
HAL Id: hal-01432133
https://hal.science/hal-01432133v1

Submitted on 12 Jan 2017 (v1), last revised 12 Jan 2017 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - ShareAlike 4.0 International License

N2S3, an Open-Source Scalable Spiking Neuromorphic
Hardware Simulator

Pierre Boulet, Philippe Devienne, Pierre Falez, Guillermo Polito, Mahyar
Shahsavari, Pierre Tirilly

To cite this version:
Pierre Boulet, Philippe Devienne, Pierre Falez, Guillermo Polito, Mahyar Shahsavari, et al.. N2S3,
an Open-Source Scalable Spiking Neuromorphic Hardware Simulator. [Research Report] Université
de Lille 1, Sciences et Technologies; CRIStAL UMR 9189. 2017. �hal-01432133v1�

https://hal.science/hal-01432133v1
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://hal.archives-ouvertes.fr

N2S3, an Open-Source Scalable Spiking
Neuromorphic Hardware Simulator

Pierre Boulet∗, Philippe Devienne∗, Pierre Falez∗, Guillermo Polito∗, Mahyar Shahsavari∗ and Pierre Tirilly∗
∗Univ. Lille, CNRS, Centrale Lille,

UMR 9189 – CRIStAL – Centre de Recherche en Informatique, Signal et Automatique de Lille
Email: Firstname.Lastname@univ-lille.fr

Abstract—One of the most promising approaches to overcome
the end of Moore’s law is neuromorphic computing. Indeed,
neural networks already have a great impact on machine learning
applications and offer very nice properties to cope with the prob-
lems of nanoelectronics manufacturing, such as a good tolerance
to device variability and circuit defects, and a low activity, leading
to low energy consumption. We present here N2S3 (for Neural
Network Scalable Spiking Simulator), an open-source simulator
that is built to help design spiking neuromorphic circuits based
on nanoelectronics. N2S3 is an event-based simulator and its
main properties are flexibility, extensibility, and scalability. One
of our goals with the release of N2S3 as open-source software
is to promote the reproducibility of research on neuromorphic
hardware. We designed N2S3 to be used as a library, to be easily
extended with new models and to provide a user-friendly special
purpose language to describe the simulations.

I. Introduction

Neuromorphic computing has the potential to bring very low
power computation to future computer architectures and embed-
ded systems [1]. Indeed, parallel neuromorphic computing, by
performing computation and storage on the same devices, can
overcome the von Neumann bottleneck. Several large projects
are based on neuromorphic systems, such as the EU Human
Brain Project [2], the DARPA/IBM SYNAPSE project [3], and
deep learning research led by Google and Facebook, among
others.

Recently, emerging nano-scale devices have demonstrated
novel properties for producing new memories and unconven-
tional processing units. One of those is the memristor, that was
hypothetically presented by Leon Chua in 1971 [4]; after a few
decades, HP was the first to announce a successful memristor
fabrication [5]. The unique properties of memristors, such as
extreme scalability, flexibility thanks to their analog behavior,
and their ability to remember their last state, make memristors
very promising candidates to be used as synapses in Spiking
Neural Networks (SNN) [6].

Given their potential of very low power execution and their
capability to handle natural signals, we focus on SNN. A
comprehensive introduction and literature review about SNN
was published by Paugam-Moisy and Bohte in 2012 [7]. The
authors explore the computational capabilities of SNN, their
learning capabilities, and their simulation.

Brette et al. [8] surveyed and discussed the existing work
on SNN simulation in 2007. All the simulators discussed in
this report as well as the more recent Brian [9] target the

simulation of biological SNN. More recently, Bichler et al. [10]
proposed Xnet, a C++ event-driven simulator dedicated to
the simulation of hardware SNN. In our work, we share the
goals of Xnet: “intermediate modeling level, between low-
level hardware description languages and high-level neural
networks simulators used primarily in neurosciences”, and “the
integration of synaptic memristive device modeling, hardware
constraints and any custom features required for the targeted
application”. In addition to these goals, we put an emphasis
on flexibility and usability to allow the study of various kinds
of hardware designs (possibly by other researchers than us),
scalability to simulate large hardware SNNs, and software
engineering best practices (robust and extensible software
architecture for maintainability, extensive test suite, continuous
integration, open-source distribution).

Fig. 1. N2S3 Logo

In this report we present N2S3 (Neu-
ral Network Scalable Spiking Simulator,
pronounced “Nessie”, hence its logo), an
event-driven simulator dedicated to the
exploration of hardware SNN architectures.
The internals of N2S3 are based on the
exchanges of messages between concur-
rent actors [11], mimicking the exchange of spikes between
neurons. N2S3 has been developed from the ground up for
extensibility, allowing to model various kinds of neuron and
synapse models, various network topologies (especially, it
is not restricted to feed-forward networks), various learning
procedures, various reporting facilities, and to be user-friendly,
with a domain specific language to easily express and run
new experiments. It is available as open-source software at
https://sourcesup.renater.fr/wiki/n2s3 so that its users can share
their models and experimental settings to enable others to
reproduce their results. In this spirit, N2S3 is distributed with
the implementation of two “classical” experiments: handwritten
digit recognition on the MNIST dataset [12], [13] and the
highway vehicle counting experiment [14].

In the remainder of this report, we will first detail the
fundamental architectural choices of N2S3, then the models
that are already implemented in N2S3, and finally the features
that N2S3 provides to implement and run experiments.

https://sourcesup.renater.fr/wiki/n2s3

II. Event-Driven Simulation Architecture
A. Event-Driven vs Clock-Driven Simulation

SNN are essentially defined by standard differential equations,
but because of the discontinuities caused by the spikes, design-
ing an efficient simulation of spiking neural networks is a non-
trivial problem. There are two families of simulation algorithms:
event-based simulators and clock-based ones. Synchronous
or “clock-driven” simulation simultaneously updates all the
neurons at every tick of a clock, and is easier to code, especially
on GPUs, for getting an efficient execution of data-parallel
learning algorithms. Event-driven simulation behaves more like
hardware, in which conceptually concurrent components are
activated by incoming signals (or events).

Event-driven execution is particularly suitable for untethered
devices such as neurons and synapses, since the nodes can be
put into a sleep mode to preserve energy when no interesting
event is happening. Energy-aware simulation needs information
about active hardware units and event counters to establish
the energy usage of each spike and each component of the
neural network. Furthermore, as the learning mechanisms of
spiking neural networks are based on the timings of spikes, the
choice of the clock period for a clock-based simulation may
lead either to imprecision or to a higher computational cost.

There is also a fundamental gap between this event-driven
execution model and the clock-based one: the first one is
independent on the hardware architecture of computers on
which it is running. So, event-driven simulators can naturally
run on a grid of computers, with the caveat of synchronization
issues in the management of event timings.

B. Technological Choices: Scala and Akka
To address our concurrency and distributability requirements

(i.e., ability to scale out a simulation on several computers to
handle large networks) we have chosen to use the Scala pro-
gramming language [15] along with the Akka actor library [11].

C. Software Architecture
The architecture of N2S3 is organized in Akka actors. Our

choice for an actor model aims mainly for the distribution
and scalability of large neural networks. Each entity of the
simulation is deployed in a concrete actor that is assigned
to a concrete machine at runtime. The core of a typical
neural network simulation in N2S3 is composed mainly by the
following network entities:

a) Containers: Containers are network entities in charge
of organizing the network structure. Their main responsibility
is to contain network entities and dispatch messages to their
children.

b) Neurons: The basic building blocks of a neural
network. In N2S3, a neuron is composed of both its nucleus (the
soma) and its incoming connections (dentrites and associated
synapses).

Each N2S3 actor has a network container capable of
containing one or multiple entities. This particularity allows us
to control how distribution and parallelism is managed in each
simulation. Figure 2 illustrates the architecture with an example

Fig. 2. N2S3 Architecture. A network is organized in actors that may contain
one or more network entities. Such entities could be for example, neurons,
inputs or any other.

network. In this figure, the simulation is made of one input
and a neural network organized in two layers. The input of the
simulation resides in one actor, the hidden layer is split in one
actor per neuron, and all neurons of the output layer reside in
a single actor. The reason why one would put several neurons
in the same or a different actor is based on the scalability and
the synchronization choices for the experiment. The topology
of the network (discussed in more details in Section III-C) is
one of the major influence on these questions.

The communication between simulation entities requires
to identify each object by a URI made of a pair (actor,

local_identifier). The component actor is the Akka actor
that contains the entity and local_identifier is a path that
identifies each object uniquely within its actor.

Since actors are inherently concurrent, one concern is how
the temporal order of messages is guaranteed during the
simulation. To do so, N2S3 allows to configure several levels
of synchronization to be used by the simulation designer.
On one end of the spectrum, N2S3 may make use of a
unique synchronizer for the simulation, which will ensure that
no causality issues happen but can create a bottleneck that
will affect the performance of the simulation. On the other
end of the spectrum, we can also configure N2S3 to use a
synchronization mechanism which is local to each neuron. The
latter policy enables better parallelism, but may cause some
temporal consistency problems.

core

features models

N2S3 library

User application

user.apps user.models

«uses» «extends»

«uses»

«uses»

«uses»

«extends»

Fig. 3. N2S3 Packages

III. Neuron, Synapse, Network Modeling
A. Neuron Modeling

The neuron is a dynamic element and processing unit that
emits output pulses whenever the excitation exceeds some
threshold. The resulting sequence of pulses or spikes contains
all the information that is transmitted from one neuron to
another one. As we have chosen event-driven simulation, the
state of a neuron is updated only when an event representing
a spike is received.

We provide by default a Leaky-Integrate-and-Fire (LIF)
neuron model [16]. There are several reasons for using a LIF
model:

• CMOS technology fabrication of this model is avail-
able [17], [18];

• it is fast enough to simulate, and in particular it is effective
for large-scale network simulations [8].

In LIF, neurons integrate the spikes coming from other
neurons. These spikes can change the internal potential of
the neuron, which is known as the membrane potential or
state variable of the neuron. When the membrane potential
reaches a given threshold voltage after integrating enough input
spikes, an action potential occurs; in other words, the neuron
fires, generating an output spike. This is done by updating the
membrane potential using the value computed when receiving
the last spike and the analytical solution to the differential
equations defining the behavior of the LIF neuron.

In order to improve the learning capabilities of neural
networks, we provide two refinements of the neuron model:
homeostasis and a refractory period. Homeostasis [19] dynami-
cally adapts the threshold of each neuron to the activity of this
neuron to prevent a neuron from being over-active or inactive.
To allow more specialization of the neurons, we include a
refractory period after the firing of a neuron during which it
ignores incoming spikes.

B. Synapse modeling and learning
A synapse operates as a plastic controller between two

neurons. This plasticity is believed to be the origin of the
learning and memorization capabilities of the brain [20]. Hence,

hardware spiking neural networks usually use some kind
of synaptic plasticity to enable learning. In N2S3, we have
modeled and simulated hardware synapses and one standard
learning behavior, namely Spike Timing-Dependent Plasticity
(STDP).

STDP is a local weight modification based on the timing
difference between presynaptic spikes and postsynaptic spikes.
It increases the connectivity between the neurons when there
is a temporal causality between the spikes they emitted. This
is implemented by locally remembering the past spikes and
updating the synaptic weight according to the chosen STDP
rule.

Using a memristor as a nonvolatile synaptic memory has
been proposed in previous work [6], [21]–[23]. The basic
artificial synapse model that we provide is taken from [24],
[25], which describes a nonvolatile memristor suitable for event-
driven and STDP computation. In addition, we designed a new
model of synapse which is able to forget unimportant events
and remember significant events by combining a nonvolatile
memristor and a volatile one [26].

C. Network Topologies

Another purpose of N2S3 is to allow an easy exploration of
different neural network configurations. In order to facilitate the
network construction, neurons are gathered into groups. Those
groups, which usually represent neuron layers, are organized
into a specified shape. This information allows the automation
of the builder and of the visualization creation.

Inside a group one can specify the use of lateral inhibition
to implement the winner-take-all rule [27] that states that a
spiking neuron inhibits its neighbors during a short time period
to allow the specialization of the neurons and hence to enhance
unsupervised learning.

Neuron groups can be connected to each other. Connection
patterns are managed by different connection policies. By
default, N2S3 uses unidirectional full connections (each neuron
of the input group is connected to every neuron of the output
group). Other policies are also bundled with N2S3, such as
the one-to-one policy, which connects each neuron of the input
group to only the corresponding neuron of the output group,
and a random policy, which creates connections according
to a given probability distribution, e.g. to enable Reservoir
Computing [28] modeling.

Several builders have the responsibility to create different
topologies. They can use the information of an existing layer
(e.g., the shape of the neuron group), if there is one, to
construct a new one. Builders bundled with N2S3 include,
for instance, builders for the typical layers of Convolutional
Neural Networks [13].

IV. N2S3 Features

A. Input Processing

The simulator uses a piped stream system to provide stimuli
to the network entities. The input process typically starts by
an input reader, which reads data from files or any external

source, followed by a number of streams that filter the input
data before feeding it to the network.

Input readers provided with N2S3 allow to read data in a
variety of format, including standard formats such as Address
Event Representation (AER), a data format used by spike-based
cameras, or MNIST, used in a standard dataset for handwritten
digit recognition (see Section IV-E for details about the data).

Subsequent filter streams available in N2S3 include coding
streams, which convert raw numerical data into sequences of
spike timings, spike presentation streams (e.g., repeating input
spike over a given period, or shuffling spikes), and modifier
streams, that alter the input spikes (e.g., by adding noise). Users
are free to use one or multiple input readers and to combine
any number of filter streams in any order; they may also easily
create their own readers and filters.

B. Visualization tools
Users may observe simulation outputs (spikes, weight

values…) through network observers. Network observers follow
the observer pattern by subscribing to events in the simulation
(e.g., when a spike happens), perform some calculations on
such events, and make them visible to the user. Examples
of such observers range from textual loggers to dynamic
visualizations of the spikes of each neuron. Concretely, N2S3
provides a spike activity map of the network, a synaptic weight
evolution visualizer, and the calculation of evaluation metrics
(e.g. recognition rates, confusion matrices…).

C. Experiment Specification Language
N2S3 includes a dedicated internal Domain Specific Lan-

guage (DSL) that aims to simplify the creation of simulations.
At a higher level of abstraction, users can design experiments
(network topology, neuron and synapse properties, observation
units…) without having to deal with core features such as
synchronization or actor policies. The snippet of code below
illustrates (1) the creation of a layer with 18 standard LIF
neurons with a 20 mV threshold, (2) its full connection to an
existing layer (named outputLayer), and the addition of two
observers: (3) a standard weight observer and (4) a custom (i.e.,
defined by the user) spike observer. The DSL also allows the
definition of different stages for the simulation (e.g., splitting
the simulation into a training phase and a test phase).

val hiddenLayer =

n2s3.createNeuronGroup() // (1)

.setNumberOfNeurons(18)

.setDefaultNeuronConstructor(() => {

new QBGNeuron()

.setProperty(NeuronThreshold, 20 millivolts)

})

hiddenLayer.connectTo(outputLayer) // (2)

n2s3.createSynapseWeightGraphOn(hiddenLayer,

outputLayer) // (3)

n2s3.addNetworkObserver(new SpikeLogger) // (4)

At a lower level, the DSL can specify how neurons are
organized within actors (e.g., deploying all neurons within the
same actor or each neuron in a specific actor). Users may use
pre-existing policies or define their own.

Fig. 4. Heat map of the synaptic weights after learning the MNIST data base
with 30 neurons on the output layer.

D. Software Engineering Practices

To ensure the quality of the simulator’s core and its
surrounding features, we follow several good practices of
sofware engineering. We use automated tests (unit tests and
integration tests) to validate the basic behavior of the simulator.
These unit tests are run both locally and within a continuous
integration environment to detect regressions in the project
as soon as possible. N2S3’s codebase is open-source, and its
developers perform periodic code reviews on it.

E. Standard experiments

N2S3 comes with a set of pre-implemented experiments
from the literature. These implementations both demonstrate
the features and simulation accuracy of N2S3 and provide code
snippets to allow users to understand the ESL and help them
designing their own simulations. Specifically, experiments for
two standard tasks are provided with N2S3: handwritten digit
recognition on the MNIST dataset and car counting on the
Freeway dataset. In both cases N2S3 provide simulation results
comparable to those reported in the literature.

MNIST [12] is a standard dataset for automatic handwritten
digit recognition. Since its creation, it has been extensively
used to evaluate algorithms for machine learning, computer
vision and document recognition. The task is to learn to identify
which digit is represented on each image. The dataset includes
60,000 greyscale images of size 128 × 128 pixels, divided into
a training set (50,000 images) and a test set (10,000). The
implementation of SNN learning on MNIST provided with
N2S3 follows the experimental settings from [29]: 128 × 128
inputs (1/pixel) and one output layer (10 to 300 neurons).
Figure 4 shows the result of learning the MNIST database with
30 neurons on the output layer and winner-take-all activated
to enhance learning. The initial synaptic weights are random.

Freeway [30] is an AER (Address Event Representation)
video of a Freeway in Pasadena. It is a standard video
demonstrating the capabilities of spike-based cameras. The
task here is to count the number of vehicles passing over each

Fig. 5. Input data for the freeway experiment comming from a spike-based
camera. The spikes represent a variation of intensity for a given pixel and are
generated asynchronously.

Fig. 6. Heatmap showing the reconstruction of the contribution of each input
pixel to the activity of the 10 output neurons for the freeway experiment. One
can see that some neurons have clearly specialized to detect vehicles on a
particular lane.

of the six lanes of the freeway. The input data is the spikes
recorded by a spiking camera of resolution 128 × 128 pixels
over a sequence of 78.5 seconds (5.2 millions spikes). The
implementation of the Freeway experiment provided with N2S3
reproduces the experimental architecture and settings described
in [14]: 2 × 128 × 128 inputs, one hidden layer (60 neurones),
one output layer (10 neurons), with lateral inhibition on every
layer. Figure 5 represents the input of the neural network and
figure 6 shows the result of the unsupervised learning process.

V. Conclusion
We have presented in this article a spiking neural network

simulator, N2S3. This simulator is dedicated to nanoelectronics-
based hardware neural networks. Its simulation strategy is
event-based, for precision and flexibility sakes. As one of the
main goals of N2S3 is to promote open research data, i.e.
the open distribution of models and experiments for research
result reproducibility, it is distributed as open-source software
(at https://sourcesup.renater.fr/wiki/n2s3), and a lot of effort
has been put in the software architecture, maintainability and
enabling features (I/O, graphical outputs, logging, domain
specific language). As of version 1.0 (January 2017), N2S3
is distributed with a few neuron and synapse models. It can
simulate not only feed-forward networks but also convolutional
or even recurrent networks. Finally, it is extensively extensible.

We are planning to periodically release new versions in a
timeboxed fashion and to perform more quality measurements
in the near future, for example: continuous benchmarking and
performance testing to detect non-functional regressions, adding
automated code quality and architectural rule enforcement to
detect potential bugs, ensuring the respect for architectural and
programming idioms, and agilizing the code reviews.

On the functional side, future work includes new models of
neurons and synapses, new learning algorithms and procedures,
noise modeling, energy modeling, automatic design space
exploration, and new applications.

Acknowledgment
This work has been partly funded by IRCICA (Univ. Lille,

CNRS, USR 3380 – IRCICA, F-59000 Lille, France).
The authors would like to thank several colleagues from

IEMN for many fruitful discussions about memristor and
under the threshold CMOS device and circuit modeling: Fabien
Alibart, Alain Cappy, François Danneville, and their teams.

References
[1] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,

F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo,
I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner,
W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron
integrated circuit with a scalable communication network and interface,”
Science, vol. 345, no. 6197, pp. 668–673, Aug. 2014. [Online]. Available:
http://science.sciencemag.org/content/345/6197/668

[2] H. Markram, “The human brain project,” Sci. Am., vol. 306, no. 6, pp.
50–55, Jun. 2012.

[3] R. Ananthanarayanan, S. K. Esser, H. D. Simon, and D. S. Modha,
“The cat is out of the bag: cortical simulations with 109 neurons, 1013
synapses,” in Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, Nov. 2009, pp. 1–12.

https://sourcesup.renater.fr/wiki/n2s3
http://science.sciencemag.org/content/345/6197/668

[4] L. Chua, “Memristor-The missing circuit element,” IEEE Transactions
on Circuit Theory, vol. 18, no. 5, pp. 507–519, Sep. 1971.

[5] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The
missing memristor found,” Nature, vol. 453, no. 7191, pp. 80–83, May
2008. [Online]. Available: http://www.nature.com/nature/journal/v453/
n7191/full/nature06932.html

[6] S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and
W. Lu, “Nanoscale Memristor Device as Synapse in Neuromorphic
Systems,” Nano Lett., vol. 10, no. 4, pp. 1297–1301, Apr. 2010. [Online].
Available: http://dx.doi.org/10.1021/nl904092h

[7] H. Paugam-Moisy and S. Bohte, “Computing with Spiking Neuron
Networks,” in Handbook of Natural Computing, G. Rozenberg, T. Bäck,
and J. N. Kok, Eds. Springer Berlin Heidelberg, Jan. 2012, pp. 335–376.
[Online]. Available: http://link.springer.com/referenceworkentry/10.1007/
978-3-540-92910-9_10

[8] R. Brette, M. Rudolph, T. Carnevale, M. Hines, D. Beeman, J. M.
Bower, M. Diesmann, A. Morrison, P. H. Goodman, F. C. Harris,
M. Zirpe, T. Natschläger, D. Pecevski, B. Ermentrout, M. Djurfeldt,
A. Lansner, O. Rochel, T. Vieville, E. Muller, A. P. Davison,
S. E. Boustani, and A. Destexhe, “Simulation of networks of
spiking neurons: A review of tools and strategies,” J Comput
Neurosci, vol. 23, no. 3, pp. 349–398, Jul. 2007. [Online]. Available:
http://link.springer.com/article/10.1007/s10827-007-0038-6

[9] D. F. M. Goodman, R. Brette, D. Goodman, and R. Brette,
“Brian: a simulator for spiking neural networks in Python,”
Front. Neuroinform., vol. 2, p. 5, 2008. [Online]. Available:
http://journal.frontiersin.org/article/10.3389/neuro.11.005.2008/full

[10] O. Bichler, D. Roclin, C. Gamrat, and D. Querlioz, “Design exploration
methodology for memristor-based spiking neuromorphic architectures
with the Xnet event-driven simulator,” in 2013 IEEE/ACM International
Symposium on Nanoscale Architectures (NANOARCH), Jul. 2013, pp.
7–12.

[11] D. Wyatt, Akka Concurrency. USA: Artima Incorporation, 2013.
[12] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning

applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, Nov. 1998.

[13] Y. LeCun and Y. Bengio, “Convolutional networks for images,
speech, and time series,” The handbook of brain theory and neural
networks, vol. 3361, no. 10, p. 1995, 1995. [Online]. Available:
https://www.researchgate.net/profile/Yann_Lecun/publication/2453996_
Convolutional_Networks_for_Images_Speech_and_Time-Series/links/
0deec519dfa2325502000000.pdf

[14] O. Bichler, D. Querlioz, S. J. Thorpe, J.-P. Bourgoin, and C. Gamrat,
“Extraction of temporally correlated features from dynamic vision sensors
with spike-timing-dependent plasticity,” Neural Networks, vol. 32, pp.
339–348, Aug. 2012.

[15] M. Odersky, P. Altherr, V. Cremet, I. Dragos, G. Dubochet, B. Emir,
S. McDirmid, S. Micheloud, N. Mihaylov, M. Schinz, E. Stenman,
L. Spoon, and M. Zenger, “An overview of the Scala programming
language (2nd Edition),” École Polytechnique Fédérale de Lausanne
(EPFL), Technical Report LAMP-REPORT-2006-001, 2006.

[16] W. Maass and C. M. Bishop, Eds., Pulsed Neural Networks. Cambridge,
MA, USA: MIT Press, 1999.

[17] E. Chicca, D. Badoni, V. Dante, M. D’Andreagiovanni, G. Salina,
L. Carota, S. Fusi, and P. D. Giudice, “A VLSI recurrent network of
integrate-and-fire neurons connected by plastic synapses with long-term
memory,” IEEE Transactions on Neural Networks, vol. 14, no. 5, pp.
1297–1307, Sep. 2003.

[18] S.-C. Liu and R. Douglas, “Temporal coding in a silicon network of
integrate-and-fire neurons,” IEEE Transactions on Neural Networks,
vol. 15, no. 5, pp. 1305–1314, Sep. 2004.

[19] E. Marder and J.-M. Goaillard, “Variability, compensation and
homeostasis in neuron and network function,” Nat Rev Neurosci,
vol. 7, no. 7, pp. 563–574, Jul. 2006. [Online]. Available:
http://www.nature.com/nrn/journal/v7/n7/full/nrn1949.html

[20] S. J. Martin, P. D. Grimwood, and R. G. Morris, “Synaptic plasticity and
memory: an evaluation of the hypothesis,” Annu. Rev. Neurosci., vol. 23,
pp. 649–711, 2000.

[21] F. Alibart, S. Pleutin, D. Guérin, C. Novembre, S. Lenfant,
K. Lmimouni, C. Gamrat, and D. Vuillaume, “An Organic Nanoparticle
Transistor Behaving as a Biological Spiking Synapse,” Adv. Funct.
Mater., vol. 20, no. 2, pp. 330–337, Jan. 2010. [Online]. Available:
http://onlinelibrary.wiley.com/doi/10.1002/adfm.200901335/abstract

[22] H. Kim, M. P. Sah, C. Yang, T. Roska, and L. O. Chua, “Memristor Bridge
Synapses,” Proceedings of the IEEE, vol. 100, no. 6, pp. 2061–2070,
Jun. 2012.

[23] G. Indiveri, B. Linares-Barranco, R. Legenstein, G. Deligeorgis,
and T. Prodromakis, “Integration of nanoscale memristor synapses
in neuromorphic computing architectures,” Nanotechnology, vol. 24,
no. 38, p. 384010, Sep. 2013, arXiv: 1302.7007. [Online]. Available:
http://arxiv.org/abs/1302.7007

[24] D. Querlioz, O. Bichler, P. Dollfus, and C. Gamrat, “Immunity to Device
Variations in a Spiking Neural Network With Memristive Nanodevices,”
IEEE Transactions on Nanotechnology, vol. 12, no. 3, pp. 288–295, May
2013.

[25] D. Querlioz, P. Dollfus, O. Bichler, and C. Gamrat, “Learning with mem-
ristive devices: How should we model their behavior?” in 2011 IEEE/ACM
International Symposium on Nanoscale Architectures (NANOARCH), Jun.
2011, pp. 150–156.

[26] M. Shahsavari, P. Falez, and P. Boulet, “Combining a Volatile and
Nonvolatile Memristor in Artificial Synapse to Improve Learning in
Spiking Neural Networks,” in 12th ACM/IEEE International Symposium
on Nanoscale Architectures (Nanoarch 2016), Beijing, China, Jul. 2016.

[27] W. Maass, “On the Computational Power of Winner-Take-All,” Neural
Computation, vol. 12, no. 11, pp. 2519–2535, Nov. 2000. [Online].
Available: http://dx.doi.org/10.1162/089976600300014827

[28] D. Verstraeten, B. Schrauwen, M. D’Haene, and D. Stroobandt, “An
experimental unification of reservoir computing methods,” Neural
Networks, vol. 20, no. 3, pp. 391–403, Apr. 2007. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S089360800700038X

[29] D. Querlioz, W. S. Zhao, P. Dollfus, J.-O. Klein, O. Bichler, and
C. Gamrat, “Bioinspired Networks with Nanoscale Memristive Devices
that Combine the Unsupervised and Supervised Learning Approaches,”
2012, pp. 203–210.

[30] “DVS128 Dynamic Vision Sensor Silicon Retina Data.” [Online].
Available: https://sourceforge.net/p/jaer/wiki/AER%20data/

http://www.nature.com/nature/journal/v453/n7191/full/nature06932.html
http://www.nature.com/nature/journal/v453/n7191/full/nature06932.html
http://dx.doi.org/10.1021/nl904092h
http://link.springer.com/referenceworkentry/10.1007/978-3-540-92910-9_10
http://link.springer.com/referenceworkentry/10.1007/978-3-540-92910-9_10
http://link.springer.com/article/10.1007/s10827-007-0038-6
http://journal.frontiersin.org/article/10.3389/neuro.11.005.2008/full
https://www.researchgate.net/profile/Yann_Lecun/publication/2453996_Convolutional_Networks_for_Images_Speech_and_Time-Series/links/0deec519dfa2325502000000.pdf
https://www.researchgate.net/profile/Yann_Lecun/publication/2453996_Convolutional_Networks_for_Images_Speech_and_Time-Series/links/0deec519dfa2325502000000.pdf
https://www.researchgate.net/profile/Yann_Lecun/publication/2453996_Convolutional_Networks_for_Images_Speech_and_Time-Series/links/0deec519dfa2325502000000.pdf
http://www.nature.com/nrn/journal/v7/n7/full/nrn1949.html
http://onlinelibrary.wiley.com/doi/10.1002/adfm.200901335/abstract
http://arxiv.org/abs/1302.7007
http://dx.doi.org/10.1162/089976600300014827
http://www.sciencedirect.com/science/article/pii/S089360800700038X
https://sourceforge.net/p/jaer/wiki/AER%20data/

	Introduction
	Event-Driven Simulation Architecture
	Event-Driven vs Clock-Driven Simulation
	Technological Choices: Scala and Akka
	Software Architecture

	Neuron, Synapse, Network Modeling
	Neuron Modeling
	Synapse modeling and learning
	Network Topologies

	N2S3 Features
	Input Processing
	Visualization tools
	Experiment Specification Language
	Software Engineering Practices
	Standard experiments

	Conclusion
	References

