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Abstract

The growing need for uncertainty analysis of complex computational models has led to

an expanding use of meta-models across engineering and sciences. The efficiency of meta-

modeling techniques relies on their ability to provide statistically-equivalent analytical rep-

resentations based on relatively few evaluations of the original model. Polynomial chaos

expansions (PCE) have proven a powerful tool for developing meta-models in a wide range

of applications; the key idea thereof is to expand the model response onto a basis made of

multivariate polynomials obtained as tensor products of appropriate univariate polynomials.

The classical PCE approach nevertheless faces the “curse of dimensionality”, namely the

exponential increase of the basis size with increasing input dimension. To address this limi-

tation, the sparse PCE technique has been proposed, in which the expansion is carried out

on only a few relevant basis terms that are automatically selected by a suitable algorithm.

An alternative for developing meta-models with polynomial functions in high-dimensional

problems is offered by the newly emerged low-rank approximations (LRA) approach. By ex-

ploiting the tensor-product structure of the multivariate basis, LRA can provide polynomial

representations in highly compressed formats. Through extensive numerical investigations,

we herein first shed light on issues relating to the construction of canonical LRA with a

particular greedy algorithm involving a sequential updating of the polynomial coefficients

along separate dimensions. Specifically, we examine the selection of optimal rank, stopping

criteria in the updating of the polynomial coefficients and error estimation. In the sequel, we

confront canonical LRA to sparse PCE in structural-mechanics and heat-conduction appli-

cations based on finite-element solutions. Canonical LRA exhibit smaller errors than sparse

PCE in cases when the number of available model evaluations is small with respect to the

input dimension, a situation that is often encountered in real-life problems. By introducing

the conditional generalization error, we further demonstrate that canonical LRA tend to

outperform sparse PCE in the prediction of extreme model responses, which is critical in

reliability analysis.

Keywords: uncertainty quantification – meta-modeling – sparse polynomial chaos ex-

pansions – canonical low-rank approximations – rank selection – meta-model error
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1 Introduction

It is nowadays common practice to study the behavior of physical and engineering systems

through computer simulation. Proper analysis of the system response must account for the

prevailing uncertainties in the system model and the underlying phenomena, which requires

repeated simulations under varying scenarios for the input parameters. Modern advances in

computer science combined with the improved understanding of physical laws are leading

to computational models of increasing complexity. Uncertainty propagation through such

models may become intractable in cases when a single simulation is computationally de-

manding. A remedy is to substitute a complex model with a meta-model that possesses

similar statistical properties, but has a simple functional form.

The focus of the present work is on meta-models that are built with polynomial functions

due to the simplicity and versatility they offer. A popular class of meta-models thereof are

the so-called polynomial chaos expansions (PCE) (Xiu and Karniadakis, 2002; Ghanem and

Spanos, 2003). The key idea of PCE is to expand the model response onto an appropriate

basis made of orthonormal multivariate polynomials, the latter obtained as tensor products

of univariate polynomials in each of the input parameters. In non-intrusive approaches that

are of interest herein, the coefficients of the expansion are evaluated in terms of the response

of the original model at a set of points in the input space, called the experimental design

(Choi et al., 2004; Berveiller et al., 2006; Xiu, 2009). Although PCE have proven powerful in

a wide range of applications, they face limitations in cases with high-dimensional input. This

is because the number of the basis terms, and thus of the unknown expansion coefficients,

grows exponentially with the number of input parameters, which is commonly referred to

as the “curse of dimensionality”. As shown in Blatman and Sudret (2011); Doostan and

Owhadi (2011), the efficiency of the PCE approach can be significantly improved by using a

sparse basis.

A promising alternative for developing meta-models with polynomial functions in high-

dimensional spaces is provided by canonical decompositions. In canonical decompositions,

also known as separated representations, a tensor is expressed as a sum of rank-one com-

ponents. This type of representation constitutes a special case of tensor decompositions,

which are typically used to compress information or extract a few relevant modes of a ten-

sor; a survey on different types of tensor decompositions can be found in Kolda and Bader

(2009). The original idea of canonical decomposition dates back to 1927 (Hitchcock, 1927),

but became popular in the second half of the 20th century after its introduction to psycho-

metrics (Carroll and Chang, 1970; Harshman, 1970). Since then, it has been used in a broad

range of fields, including chemometrics (Appellof and Davidson, 1981; Bro, 1997), neuro-

science (Mocks, 1988; Andersen and Rayens, 2004), fluid mechanics (Felippa and Ohayon,

1990; Ammar et al., 2006), signal processing (Sidiropoulos et al., 2000; De Lathauwer and

Castaing, 2007), image analysis (Shashua and Levin, 2001; Furukawa et al., 2002) and data

mining Acar et al. (2006); Beylkin et al. (2009). More recently, canonical decompositions

are attracting an increasing interest in the field of uncertainty quantification (Nouy, 2010;

Chevreuil et al., 2013; Doostan et al., 2013; Hadigol et al., 2014; Mathelin, 2014; Rai, 2014;

Validi, 2014; Chevreuil et al., 2015).

By exploiting the tensor-product structure of the multivariate polynomial basis, canonical

decompositions can provide equivalent to PCE representations in highly-compressed formats.

It is emphasized that the number of parameters in canonical decompositions grows only

linearly with the input dimension, which, in cases of high-dimensional problems, results
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in a drastic reduction of the number of unknowns compared to PCE. Naturally, canonical

decompositions with a few rank-one components are of interest, thus leading to the name

low-rank approximations (LRA). We note that although the present study is constrained to

the use of polynomial bases, different basis functions may be considered for the construction

of LRA in a general case (see, e.g. Chevreuil et al. (2015)).

Recently proposed methods for building canonical LRA meta-models in a non-intrusive

manner rely on the sequential updating of the polynomial coefficients along separate di-

mensions. The underlying algorithms require solving a series of minimization problems of

small size, independent of the input dimension, which can be easily handled using standard

techniques. However, the LRA construction involves open questions that call for further

investigations. In particular, stopping criteria in the sequential updating of the polynomial

coefficients as well as criteria for selection of the optimal rank and polynomial degree are

not yet well established. Considering a particular greedy algorithm for building canonical

LRA meta-models, we herein shed light on the aforementioned issues through extensive nu-

merical investigations. In the sequel, we assess the comparative accuracy of canonical LRA

and sparse PCE in applications involving finite-element models pertinent to structural me-

chanics and heat conduction. In these applications, sparse PCE are built with a state-of-art

method, where a candidate basis is defined by means of a hyperbolic truncation scheme and

the final sparse basis is determined using least angle regression. Comparisons between the

meta-model errors are carried out for experimental designs of varying sizes drawn with Sobol

sequences and Latin hypercube sampling.

The organization of the paper is as follows: In Section 2, we present the mathematical

setup of non-intrusive meta-modeling and describe corresponding error measures. Sections

3 and 4 respectively describe the sparse PCE and canonical LRA approaches. After inves-

tigating open questions in the construction of LRA in Section 5, we confront the two types

of polynomial meta-models in Section 6. The paper concludes with a summary of the main

findings and respective outlooks in Section 7.

2 Non-intrusive meta-modeling

2.1 Mathematical setup

We consider a physical or engineering system whose behavior is represented by a computa-

tional model M. Let X = {X1, . . . , XM} and Y = {Y1, . . . , YN} respectively denote the

M -dimensional input vector and the N -dimensional response vector of the model. In order

to account for the uncertainty in the input and the resulting uncertainty in the response,

the elements of X and Y are described by random variables. For the sake of simplicity, we

hereafter restrain our analysis to the case of a scalar model response, i.e. N = 1. Note that

the case of a vector model response can be addressed by separately treating each element

of Y as in the case of a scalar response. The above are summarized in the mathematical

formalism:

X ∈ DX ⊂ RM 7−→ Y =M(X) ∈ R, (1)

where DX denotes the support of X.

In a typical real-life application, the modelM is not known in a closed analytical form and

may represent a complex computational process. A meta-model M̂ is an analytical function

such that Ŷ = M̂(X) possesses similar statistical properties with Y . Non-intrusive methods

for building meta-models rely on a series of calls to the original model M, which may be
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used as a “black-box” without any modification. Building a meta-model in a non-intrusive

manner requires an experimental design (ED), i.e. a set of realizations of the input vector E =

{χ(1), . . . ,χ(N)}, and the corresponding model evaluations Y = {M(χ(1)), . . . ,M(χ(N))}.

2.2 Error measures

For a set of realizations of the input vector X = {x1, . . . ,xn} ⊂ DX and two real-valued

functions a and b with common domain DX , we define the semi-inner product:

< a , b >X=
1

n

n∑

i=1

a(xi)b(xi). (2)

Eq. (2) leads to the semi-norm ‖ a ‖X=< a, a >
1/2
X , which is employed in the sequel to

describe meta-model error measures.

A good measure of the accuracy of a meta-model is the generalization error ErrG, which

represents the mean-square of the residual ε = Y − Ŷ :

ErrG = E
[
ε2
]

= E
[(
Y − Ŷ

)2
]
. (3)

In most practical situations, it is not possible to evaluate the generalization error analytically.

An estimator ÊrrG of this error may be computed via Monte Carlo Simulation (MCS) by

using the exact-model and meta-model responses at a sufficiently large set of points in the

input space Xval = {x1, . . . ,xnval
}, called validation set :

ÊrrG =
∥∥∥M−M̂

∥∥∥
2

Xval

. (4)

The corresponding estimator of the relative generalization error, denoted by êrrG, is obtained

by normalizing ÊrrG with the empirical variance of Yval = {Y (x1), . . . , Y (xnval
)}, the latter

representing the set of model responses at the validation set.

Unfortunately, a validation set is not available in typical meta-modeling applications,

where a large number of evaluations of the original model is non-affordable. An alternative

estimator is the empirical error ÊrrE :

ÊrrE =
∥∥∥M−M̂

∥∥∥
2

E
, (5)

where the subscript E indicates that the semi-norm is evaluated at the points of the ED.

The corresponding relative error, denoted by êrrE , is obtained by normalizing ÊrrE with

the empirical variance of Y = {M(χ(1)), . . . ,M(χ(N))}, the latter representing the set of

model responses at the ED. The empirical error does not require any additional evaluations

of the exact model than those already used to build the meta-model. It therefore serves the

goal of limiting the number of runs of an expensive computational model to the smallest

possible. However, it tends to underestimate the actual generalization error, which might be

severe in cases of overfitting.

Relying on the ED only, a fair approximation of the generalization error can be obtained

by means of cross-validation (CV) techniques. In k-fold CV, the ED is randomly partitioned

into k sets of approximately equal size. A meta-model is built considering all but one of

the partitions, which comprises the training set, while the excluded or testing set, is used

to evaluate the generalization error. By alternating through the k sets, k meta-models are

obtained in this way; their average generalization error provides an estimate of the error of

the meta-model built with the full ED.
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3 Polynomial Chaos Expansions

3.1 Spectral representation

Assuming that Y in Eq. (1) has a finite variance, the following representation is possible

(Soize and Ghanem, 2004):

Y =
∞∑

j=0

yjφj , (6)

in which {φj , j ∈ N} is a set of random variables that forms a Hilbertian basis in the space

of second-order variables and {yj , j ∈ N} are the coordinates of Y in this basis. Eq. (6)

constitutes a spectral representation of the random response Y .

Let us consider the Hilbert space H of square-integrable real-valued functions of X

equipped with the inner product:

< u , v >H=

∫

DX

u(x)v(x)fX(x)dx, (7)

where fX denotes the joint probability density function (PDF) of X. Let us also consider

the Hilbert space Hi of square-integrable real-valued functions of Xi equipped with the inner

product:

< u , v >Hi=

∫

DXi

u(x)v(x)fXi(xi)dxi, (8)

where fXi denotes the marginal PDF of Xi defined over the support DXi .

Under the assumption that the components of X are independent, it is straightforward

to show that the Hilbert space defined by the tensor product H̄ = ⊗Mi=1Hi and equipped

with the inner product:

< u , v >H̄=

∫

DX

u(x1, . . . , xM )v(x1, . . . , xM )fX1
(x1) . . . fXM

(xM )dx1 . . . dxM (9)

is isomorphic with H. Accordingly, if {ψ(i)
αi , αi ∈ N} is a basis in the Hilbert space Hi, then

a basis in the Hilbert space H is defined by the set {Ψα, α = (α1, . . . , αM ) ∈ NM} with:

Ψα(X) =

M∏

i=1

ψ(i)
αi

(Xi). (10)

It follows that the problem of specifying a Hilbertian basis in H reduces to specifying Hilber-

tian bases in Hi, i = 1, . . . ,M . This proposition will be employed in the sequel for building

the bases of polynomial chaos expansions. Although the above analysis has been constrained

to the case when the components of X are independent, it will be seen that cases with mutu-

ally dependent input variables may be treated similarly after an appropriate isoprobabilistic

transformation.

3.2 Construction of polynomial basis

Polynomial chaos expansions (PCE) are spectral representations in which the basis consists

of multivariate polynomials in X that are orthonormal with respect to fX . According

to Section 3.1, these can be obtained as tensor products of univariate polynomials that

constitute Hilbertian bases in the spaces of Xi, i = 1, . . . ,M .

A Hilbertian basis {ψ(i)
k , k ∈ N} of Hi satisfies the orthonormality condition:

< ψ
(i)
j , ψ

(i)
k >Hi

= δjk, (11)
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where δjk is the Kronecker delta symbol. Classical algebra allows one to build a family of

orthogonal polynomials {Q(i)
k , k ∈ N}, where k denotes the polynomial degree, so that they

satisfy (Abramowitz and Stegun, 1970):

< Q
(i)
j , Q

(i)
k >Hi= c

(i)
k δjk. (12)

In the above equation, the constant c
(i)
k represents the squared L2 norm of the k-th degree

polynomial:

c
(i)
k = ‖Q(i)

k ‖22 =< Q
(i)
k , Q

(i)
k >Hi

. (13)

The corresponding orthonormal polynomial families are thus obtained through the normal-

ization:

P
(i)
k = Q

(i)
k /

√
c
(i)
k . (14)

Once the families of univariate orthonormal polynomials associated with the elements of

X have been determined, the multivariate polynomial basis can be obtained through the

tensorization shown in Eq. (10), after substituting ψ
(i)
αi with P

(i)
αi .

For standard distributions, i.e. uniform, Gaussian, Gamma, Beta, the associated fami-

lies of orthogonal polynomials are well-known (Xiu and Karniadakis, 2002). For instance, a

uniform variable with support [−1, 1] is associated with the family of Legendre polynomials,

whereas a standard normal variable is associated with the family of Hermite polynomials.

However, it is common in practical situations that the input variables do not follow stan-

dard distributions. In such cases, the random vector X is first transformed into a basic

random vector X ′ (e.g. a standard normal or standard uniform random vector) through an

isoprobabilistic transformation X = T−1(X ′) and then, the model responseM(T−1(X ′)) is

expanded onto the polynomial basis associated with X ′. This approach also allows dealing

with mutually dependent input variables through an isoprobabilistic transformation into a

vector of independent variables (e.g. Nataf transformation in the case of joint PDF with

Gaussian copula).

The exact representation of the random response requires an infinite number of basis

terms. However, in practical implementation of PCE, an approximation containing a finite

number is considered:

Ŷ PCE = M̂PCE(X) =
∑

α∈A
yαΨα(X), (15)

where the set of retained multi-indices A is determined according to an appropriate trun-

cation scheme. A typical truncation scheme consists in selecting multivariate polynomials

up to a total degree pt, i.e. A = {α ∈ NM : ‖α‖1 ≤ pt}, with ‖α‖1 =
∑M
i=1 αi. The

corresponding number of terms in the truncated series is:

cardA =

(
M + pt

pt

)
=

(M + pt)!

M !pt!
. (16)

This number increases exponentially with the input dimension M giving rise to the “curse of

dimensionality”. To limit the number of basis terms that include interactions between input

variables, which are usually less significant, (Blatman and Sudret, 2010) proposed the use of

a hyperbolic truncation scheme. In the latter, the set of retained multi-indices is defined as

A = {α ∈ NM : ‖α‖q ≤ pt}, with:

‖α‖q =

(
M∑

i=1

αi
q

)1/q

, 0 < q ≤ 1. (17)
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According to Eq. (17), lower values of q correspond to a smaller number of interaction terms

in the PCE basis. At the limit q → 0, the expansion becomes additive, i.e. a sum of

univariate functions in the Xi’s.

3.3 Computation of polynomial coefficients

Next, we briefly review a non-intrusive approach for computing the coefficients yα based

on least-square analysis, originally introduced by Choi et al. (2004); Berveiller et al. (2006)

under the name regression method. In this approach, the exact expansion is viewed as the

sum of a truncated series and a residual:

Y =M(X) =
∑

α∈A
yαΨα(X) + ε, (18)

where ε corresponds to the truncated terms. Then, the set of coefficients y = {yα, α ∈ A}
can be obtained by minimizing the mean-square error of the residual over the ED:

y = arg min
υ∈RcardA

∥∥∥∥∥M−
∑

α∈A
υαΨα

∥∥∥∥∥

2

E

, (19)

leading to:

y = (ΨTΨ)−1ΨTY, (20)

where Ψ = {Ψij = Ψj(χ
(i)), i = 1, . . . , N, j = 1, . . . , cardA} and Y is the set of model

responses evaluated at the ED, as defined earlier.

For high-dimensional problems, the number of coefficients to be evaluated can be very

large. For instance, in typical engineering problems where M varies in the range 10− 50, by

considering only low-degree polynomials with, say, pt = 3, Eq. (16) results in 286 − 23, 426

unknown coefficients. Obviously, the number of model evaluations required to solve Eq. (19),

which is typically 2-3 times the number of unknowns, becomes prohibitively large in cases

with high-dimensional input. This limitation constitutes a bottleneck in the classical PCE

approach.

More efficient schemes for evaluating the PCE coefficients can be devised by considering

the respective regularized problem:

y = arg min
υ∈RcardA

∥∥∥∥∥M−
∑

α∈A
υαΨα

∥∥∥∥∥

2

E

+ λP(υ), (21)

in which P(υ) is an appropriate regularization functional of υ = {υ1, . . . , υcardA}. If P(υ) is

selected as the L1 norm of υ, i.e. P(υ) =
∑cardA
i=1 |υi|, insignificant terms may be disregarded

from the set of predictors, leading to sparse solutions. (Blatman and Sudret, 2011) proposed

to use the hybrid least angle regression (LAR) method for building sparse PCE. This method

employs the LAR algorithm (Efron et al., 2004) to select the best set of predictors and

subsequently, estimates the coefficients using ordinary least squares (OLS), as described

above in Eq. (20).

It will be seen in Section 4 that canonical low-rank approximations offer an alternative

approach for dealing with high-dimensional problems. By exploiting the tensor-product form

of the polynomial basis, such representations may reduce the number of unknown coefficients

by orders of magnitude.
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3.4 Accuracy estimation

A good measure of the PCE accuracy is the leave-one-out (LOO) error (Allen, 1971), corre-

sponding to the CV error for the case k = N (see Section 2.2 for details on the CV technique).

Using algebraic manipulations, this can be computed based on a single PCE built with the

full ED. Let h(χ(i)) denote the i-th diagonal term of matrix Ψ(ΨTΨ)−1ΨT. The LOO error

can then be computed as (Blatman, 2009):

ÊrrLOO =

∥∥∥∥∥
M−M̂PCE

1− h

∥∥∥∥∥

2

E
. (22)

The relative LOO error is obtained by normalizing ÊrrLOO with the empirical variance of

the model responses at the ED, denoted by V̂ar [Y]. Because this error tends to be too

optimistic, the following corrected estimate is used instead (Chapelle et al., 2002):

êrrLOO =
ÊrrLOO

V̂ar [Y]

(
1− cardA

N

)−1 (
1 + tr((ΨTΨ)−1)

)
. (23)

4 Canonical low-rank approximations

4.1 Formulation with polynomial bases

We herein consider again the mapping in Eq. (1). A rank-one function of the input vector

X has the form:

w(X) =
M∏

i=1

v(i)(Xi), (24)

where v(i) denotes a univariate function of Xi. A representation of the model response

Y =M(X) as a finite sum of rank-one functions constitutes a canonical decomposition with

rank equal to the number of rank-one components. A rank-R decomposition of Y =M(X)

therefore reads:

ŶR = M̂R(X) =
R∑

l=1

bl

(
M∏

i=1

v
(i)
l (Xi)

)
, (25)

where v
(i)
l denotes a univariate function of Xi in the l-th rank-one component and {bl, l =

1, . . . , R} are scalars that can be viewed as normalizing constants.

An exact canonical decomposition represents a rank decomposition. In general, the rank

decomposition of a given tensor is not unique; conditions of uniqueness are discussed in

Kolda and Bader (2009). The lowest rank of a rank decomposition of a given tensor, called

the tensor rank (Hitchcock, 1927; Kruskal, 1977), can be determined numerically by fitting

various canonical decomposition models (Kolda and Bader, 2009). Naturally, of interest are

decompositions where the exact response is approximated with sufficient accuracy by using

a relatively small number of terms R. Such decompositions are hereafter called low-rank

approximations (LRA).

The focus of the present work is on canonical LRA made of polynomial functions due to

the combination of simplicity and versatility these offer; in a general case however, the use

of polynomial functions is not a constraint (see e.g. Chevreuil et al. (2015)). By expanding

v
(i)
l onto a polynomial basis that is orthonormal with respect to the marginal distribution

fXi , Eq. (25) takes the form:

ŶR = M̂R(X) =
R∑

l=1

bl

(
M∏

i=1

(
pi∑

k=0

z
(i)
k,lP

(i)
k (Xi)

))
, (26)
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where P
(i)
k denotes the k-th degree univariate polynomial in the i-th input variable, pi is the

maximum degree of P
(i)
k and z

(i)
k,l is the coefficient of P

(i)
k in the l-th rank-one component.

Appropriate families of univariate polynomials according to the distributions of the respective

input variables are determined as discussed in Section 3.2. Similarly to PCE, the case of

dependent input can be treated through an isoprobabilistic transformation of the input

variables {Xi, i = 1, . . . , N} into independent reduced variables.

Disregarding the redundant parameterization arising from the normalizing constants, the

number of unknowns in Eq. (26) is R ·∑M
i=1(pi + 1), which grows only linearly with the

input dimension M . Thus, a representation of the model response in the form of canonical

LRA results in a drastic reduction of the number of unknowns as compared to PCE. To

emphasize this, we consider PCE with the candidate basis determined by the truncation

scheme A = {α ∈ NM : αi ≤ pi, i = 1, . . . ,M}, so that the expansion relies on the same

polynomial functions as those used in Eq. (26). For the case when pi = p, i = 1, . . . ,M , the

resulting number of unknowns is (p+ 1)M in PCE versus (p+ 1) ·M ·R in LRA. Assuming

a typical engineering problem with M = 10 and low-degree polynomials with p = 3, these

formulas yield 1, 048, 576 unknowns in PCE versus 40R unknowns in LRA; for a low rank,

say R ≤ 10, the latter number does not exceed a mere 400. The reduction in the number of

unknowns achieved with the compressed LRA representation becomes even more pronounced

in cases with high-degree polynomials.

4.2 Greedy construction

Different algorithms have been proposed in the literature for building a decomposition in

the form of Eq. (26) in a non-intrusive manner (Chevreuil et al., 2013; Doostan et al., 2013;

Mathelin, 2014; Rai, 2014; Validi, 2014; Chevreuil et al., 2015). A common point is that

the polynomial coefficients are determined by means of an alternated least-squares (ALS)

minimization. The ALS approach consists in sequentially solving a least-squares minimiza-

tion problem along a single dimension i ∈ {1, . . . ,M}, while “freezing” the coefficients in all

remaining dimensions. In the present study, we adopt the skeleton of the greedy algorithm

proposed in Chevreuil et al. (2013, 2015). This algorithm involves a progressive increase of

the rank by successively adding rank-one components up to a prescribed maximal. It thus

results in a set of candidate decompositions with varying ranks and requires appropriate

criteria for selecting the optimal one. In the following, we describe the construction of the

approximation for a prescribed rank and discuss rank selection criteria.

4.2.1 Approximation for a prescribed rank

Let us denote by M̂r the rank-r approximation ofM. The corresponding model response is

then approximated by:

Ŷr = M̂r(X) =

r∑

l=1

blwl(X), (27)

where wl represents the l-th rank-one component:

wl(X) =
M∏

i=1

(
pi∑

k=0

z
(i)
k,lP

(i)
k (Xi)

)
. (28)

The employed algorithm involves a sequence of pairs of a correction step and an updating

step, so that in the r-th correction step, the rank-one tensor wr is built, while in the r-th

9



updating step, the set of normalizing coefficients {b1, . . . , br} is determined. These steps are

detailed next.

Correction step: In the r-th correction step, the rank-one tensor wr is obtained as the

solution to the minimization problem:

wr(X) = arg min
ω∈W

∥∥∥M−M̂r−1 − ω
∥∥∥

2

E
, (29)

where W represents the space of rank-one tensors. The sequence is initiated by setting

Y0 = M̂0(X) = 0. Eq. (29) is solved by means of an ALS scheme that involves successive

minimizations along each dimension i = 1, . . . ,M . In the minimization along dimension j,

the polynomial coefficients in all other dimensions are “frozen” at their current values and

the coefficients z
(j)
r = {z(j)

1,r . . . z
(j)
pj ,r} are determined as:

z(j)
r = arg min

ζ∈Rpj+1

∥∥∥∥∥∥
M−M̂r−1 −


∏

i 6=j
v(i)
r



(

pj∑

k=0

ζkP
(j)
k

)∥∥∥∥∥∥

2

E

, (30)

where:

v(i)
r (Xi) =

pi∑

k=0

z
(i)
k,rP

(i)
k (Xi). (31)

To initiate the r-th correction step, one needs to assign arbitrary values to v
(i)
r , i = 1, . . . ,M ;

in the subsequent example applications, we use v
(1)
r (X1) = . . . = v

(M)
r (XM ) = 1. We

underline that a correction step may involve several iterations over the set of dimensions

{1, . . . ,M}. This aspect of the algorithm, which is not detailed in some of the aforemen-

tioned studies, can be critical for the LRA accuracy, as shown in the numerical investigations

in Section 5. Chevreuil et al. (2015) proposed a stopping criterion that combines thresholds

on the number of iterations Ir and on the empirical error:

Êrrr =
∥∥∥M−M̂r−1 − wr

∥∥∥
2

E
. (32)

A threshold on the empirical error was also imposed by Doostan et al. (2013) and Validi

(2014). However, appropriate values for these thresholds as well as their effects on the LRA

accuracy were not examined. The stopping criterion employed in the present study involves

the number of iterations Ir and the decrease in the relative empirical error in two successive

iterations, denoted by ∆êrrr. The relative empirical error is computed by normalizing

Êrrr in Eq. (32) with V̂ar [Y], i.e. with the empirical variance of the model responses

at the ED. Accordingly, the algorithm exits the r-th correction step if either Ir reaches

a maximum allowable value Imax or ∆êrrr becomes smaller than a prescribed threshold

∆êrrmin. Appropriate values for Imax and ∆êrrmin will be later discussed based on the

numerical investigations in Section 5.

Updating step: After the completion of a correction step, the algorithm moves to an

updating step, in which the set of coefficients b = {b1 . . . br} is obtained as the solution of

the minimization problem:

b = arg min
β∈Rr

∥∥∥∥∥M−
r∑

l=1

βlwl

∥∥∥∥∥

2

E
. (33)

Note that in each updating step, the size of vector b is increased by one. In the r-th updating

step, the value of the new element br is determined for the first time, whereas the values of

the existing elements {β1, . . . , βr−1} are updated.

10



Construction of a rank-R decomposition in the form of Eq. (26) requires repeating pairs

of a correction and an updating step for r = 1, . . . , R. The algorithm is summarized below.

Algorithm 1 Non-intrusive construction of a polynomial rank-R approximation of Y =

M(X) with an experimental design E = {χ(1), . . . ,χ(N)}:

1. Set M̂0(χ(q)) = 0, q = 1, . . . , N .

2. For r = 1, . . . , R, repeat steps (a)-(d):

(a) Initialize: v
(i)
r (χ(q)) = 1, i = 1, . . . ,M , q = 1, . . . , N ; Ir = 0; ∆êrrr = ε >

∆êrrmin.

(b) While ∆êrrr > ∆êrrmin and Ir < Imax, repeat steps i-iv:

i. Set Ir ← Ir + 1.

ii. For i = 1, . . . ,M , repeat steps A-B:

A. Determine z
(i)
r = {z(i)

1,r . . . z
(i)
pi,r} using Eq. (30).

B. Update v
(i)
r , using Eq. (31).

iii. Update wr using Eq. (28).

iv. Compute Êrrr using Eq. (32) and update ∆êrrr.

(c) Determine b = {b1 . . . br} using Eq. (33).

(d) Evaluate M̂r(χ
(q)), q = 1, . . . , N , using Eq. (27).

We emphasize that the above algorithm relies on the solution of several small-size min-

imization problems; in particular, one needs to solve M minimization problems of size

{pi + 1, i = 1, . . . ,M} in each iteration of a correction step (note that pi < 20 in typi-

cal applications) and one minimization problem of size r in the r-th updating step (recall

that small ranks are of interest in LRA). Thus, the LRA construction substitutes the single

large-size minimization problem involved in the PCE construction with a series of small-size

ones; in high-dimensional applications, this can also offer a significant advantage in terms of

required computer memory.

Because of the small number of unknowns involved in Eq. (30) and Eq. (33), these min-

imization problems can be efficiently solved with OLS, as shown in the subsequent exam-

ple applications. An alternative approach employed in (Chevreuil et al., 2013; Rai, 2014;

Chevreuil et al., 2015) is to substitute these equations with the respective regularized prob-

lems:

z(j)
r = arg min

ζ∈Rpj

∥∥∥∥∥∥
M−M̂r−1 −


∏

i 6=j
v(i)
r



(

pj∑

k=0

ζkP
(j)
k

)∥∥∥∥∥∥

2

E

+ λP(ζ) (34)

and

b = arg min
β∈Rr

∥∥∥∥∥M−
r∑

l=1

βlwl

∥∥∥∥∥

2

E
+ λP(β), (35)

where P(u) is selected as either the L1 or the L2 norm of u.

We conclude this section by briefly referring to alternative algorithms for developing LRA

non-intrusively. The algorithms in Doostan et al. (2013); Mathelin (2014); Validi (2014) in-

volve a progressive increase of the rank as well. In Doostan et al. (2013); Validi (2014), when

the r-th rank-one component is added, the polynomial coefficients in the (r − 1) previously

built rank-one terms are also updated. Thus, the r-th step requires the solution of mini-

mization problems of size {(pi + 1) r, i = 1, . . . ,M}; in applications with high-dimensional

input, the size of these minimization problems remains orders of magnitude smaller compared

11



to those involved in the computation of the PCE coefficients. Conversely, the algorithm in

Mathelin (2014) does not require the updating of coefficients in previously added components

when a new rank-one term is added. It is noteworthy that in the latter, the most-relevant

dimensions to be included in the ALS scheme are determined by means of a LAR-based

selection technique and CV error criteria.

4.2.2 Rank selection

In a typical application, the optimal rank R is not known a priori. As noted earlier, the

progressive construction of LRA described in Section 4.2.1 results in a set of decompositions

of increasing rank. Thus, one may set r = 1, . . . , rmax in Step 2 of Algorithm 1, where rmax

is a maximum allowable candidate rank, and at the end, select the optimal-rank decompo-

sition using error-based criteria. Two approaches for rank selection are described below and

investigated extensively in Section 5.

Chevreuil et al. (2015) proposed to select the optimal rank by means of 3-fold CV (see

Section 2.2); they did not however examine the accuracy of this approach. In the general case

of k-fold CV, the procedure requires building LRA of increasing rank r = 1, . . . , rmax for each

of the k training sets. For r = 1, . . . , rmax, the generalization error of each of the k meta-

models is estimated using the respective testing set. The rank R ∈ {1, . . . , rmax} yielding

the smallest average generalization error over the k meta-models is identified as optimal;

then, a new decomposition of rank R is built using the full ED. The average generalization

error corresponding to the selected rank provides an estimate of the actual generalization

error of the final meta-model.

Although the above procedure for rank selection relies on the set of model evaluations at

the ED only, it requires repeating Algorithm 1 (k+1) times, namely k times for rank rmax and

another time for rank R. Because it is of interest to limit the computational effort required for

rank selection, we consider an alternative approach based on the LOO error in the updating

step. As described in Section 3.4, the LOO error represents the average generalization error

in k-fold CV with k = N , but can be computed from a single meta-model built with the full

ED.

LetW denote the information matrix in the minimization problem represented by Eq. (33),

i.e. W = {Wij = wj(χ
(i)), i = 1, . . . , N, j = 1, . . . , r}, and let h(χ(i)) denote the i-th di-

agonal term of matrix W (WTW )−1WT. Then, the LOO error can be computed as:

ÊrrLOO =

∥∥∥∥∥
M−M̂r

1− h

∥∥∥∥∥

2

E
. (36)

The relative LOO error is obtained by normalizing ÊrrLOO with V̂ar [Y], i.e. with the

empirical variance of the model responses at the ED. As noted in Section 3.4, this error may

be too optimistic. For this reason, a corrected error may be used in the case of PCE (see

Eq. (23)). A similar correction may not be formally applied in the present case, because

this is based on the assumption of orthogonality between the regressors, which does not hold

for Eq. (33). However, it is of interest to examine the performance of the corrected error

estimate, given by:

êrrLOO =
ÊrrLOO

V̂ar [Y]

(
1− r

N

)−1 (
1 + tr((WTW )−1)

)
, (37)

used in an approximate sense.
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5 Example applications of canonical low-rank approxi-

mations

In the following, we investigate the construction of LRA according to Algorithm 1 in Sec-

tion 4.2.1 considering four models with different characteristics and input dimensionality.

The first model is an analytical function of rank-1 structure with a 5-dimensional input,

representing the deflection of a simply-supported beam under a static load. The subsequent

three examples involve finite-element models with input dimensionality 10, 21 and 53. In

particular, we develop LRA for the deflection of a truss structure subjected to vertical static

loads, the top horizontal displacement of a three-span five-story frame subjected to horizon-

tal static loads and the temperature response in stationary heat conduction with thermal

conductivity described by a random field. In each application, (i) we assess the performance

of the two criteria for rank selection discussed in Section 4.2.2 and evaluate the accuracy

of the respective error measures and (ii) we investigate optimal stopping criteria in the cor-

rection step. The minimization problems in both the correction and the updating steps are

solved with the OLS method. In all applications, effects of varying ED size are examined.

The EDs are herein obtained using Sobol quasi-random sequences (Niederreiter, 1992) (LHS

designs will be considered in the following section). In order to assess the accuracy of the

different rank-selection methods and stopping criteria, we use sufficiently large validation

sets drawn with MCS. We note however that such large validation sets are not available in

real-life problems, in which the analyst typically needs to rely solely on the ED.

5.1 Beam deflection

In the first example, we consider a simply-supported beam with a constant rectangular cross-

section subjected to a concentrated load at the midpoint of the span. The response quantity

of interest is the mid-span deflection given by:

u =
PL3

4Ebh3
, (38)

where b and h respectively denote the width and height of the cross-section, L is the length of

the beam, E is the Young’s modulus and P is the magnitude of the load. The aforementioned

parameters are described by independent random variables, thus leading to an uncertainty

propagation problem of dimension M = 5. The distributions of the input parameters are

listed in Table 1. Employing an isoprobabilistic transformation of X = {b, h, L,E, P} into a

vector of standard normal variables, we develop LRA representations of the random response

U =M(X) with basis functions made of Hermite polynomials.

Table 1: Beam-deflection problem: Distributions of input random variables.

Variable Distribution Mean CoV

b [m] Lognormal 0.15 0.05

h [m] Lognormal 0.3 0.05

L [m] Lognormal 5 0.01

E [MPa] Lognormal 30, 000 0.15

P [MN] Lognormal 0.01 0.20
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5.1.1 Rank selection and error measures

We begin our analysis by investigating the selection of the optimal rank among a set of

candidate values {1, . . . , 20}. After preliminary investigations, we set a common polynomial

degree pi = p = 5 for i = 1, . . . , 5. The stopping criterion in the correction step is defined

by setting Imax = 50 and ∆êrrmin = 10−8 (the selection of ∆êrrmin will be explained in the

following subsection). We use EDs of size N varying from 50 to 5, 000 and a validation set of

size nval = 106. The actual optimal rank, denoted by Ropt, is identified as the one yielding

the minimum relative generalization error êrrG, the latter estimated with the validation set

as described in Section 2.2. It is of interest to compare Ropt with the rank selected with the

3-fold CV approach, denoted by RCV3, and the rank selected with the LOO-error criterion,

denoted by RLOO. Note that for a given ED, the value of RCV3 is not fixed because of the

random partition of the ED into training and testing sets. This aspect of randomness is

considered in the following analysis.

In Figure 1, we investigate rank selection with the 3-fold CV approach. The left graph

shows boxplots of RCV3 for 20 random partitions of each considered ED into training and

testing sets, while the right graph shows boxplots of the relative generalization errors of

the resulting meta-models. In order to assess the accuracy of the 3-fold CV approach, we

also plot the actual optimal rank Ropt and corresponding relative generalization error for

each ED. The rank-1 structure of the original model (see Eq. (38)) matches the structure

of the optimal LRA for all N except for N = 100 (Ropt = 2 in this case). The median

RCV3 coincides with Ropt for most EDs, while selection of a non-optimal rank appears to

have a smaller effect for the larger EDs. We underline that highly accurate meta-models

are obtained in all cases, with êrrG not exceeding 10−4. For N ≥ 200, êrrG is of the order

of 10−8 or smaller even for cases with non-optimal ranks. The LOO-error criterion yields

RLOO = 1 for all considered EDs, which coincides with Ropt except for N = 100.

To gain further insight into the criteria for rank selection, we examine the estimation

of the generalization error by the ED-based error measures. In the left graph of Figure 2,

we consider meta-models with rank RCV3 and compare the 3-fold CV error êrrCV3 with

the corresponding generalization error êrrG for one example partition of each ED. In the

right graph of the same figure, we consider meta-models with rank RLOO and compare the

LOO error êrrLOO with the corresponding generalization error. In these graphs, the 3-fold

CV error appears to be a better estimator of the generalization error compared to the LOO

error. It must be noted that contrary to the 3-fold CV error, the estimation of the LOO

error largely deteriorates for higher ranks. The lack of orthogonality of the regressors leads to

overly high correction factors, whereas the non-corrected errors are too optimistic. Overall,

êrrLOO is deemed inappropriate for estimating êrrG in the present example.

5.1.2 Stopping criterion in the correction step

We herein investigate the effects of different stopping criteria in the correction step on the

LRA accuracy. For N ∈ {50; 200; 1, 000; 5, 000}, the left graph of Figure 3 shows the rela-

tive generalization errors of the LRA meta-models with optimal rank, while the parameter

∆êrrmin that drives the loops over the set of dimensions in ALS varies between 10−9 and

10−4; other parameters are fixed to their values in Section 5.1.1. The right graph of the same

figure indicates the maximum number of iterations Ir performed in a correction step. Ex-

cept for the largest ED, the accuracy of LRA strongly depends on ∆êrrmin, with decreasing

values leading to orders-of-magnitude smaller êrrG. The right graph indicates that a larger
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Figure 1: Beam-deflection problem: Comparison of ranks selected with 3-fold CV (20 replica-

tions) to optimal ranks (left) and corresponding relative generalization errors (right).
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Figure 2: Beam-deflection problem: Comparison of ED-based errors to corresponding relative

generalization errors for ranks selected with 3-fold CV (left) and with the LOO-error criterion

(right).

number of iterations is required for the smallest ED.

5.2 Truss deflection

The second example also derives from structural mechanics, but involves a finite-element

model. In particular, the truss shown in Figure 4 is considered (also studied in Blat-

man and Sudret (2008)), with the mid-span deflection u representing the response quan-

tity of interest. The random input herein comprises M = 10 independent variables: the

vertical loads P1, . . . , P6, the cross-sectional area and Young’s modulus of the horizontal

bars, respectively denoted by A1 and E1, and the cross-sectional area and Young’s mod-

ulus of the diagonal bars, respectively denoted by A2 and E2. The distributions of the

input variables are listed in Table 2. After employing an isoprobabilistic transformation of

X = {P1, . . . , P6, A1, A2, E1, E2} into a vector of standard normal variables, we develop

LRA representation of the random response U =M(X) with basis functions made of Her-

mite polynomials. In the underlying deterministic problem, the mid-span deflection is com-
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Figure 3: Beam-deflection problem: Relative generalization error (left) and corresponding max-

imum number of iterations in a correction step (right) versus threshold of differential error in

the stopping criterion.

puted with an in-house finite-element analysis code developed in the Matlab environment.

6 x 4m

 2
m

P1 P2 P3 P4 P5 P6

u

Figure 4: Truss structure.

Table 2: Truss-deflection problem: Distributions of input random variables.

Variable Distribution Mean CoV

A1 [m] Lognormal 0.002 0.10

A2 [m] Lognormal 0.001 0.10

E1, E2 [MPa] Lognormal 2.1 · 105 0.10

P1, . . . , P6 [KN] Gumbel 50 0.15

5.2.1 Rank selection and error measures

Similarly to the previous example, we investigate rank selection based on the 3-fold CV and

LOO errors, considering the candidate values {1, . . . , 20}. After preliminary investigations,

the polynomial degree is set to pi = p = 3 for i = 1, . . . , 10, while the parameters of the

stopping criterion in the correction step are set to Imax = 50 and ∆êrrmin = 10−6. Again,

we use EDs of size N varying between 50 and 5, 000 to build the LRA meta-models and a

validation set of size nval = 106 to estimate the relative generalization errors and identify

the actual optimal ranks.

The left graph of Figure 5 shows boxplots of RCV3, i.e. the rank selected with 3-fold

CV, for 20 random partitions of each considered ED, together with the corresponding actual

optimal rank Ropt. The right graph shows boxplots of the relative generalization errors of
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the meta-models with rank RCV3 as well as the relative generalization errors of the meta-

models with rank Ropt. We observe that the actual optimal rank is equal to 1 for N ≤ 500,

but attains higher values for larger EDs. This is because the larger amount of information

contained in the latter allows the estimation of a larger number of coefficients with higher

accuracy. This trend is captured by the 3-fold CV approach, which yields RCV3 = 1 for

all random partitions of the ED when N ≤ 500 and varying higher ranks for the larger

EDs. The median of RCV3 coincides with Ropt for N = 5, 000, but is smaller than RCV3

for N = 1, 000 and N = 2, 000. As in the beam-deflection problem, effects of non-optimal

rank selection on the LRA accuracy tend to be less significant as the ED size increases. The

LOO-error criterion yields RLOO = 1 for all considered EDs, which coincides with Ropt only

for N ≤ 500.

We next assess the estimation of the generalization error by the ED-based error mea-

sures. In the left graph of Figure 6, we compare êrrCV3 to êrrG for LRA meta-models

with rank RCV3. In the right graph, we compare êrrLOO to êrrG for LRA meta-models

with rank RLOO. Both ED-based error measures appear to approximate the correspond-

ing generalization errors fairly well, particularly for the larger EDs. However, similarly to

the beam-deflection problem, êrrLOO is found to be an inappropriate estimator of êrrG for

higher-rank meta-models. On the other hand, for sufficiently large EDs, êrrCV3 provides fair

estimates of êrrG for all ranks.
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Figure 5: Truss-deflection problem: Comparison of ranks selected with 3-fold CV (20 replica-

tions) to optimal ranks (left) and corresponding relative generalization errors (right).

5.2.2 Stopping criterion in the correction step

We now examine effects of the differential error threshold in the correction step, while other

parameters are fixed to their values above. For N ∈ {50; 200; 1, 000; 5, 000}, the left graph

of Figure 7 shows the relative generalization errors for the LRA meta-models with optimal

ranks, while ∆êrrmin varies from 10−7 to 10−2. The right graph of the same figure shows

the corresponding maximum number of iterations Ir in a correction step. While selecting a

sufficiently small threshold ∆êrrmin appears critical for the smaller ED, it does not essentially

affect the meta-model accuracy when N = 200 or N = 1, 000. For N = 5, 000, variations of

êrrG within the same order of magnitude are observed with decreasing ∆êrrmin, following a

decreasing but non-monotonic trend. Thus, small values of ∆êrrmin may lead to unnecessary
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Figure 6: Truss-deflection problem: Comparison of ED-based errors to corresponding relative

generalization errors for ranks selected with 3-fold CV (left) and with the LOO-error criterion

(right).

iterations in the correction step for the larger EDs.
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Figure 7: Truss-deflection problem: Relative generalization error (left) and corresponding max-

imum number of iterations in a correction step (right) versus threshold of differential error in

the stopping criterion.

5.3 Frame displacement

The present example involves a finite-element model representing the three-span five-story

frame shown in Figure 8 (also studied in Liu and Der Kiureghian (1991); Blatman and

Sudret (2010)). The response quantity of interest is the horizontal displacement u at the

top right corner of the top floor, under the depicted horizontal loads acting at the floor

levels. Table 3 lists the properties (Young’s modulus, moment of inertia, cross-sectional

area) of the different elements according to their labels in Figure 8. These element properties

together with the values of the horizontal loads comprise the random input of the problem

of dimension M = 21. The distributions of the input random variables are listed in Table 4.

The truncation of the Gaussian distributions used to model the element properties is a
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modification of the original example in Liu and Der Kiureghian (1991) that was introduced

by Blatman and Sudret (2010). The input variables are correlated, with their dependence

structure defined using a Gaussian copula (see Nelsen (2006) for modeling of probabilistic

dependence with copulas). The elements of the associated linear correlation matrix are

defined as follows:

• the correlation coefficient between the cross-sectional area Ai and the moment of inertia

Ii of a certain element i is ρAi,Ii = 0.95;

• the correlation coefficient between the geometric properties of two distinct elements i

and j are ρAi,Ij = ρIi,Ij = ρAi,Aj
= 0.13;

• the correlation coefficient between the two Young’s moduli is ρE1,E2
= 0.90;

• the remaining correlation coefficients are zero.

Note that in the original example, the above values are considered for the corresponding

linear correlation coefficients in the standard normal space; however, as noted in Blatman

and Sudret (2010), the differences between the two are insignificant. After an isoprobabilistic

transformation of X = {P1, P2, P3, E1, E2, I1, . . . , I8, A1, . . . , A8} into a vector of indepen-

dent standard normal variables, we develop LRA representations of the random response

U =M(X) with the basis functions made of Hermite polynomials. In the underlying deter-

ministic problem, the displacement of interest is computed with an in-house finite-element

analysis code developed in the Matlab environment.

P1

P1

P1

P2

P3

B1 B1

B1B1

B2

B2

B2B2

B2 B2

B3

B3

B3 B3B4

C3

C3 C3

C3C4 C4

C1 C1

C1 C1

C2 C2

C2 C2

C2

C2

C2

C2

C3 C3

u

25 ft 25 ft30 ft

12 ft

12 ft

12 ft

12 ft

16 ft

Figure 8: Frame structure.

5.3.1 Rank selection and error measures

We herein investigate rank selection, while setting the polynomial degree to pi = p = 3 for

i = 1, . . . , 21. We define the stopping criterion in the correction step by requiring Imax = 50

and ∆êrrmin = 10−6. As in the two preceding examples, we use EDs of sizes N varying from

50 to 5, 000 to build the meta-models and a validation set of size nval = 106 to identify the

actual optimal rank among the candidate values {1, . . . , 20}.
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Table 3: Frame-displacement problem: Element properties.

Element Young’s modulus Moment of inertia Cross-sectional area

C1 E1 I1 A1

C2 E1 I2 A2

C3 E1 I3 A3

C4 E1 I4 A4

B1 E2 I5 A5

B2 E2 I6 A6

B3 E2 I7 A7

B4 E2 I8 A8

Table 4: Frame-displacement problem: Distributions of input random variables.

Variable Distribution Mean Standard deviation

P1 [KN] Lognormal 133.45 40.04

P2 [KN] Lognormal 88.97 35.59

P3 [KN] Lognormal 71.17 28.47

E1 [KN/m2] Truncated Gaussian over [0,∞) 2.3796 · 107 1.9152 · 106

E2 [KN/m2] Truncated Gaussian over [0,∞) 2.1738 · 107 1.9152 · 106

I1 [m4] Truncated Gaussian over [0,∞) 8.1344 · 10−3 1.0834 · 10−3

I2 [m4] Truncated Gaussian over [0,∞) 1.1509 · 10−2 1.2980 · 10−3

I3 [m4] Truncated Gaussian over [0,∞) 2.1375 · 10−2 2.5961e− 03

I4 [m4] Truncated Gaussian over [0,∞) 2.5961 · 10−2 3.0288 · 10−3

I5 [m4] Truncated Gaussian over [0,∞) 1.0811 · 10−2 2.5961 · 10−3

I6 [m4] Truncated Gaussian over [0,∞) 1.4105 · 10−2 3.4615 · 10−3

I7 [m4] Truncated Gaussian over [0,∞) 2.3279 · 10−2 5.6249 · 10−3

I8 [m4] Truncated Gaussian over [0,∞) 2.5961 · 10−2 6.4902 · 10−3

A1 [m2] Truncated Gaussian over [0,∞) 3.1256 · 10−1 5.5815 · 10−2

A2 [m2] Truncated Gaussian over [0,∞) 3.7210 · 10−1 7.4420 · 10−2

A3 [m2] Truncated Gaussian over [0,∞) 5.0606 · 10−1 9.3025 · 10−2

A4 [m2] Truncated Gaussian over [0,∞) 5.5815 · 10−1 1.1163 · 10−1

A5 [m2] Truncated Gaussian over [0,∞) 2.5302 · 10−1 9.3025 · 10−2

A6 [m2] Truncated Gaussian over [0,∞) 2.9117 · 10−1 1.0232 · 10−1

A7 [m2] Truncated Gaussian over [0,∞) 3.7303 · 10−1 1.2093 · 10−1

A8 [m2] Truncated Gaussian over [0,∞) 4.1860 · 10−1 1.9537 · 10−1

Figure 9 presents results of rank selection with the 3-fold CV approach, considering 20

random partitions of each ED. The left and right graphs of this figure respectively show

boxplots of RCV3 and the relative generalization errors of the corresponding meta-models.

The accuracy of the approach is assessed through comparisons to LRA with the actual

optimal rank Ropt, identified by means of the validation set. As in the truss-deflection

problem, the optimal rank is Ropt = 1 for the smaller EDs and increases for larger N ,
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without however exceeding Ropt = 2 in the present example. Except for N = 50, the

ED-based rank RCV3 exhibits small or no dispersion for different random selections of the

training and testing sets, while its median value coincides with Ropt in most cases. Selection

of a rank higher than unity may lead to gross generalization errors for N = 50, because

the few points comprising the ED are insufficient to accurately estimate a large number of

coefficients. Again, the LOO-error criterion yields RLOO = 1 for all considered EDs.

Figure 10 provides further insight into rank selection by comparing the ED-based errors

êrrCV3 and êrrLOO with the corresponding relative generalization errors êrrG. The left

graph plots êrrCV3 together with êrrG for LRA with rank RCV3, while the right graph plots

êrrLOO together with êrrG for LRA with rank RLOO. The ED-based error measures appear

to approach the corresponding generalization errors with increasing ED size, with êrrCV3

providing accurate estimates with only N = 500. As also observed in the previous examples,

êrrLOO may largely overestimate the errors of meta-models with higher ranks.
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Figure 9: Frame-displacement problem: Comparison of ranks selected with 3-fold CV (20 repli-

cations) to optimal ranks (left) and corresponding relative generalization errors (right).
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ê
r
r
(R

L
O
O
)
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Figure 10: Frame-displacement problem: Comparison of ED-based errors to corresponding rel-

ative generalization errors for ranks selected with 3-fold CV (left) and with the LOO-error

criterion (right).
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5.3.2 Stopping criterion in the correction step

We next investigate effects of the stopping criteria on the LRA accuracy considering the

cases with N ∈ {50; 200; 1, 000; 5, 000}. The left graph of Figure 10 shows the relative gener-

alization errors of LRA with optimal ranks while ∆êrrmin varies between 10−6 and 10−1 and

other parameters are fixed to their values above. The right graph shows the corresponding

maximum number of iterations in a correction step. For N = 200, the considered variation of

∆êrrmin corresponds to a variation of êrrG of about one order of magnitude. For the other

EDs, the value of ∆êrrmin has a negligible effect on the LRA accuracy and thus, repeated

iterations in the correction step add an unnecessary computational effort.
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Figure 11: Frame-displacement problem: Relative generalization error (left) and corresponding

maximum number of iterations in a correction step (right) versus threshold of differential error

in the stopping criterion.

5.4 Heat conduction

The last example application (inspired by a problem studied in Nouy (2010)) concerns

stationary heat conduction in the two-dimensional square domain D = (−0.5, 0.5)m ×
(−0.5, 0.5)m shown in the left graph of Figure 12. The temperature field T (z), z ∈ D,

is described by the partial differential equation:

−∇(κ(z)∇T (z)) = IA(z)Q, (39)

with boundary conditions T = 0 on the top boundary and ∇T · n = 0 on the left, right and

bottom boundaries, where n denotes the vector normal to the boundary. On the right side

of Eq. (39), Q = 2 · 103 W/m3 and IA is an indicator function equal to unity if z ∈ A, where

A = (0.2, 0.3)m× (0.2, 0.3)m is a square domain within D (see left graph of Figure 12). The

thermal conductivity κ(z) is a lognormal random field described by:

κ(z) = exp[aκ + bκg(z)], (40)

in which g(z) represents a standard Gaussian random field with a square-exponential auto-

correlation function:

ρ(z, z′) = exp (−‖z − z′‖2/`2). (41)
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In Eq. (40), the values of aκ and bκ are such that the mean and standard deviation of

κ are µκ = 1W/C · m and σκ = 0.3W/C · m respectively, while in Eq. (41), ` = 0.2m.

The response quantity of interest is the average temperature in the square domain B =

(−0.3,−0.2)m× (−0.3,−0.2)m within D (see left graph of Figure 12):

T̃ =
1

|B|

∫

z∈B
T (z)dz. (42)

To solve Eq. (39), the Gaussian random field g(z) is first discretized using the expansion

optimal linear estimation (EOLE) method (Li and Der Kiureghian, 1993), as described next.

Let {ζ1, . . . , ζn} denote the points of an appropriately defined grid in D. By retaining the

first M terms in the EOLE series, g(z) is approximated by:

ĝ(z) =
M∑

i=1

ξi√
li
φT
i Czζ(z), (43)

where {ξ1, . . . , ξM} are independent standard normal variables, Czζ is a vector with ele-

ments C
(k)
zζ = ρ(z, ζk), for k = 1, . . . , n, and (li,φi) are the eigenvalues and eigenvectors of

the correlation matrix Cζζ with elements C
(k,l)
ζζ = ρ(ζk, ζl), for k, l = 1, . . . , n. Sudret and

Der Kiureghian (2000) recommend that for a square-exponential autocorrelation function,

the size of the element in the EOLE grid must be 1/2 − 1/3 of `. In the present numerical

application, we use a square grid with element size 0.1m (1/2 of `), thus comprising n = 121

points. The number of terms in the EOLE series is determined according to the rule:

M∑

i=1

li/
n∑

i=1

li ≥ 0.99, (44)

herein leading to M = 53. The shapes of the first 20 basis functions {φT
i Czζ(z), i =

1, . . . , 20} are shown in Figure 13.

The underlying deterministic problem is solved with an in-house finite-element analysis

code developed in the Matlab environment. The domain D is discretized into 16, 000 tri-

angular T3 elements, as shown in the right graph of Figure 12, using the software Gmsh

(Geuzaine and Remacle, 2009). The temperature field T (z) for two realizations of the con-

ductivity random field is depicted in Figure 14. Because the input vector X = {ξ1, . . . , ξM}
consists of independent standard normal variables, we develop LRA representations of the

random response T̃ =M(X) with basis functions made of Hermite polynomials.

5.4.1 Rank selection and error measures

In examining the accuracy of the two rank-selection criteria and associated error measures,

we consider EDs of size varying between N = 50 and N = 5, 000 and a validation set of

size nval = 104. After preliminary investigations, the maximum polynomial degree is set to

pi = p = 2 for {i = 1, . . . , 53} and the stopping criterion in the correction step is defined by

Imax = 50 and ∆êrrmin = 10−5. As in the previous examples, candidate ranks are selected

among {1, . . . , 20}.
The left graph of Figure 15 shows boxplots of the ranks selected with 3-fold CV for 20

random partitions of each ED. The optimal rank, also indicated in the graph, is equal to

unity in all cases. For N ≥ 200, the 3-fold CV approach consistently selects the rank-1

meta-models in all trials. For the two smaller EDs however, it may erroneously select higher

ranks, with the effect on the LRA accuracy depicted in the right graph of the same figure.

23



A

B

D

∇T · n = 0∇T · n = 0

∇T · n = 0

T = 0

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

�� �� �� �� �� �� �� �� �� �� �� �� ��

1

A

B

D

1

Figure 12: Heat-conduction problem: Domain and boundary conditions (left); finite-element

mesh (right).

Figure 13: Heat-conduction problem: Shapes of the first 20 basis functions in the EOLE dis-

cretization (from left-top to bottom-right row-wise).

The LOO error criterion identifies the optimal rank RLOO = Ropt = 1 for all considered

EDs.

In Figure 16, we compare êrrG with êrrCV3 and êrrLOO for all candidate ranks and

two example EDs of size N = 100 (left) and N = 5, 000 (right). The êrrCV3 errors for one

example partition of the ED are shown. Note in these graphs that both error criteria identify

the unity rank as optimal. In this example, êrrLOO can provide reasonably good estimates

of êrrG even for higher ranks; however êrrCV3 overall outperforms êrrLOO in the estimation

of êrrG at Ropt = 1, which is herein evident in the case of N = 100.

5.4.2 Stopping criterion in the correction step

Finally, we investigate effects of the parameters of the stopping criterion on the LRA accu-

racy. The left graph of Figure 17 shows êrrG for LRA with rank Ropt = 1 versus N , while

the maximum allowable number of iterations takes the values Imax = 1, 2, 10, 20 and the

differential error threshold is fixed to ∆êrrmin = 10−5. The right graph of the same figure
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Figure 14: Heat-conduction problem: Example realizations of the temperature field.
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Figure 15: Heat-conduction problem: Comparison of ranks selected with 3-fold CV (20 replica-

tions) to optimal ranks (left) and corresponding relative generalization errors (right).
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Figure 16: Heat-conduction problem: Comparison of error measures in rank-selection criteria

with the relative generalization error based on the validation set.

shows êrrG for LRA with rank Ropt = 1 versus N , while the differential error threshold

takes the values ∆êrrmin = 10−1, 10−3, 10−5, 10−7 and the maximum allowable number of
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iterations is fixed to Imax = 50. Overall, both Imax and ∆êrrmin have a relatively small effect

on the LRA accuracy, which becomes negligible for N > 500.
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ê
r
r
G

 

 
∆êrrmin = 10

−1
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Figure 17: Heat-conduction problem: Relative generalization error for varying stopping criteria

in the correction step versus size of experimental design.

5.5 Discussion on the construction of canonical low-rank approxi-

mations

In the above numerical investigations, the 3-fold CV error proves a more reliable criterion

for rank selection as compared to the LOO error. The lack of orthogonality of the regressors

may lead to excessive correction factors in the latter, particularly for higher ranks, whereas

its uncorrected counterpart tends to be overly optimistic. On the other hand, the accuracy

of the 3-fold CV error consistently improves with increasing size of the ED. For a certain ED,

the median generalization error of LRA with rank selected via 3-fold CV is fairly close to

the generalization error of the LRA with optimal rank. Divergence of the selected rank from

the optimal one tends to have a smaller effect on the LRA accuracy as the ED size increases.

In the examples involving finite-element models, EDs of size N ≥ 10 ·M lead to LRA with

generalization errors of the order of 10−3 or smaller, even in cases with non-optimal rank

selection. Note that this level of accuracy is typically sufficient in several meta-modeling

applications, including sensitivity analysis (Konakli and Sudret, Konakli and Sudret). For

the analytical beam-deflection function with underlying rank-1 structure, the same condition

on the ED size leads to even higher meta-model accuracy.

Optimal values for the parameters in the stopping criterion of the correction step appear

to strongly depend on the specific application. Overall, setting a sufficiently low differential

error threshold ∆êrrmin tends to be more critical when small EDs are considered (N ≤
10 ·M in the examined applications). Based on the above results, we recommend the use of

∆êrrmin values in the range 10−5−10−6 and caution that lower values may lead to numerical

instabilities in certain cases. By imposing a simultaneous constraint on the maximum number

of iterations Imax, excessive unnecessary iterations are avoided. In the above case studies,

setting Imax = 50 allows the required number of iterations for achieving nearly the maximum

or a sufficient meta-model accuracy. Note that depending on the application, the required

number of iterations might be considerably smaller than that imposed by the recommended

thresholds. Nevertheless, because these iterations involve minimization problems of only
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small size, they are relatively inexpensive from a computational viewpoint. We underline

that in a typical realistic meta-modeling application, the main computational effort lies in

the evaluation of the model responses at the ED.

6 Canonical low-rank approximations versus sparse poly-

nomial chaos expansions

We next confront canonical LRA to sparse PCE in the same meta-modeling applications

considered in Section 5. The focus of the comparison is set on the applications involving

finite-element models. The beam-deflection problem is only briefly examined in order to

confirm the superior performance of LRA when the original model has a low-rank structure.

The two types of meta-models are built using polynomials from the same family. Consistently

with Section 5, Hermite polynomials are herein used in all four applications. Following the

discussion above, we build LRA with rank RCV3 (one random partition per ED is considered).

A common polynomial degree is set in all dimensions, with its value p ∈ {1, . . . , 20} also

selected via 3-fold CV (one random partition per ED is considered). The associated ED-

based error estimate of the meta-model is denoted by êrr
LRA
CV3 . In building sparse PCE, we

determine the candidate basis with a hyperbolic truncation scheme (see Section 3.2) and

compute the coefficients with hybrid LAR (see Section 3.3). An optimal combination of the

parameters pt ∈ {1, . . . , 20} and q ∈ {0.25, 0.50, 0.75, 1} is selected in terms of the minimum

corrected LOO error, hereafter denoted by êrr
PCE
LOO. The PCE computations are performed

with the software UQLab (Marelli and Sudret, 2014, 2015). Comparisons between LRA and

PCE are based on EDs obtained with Sobol sequences as well as Latin Hypercube Sampling

(LHS). Of interest are cases with small ED sizes, which are typically encountered in real-life

meta-modeling applications. Similarly to Section 5, large MCS validation sets are used to

determine the actual errors of the meta-models. Because however such validation sets are

not available in real-life applications, we further examine the accuracy of the ED-based error

measures êrr
LRA
CV3 and êrr

PCE
LOO in estimating the corresponding generalization errors êrr

LRA
G

and êrr
PCE
G .

6.1 Beam deflection

We herein develop LRA and PCE meta-models of the beam-deflection function described

in Section 5.1, using EDs of size 30 ≤ N ≤ 500 based on Sobol sequences. We assess

the accuracy of the meta-models using a validation set of size nval = 106. The left graph

of Figure 18 compares the maximum polynomial degree p of the univariate polynomials in

LRA with the maximum total polynomial degree pt in PCE. In addition to the degree p

selected by means of 3-fold CV, the graph also shows the actual optimal degree based on the

validation set; the two values either agree or differ by one. The ED-based and generalization

errors of the two types of meta-models are shown in the right graph of the figure. Note

that the depicted errors of LRA correspond to the degree selected by means of 3-fold CV,

i.e. we assess the accuracy of meta-models developed by using the information contained

in the ED only. In the present case where the underlying model has a rank-1 structure,

the LRA meta-models are 2-3 orders of magnitude more accurate than the PCE ones. It is

noteworthy that EDs of size as small as N = 30 − 50 ≤ 10 ·M yield highly accurate LRA

meta-models with errors of order 10−4 − 10−6. The generalization errors of both LRA and

PCE are approximated fairly well by the corresponding ED-based measures.
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Figure 18: Beam deflection: Polynomial degrees (left) and corresponding error measures (right)

of LRA and PCE meta-models based on Sobol sequences.

6.2 Truss deflection

We next assess the comparative accuracy of LRA and PCE in representing the truss-deflection

model described in Section 5.2. To this end, we use EDs of size 30 ≤ N ≤ 500, obtained with

Sobol sequences as well as LHS, and a validation set of size nval = 106. We first examine the

results based on Sobol sequences, presented in Figure 19. Similarly to the previous example,

the left graph shows the polynomial degrees, while the right graph shows the corresponding

ED-based and generalization errors. Again, the selected and optimal degrees p of the LRA

meta-models either coincide or differ by one. LRA are more accurate than PCE for the

smaller EDs, but êrr
PCE
G decreases faster than êrr

LRA
G with increasing N , rendering PCE

superior for the larger EDs. This trend is captured by the ED-based error measures, even

though these are overall more pessimistic for PCE. The generalization errors of LRA and PCE

meta-models built with LHS designs are shown in Figure 20. For each N , the corresponding

generalization errors of the mera-models obtained with Sobol sequences are also shown for

comparison reasons. The depicted boxplots correspond to 20 EDs with each representing

the best among 5 random LHS designs, where the selection criterion is the maximum of the

minimum distance between the points, so-called maximin LHS designs. Clearly, the PCE

errors exhibit a larger dispersion than the LRA ones. The median errors of the LHS-based

LRA are very close to the corresponding errors of the LRA based on Sobol sequences. In

the case of PCE, the median errors for LHS designs are either similar or larger than the

corresponding errors for Sobol sequences.

To gain further insight into the behaviors of the two types of meta-models, we plot in Fig-

ure 21 the meta-model versus the actual-model responses at the points of the validation set

for the case of Sobol sequences with N = 100. Note in Figure 19 that the corresponding LRA

and PCE are characterized by similar generalization errors (êrr
LRA
G = 2.10 · 10−3, êrr

PCE
G =

2.56 · 10−3). Obviously, LRA (left graph) provide better predictions of extreme responses,

which are systematically underestimated by PCE (right graph). Because the extreme re-

sponses represent only a small fraction of the validation set, the observed differences have

only a minor influence on the generalization error. In order to capture the meta-model per-

formance in particular regions of interest, we introduce the conditional generalization error :

Êrr
C

G =
∥∥∥M−M̂

∥∥∥
2

XC
val

. (45)
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êrr
LRA

CV3
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Figure 19: Truss deflection: Polynomial degrees (left) and corresponding error measures (right)

of LRA and PCE meta-models based on Sobol sequences.
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Figure 20: Truss deflection: Comparison of relative generalization errors of meta-models based

on LHS (20 replications) to meta-models based on Sobol sequences.

The above equation indicates that Êrr
C

G is computed similarly to ÊrrG (see Eq. (4), but by

considering only a subset XC
val of the validation set Xval, defined by an appropriate condition.

The subsets XC
val of interest in the prediction of extreme responses are defined by:

XC
val = {x ∈ Xval : Y =M(x) ≥ ylim}. (46)

The corresponding relative error êrr
C
G is obtained after normalization with the empirical

variance of YC
val, the latter denoting the set of model responses at XC

val. The left graph of

Figure 22 shows the evolution of êrr
C
G versus the response threshold ulim for the same meta-

models considered in Figure 22. The conditional error increases faster for PCE than for LRA

with the former being about an order of magnitude larger at the highest response threshold.

The right graph of Figure 22 compares the LRA and PCE boxplots of êrr
C
G for the 20 LHS

designs of size N = 100. Note again the faster increase of the median PCE error, which

is about an order of magnitude larger than the median LRA error at the highest response

threshold.
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Figure 21: Truss deflection: Comparison of the exact model responses at the validation set with

the respective responses of the LRA meta-model (left) and the PCE meta-model (right) for

N = 100.
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ê
r
r
C G

N=100

 

 

LRA
PCE

0.04 0.06 0.08 0.1 0.12 0.14
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

ulim [m]

ê
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Figure 22: Truss deflection: Comparison between the LRA and PCE relative conditional gener-

alization errors for EDs based on Sobol sequences (left) and LHS (right).

6.3 Frame displacement

For the frame-displacement problem, described in Section 5.3, we again examine the com-

parative accuracy of LRA and PCE by drawing EDs with Sobol sequences and LHS designs.

The EDs are of size 100 ≤ N ≤ 2, 000, while the validation set comprises nval = 106 points.

Figures 23 and 24 respectively show results for EDs drawn with Sobol sequences and 20

maximin LHS designs (each being the best among 5 random ones), in a manner similar to

Figures 19 and 20 in the previous example. The polynomial degrees for the case of Sobol

sequences are shown in the left graph of Figure 23. The selected degrees for LRA match the

optimal degrees except for N = 200. The increasing trend in the PCE degree with increasing

ED size is interrupted at N = 1, 000 due to the change of the optimal truncation parameter

q from 0.50 to 1.0. Note in Figure 23 that similarly to the truss-deflection problem, LRA

exhibit smaller errors than PCE for the smaller EDs, but the PCE errors decrease faster

with increasing ED size. The LRA generalization error is rather accurately estimated with

the 3-fold CV approach, whereas the PCE generalization error is slightly underestimated by
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the LOO error. Figure 24 shows that the LRA errors for the LHS designs exhibit a slightly

smaller dispersion than the PCE ones. In all cases, the median errors for the LHS designs

are fairly close to the corresponding errors for the Sobol sequences.
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êrr
LRA

CV3
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Figure 23: Frame displacement: Polynomial degrees (left) and corresponding error measures

(right) of LRA and PCE meta-models based on Sobol sequences.
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Figure 24: Frame displacement: Comparison of relative generalization errors of meta-models

based on LHS (20 replications) to meta-models based on Sobol sequences.

Note in Figures 23 and 24 that the two types of meta-models exhibit similar generalization

errors at N = 500. However, as in the truss-deflection problem, LRA outperform PCE in the

prediction of extreme responses. This can be observed in Figure 25, which shows the meta-

model versus the actual-model responses at the validation set for an example LHS design of

size N = 500. The superior performance of LRA at the upper tail of the response distribution

is not reflected on the generalization errors (êrr
LRA
G = 3.68 · 10−3, êrr

PCE
G = 3.47 · 10−3), but

can be captured by the conditional generalization error (Eq. (45)-(46)). For the meta-models

developed with EDs of size N = 500, Figure 26 depicts the evolution of êrr
C
G with increasing

response threshold; the left graph of the figure shows this error for PCE and LRA based on

Sobol sequences, while the right graph shows respective boxplots for the 20 LHS designs.

In both graphs, we observe that the conditional errors of LRA and PCE are similar for the
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lower responses thresholds, but the PCE errors are larger for the higher ones.

Figure 25: Frame displacement: Comparison of the exact model responses at the validation set

with the respective responses of the LRA meta-model (left) and the PCE meta-model (right)

for N = 500.
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Figure 26: Frame displacement: Comparison between the LRA and PCE relative conditional

generalization errors for EDs based on Sobol sequences (left) and LHS (right).

6.4 Heat conduction

In this last example, we consider again the heat-conduction problem investigated in Sec-

tion 5.4. We develop LRA and PCE meta-models for the average temperature T̃ in domain

B (see Figure 12) using EDs of size 100 ≤ N ≤ 2, 000 based on Sobol sequences. To assess

the comparative accuracy of the meta-models, we use a validation set of size nval = 104. The

left and right graphs of Figure 27 respectively show the polynomial degrees and error mea-

sures for the two types the meta-models. Note that the optimal LRA degree p is accurately

identified by 3-fold CV for all considered EDs. The increasing trend in the PCE degree pt

with increasing N is interrupted at N = 1, 000 due to the change of the optimal truncation

parameter q from 0.50 to 0.75. The errors demonstrate similar trends with those observed

for the previously examined finite-element models, i.e. êrr
LRA
G is smaller than êrr

PCE
G for
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the smaller EDs, but the latter decreases faster with increasing N . For both types of meta-

models, the generalization errors are estimated fairly well by the corresponding ED-based

measures.
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Figure 27: Heat conduction: Polynomial degrees (left) and corresponding error measures (right)

of LRA and PCE meta-models based on Sobol sequences.

For the ED of size N = 500, the generalization errors of LRA and PCE are nearly equal

(êrr
LRA
G = 9.68 · 10−3, êrr

PCE
G = 9.15 · 10−3); however, as in the previous examples, LRA

provide better predictions of the extreme responses. The left and right graphs of Figure 28

respectively show the LRA and PCE responses versus the actual model responses at the

validation set. The PCE predictions of the extreme responses exhibit a negative bias, which

does not appear in the LRA predictions. The lower accuracy of the PCE meta-model at the

tail of the response distribution is captured by the conditional generalization error, which is

plotted in Figure 29 for varying response thresholds.

Figure 28: Heat conduction: Comparison of the exact model responses at the validation set

with the respective responses of the LRA meta-model (left) and the PCE meta-model (right)

for N = 500.
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Figure 29: Heat conduction: Comparison between the LRA and PCE relative conditional gen-

eralization errors.

7 Conclusions

In this study, a newly emerged class of meta-models based on canonical low-rank approxima-

tions (LRA) was confronted to the popular sparse polynomial chaos expansions (PCE). Both

meta-modeling approaches hold strong promise against the curse of dimensionality that often

poses a major challenge in real-life uncertainty propagation problems. We examined LRA

and PCE meta-models developed in an non-intrusive manner by relying on the same poly-

nomial families to build the basis functions; the polynomial coefficients in both meta-model

types were obtained by solving error-minimization problems. In the considered sparse PCE

approach, a single large-size minimization problem is efficiently solved by retaining only the

significant basis terms, as identified with the least angle regression algorithm. In the canon-

ical LRA approach, the tensor-product form of the basis is retained, leading to a series of

small-size minimization problems that were herein solved using ordinary least-squares (OLS).

We first shed light on issues pertinent to the construction of LRA through extensive nu-

merical investigations. To this end, we considered a particular greedy algorithm comprising

a series of pairs of a correction and an updating step. In a correction step, a rank-one com-

ponent is built based on the sequential updating of the polynomial coefficients in different

dimensions, whereas in an updating step, the coefficients of the new set of rank-one compo-

nents are determined. Two approaches for rank selection were examined; the first relies on

error estimation with 3-fold cross-validation (CV), whereas the second, based on a simpler

computation, uses a corrected version of the leave-one-out (LOO) error in the updating step.

The lack of orthogonality of the regressors led to excessive correction factors of the LOO

error in certain cases, particularly for higher ranks. On the other hand, the 3-fold CV error

was found an overall reliable estimator of the generalization error, also appropriate for the

selection of the polynomial degree. Finally, a stopping criterion for the correction step was

examined, combining a threshold on the differential empirical error in two successive itera-

tions with a maximum allowable iteration number. Effects of the two thresholds on the LRA

accuracy were investigated and appropriate values were proposed.

The comparative accuracy of the particular LRA and PCE approaches was investigated

in three problems involving finite-element models of varying dimensionality M . Experimen-

tal designs (EDs) of varying sizes were drawn with Sobol sequences and Latin hypercube
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sampling (LHS). The errors obtained by using Sobol sequences as well as the median errors

obtained by using LHS designs were lower for LRA when small EDs (approximately up to

size 10M−20M) were considered. However, the PCE errors decreased faster with increasing

ED size. In cases when the two types of meta-models exhibited similar generalization errors,

LRA provided better estimates of the extreme responses. The superiority of LRA in predict-

ing extreme responses was quantified by means of the introduced conditional generalization

error. This finding renders LRA particularly promising for problems where the accuracy in

estimating the tail of the response distribution is important, such as reliability applications

(Konakli and Sudret, 2015b,a). It is further emphasized that by relying on a series of OLS

minimizations, the construction of LRA involved simpler computations compared to PCE.

Because of the small size of these minimization problems, the LRA construction also required

far less computer memory.
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