Rd+1, using coordinates z = (t, x) ∈ R × Rd, with a
scaling

s := (s0, s1, . . . , sd) ∈ Nd+1

which induces a scaled degree for each multiindex k ∈ Nd+1
0 given by

|k|s :=
d∑
i=0

siki

and a scaling map

Sδs : Rd+1 → Rd+1, Sδs (t, x) := (δ−s0t, δ−s1x1, . . . , δ
−sdxd) ,

as well as a scaled metric on Rd+1 defined as

ds((t, x), (s, y)) := |t− s|1/s0 +
d∑
i=1

|xi − yi|1/si .

It is useful to employ the notations |s| :=
∑d

i=0 si as well as ds((t, x), (s, y)) =: ‖(t, x)− (s, y)‖s
although ‖ · ‖s is not a norm. The associated shifted scalings for a function φ are defined as(

Sδs,z̄φ
)
(z) := δ−|s|φ

(
Sδs (z − z̄)

)
.

Essentially, one employs scalings in the theory of regularity structures to bring the action of
certain differential operators on a common invariant scale. Here we restrict to the scalings
necessary for the operator ∂t + (−∆)ρ/2, which explains the splitting between the first time
coordinate and the spatial coordinates in the scaling.

Example 2.1. The polynomial regularity structure (Ā, T̄ , Ḡ) on Rd+1 associated with the scal-
ing s is given by Ā = N0, by the polynomial ring T̄ = R[X0, X1, . . . , Xd] with a grading induced
by the scaled degree

T̄n := span{Xk : |k|s = n} ,

and Ḡ given by translations. Here we use the multiindex notation Xk = Xk0
0 . . . Xkd

d . Indeed, the
abstract polynomials have a natural structure group with elements Γh ∈ Ḡ acting by ΓhX

k =

5



(X + h)k for h ∈ Rd+1 so Ḡ ' Rd; see [22, Sec 2.2]. The requirement (2.1) then just means
for the polynomial regularity structure that translating a polynomial and then subtracting the
original one leaves only lower-degree terms. For all regularity structures considered here, we
always assume that T̄ ⊂ T . �

In general, whenever τ ∈ Tα, we declare its homogeneity to be given by |τ |s = α. The
homogeneity is supposed to reflect a type of Hölder continuity with respect to the scaled metric
ds of the function or distribution τ represents. If α > 0, then a function f : Rd+1 → R belongs
to Cαs if it satisfies a similar condition on increments as classical Hölder functions, but for the
scaled metric (see [22, Def. 2.14] for a precise definition). If α < 0, then a Schwartz distribution
ξ is said to belong to Cαs if there exists a constant C such that∣∣〈ξ,Sδs,zη〉∣∣ 6 Cδα (2.2)

for any sufficently smooth test function η supported in a ds-ball of radius 1 and any δ ∈ (0, 1]
(see [22, Def. 3.7]).

There are two (out of several more) important steps we address in this paper regarding
regularity structures for (1.1). Firstly, we have to check whether the fractional Laplacian fits into
the framework of singular integral operators required in the theory of regularity structures [22].
Only if this is the case, we have a hope of being able to directly apply the theory. This step
is quite straightforward. The second step we cover here is to build the index set A and model
space T and study their dependence upon parameters. This step is already substantially more
involved.

There are two important further steps in the analysis of the SPDE that we do not consider
here, but for which a general method is given in [22, 8, 9]. The first step is the definition
and analysis of a fixed-point equation, equivalent to a regularised version of the SPDE, but
formulated in a space of modelled distributions Dγ (an analogue of the Hölder space on the
level of the regularity structure, cf. [22, Def. 3.1]). The second step is the renormalisation
procedure needed to make sense of the limit of vanishing regularisation. For both steps, a good
understanding of the model space is essential. Indeed, we observe the following:

• The negative-homogeneous sector
⊕

α∈A∩R− Tα carries the distribution-valued part of the
solution. While in the case of the standard Laplacian (ρ = 2) with space-time white
noise, this part only contains the stochastic convolution of heat kernel and noise, for
general fractional Laplacians it may contain many more terms.

• The constants needed to renormalise the equation are determined by summing over con-
tractions of subtrees in negative-homogeneous elements, as discussed in [23, 8, 9]. We
expect that the number of renormalisation constants diverges as one approaches the sub-
criticality boundary.

3 Singular Kernels

To formulate fixed-point equations associated to (S)PDEs in the context of regularity structures,
we have to consider integration against singular integral kernels. Consider a linear differential
operator L with constant coefficients acting on u = u(t, x) = u(z) for z ∈ Rd+1. Let G =
G(t, x) = G(z) denote the fundamental solution or kernel, i.e.,

(LG)(z) = δ(z) ,

for t > 0, where δ ∈ S(Rd+1) denotes the delta-distribution. Frequently, G is a singular kernel.
Consider for instance the heat operator L := ∂t −

∑d
j=1 ∂

2
xjxj with associated heat kernel

G2(z, z̄) =
1

|4π(t− t̄ )|d/2
exp

(
−‖x− x̄‖

2

4(t− t̄ )

)
.
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Here z̄ = (t̄, x̄) ∈ Rd+1 and the subscript of G, fixed here to 2, is used to distinguish the heat
kernel G2 from other kernels Gρ we are going to consider below, while the subscript will be
omitted for the general theory of singular kernels. Note that G2 is singular at z = z̄.

3.1 Hairer’s Singular Kernels

In Hairer’s theory of regularity structures, one first aims to decompose a general kernel G :
Rd+1 × Rd+1 → R via

G(z, z̄) = K(z, z̄) +R(z, z̄) ,

where K is the singular part and R is a smooth part. So the key object is K and we recall the
assumptions on K = K(z, z̄) as stated in [22, Assumption 5.1 / Assumption 5.4]. A mapping
K : Rd+1 × Rd+1 → R is called a regularizing kernel of order β > 0 if K can be decomposed as

K(z, z̄) =
∑
n>0

Kn(z, z̄) (3.1)

and for all n > 0, supp(Kn) ⊆ {(z, z̄) ∈ Rd+1 × Rd+1 : ‖z − z̄‖s 6 2−n}, for any k, l ∈ Nd+1
0 ,

there exists a constant C such that ∣∣Dk
1Dl

2Kn(z, z̄)
∣∣ 6 C2(|s|−β+|l|s+|k|s)n ,∣∣∣∣∫

Rd+1

(z − z̄)lDk
2Kn(z, z̄) dz

∣∣∣∣ 6 C2−βn ,∣∣∣∣∫
Rd+1

(z̄ − z)lDk
1Kn(z, z̄) dz̄

∣∣∣∣ 6 C2−βn , (3.2)

hold uniformly over all n > 0 and all z, z̄ ∈ Rd, and there exists r > 0 such that∫
Rd+1

Kn(z, z̄)P (z̄) dz̄ = 0 (3.3)

for every n > 0, every z ∈ Rd and every monomial P of degree k∗ ∈ Nd+1
0 with |k∗|s 6 r. We

also refer to the condition (3.3) as r-order annihilation of polynomials.

If G(z, z̄) = G(z − z̄) just depends upon a single variable, it is possible to identify β-
regularizing kernels with point singularities via scaling.

Lemma 3.1 ([22, Lem. 5.5]). Let K̄ : (Rd+1 \ {0}) → R be smooth and suppose there exists
β > 0 such that

K̄(Sδs z) = δ|s|−βK̄(z) (3.4)

holds for all z 6= 0 and for all δ ∈ (0, 1]. Then it is possible to write K̄(z) = K(z) +R(z) where
R ∈ C∞(Rd+1,R) and (z, z̄) 7→ K(z − z̄) is a regularizing kernel of order β.

As an example, consider a parabolic scaling s = (2, 1, 1, . . . , 1) and the heat kernel K̄ = G2.
Note that |s| = d+ 2. Then one can easily check that

G2(Sδs z) =
1

(4πδ−2t)d/2
exp

(
− 1

4tδ−2

d∑
j=1

(xjδ
−1)2

)
= δdG2(z) .

From (3.4) the condition |s| − β = d+ 2− β !
= d is required, i.e., taking β = 2 means that the

heat kernel is a regularizing kernel of order 2. In the following, we want to apply the theory of
singular kernels also to nonlocal diffusion operators described by the fractional Laplacian.
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3.2 Fractional Singular Integral Operators

Let Gρ(t, x, y) = Gρ(t, x−y) be the transition density of a rotationally symmetric ρ-stable Lévy
process with Lévy measure ν(dx) = κ(d, ρ)‖x‖−d−ρ dx, where κ(d, ρ) is a normalizing constant
depending upon d ∈ N and ρ ∈ (0, 2]. Then one has

Gρ(t, x) :=
1

(2π)d

∫
Rd

eix>ξ e−t‖ξ‖
ρ

dξ (3.5)

for x ∈ Rd, t > 0. The transition density (3.5) generates a semigroup via

Ptf(x) :=

∫
Rd
Gρ(t, x− y)f(y) dy .

The infinitesimal generator of Pt is given by the fractional Laplacian

−(−∆)ρ/2f(x) = κ(d, ρ) lim
ε→0+

∫
‖y‖>ε

f(x+ y)− f(x)

‖y‖d+ρ
dy ,

and we will write ∆ρ/2 := −(−∆)ρ/2 to simplify the notation. One also refers to Gρ(t, x− y) as
the heat kernel of the fractional Laplacian. We mention that there are many different definitions
of the fractional Laplacian [32], but the probabilistic one via (3.5) is particularly convenient in
our context as it makes the next result very transparent upon using classical results on Lévy
processes.

Proposition 3.2. Let ρ ∈ (0, 2] and consider the scaling s = (ρ, 1, 1, . . . , 1). Then the fractional
heat kernel Gρ is a regularizing kernel of order ρ.

Proof. It is well-known from the theory of Lévy processes [38] (and can be seen on (3.5)) that
Gρ satisfies the scaling law Gρ(t, x) = t−d/ρGρ(1, t

−1/ρx), so that

Gρ(Sδs z) = Gρ(δ
−ρt, δ−1x) = t−d/ρδdGρ(1, t

−1/ρx) = δdGρ(z) .

Furthermore, |s| − ρ = ρ+ d− ρ = d and applying Lemma 3.1 finishes the proof.

Remark 3.3. Strictly speaking, the reconstruction theorem allowing to apply the theory of
regularity structures (cf. [22, Thm. 3.10]) requires ρ to be a rational number, because the
scaling s should consist of integers. If ρ = p/q ∈ Q, this is not a problem since one can
take s = (p, q, . . . , q) instead of s = (ρ, 1, . . . , 1) for the scaling. However, it is expected that
the reconstruction theorem also holds for incommensurable scaling vectors. Furthermore, the
construction of a model space as an independent object does not require rationality of ρ. To
simplify the notation, in all that follows we will stick to the notation s = (ρ, 1, . . . , 1) for the
scaling, because multiplying s by a positive integer does not affect the results. ♦

Remark 3.4. It may look natural to try to prove Proposition 3.2 differently. It is known from
the theory of fractional Laplace operators, see e.g. [11], that

Gρ(t, x− y) � min

(
t−d/ρ,

t

‖x− y‖d+ρ

)
.

Taking s = (ρ, 1, 1, . . . , 1), it follows that

Gρ(Sδs z) � δ|s|−βGρ(z)

holds for β = ρ. However, it seems more convenient to work with the exact scaling property to
implement the strategy in the proof of Lemma 3.1 from [22, Lem. 5.5] verbatim. ♦

8



4 Building the Model Space

There is a general procedure to build a regularity structure for an SPDE as discussed in [22,
Sec. 8]. However, the structure itself can be different for each particular equation. Since we want
to consider an entire family of equations, we have to demonstrate how the regularity structures
differ for the members of the family.

4.1 Local Subcriticality

Let α < 0 denote the smallest upper bound for the Hölder regularity of the driving noise ξ and
recall that d denotes the spatial dimension while ρ is the regularizing order of the fractional
Laplacian. It is known that for the classical case of space-time white noise and the parabolic
scaling, one has α = −(d+ 2)/2. The generalization for the fractional scaling is as follows.

Lemma 4.1. For the scaling s = (ρ, 1, 1, . . . , 1), the smallest upper bound for the Hölder regu-
larity of space-time white noise ξ is given by

α = −ρ+ d

2
. (4.1)

Proof. This follows again from a scaling argument. Consider scaled versions ξδ of ξ defined by

〈ξδ, η〉 = 〈ξ,Sδs,0η〉

for every test function η. The property E[ξ(z)ξ(z̄)] = δ(z − z̄) of space-time white noise yields

E
[
〈ξδ, η〉2

]
=

∫
Rd+1

(Sδs,0η(t, x))2 dt dx = δ−(ρ+d)

∫
Rd+1

η(t̄, x̄)2 dt̄ dx̄ = O(δ−(ρ+d)) .

The result then follows from the fact that the p-th moment of a Gaussian distribution scales
like the power p

2 of its second moment and the Kolmogorov-type continuity theorem [10, Theo-
rem 2.7].

We can now check under which algebraic conditions the theory of regularity structures
from [22] applies to the family of SPDEs (1.1). Consider SPDEs of the form

∂tu = Lu+ f(u) + ξ , (4.2)

where f is a polynomial and L is a differential operator inducing a regularizing kernel of order
β. One defines

F (U,Ξ) = f(U) + Ξ (4.3)

where Ξ and U are dummy variables. Each term in the expression (4.3) gets assigned a ho-
mogeneity reflecting the Hölder class of the function or distribution it represents. Define Ξ
to have homogeneity α0 = α − κ, where κ > 0 is a fixed arbitrarily small constant, U to have
homogeneity α0 +β, and apply the usual sum rule for exponents of product terms. Then (4.2) is
called locally subcritical if all terms in f(U) have homogeneity strictly greater than α0; see [22,
Sec. 8].

Proposition 4.2. For s = (ρ, 1, 1, . . . , 1), the fractional Allen–Cahn equation (1.1) is locally
subcritical if and only if either (i) α0 + ρ > 0, or (ii) ρ > −N−1

N α0, or (iii) N = 0 hold, where
N is the degree of f as in (1.2).

Proof. First, consider the cases when the polynomial f is nontrivial with N > 0. Starting with
the case (i), the homogeneity of the term U j is j(α0 + ρ) so if j2 > j1 and j1(α0 + ρ) > α0 then
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also j2(α0 + ρ) > α0. Therefore, we have to check the local subcriticality condition only for the
minimal degree of f , which is N = 1. This implies

α0 + ρ > α0 ⇔ ρ > 0 (4.4)

and ρ > 0 holds by assumption. The interesting case occurs when the noise is irregular and
α0 +ρ 6 0, which is covered in case (ii). As before, the homogeneity of the term U j is j(α0 +ρ)
but now if j2 > j1 and j2(α0 + ρ) > α0 then j1(α0 + ρ) > α0 so we only have to check the term
of highest degree which yields the requirement

β = ρ > −N − 1

N
α0 , (4.5)

so the result claimed in (ii) follows. The case (iii) is trivially subcritical as there are no terms
to check.

The last result shows that, as expected, the case N = 0 is not really of interest from the
viewpoint of the theory of regularity structures. Therefore, we shall assume from now on that
N ∈ N. Of course, Proposition 4.2 is not yet a practical result as the real answer for the
fractional Allen–Cahn-type SPDE is hidden in the choice of ξ.

Theorem 4.3. Let ξ be space-time white noise and s = (ρ, 1, 1, . . . , 1) with ρ ∈ (0, 2]. The
fractional Allen–Cahn equation (1.1) is locally subcritical if and only if

ρ > d
N − 1

N + 1
=: ρc(N, d) . (4.6)

Proof. With (4.1), Condition (ii) from Proposition 4.2 becomes

ρ >
(N − 1)

N

(ρ+ d)

2
⇔ ρ > d

N − 1

N + 1
. (4.7)

This is weaker than the condition ρ > d resulting from Condition (i). Finally, Condition (iii) is
ruled out by assumption.

It is interesting to apply the condition (4.6) to different dimensions to determine which type
of nonlinearity is allowed based on the range of ρ.

Corollary 4.4. Let ξ be space-time white noise, s = (ρ, 1, 1, . . . , 1) and ρ ∈ (0, 2]. Then the
subcriticality threshold ρc of the fractional Allen–Cahn-type equation (1.1) belongs to (0, 2) in
the following cases:

• if d = 1, f can be an infinite series,

• if d = 2, f must be a finite series,

• if d = 3, N 6 4,

• if d = 4, N 6 2,

• if d = 5, N 6 2,

• if d > 6, N = 1.

The proof is a direct calculation using Theorem 4.3. We briefly comment on the result. For
d = 1, we can essentially allow for any analytic function represented as converging Taylor series.
For d = 2, one observes that the right-hand side of (4.6) converges to 2 if N → +∞ so only
finitely many terms may appear. For d = 3, 4 one checks that the cases N = 5, 3 are precisely
critical requiring ρ > 2 while for d = 5 we obtain for N = 2, 3 the conditions ρ > 5/3 and
ρ > 5/2. For all other dimensions, only linear equations are trivially subcritical.

In principle, one could now just apply the “Metatheorem 8.4” of [22] to obtain the existence
and uniqueness of solutions to (1.1) from a suitable fixed-point equation. However, this would
not yield any information on the actual elements of the regularity structure and these elements
are crucial to calculate the renormalized SPDE or to determine a series expansion of the solution.
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4.2 Index Set and Model Space

We assume that the nonlinearity in the SPDE is given by a polynomial (1.2) with degree N and
fix the natural fractional scaling s = (ρ, 1, 1, . . . , 1) for ρ ∈ (0, 2]. The model space TF adapted
to our class of SPDEs is built by enlarging the model space of the polynomial structure T̄ by
adding symbols and taking into account the regularity of the noise and the nonlinearity. To each
symbol one assigns a homogeneity | · |s, e.g., one sets |Xk|s := |k|s. The noise is represented by
Ξ with homogeneity |Ξ|s = α0. Furthermore, let Iρ be an abstract integration operator, which
increases homogeneity by ρ by definition, i.e.,

|Iρ(·)|s = | · |s + ρ . (4.8)

Define a set F by declaring {1, Xi,Ξ} ⊂ F , where 1 is a neutral element for a product to be
considered below with |1|s = 0. Then, postulate that if τ, τ̄ ∈ F then τ τ̄ ∈ F and Iρ(τ) ∈ F .
Note that τ τ̄ and Iρ(τ) are then new formal symbols with the natural conventions understood,
e.g., 1(·) = (·) and XiXi = X2

i . The set F contains infinitely many symbols, so that just
defining Tγ by collecting elements of homogeneity γ does not work.

For locally subcritical cases of (1.1), there exists a recursive procedure to build a regularity
structure containing only finitely many negatively homogeneous elements by constructing a
suitable subset FF depending upon the nonlinearity f via (4.3) [22, Section 8.1]. In particular,
let

MF := {Ξ, Un : 1 6 n 6 N} (4.9)

i.e., monomials in Ξ and U , where Ξ only appears to the power one and the powers of U are
bounded by the polynomial degree of the nonlinearity. If A,B ⊂ F let

AB := {τ τ̄ : τ ∈ A, τ̄ ∈ B} . (4.10)

Set W0 = {} = U0 and recursively define

Wm =Wm−1 ∪
⋃
Q∈MF

Q(Um−1,Ξ) , (4.11)

Um = {Xk} ∪ {Iρ(τ) : τ ∈ Wm} , (4.12)

where k runs over all possible multiindices. The notation Q(Um−1,Ξ) also implies that we
replace each occurrence of U in a monomial by some expression from Um−1. Essentially this
recursive construction restricts the regularity structure to only those symbols necessary for a
fixed-point procedure. If one defines

FF :=
⋃
m>0

(Wm ∪ Um) , UF :=
⋃
m>0

Um , (4.13)

then FF collects all symbols necessary to represent the equation and UF all symbols to represent
the solution. A very fundamental result about the construction is that we can now define a
regularity structure with suitable finiteness properties.

Theorem 4.5 ([22, Lem. 8.10]). Suppose α0 < 0. Then the set {τ ∈ FF : |τ |s 6 γ} is finite for
every γ ∈ R if and only if the SPDE is locally subcritical.

Therefore, Corollary 4.4 gives a precise criterion for when we can expect to be able to define
a suitable regularity structure via the key definition

AF := {|τ |s : τ ∈ FF } , (4.14)

so that TF,γ is the set of formal linear combinations of elements in {τ ∈ FF : |τ |s = γ}. This
constructs AF , TF and we postpone the concrete construction and analysis of the group GF to
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future work (a general abstract construction of GF is given in [22, Section 8.1]). We are faced
with the interesting question of the actual size of TF for different values of ρ. For space-time
white noise, ρ = 2 and a cubic polynomial

f(u) = u− u3 , (4.15)

it is well understood how TF is given; see [25] or [5, Table 1]. However, viewing the problem as
a three-parameter family with ρ ∈ (0, 2], N ∈ N and d ∈ N is not trivial. Define

hF (N, d, ρ) := |{γ : ∃τ ∈ FF with |τ |s = γ < 0}| , hF : N× N× (0, 2]→ N , (4.16)

so hF is the counting map for the number of different negative homogeneities in the regularity
structure. These are the elements of interest as those elements make the representation dif-
ferent from classical function representations by elements of non-negative homogeneity. The
homogeneity counting map hF is smaller or equal to the actual element counting map

cF (N, d, ρ) := |{τ ∈ FF : |τ |s < 0}| , cF : N× N× (0, 2]→ N , (4.17)

i.e., cF > hF and cF > hF does usually occur as shown in the next example.

Example 4.6. Let d = 2, N = 3 and ρ = 2. Then for some arbitrarily small κ > 0, one finds

|I2(I2(Ξ)2)I2(Ξ)2|s = −4κ = |I2(I2(Ξ)3)I2(Ξ)|s , (4.18)

showing that cF (3, 2, 2) > hF (3, 2, 2) + 1. �

4.3 Counting Homogeneities

A first step towards finding bounds on cF and hF is to determine which is the element of smallest
homogeneity in FF .

Lemma 4.7. Suppose the SPDE (1.1) is locally subcritical for space-time white noise. Then
the elements of smallest homogeneity of FF are Ξ and Iρ(Ξ)N with

|Ξ|s = −ρ+ d

2
− κ, |Iρ(Ξ)N |s =

N

2
(ρ− d)− κN (4.19)

and |Ξ|s < |Iρ(Ξ)N |s .

Proof. We prove the last statement first. We have, using subcriticality,

−ρ < d
1−N
1 +N

⇔ −ρ− d < ρN − dN , (4.20)

so the result follows upon selecting κ sufficiently small. The first statement about minimality
now follows essentially by induction. More precisely, there can be at most N terms in each
new symbol assembled from previous symbols via the recursion (4.11)–(4.12). To minimize
the homogeneity, one may not include any terms involving polynomials, and one must max-
imize the negative homogeneity contributions. If τ is the symbol with smallest homogeneity
among symbols before applying UN , then τN minimizes homogeneity if one excludes Ξ. The
calculation (4.20) shows that homogeneity increases from the first to the second step of the
recursion (4.11)–(4.12). This step can be taken as the base step for induction on the level kr of
the recursion. Given some element τ with

|Iρ(Iρ(τ)N )|s = N(|τ |s + ρ) + ρ (4.21)

we must prove that
N(|τ |s + ρ) > |τ |s . (4.22)

Subcriticality and the induction assumption |τ |s > −(ρ + d)/2 easily imply (4.22), and this
means the element with smallest homogeneity at step kr+1 that gets adjoined to FF has bigger
homogeneity than Iρ(τ). The result follows.
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The last result essentially shows that the type of recursive procedure which is used to
construct regularity structures for additive noise SPDEs with polynomial nonlinearities also
does yield well-defined elements of smallest homogeneity.

One may hope that considering space-time white noise, which imposes the more stringent
restriction (4.6), simplifies the combinatorics enough. The next result shows that the lower
bound provided by the homogeneity counting map hF could be quite large for many regularity
structures even without the free choice of Ξ (resp. α0).

Proposition 4.8. Consider space-time-white noise. Let ρ = p/q ∈ Q and let hDio = hDio(N, d, ρ)
denote the number of solutions to the system of constrained Diophantine equations

Ac = b, with A ∈ Z3×6, b ∈ Z3 , c = (c1, c2, c3, c4, c5, c6)>, cj ∈ N0 (4.23)

where the matrix A and integer vector b are computable as

A =

 p 2q −dq 1 0 0
p 2q −dq 0 −1 0
−1 0 1 0 0 1

 , b =

 dq − p
−(N − 1)(dq − p)

0

 . (4.24)

Then hF = hDio + 1.

Proof. By Lemma 4.7, we may restrict to counting homogeneities of elements τ with |τ |s >
N(α0 +ρ) if we count Ξ separately which explains the term +1 in the claim hDio + 1 = hF . The
remaining homogeneities can be counted by decomposing the recursion steps and noting that

|Iρ(Ξ)|s =
ρ

2
− d

2
− κ . (4.25)

Furthermore, |X0|s = ρ, |Xj |s = 1 for j > 1, and suitable power combinations may appear in
possible homogeneities. This yields the problem to find all c1, c2, c3 ∈ Z such that

N(α0 + ρ) 6
ρ

2
c1 + c2 − c3

d

2
6 0 (4.26)

under the constraints c1 > c3 > 1 and c2 > 0. Re-writing (4.26) as two separate inequalities
and using ρ = p/q ∈ Q yields

pc1 + 2qc2 − dqc3 6 0 , pc1 + 2qc2 − dqc3 > Np−Ndq ,

as well as
c1 > 1, c2 > 0 , c3 > 1 , c1 − c3 > 0 .

Introducing slack variables c4, c5, c6, we get

pc1 + 2qc2 − dqc3 + c4 = 0 , pc1 + 2qc2 − dqc3 = c5 +Np−Ndq , c1 − c3 − c6 = 0 .

with the remaining constraints unchanged. Shifting c1 and c3 via c̃1 := c1 − 1, c̃3 := c3 − 1,
re-arranging and dropping the tildes yields the result.

The main insight provided by Proposition 4.8 is not the precise form of the equations but
the type of combinatorial problem one has to solve. In fact, the result already anticipates that
classical combinatorial tools, e.g. using the method of stars-and-bars, are going to be relevant.
Furthermore, the result shows that we cannot expect a closed-form solution for all parameters.
Hence, we are going to examine the asymptotic behaviour of the homogeneity counting map
hF as ρ approaches the critical value ρc from above. To this end, it is useful to introduce a
geometric approach. Any element τ ∈ FF contains a certain number p(τ) of occurrences of Ξ,
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(a) (b)

(c)
(d)

Figure 1. The set D0(W3) of lattice points (p, q) for elements of W3 with trivial polynomial
part, where p is the number of instances of Ξ and q is the number of instances of Iρ. The basis
vectors (1, 0) (red) and (0, 1) (blue) have been rotated in such a way that the vertical coordinate
gives the homogeneity pα0 + qρ. Parameter values are N = d = 3, with (a) ρ = 2, (b) ρ = 21

11 ,
(c) ρ = 9

5 and (d) ρ = ρc(3, 3) = 3
2 . The element becoming negative-homogeneous for ρ = 21

11 is
(Iρ(Iρ(Ξ)3))2Iρ(Ξ) (which is of type (p, q, k) = (7, 9, 0)).

a number q(τ) of occurrences of Iρ, and monomials of total exponent k ∈ Nd+1
0 . We will say

that τ is of type (p, q, k). Its homogeneity is then given by

|τ |s = pα0 + qρ+ |k|s , (4.27)

where we recall that

α0 = −ρ+ d

2
− κ . (4.28)

As a first step, let us consider only elements such that k = 0. Each τ ∈ FF of this type can be
represented by the point (p, q) ∈ N2

0. If for a given U ⊂ FF , we let D0(U) ⊂ N2
0 be the set of

indices (p, q) of the elements of U , we are looking for

h0
F (N, d, ρ) =

∣∣{(p, q) ∈ D0(FF ) : pα0 + qρ < 0}
∣∣ . (4.29)

Obviously, h0
F 6 hF 6 cF .

Figure 1 shows the set D0(W3) for N = d = 3 and different values of ρ. Note that it is
given by the set of lattice points inside a quadrilateral, and that as ρ decreases, one side of the
quadrilateral becomes aligned with the line of zero homogeneity.

Proposition 4.9. For any N > 2 one has

D0(FF ) = D0(W∞) = {(0, 0)} ∪
{

(p, q) ∈ N× N0 : 1 6 p 6 1 +
N − 1

N
q

}
. (4.30)

Proof. The first steps of the iterative construction (4.11)–(4.12) give

W1 =
{

Ξ
}
,

U1 =
{
Xk
}
∪
{
Iρ(Ξ)

}
,

W2 =
{

Ξ
}
∪ U1 ∪ · · · ∪ UN1 .

The only elements without polynomial part in W2 are Ξ, Iρ(Ξ), . . . , (Iρ(Ξ))N , showing that

D0(W2) = {(0, 0), (1, 0), (1, 1), (2, 2), . . . , (N,N)} .

14



Figure 2. The set D0(FF ) = D0(W∞) for d = N = 2 and ρ = 0.9. There are exactly 7 pairs
(p, q) yielding negative-homogeneous elements, namely (1, 0), (1, 1), (2, 2), (2, 3), (3, 4), (4, 6)
and (5, 8). See also Figure 6 for the associated elements of the model space.

The set U2 is obtained by applying Iρ to W2 and adding polynomials, so that

D0(U2) = {(0, 0), (1, 1), (1, 2), (2, 3), . . . , (N,N + 1)} .

The point (0, 1) has been removed because by definition of the integration operator, Iρ(1) = 0.
The central observation when constructing Wm+1 from Um is that

• D0(U jm) contains all points (jp, jq) with (p, q) ∈ D0(Um);

• due to cross terms, D0(U jm) also contains all lattice points in the convex envelope of the
above points.

We claim that for any m > 3,

• D0(Wm) contains all lattice points in the triangle with vertices

(0, 0) , (1, 0) and
(
Nm−1,

Nm −N
N − 1

)
;

• D0(Wm) contains the point (1,m− 1);

• all points in D0(Wm) satisfy q > N
N−1(p− 1).

The base case m = 3 follows easily using the above remarks when constructing the D0(U j2).
Indeed, they show that D0(W3) contains all lattice points in the quadrilateral with vertices
(0, 0), (1, 0), (N2, N2 +N) and (N, 2N), cf. Figure 1.

The induction step proceeds as follows. First, D0(Um) is obtained by shifting D0(Wm) by
one step in the q-direction, removing the point (0, 1) and adding (0, 0). In particular, D0(Um)
contains all the lattice points in the triangle with vertices (0, 0), (1, 1) and (Nm−1, N

m−1
N−1 ). Next,

we see that D0(Wm+1) contains all lattice points in the image of this triangle under scaling by
a factor N , as well as (1, 0), and these points form exactly the triangle required at induction
step m+ 1. Furthermore, D0(Wm+1) contains (1,m) because D0(Um) does, and the inequality
for q is satisfied by all points in D0(U jm) with 1 6 j 6 N .

The conclusion follows by taking the limit m→∞, using again a convexity argument.

The set D0(FF ) is the intersection of a truncated cone with the integer lattice (Figure 2). If
α0/ρ is irrational, the number h0

F (N, d, ρ) of elements of negative homogeneity is equal to the
number of lattice points in this truncated cone that lie below the line of slope −α0/ρ (Figure 3).
If α0/ρ is rational, many elements will share the same homogeneity, but this only occurs on a
parameter set of measure zero. Furthermore, as pointed out in [22], one may always slightly
shift α0 to avoid such “resonances”.

The number h0
F (N, d, ρ) diverges as the slope −α0/ρ approaches N/(N − 1) (see Figure 3).

This corresponds exactly to ρ approaching the subcriticality threshold

ρc(N, d) = d
N − 1

N + 1
. (4.31)
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p

q

pα0 + qρ = 0

q = N
N−1(p− 1)

(p?, q?)

Figure 3. The set D0(FF ) for d = N = 3 and ρ = 2 (lattice points in the blue and red regions).
The red triangular region corresponds to negative homogeneous elements. It contains at most
bq?c+ 1 lattice points.

We can compute the way in which h0
F (N, d, ρ) diverges by estimating the number of lattice

points in the part of D0(FF ) below the line q = (−α0/ρ)p.

Proposition 4.10. For any ρ > ρc, if κ is sufficiently small then

ρ+ d

N + 1

(
ρ− ρc

)−1
6 h0

F (N, d, ρ) 6 1 +
(ρ+ d)N

N + 1

(
ρ− ρc

)−1
. (4.32)

Proof. The line q = (−α0/ρ)p intersects the truncated cone D0(FF ) at a point (p?, q?) with
coordinates

p? =
2ρN

ρ(N + 1)− d(N − 1)− 2κ(N − 1)
=

2ρN

(ρ− ρc)(N + 1)− 2κ(N − 1)
,

q? =
(ρ+ d+ 2κ)N

ρ(N + 1)− d(N − 1)− 2κ(N − 1)
=

(ρ+ d+ 2κ)N

(ρ− ρc)(N + 1)− 2κ(N − 1)
. (4.33)

The region containing points with negative homogeneity is a triangle as shown in Figure 3. For
any 0 6 q 6 q?, this triangle contains all points (p, q) such that

2ρ

ρ+ d+ 2κ
q < p 6

N − 1

N
q + 1 . (4.34)

The condition ρ > ρc implies that p lies in an interval of width strictly less than 1 if κ is small
enough, except for q = 0, where the width is exactly 1. If q = 0, however, only the case p = 1
corresponds to a negative homogeneity. Therefore, for each q there is at most one lattice point
in the triangle. On the other hand, the triangle contains at least all points (N−1

N q + 1, q) for
which q 6 q? is a multiple of N . It follows that

1 +

⌊
q?

N

⌋
6 h0

F (N, d, ρ) 6 1 + bq?c

which implies the bounds (4.32), taking κ sufficiently small.

We expect that as ρ↘ ρc, h
0
F (N, d, ρ) will be closer to the upper bound in (4.32), since the

red triangle approaches a strip of constant width 1.

Remark 4.11. The proof shows that for q 6 q?, there is at most one value of p such that the
corresponding element has a negative homogeneity, given by

p = 1 +

⌊
N − 1

N
q

⌋
. (4.35)
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This means that for a given nonzero number of integration operators Iρ, there is at most one
choice for the number of symbols Ξ yielding a negative-homogeneous symbol. ♦

Theorem 4.12. For any ρ > ρc, the homogeneity counting map satisfies

ρ+ d

N + 1

(
ρ− ρc

)−1
6 hF (N, d, ρ) 6 1 +

(ρ+ d)dN

N + 1

(
ρ− ρc

)−1
(4.36)

if κ is small enough.

Proof. The lower bound follows directly from Proposition 4.10. To obtain an upper bound, we
have to control the number

m(p, q) =
∣∣{(r, s) ∈ N2

0 : rρ+ s < θ(p, q) := (−α0)p− ρq
}∣∣

of possible homogeneities obtained by adding polynomial terms to an element of D0(FF ). Re-
mark 4.11 shows that p 6 1 + N−1

N q. Using the definition of α0 and ρ > ρc, it follows that

θ(p, q) 6
ρ+ d

2
+ κ

uniformly in (p, q) ∈ D0(FF ). Using again that ρ > ρc and rρ + s < θ(p, q), we see that this
imposes

r <
1

2

(
1 +

d

ρ

)
+ κ <

N

N − 1
+ κ .

If N > 3 then this enforces r ∈ {0, 1} if κ is small enough. If r = 0 then one must have
s 6 (ρ+ d)/2 while if r = 1 then r 6 (d− ρ)/2. Therefore

m(p, q) 6 d .

If N = 2 then r = 2 is also allowed, yielding m(p, q) 6 3(d − ρ)/2. However, the condition
ρ > ρc = d/3 then implies m(p, q) 6 3d/4 6 d. Since the only element appearing for q = 0 is
Ξ, which is never multiplied by a polynomial, we can bound hF by (ρ+ d)(h0

F − 1) + 1, which
yields the result.

Remark 4.13. The upper bound in (4.36) is not sharp. In particular, it is possible to obtain
a sharper bound on θ(p, q) proportional to q? − q. Furthermore, the uniform upper bound on
m(p, q) overestimates its actual value. However, this will only affect the numerical constant in

front of (ρ− ρc

)−1
. ♦

4.4 Counting Negative-Homogeneous Elements

The next result indicates the complexity of the element counting map cF for an arbitrary noise.

Proposition 4.14. Given any ρ ∈ (0, 2], d > 2 and N ∈ N, there exists a noise ξ with negative
Hölder regularity and τ ∈ FF such that |τ |s = 0 and the stochastic fractional Allen–Cahn
equation (1.1) is locally subcritical.

Proof. Let τ := Iρ(Iρ(Ξ)N ) and observe that τ is constructible by the recursion (4.11)–(4.12).
Calculating homogeneity yields

|τ |s = N(ρ+ α0) + ρ.

Now take α0 = −(1+1/N)ρ to obtain |τ |s = 0. Subcriticality follows since 1 > 1−1/N2 implies
ρ > α0(1−N)/N .
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(a) (b) (c)

Figure 4. (a) Decorated tree representing τ = Iρ(Ξ)Iρ(Iρ(Iρ(Ξ)Iρ(Iρ(Ξ)2))), which is of
type (4, 7, 0) and has degree vector d(τ) = (4, 6, 2); (b) the associated bare tree, whose de-
gree vector is d′(τ) = (4, 2, 2). The root is denoted , while each represents a sym-
bol Iρ, and each represents a symbol Ξ. (c) Another decorated tree, representing
τ = Iρ(Ξ)Iρ(ΞIρ(Iρ(Ξ)Iρ(Iρ(Ξ)2))), which also corresponds to the bare tree (b). However,
such a tree cannot occur for purely additive noise.

Proposition 4.14 implies that the counting map cF can actually produce a jump for every
given fixed rational number if the noise, still with negative Hölder regularity, is chosen suitably.
To avoid this significant complexity of “bifurcations at any ρ” (i.e. new elements appearing in
the regularity structure upon parameter variation at any ρ) it is reasonable to specialize the
analysis to certain subclasses of noise. Hence, we now particularise to the case of space-time
white noise. Recall that we say that an element τ of FF is of type (p, q, k) ∈ N0 ×N0 ×Nd+1

0 if
it contains p occurrences of Ξ, q occurrences of the integration operator Iρ and monomials of
total exponent k. The discussion in the previous subsection shows that if |τ |s < 0, then

• q is bounded by a number q? of order (ρ− ρc)
−1 (cf. (4.33));

• there is at most one value of p for a given q, namely p = 1 + bN−1
N qc.

As described in [23], each τ ∈ FF can be represented by a rooted tree with additional deco-
rations. There are two types of edges, one of them standing for the symbol Iρ, and the other
one representing Ξ. Each vertex is decorated with an Nd+1-valued label, representing Xk, while
multiplication of two symbols is denoted by concatenating the corresponding trees at the root
(Figure 4a).

If τ ∈ FF is of type (p, q, k), then it is represented by a decorated tree with p leaves and
p+q edges, where p edges are of type Ξ and adjacent to a leaf, while q edges are of type Iρ. The
tree has p + q + 1 vertices, including the p leaves, the root, and q inner vertices. Each vertex
has at most degree N + 1, except the root which has at most degree N .

Since multiplication of symbols is commutative, the order of edges around any vertex does
not matter. Therefore the problem of estimating the element counting map cF essentially
amounts to counting, for each admissible (p, q), the number of non-homeomorphic rooted trees
satisfying the above constraints. For counting purposes, it will also be useful to consider the bare
tree, obtained by stripping a decorated tree of all p edges of type Ξ and adjacent leaves, which
has q edges and q + 1 vertices (Figure 4b).

Lemma 4.15. There is a one-to-one correspondence between bare and decorated trees. Fur-
thermore, any bare tree of maximal degree N + 1 and root of maximal degree N represents an
element constructible by the recursive procedure (4.11)–(4.12).

Proof. We first prove the second claim, by induction on the number of vertices of the tree.
The trivial tree with one vertex and no edge represents the element 1, which belongs to the
model space, proving the base case. Consider now any bare tree with maximal degree N + 1
and maximal root degree N . If the root has degree 1, it corresponds to an element of the form
Iρ(τ ′), where the tree representing τ ′ has maximal degree N + 1 and maximal root degree N ,
and thus belongs to the model space by induction hypothesis. If the root has degree 2 6 r 6 N ,
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by cutting the root we obtain r trees belonging to the model space by induction hypothesis.
Now the reverse of both operations (adding an edge at the root or joining r trees at their roots)
are compatible with the recursive procedure (4.11)–(4.12).

To prove the first claim, first observe that any bare tree can be made into an admissible
decorated tree by attaching an edge of type Ξ to every leaf. To prove that this is the only
possibility, assume that we attach an edge of type Ξ to a vertex of the bare tree which has
degree 2 6 r 6 N (Figure 4c). This would mean that the corresponding element contains the
string ΞIρ(Ξ)r. However, one easily shows by induction that such elements cannot appear in
the recursive procedure (4.11)–(4.12).

Remark 4.16. It is important to realise that the one-to-one correspondence between bare and
decorated trees only holds because we consider equations with purely additive noise. For SPDEs
of the form ∂tu = Lu + f(u) + g(u)ξ, as those considered for instance in [23], decorated trees
such as the one in Figure 4c can occur, meaning that several decorated trees can be obtained
from a given bare tree. ♦

4.4.1 The case N = 2

Counting trees is simplest in the case N = 2, because then it turns out that all bare trees are
either binary trees, or binary trees minus one edge. Recall that a binary (rooted) tree is a tree
in which each vertex except the leaves has exactly two children. Thus the root has degree 2,
while all other vertices have degree 3 or 1.

We call degree vector, or simply degree of a tree the vector (d1, d2, . . . ) where di denotes the
number of vertices of degree i. The degree vector of a binary tree is of the form (n+1, 1, n−1) for
some n ∈ N. We write d(τ) = (d1, d2, d3) for the degree vector of the decorated tree representing
an element τ ∈ FF , and d′(τ) = (d′1, d

′
2, d
′
3) for the degree vector of the bare tree representing

τ . The one-to-one correspondence described in Lemma 4.15 implies that d1 = d′1, d3 = d′3 and
d2 − d′2 = p is the number of leaves of the bare tree.

Proposition 4.17. Assume N = 2, and let τ ∈ FF be an element of type (p, q, 0) having
negative homogeneity. Then

• if q is even, then the bare tree representing τ is a binary tree with q + 1 vertices;

• if q is odd, then the bare tree representing τ is obtained by removing one edge from a
binary tree with q + 2 vertices.

Proof. For N = 2, each vertex of a bare tree has at most degree 3, and the root has at most
degree 2. Furthermore, each leaf has degree 1. Thus we have the relations

d′1 + d′2 + d′3 = q + 1 ,

d′1 + 2d′2 + 3d′3 = 2q . (4.37)

The second relation is due to the fact that by summing the degrees of all vertices, each edge is
counted exactly twice.

If q = 2n is even, then (4.35) implies p = n+1. If the root has degree 2, then d′1 = p = n+1
and the solution of the system (4.37) is given by

(d′1, d
′
2, d
′
3) = (n+ 1, 1, n− 1) . (4.38)

This corresponds to a binary tree with 2n+ 1 vertices and n+ 1 leaves, such as Iρ(Ξ)2 if n = 1.
If the root has degree 1, then d′1 = p + 1 = n + 2, and solving (4.37) yields d′2 = −1, which is
not allowed.
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If q = 2n + 1 is odd, then (4.35) yields again p = n + 1. If the root has degree 2, then
d′1 = n+ 1 and the solution of (4.37) is

(d′1, d
′
2, d
′
3) = (n+ 1, 2, n− 1) .

By adding one edge to the vertex of degree 2 which is not the root, we obtain a binary tree
with 2n + 3 vertices and n + 2 leaves (for an example, see Figure 4b). Finally, if the root has
degree 1, then d1 = n+ 2 and

(d′1, d
′
2, d
′
3) = (n+ 2, 0, n) .

This case is obtained by attaching one edge to the root, and a binary tree with 2n+ 1 vertices
and n leaves to the other end of this edge. For instance, if n = 0 one obtains the symbol Iρ(Ξ),
while for n = 1 one obtains Iρ(Iρ(Ξ)2).

The combinatorics of non-homeomorphic binary trees has been studied by Otter [35]. The
number of non-homeomorphic rooted binary trees with n leaves is given by the Wedderburn–
Etherington number wn. The first few of these numbers (starting with n = 0) are

0, 1, 1, 1, 2, 3, 6, 11, 23, 46, 98, 207, 451, 983, 2179, 4850, 10905, 24631, 56011, . . .

(sequence A001190 in the On-Line Encyclopedia of Integer Sequences OEIS). In particular, it
is known [35] that wn behaves asymptotically like

wn ∼ c2
(α−1

2 )n

n3/2
,

where α2 ≈ 0.4026975 (OEIS sequence A240943) is the radius of convergence of the generating
series

∑
nwnx

n and the prefactor is c2 ≈ 0.3187766 (OEIS sequence A245651).

Theorem 4.18. For N = 2, there exist constants C±2 , depending only on d, such that the
number of negative-homogeneous elements satisfies

C−2 (ρ− ρc)
3/2 exp

{
β2d

ρ− ρc

}
6 cF (2, d, ρ) 6 C+

2 (ρ− ρc)
3/2 exp

{
β2d

ρ− ρc

}
(4.39)

for ρc < ρ 6 2, where β2 = 8
9 log(α−1

2 ) ≈ 0.8085063.

Proof. Consider first the number c0
F (2, d, ρ) of negative-homogeneous elements with trivial poly-

nomial part, which are indexed by trees as given by Proposition 4.17. We start by counting
trees with an odd number q+ 1 = 2n+ 1 of vertices, which are exactly rooted binary trees with
p = n + 1 leaves. Condition (4.34) yields 1 6 n < 1

2q
?, so that the total number of these trees

is given by
bq?/2c∑
n=1

w2n+1 �
(α−1

2 )q
?

(q?)3/2
.

The lower bound is obtained by considering only the last term of the sum, while a matching
upper bound is found by approximating the sum by an integral (estimating separately the
contribution of small and large n). Taking into account the expression (4.33) for q?, we find
that the number of these trees obeys indeed (4.39).

In addition, we have to count trees with an even number q + 2 = 2n + 2 of vertices and
p = n+ 1 leaves. In this case, Condition (4.34) yields 0 6 n < 1

2(q? − p?) 6 1
4q
?. Each of these

n yields w2n+1 binary trees, and there are at most 2n+ 2 places to attach the additional edge.
The total number of these trees is thus bounded above by

bq?/4c∑
n=0

(2n+ 2)w2n+1 �
(α−1

2 )q
?/2

(q?)1/2
= q?(α−1

2 )−q
?/2 (α−1

2 )q
?

(q?)3/2
.
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Since q 7→ q(α−1
2 )−q/2 is bounded above, this number satisfies the upper bound (4.39) for an

appropriate constant C+
2 .

To extend the result to elements with nontrivial polynomial part, note that (4.27) imposes
pα0 +qρ+ |k|s < 0. If q = 2n, then p = n+1 and the condition becomes n(3ρ−d) < ρ+d−2|k|s,
which translates into n < λ(q?/2) for some λ < 1. Since |k|s is bounded above by (ρ + d)/2
(cf. the proof of Theorem 4.12), for each of these n, the number of choices to add polynomial
elements grows at most polynomially in n. The maximal value of n being only a fraction of
q?/2, this does not modify the upper bound on cF . The same argument applies to odd q.

4.4.2 The case N > 2

For general N , the most important rôle will be played by regular trees of degree N , that is,
trees in which each vertex except the leaves has exactly N children. The degree vector of such
trees is of the form (d′1, d

′
2, . . . , d

′
N+1) = ((N − 1)n+ 1, 0, . . . , 0, 1, n− 1) for some n ∈ N.

Proposition 4.19. Assume N > 2, and let τ ∈ FF be an element of type (p, q, 0) having
negative homogeneity. Then

• if q is a multiple of N , then the bare tree representing τ is a regular tree of degree N with
q + 1 vertices;

• otherwise, the bare tree representing τ is obtained by removing r edges, where 1 6 r 6
N − 1, from a regular tree of degree N with q + r + 1 vertices.

Proof. Similarly to the case N = 2, we must have

N+1∑
j=1

d′j = q + 1 ,
N+1∑
j=1

jd′j = 2q .

If q = Nn for some integer n, then p = (N − 1)n+ 1. If the root has degree larger than 1, then
d′1 = p and we obtain the system

d′2 + · · ·+ d′N+1 = n ,

2d′2 + · · ·+ (N + 1)d′N+1 = (N + 1)n− 1 .

Eliminating d′N+1 we get (N − 1)d′2 + · · ·+ d′N = 1. The only solution is thus given by

d′1 = (N − 1)n+ 1 ,

d′j = 0 for j = 2, . . . , N − 1 ,

d′N = 1 ,

d′N+1 = n− 1 ,

which means that we have a regular tree of degree N . If the root has degree 1, then d′1 = p+ 1.
Proceeding as above, we obtain (N − 1)d′2 + · · ·+ d′N = −N + 1, which is not allowed.

If q = Nn+ r for some 1 6 r 6 N − 1, then p = (N − 1)n+ 1 + br− r
N c = (N − 1)n+ r. If

the root has degree larger than 1, then we obtain the system

d′2 + · · ·+ d′N+1 = n+ 1 ,

2d′2 + · · ·+ (N + 1)d′N+1 = (N + 1)n+ r ,

which yields (N − 1)d′2 + · · ·+ d′N = N + 1− r. This implies the bounds

(N − 1)n+ 1 6 d′1 6 (N − 1)(n+ 1) ,

2 6
N∑
j=2

(N + 1− j)d′j 6 N ,

n+ 1−N 6 d′N+1 6 n .
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To obtain a regular tree, one has to attach N + 1 − j edges to each vertex of degree j for
2 6 j 6 N − 1, and one edge to each vertex of degree N which is not the root, which amounts
to attaching at most N − 1 edges.

The last case occurs when q = Nn+r and the root has degree 1. Then a similar computation
yields (N − 1)d′2 + · · ·+ d′N = 1− r, which imposes r = 1 and the sum to vanish. This yields

d′1 = (N − 1)n+ 2 ,

d′j = 0 for j = 2, . . . , N ,

d′N+1 = n ,

and corresponds to a regular tree of degree N attached to a single edge originating in the
root.

Although the combinatorics is a little bit more involved than in the case N = 2, when ρ
approaches ρc the vast majority of bare trees will be regular trees of degree N . The number

w
(N)
n of non-homeomorphic regular trees of degree N with n vertices has also been analysed

in [35]. It behaves asymptotically as

w(N)
n ∼ cN

(α−1
N )n

n3/2
. (4.40)

where αN is the radius of convergence of the generating series. In particular, α3 ≈ 0.3551817
and limN→∞ αN ≈ 0.3383219. This yields the following result.

Theorem 4.20. For any N > 2, there exist constants C±N , depending only on N and d, such
that the number of negative-homogeneous elements satisfies

C−N (ρ− ρc)
3/2 exp

{
βNd

ρ− ρc

}
6 cF (N, d, ρ) 6 C+

N (ρ− ρc)
3/2 exp

{
βNd

ρ− ρc

}
(4.41)

for ρc < ρ 6 2, where

βN =
2N2

(N + 1)2
log(α−1

N ) . (4.42)

In particular, β3 = 9
8 log(α−1

3 ) ≈ 1.164517.

Proof. The proof of (4.41) follows along the lines of the proof of Theorem 4.18. The number of
trees with q + 1 = Nn+ 1 vertices is given by

bq?/Nc∑
n=1

w
(N)
Nn+1 �

(α−1
N )q

?

(q?)3/2
.

Trees with q + 1 = Nn + r + 1 vertices with 1 6 r 6 N − 1 have a negligible effect on the
asymptotics, because (4.27) and the constraint (4.35) on p yield

n <
ρ+ d+ 2κ− 2ρr

(N + 1)(ρ− ρc)− 2κ(N − 1)
= λr(ρ)

q?

N
,

where

λr(ρ) = 1− 2ρr

ρ+ d+ 2κ
< λr(ρc) = 1− (N − 1)r

N + κ(N + 1)/d
6

1

N
+O(κ) , (4.43)

which is less than 1 for κ small enough.
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5 Statistical Properties of the Model Space

Let us denote by F−F = {τ ∈ FF : |τ |s < 0} the basis of the negative-homogeneous sector of the
model space. Since the cardinality of F−F diverges as ρ↘ ρc, it is natural to consider statistical
properties observed when picking a tree uniformly at random in the forest representing F−F .

We thus consider the discrete probability space obtained by endowing F−F with the uniform
measure. We are interested in the distribution of various random variables Y : F−F → R.
Examples of such random variables are the homogeneity |τ |s, the number of edges of the tree,
its degree distribution, its height and its diameter.

Remark 5.1. When stating results on the limit ρ↘ ρc, we will always assume that the constant
κ > 0 defining α0 (cf. (4.28)) is smaller than ρ−ρc. This will simplify the expressions of various
limiting results, and is allowed since in practice we always consider cases where ρ > ρc. ♦

5.1 Tree Size Distribution

The size of a bare tree can be measured by its number of edges q, which is also the number
of occurrences of the integration operator Iρ in τ . We will denote the corresponding random
variable by an uppercase Q, to avoid confusion with its values q ∈ {1, . . . , q?}.

Proposition 4.19 and the constraints on p and q imply that

P{Q = q} =
w

(N)
q+1

cF (N, d, ρ)
if q ∈ NN and q 6 q? , (5.1)

P{Q = q} 6
(
q +N

N

)
w

(N)
q+N

cF (N, d, ρ)
if q ∈ NN + r for 1 6 r 6 N − 1 and q 6 λr(ρ)q? ,

where λr(ρ) is defined in (4.43). The binomial coefficient in the second case bounds the number
of ways of pruning a regular tree of N of its branches. The behaviour of the law of Q as ρ
approaches ρc can be summarised as follows. Recall that βN is defined in (4.42).

Proposition 5.2. There exists γ = γ(N, d, ρ) > 0 satisfying

lim
ρ↘ρc

γ(N, d, ρ) = βNd

(
1− 1

N

)
(5.2)

such that
P{Q /∈ NN} 6 e−γ/(ρ−ρc) . (5.3)

Furthermore, Q/q? satisfies the large-deviation estimate

− lim
ρ↘ρc

(ρ− ρc) logP
{
Q

q?
6 x

}
= βNd(1− x) ∀x ∈ [0, 1] . (5.4)

Finally, as ρ↘ ρc, one has

E
(
Q

q?

)
= 1 +O(ρ− ρc) , Var

(
Q

q?

)
= O

(
(ρ− ρc)

2
)
. (5.5)

Proof. The proof of (5.3) draws on the fact that if q is not a multiple of N , then it cannot
exceed qmax = qmax(ρ) = λ1(ρ)q? where λ1(ρ) is defined in (4.43). For this, it suffices to use the
very rough upper bound

P{Q /∈ NN} 6
qmax∑
q=1

(
q +N

N

)
w

(N)
q+N

cF (N, d, ρ)
6 qmax

(qmax +N)N

N !

w
(N)
qmax+N

cF (N, d, ρ)
.
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Indeed, it follows from Theorem 4.20 and the asymptotics (4.40) of Wedderburn–Etherington
numbers that

(ρ− ρc) log cF (N, d, ρ) = βNd+O
(
(ρ− ρc) log(ρ− ρc)

)
,

(ρ− ρc) log(w
(N)
qmax+N ) 6 (ρ− ρc)qmax(ρ) log(α−1

N ) +O
(
(ρ− ρc) log(ρ− ρc)

)
.

Using the definitions of βN and qmax(ρ), this yields

(ρ− ρc) logP{Q /∈ NN} 6 −
(
βNd+ (ρ− d)

N

N + 1
log(α−1

N )

)
+O

(
(ρ− ρc) log(ρ− ρc)

)
,

from which (5.2) and (5.3) follow upon taking the limit ρ↘ ρc.
To prove the large-deviation estimate (5.4), we write

P
{
Q

q?
6 x

}
=

bxq?/Nc∑
n=1

P(Q = nN) + P
{
Q 6 xq?, Q /∈ NN

}
. (5.6)

We claim that the sum is dominated by its last term. To see this, we rewrite it as

bxq?/Nc∑
n=1

P{Q = nN} =
w

(N)
bxq?/NcN+1

cF (N, d, ρ)
S with S =

bxq?/Nc∑
n=1

w
(N)
nN+1

w
(N)
bxq?/NcN+1

.

Since 1 6 S 6 bxq?/Nc, we have log(S) = O(log(ρ − ρc)). Thus the sum in (5.6) obeys the
claimed large-deviation bound, owing to the fact that

(ρ− ρc) log(w
(N)
bxq?/NcN+1) = βNdx+O

(
(ρ− ρc) log(ρ− ρc)

)
combined with the previously obtained asymptotics of cF . As for the second term on the right-
hand side of (5.6), it can be bounded above in the same way as P{Q /∈ NN}, with qmax replaced
by xq?. As a result, it is not larger than the large-deviation bound obtained for the sum.

The moment estimates (5.5) then follow from the integration-by-parts formula

0 6 E
[(

1− Q

q?

)p]
=

∫ 1

0
pyp−1P

{
1− Q

q?
> y

}
dy ,

applied for p ∈ {1, 2}, and the fact that P{Q 6 xq?} 6 e−γ
′(1−x)/(ρ−ρc) for some γ′ > 0.

This result shows in particular that as ρ ↘ ρc, the random variable Q/q? converges to 1
in L2. In fact, it is easy to extend the proof to show that it converges to 1 in any Lp with
p > 1. This is due to the fact that when ρ is near ρc, the overwhelming majority of trees of
negative-homogeneous elements have the maximal size q?.

The random variable P , counting the number of occurrences of Ξ in τ as well as the number
of leaves of the bare and decorated trees, is determined by Q owing to the relation (4.35).
Indeed, note that (4.35) can be written

P = 1 +
N − 1

N
Q−

{
−Q
N

}
(5.7)

where {·} denotes the fractional part. In particular, (5.3) implies

P
{
P = 1 +

N − 1

N
Q

}
> 1− e−γ/(ρ−ρc) . (5.8)

This entails similar concentration properties for P as for Q.
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5.2 Homogeneity Distribution

The random variable H(τ) = |τ |s, giving the homogeneity of τ ∈ F−F can be expressed in terms
of Q and the random variable X giving the homogeneity of the polynomial part, i.e., X(τ) = |k|s
if τ is of type (p, q, k). Indeed, using the fact that p?α0 + q?ρ = 0 and p? − 1 = (N − 1)q?/N
(cf. Figure 3), one obtains ρ/(−α0) = (N − 1)/N + 1/q?. Hence (4.27) yields

H = α0P + ρQ+ X = −α0

(
Q

q?
− 1 +

{
−Q
N

})
+ X . (5.9)

Note that H takes values in [α0, 0), where −α0 converges to Nd/(N + 1) as ρ ↘ ρc, while X
takes its values in a finite subset of N0 + ρN0 (see the proof of Theorem 4.12).

Proposition 5.3. As ρ↘ ρc, one has

E(H) = O(ρ− ρc) , Var(H) = O
(
(ρ− ρc)

2
)
. (5.10)

Furthermore, H satisfies the large-deviation estimate

− lim
ρ↘ρc

(ρ− ρc) logP{H 6 h} =
N + 1

N
βN (−h) ∀h ∈ [α0, 0] . (5.11)

Proof. First note that the probability P{X > 0} = P{X > ρ} that τ admits a nontrivial
polynomial part is exponentially small, as a consequence of (4.27). Indeed, having |k|s > 0
while |τ |s < 0 requires Q to be bounded away from q?, so that we can apply the large-deviation
estimate (5.4). The moment bounds thus follow directly from those in Proposition 5.2, while
the large-deviation bound is obtained by decomposing

P{H 6 h} = P
{
Q

q?
− 1 6

h

(−α0)
, Q ∈ NN,X = 0

}
+ P

{
Q

q?
− 1 6

h− X

(−α0)
, Q ∈ NN,X > ρ

}
+
N−1∑
r=1

P
{
Q

q?
− r

N
6
h− X

(−α0)
, Q ∈ NN + r

}
.

The large-deviation estimate (5.4) shows that the first term on the right-hand side satisfies the
bound (5.11) (note that P(Q = q,X = 0) and P(Q = q) obey the same large-deviation bound).
The contribution of the other terms vanishes in the limit ρ↘ ρc.

This result shows in particular that the random variable H converges to 0 in probability
and in L2 as ρ↘ ρc, and that the probability that H = h < 0 decays like e−γ(−h)/(ρ−ρc) where
γ → (N + 1)βN/N as ρ↘ ρc.

5.3 Normalised Degree Distribution

We define the normalised degree distribution of the bare and decorated trees representing τ by
the 2(N + 1) random variables

D′j(τ) =
d′j(τ)

d′1(τ) + · · ·+ d′N+1(τ)
=

d′j(τ)

Q(τ) + 1
, j = 1, . . . , N + 1 ,

Dj(τ) =
dj(τ)

d1(τ) + · · ·+ dN+1(τ)
=

dj(τ)

P (τ) +Q(τ) + 1
, j = 1, . . . , N + 1 . (5.12)

The following result shows in particular that (D′1, . . . , D
′
N+1) converges in probability and in

L2 to the deterministic limit (
N − 1

N
, 0, . . . , 0,

1

N

)
(5.13)
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as ρ↘ ρc, while (D1, . . . , DN+1) converges (in the same sense) to(
N − 1

2N − 1
,
N − 1

2N − 1
, 0, . . . , 0,

1

2N − 1

)
. (5.14)

The difference between these random variables and their limits is of order ρ− ρc.

Proposition 5.4. The degree distributions satisfy

D′1 =
N − 1

N
+R′1 , Dj =

N − 1

2N − 1
+Rj , j = 1, 2 ,

D′N+1 =
1

N
+R′N+1 , DN+1 =

1

2N − 1
+RN+1 , (5.15)

where the R′j are random variables satisfying

E(R′j) = O
(
ρ− ρc

)
, Var(R′j) = O

(
(ρ− ρc)

2
)
. (5.16)

There exist constants c > 0 and γ > 0 such that

P
{
|R′j | > x(ρ− ρc)

}
6 exp

{
−γ(1− c/x)

ρ− ρc

}
(5.17)

for x > c. The Rj are random variables satisfying analogous relations. Furthermore,

E(D′j) = O
(
(ρ− ρc) e−γ/(ρ−ρc)

)
, Var(D′j) = O

(
(ρ− ρc)

2 e−γ/(ρ−ρc)
)

(5.18)

for j = 2, . . . , N − 1, and similarly for Dj when j = 3, . . . , N − 1.

Proof. Consider the case of D′1. It follows from the proof of Proposition 4.19 that

D′1 =
N − 1

N
+O

(
1

Q

)
.

To prove (5.16), it suffices to check that 1/Q has expectation of order 1/q? and variance of order
1/(q?)2, which follows from the fact that Q is concentrated near q?. The tail estimate (5.17)
follows from the large-deviation bound (5.4). The expressions for the Dj are due to the fact that
D1 = D′1, D2 = D′2 + P and Dj = D′j for j = 3, . . . , N + 1, as a consequence of the one-to-one
correspondence between bare and decorated trees shown in Lemma 4.15. The bounds (5.18)
follow from the fact that the D′j and Dj in question vanish if Q is a multiple of N (see again
the proof of Proposition 4.19) together with (5.3).

5.4 Height and Diameter Distribution

So far, we have only considered random variables which are either a function of Q, or bounded
in terms of 1/Q. The distribution of a more general random variable Y can be expressed in
terms of conditional expectations by

E(f(Y )) =

q?∑
q=1

E(f(Y )|Q = q)P{Q = q} (5.19)

for any “observable” f (e.g. f(y) = yp). Examples of random variables with a nontrivial relation
to Q are the height H of a tree and its diameter D. The height of a rooted tree is defined as
the longest graph distance between the root and a leaf, while the diameter is defined as the
longest graph distance between leaves. Height and diameter of nonhomeomorphic binary trees
have been analysed in [7], yielding the following results (we consider height and diameter of
bare trees, but those of decorated trees are simply obtained by adding 1 or 2).
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Proposition 5.5. Assume N = 2. Then

E
(√
ρ− ρcH

)
=

4
√
πd

3λ2
+O(ρ− ρc) , Var

(
(ρ− ρc)H

)
=

16π(π − 3)d

27λ2
2

+O(ρ− ρc) ,

E
(√
ρ− ρcD

)
=

16
√
πd

9λ2
+O(ρ− ρc) , Var

(
(ρ− ρc)D

)
=

64(3− 4π + π2)d

81λ2
2

+O(ρ− ρc) ,

(5.20)

where λ2 ≈ 1.1300337 is a constant related to the generating series of the Wedderburn–Etherington
numbers.

Proof. Using the integration-by-parts formula

E
[(

Q

q?

)1/2]
= 1−

∫ 1

0

1

2(1− t)1/2
P
(
Q

q?
6 1− t

)
dt ,

one checks that E(Q1/2) = (q?)1/2[1 + O(ρ − ρc)]. The result then follows from the moment
estimates on H in [7, Theorem 3] and on D in [7, Theorem 8] (with n = Q/2), combined
with (5.19) applied to f(y) = y and f(y) = y2.

This result shows that H and D are likely to be much smaller than Q, since they are typically
of order 1/

√
ρ− ρc while Q has order 1/(ρ − ρc). Their standard deviation, however, is of the

same order as their expectation, showing that they are much less concentrated than the other
random variables considered so far.

Remark 5.6. If furthermore the conditional distribution satisfies a large-deviation principle

− lim
ρ↘ρc

(ρ− ρc) logP
{
Y ∈ A

∣∣∣∣Qq? = x

}
= inf

y∈A
IY (y|x) (5.21)

(say for any interval A ⊂ R), then (5.4) yields

− lim
ρ↘ρc

(ρ− ρc) logP{Y ∈ A} = inf
y∈A

inf
x∈[0,1]

[
IY (y|x) + βNd(1− x)

]
. (5.22)

The rate function IY (y|x) can be interpreted as a relative negative entropy.
For instance, in the case N = 2, [7, Theorem 5] provides a large-deviation estimate for H

with rate function IH which, when applied to Y = (ρ− ρc)H, yields

IY (y|x) 6
4dx

9
IH

(
9y

4dx

)
. (5.23)

Unfortunately, there is no explicit expression for IH , which is expressed in terms of the solution
of a functional equation. It is to be expected, however, that x 7→ IY (y|x) is decreasing, so that
the infimum over x in (5.22) is reached for x = 1. In other words, H is largest whenever Q is
largest.

A more subtle interplay between scales can occur when the noise is not purely additive.
Then there is no longer a one-to-one correspondence between bare and decorated trees, so that
the relative entropy of one with respect to the other plays an important role. ♦

6 Computation

In this section, we provide a symbolic-algebra based computational analysis for the model
space TF . We again exploit the viewpoint of model space elements as directed rooted trees
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Figure 5. Negative homogeneity elements in the model space TF for a quadratic polynomial
f (N = 2), in dimension d = 2 and with exponent ρ = 1.5 for the SPDE (1.1) with space-time
white noise forcing ξ. The top left corner for each element gives the homogeneity up to a multiple
of an arbitrarily small factor, i.e., |Iρ(Ξ)2|s = − 1

2+O(κ) and |Iρ(Ξ)|s = − 1
4+O(κ) for 0 < κ� 1.

as considered in [23]. Recall that edges have two types, Ξ or Iρ, corresponding to noise and
integral kernel respectively. Vertices also come in two types, terminal vertices with label L
marking a leaf with directed edge Ξ pointed at the leaf and polynomial vertices with label Xk

for a multiindex k.
For an example consider Figure 5, which lists the elements of negative homogeneity for the

case N = 2, ρ = 1.5 and space-time white noise. For additive noise, these elements illustrate
that the key building blocks have to be mixtures of integration against the kernel and taking
powers. In the notation, we always suppress the trivial element 1 but the element will be marked
on the vertices of the trees to emphasize the product structure at the vertices.

The computation has been carried out in the package ReSSy (Regularity Structures Symbolic
Computation Package), which has recently been developed. The main algorithm to compute the
regularity structure elements provided the inputs N, d, ρ is the iterative procedure (4.11)–(4.13).
The algorithm has two main input parameters given by:

• maxh = maximum homogeneity of elements to keep after one iteration,

• iter = total number of fixed point iteration steps performed.

Of course, we cannot set maxh = +∞ or to be arbitrarily large since this would include all
elements of the polynomial regularity structure. For small to medium size regularity structures,
it is possible to calculate all elements of negative homogeneity but for very large structures
we have to take into account the fact that we may miss some elements if both algorithmic
parameters are not large enough. Here we decided to report the parameters for each larger
computation to guarantee for the reproducibility of results.

6.1 Explicit Examples – Negative Homogeneity Elements

In this section, we present a few more computational examples for space-time white noise.
As shown in Section 4.2, it makes no practical sense to list all possible regularity structures.
However, to build intuition, it is important to explicitly compute with key examples. In this
regard, we must restrict the parameter space. Our main restriction is to consider

d ∈ {2, 3} , N ∈ {2, 3} .

The choice of dimension is motivated by the “classical physical” dimensions. N > 1 is chosen
since we are really interested in nonlinear problems. N 6 3 is motivated by classical normal
form theory for ordinary differential equations [31], modulation/amplitude equations for partial
differential equations [26] and stochastic partial differential equations [6]. In these contexts, one
obtains normal forms near criticality with N 6 3 for the simplest codimension one bifurcations
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Figure 6. List of all negative-homogeneous elements in the basis FF of the model space TF
for a quadratic polynomial f (N = 2), for dimension d = 2 and with exponent ρ = 0.9 for the
SPDE (1.1) with space-time white noise forcing ξ. The corresponding pairs (p, q) are shown in

Figure 2.

and pattern-forming mechanisms. For the fractional Laplacian parameter ρ, it makes sense to
restrict to a regime

ρ ∈ (0, 2]
⋂{

ρ > ρp > ρc = d
N − 1

N + 1

}
where ρp is a fixed number chosen as close as possible to the local subcriticality boundary
but also fixed so that the computations are still possible in practice; indeed, we know from
Section 4.2 that the model space grows very rapidly as we approach ρc.

Figure 6 shows an example for d = 2 = N and ρ = 0.9 listing all elements of negative
homogeneity. From the theory it is clear that the maximum degree of a vertex must be N+1 = 3.
One easily checks that the pairs (p, q) counting the number of Ξ and Iρ are compatible with
the theory in Section 4.3, cf. Figure 2. Furthermore, in accordance with Proposition 4.17, all
bare trees obtained by pruning the edges of type Ξ are either binary trees, or can be turned
into binary trees by adding one edge.

Figure 7 shows just four elements for a more complicated case with d = 3 = N and ρ = 1.7,
where also nontrivial polynomial exponents appear; in this case, there are at least 42 negative
homogeneity elements in FF (iter = 4, maxh = 2.0). In accordance with Proposition 4.19, all
pruned trees are either ternary trees, or ternary trees pruned by one edge.
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Figure 7. Examples of some negative homogeneity elements in the model space TF for a cubic
polynomial f (N = 3), for dimension d = 3 and with exponent ρ = 1.7 for the SPDE (1.1) with
space-time white noise forcing ξ.

6.2 Degree Distributions

The large dimension of the relevant sector of the model space may suggest that it is too complex
to understand in detail. However, as already shown in Section 5, certain statistical properties
become relevant as ρ↘ ρc.

We start by considering the degree distribution D. Let R denote the set of rooted trees
forming the set F−F of negative-homogeneous basis elements. Note that we can also view R as
a single graph. Then we define

D(j; ρ) =
number of vertices of degree j in R

total number of vertices in R
=
mj

m
. (6.1)

Note that this is slightly different from the Dj defined in Section 5.3, but both quantities are
strongly related and converge to the same deterministic limit as ρ↘ ρc. In particular, it follows
from (5.12) that D(j; ρ) = E[Dj(P +Q+ 1)]/E[P +Q+ 1].

Figure 8 shows the degree distribution for the classical Allen–Cahn case with N, d ∈ {2, 3}
for different values of ρ approaching the subcriticality boundary at d(N − 1)/(N + 1) = ρc;
obviously we always consider this limit as a limit from above. Although m → +∞ as ρ → ρc,
we see that the degree distribution D(k; ρ) has relatively stable features. The trivial graph
of the unit element 1 explains the results at degree zero. The results are compatible with
Proposition 5.4, which implies that the degrees should converge to (1

3 ,
1
3 ,

1
3) for N = 2, and to

(2
5 ,

2
5 , 0,

1
5) for N = 3.

Furthermore, we are also interested in the growth of the functions cF and hF . The results
of this computation are shown in Figure 9 for the cases N = 2 = d and N = 3 = d. The results
are compatible with the asymptotic growth in (ρ− ρc)

−1 of hF obtained in Theorem 4.12 and
with the exponential growth of cF obtained in Theorems 4.18 and 4.20.

We briefly summarize some computational observations. Obviously, the results for the func-
tion hF are a lot easier to obtain computationally as we only need a large enough sub-sample of
the entire model space to count homogeneities while for cF , we have to count all elements (up
to homogeneities equal to a multiple of −α0). Counting all elements requires higher values for
iter and maxh, which can substantially increase the computation time. The key computational
bottleneck, where the computation is slow, arises in the decision step whether during, or after,
the construction of an element, this element is already contained in the model space from a
previous iteration step. This step is unavoidable and necessitates a comparison to previously
computed elements. The larger the individual graphs become, the more computationally inten-
sive the computation may be. Note that we already reduce the computation time significantly
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(a) (b)

(c) (d)

Figure 8. Computation of the degree distribution for the parameter values N ∈ {2, 3}, d ∈
{2, 3} for negative homogeneous elements. Each histogram is coded according to a greyscale,
i.e., black corresponds to the largest ρ-value used and ρ = ρp corresponds to white. The degree
distribution is visualized as a histogram normalized to the total number of elements of the
regularity structure; note that we include the single trivial element 1 with degree zero as it
provides an indication of the absolute numbers in the normalized degree histogram. (a) Case
N = 2 = d (where ρc = 2

3 ), computed for maxh = 0.7 and iter = 4. The exponents for the
fractional Laplacian are ρ ∈ {1.0, 0.9, 0.85, 0.8, 0.75, 0.7}. (b) Case N = 2, d = 3, (ρc = 1),
computed for maxh = 1.0, iter = 4 and ρ ∈ {1.4, 1.3, 1.25, 1.2, 1.15, 1.1, 1.08}. (c) Case N = 3,
d = 2, (ρc = 1), computed for maxh = 1.0, iter = 3 and ρ ∈ {1.4, 1.3, 1.25, 1.2, 1.15, 1.1, 1.08}.
(d) Case N = 3 = d, (ρc = 3

2 ), computed for maxh = 1.0, iter = 3 and ρ ∈ {1.8, 1.75, 1.7, 1.65,
1.6, 1.59}.

by doing comparison by exclusion, e.g., first comparing the homogeneity, then comparing the
number of edges and nodes, etc., until we finally have to check for complete graph isomorphism.
Checking for graph isomorphism many times is extremely expensive so it should be avoided as
much as possible.

6.3 Average Graph Properties

Although the degree distribution helps already to understand the approach towards the sub-
criticality boundary, it is also very interesting to consider other averaged graph properties.

As before, we let R denote the set of rooted trees spanning the negative-homogeneous sector
F−F of the model space and let |R| = cF denote the number of trees in R. Then we consider
the following properties of R:

• Density : For an element R ∈ R, let nR be the number of vertices in R and mR be the
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Figure 9. Computation to analyse the functions hF and cF . Dots mark computational results
while connected curves are theoretical scaling laws plotted using a least-square fit to the theo-
retical scaling laws. (a)–(b) Result for N = 2 = d computed with maxh = 0.7, iter = 5. (c)–(d)
Result for N = 3 = d computed for maxh = 0.8, iter = 4.

number of edges in R. Then the graph density averaged over R is defined as

Md :=
1

|R|
∑
R∈R

mR

nR(nR − 1)
. (6.2)

Since each R is a tree, we have nR = mR + 1 and thus Md is just the average of 1/nR,
which we know to be of order ρ− ρc. Hence, we expect it to decay to zero as ρ→ ρc.

• Betweenness: Let path(v1, v2) denote the number of shortest paths between two vertices
v1 and v2 and let path(v1, v2|v) denote the number of shortest paths that also pass through
v; let VR denote the set of vertices of R. The betweenness (or betweenness centrality)
averaged over R is defined as

Mb :=
1

|R|
∑
R∈R

1

nR

∑
v∈R

∑
v1,v2∈VR

path(v1, v2|v)

path(v1, v2)
. (6.3)

Since each R is a tree, path(v1, v2) = 1. However, betweenness centrality for trees is still
a property not fully understood [14] so it is of interest to just calculate it here.

• PageRank : Let pagerank(v) denote the pagerank of a node computed according to [36],
which measures the importance of a vertex in a graph. Then the averaged PageRank is
defined as

Mr :=
1

|R|
∑
R∈R

1

nR

∑
v∈R

pagerank(v) . (6.4)
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Figure 10. Computation of different averaged graph properties (vertical axis) for the regularity
structure of the case d = 3 = N for different values of ρ (horizontal axis); the computation has
been carried out for maxh = 1.5 and iter = 3. The properties are defined in the text but one
can already see that density Md and pagerank Mr are very close to zero at the subcriticality
boundary; periphery Mp and betweenness Mb are decreasing but are more likely to stabilize at
the subcriticality boundary ρ = 3

2 to finite nonzero values.

• Periphery : For R ∈ R let |eccR| be the number of vertices in R with eccentricity equal
to the diameter of R; recall that the eccentricity of a vertex v is the maximum distance
from v to all other vertices and the diameter of a graph is the maximum eccentricity over
all nodes. Then the averaged periphery measure is defined as:

Mp :=
1

|R|
∑
R∈R
|eccR| . (6.5)

Note that for Mb and Mr, we view each rooted tree as an undirected graph, while the
computations are for directed graphs for Md and Mp. The graph properties are essentially
coarse-grained summary statistics of the set of rooted trees R and represent different charac-
teristics. Figure 10 shows a computation for the benchmark case fixing d = 3 = N and leaving
ρ to vary. The density Md decreases as expected. The averaged betweenness Mb also decreases
as ρ decreases but seems to stabilize to a finite value, i.e., there is a typical shortest path scale
developing. The PageRank Mr was designed to measure the importance/connectedness of ver-
tices and it also becomes very small as ρ→ 3

2 . This indicates that although each rooted tree is
quite structured, it still grows individually in such a way to produce only a few special or sig-
nificant nodes so that the effect of |R| increasing eventually dominates. Quite interestingly, the
averaged periphery measure Mp also seems to have a well-defined finite value near subcriticality.
Mp essentially measures how many nodes are in the periphery of the trees and this indicates
that the growth of the rooted trees does follow a pattern still adding a lot of smaller trees at
the ends rather than maximizing connectedness.

6.4 Homogeneity Distribution

Another important measure for rooted trees in F−F is their homogeneity, i.e., we consider H(R) =
|R|s for R ∈ R by just viewing the rooted tree as a symbol.
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Figure 11. Computation of homogeneity distributions for the regularity structure d = 3 = N
for different values of ρ ∈ {1.8, 1.75, 1.7, 1.65, 1.6, 1.58}, where each histogram shows the number
of elements in the regularity structure sorted according to negative homogeneity but discarding
arbitrarily small factors in | · |s = · + O(κ), i.e., dropping the terms of order O(κ) as κ > 0 is
arbitrarily small. The computation has been carried out for maxh = 1.5 and iter = 3.

Figure 11 again shows results for our benchmark case d = 3 = N for different values of ρ.
Each histogram counts the number of elements of a given homogeneity and each bin in the his-
togram is just one homogeneity level. Note that we could have normalized the histograms by |R|
to obtain a probability distribution, but the absolute counts are also informative and we have
scaled the vertical axis so that one already sees the normalized versions. The results are con-
sistent with Proposition 5.3, and in particular with the large-deviation estimate (5.11) showing
that the probability of the homogeneity having a negative value h behaves like e−κ(−h)/(ρ−ρc).
Another observation from Figure 11 is that upon decreasing ρ, new homogeneities appear in a
very regular fashion, at least reminiscent of the construction of functions with fractal graphs.
Indeed, if ρ is rational, then only rational negative homogeneities may appear by the iterative
construction. However, the negative homogeneities really do seem to fill out an entire domain
of ρ.
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