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SuperPatchMatch: an Algorithm for Robust
Correspondences using Superpixel Patches
Rémi Giraud, Vinh-Thong Ta, Aurélie Bugeau, Pierrick Coupé, and Nicolas Papadakis

Abstract—Superpixels have become very popular in many
computer vision applications. Nevertheless, they remain underex-
ploited since the superpixel decomposition may produce irregular
and non stable segmentation results due to the dependency to
the image content. In this paper, we first introduce a novel
structure, a superpixel-based patch, called SuperPatch. The
proposed structure, based on superpixel neighborhood, leads to a
robust descriptor since spatial information is naturally included.
The generalization of the PatchMatch method to SuperPatches,
named SuperPatchMatch, is introduced. Finally, we propose a
framework to perform fast segmentation and labeling from an
image database, and demonstrate the potential of our approach
since we outperform, in terms of computational cost and accu-
racy, the results of state-of-the-art methods on both face labeling
and medical image segmentation.

Index Terms—Patch-based method, Superpixels, Patches of
superpixels

I. INTRODUCTION

Image segmentation is a useful tool to analyze the image
content. The goal of segmentation is to decompose the image
into meaningful segments, for instance, to separate objects
from the background. A segmentation is computed with re-
spect to some priors such as shape, color or texture. To reduce
the computational cost, superpixel decomposition methods
have been developed for grouping pixels into homogeneous
regions, while respecting the image contours (for instance see
[1] and references therein). Superpixels are able to drastically
decrease the number of elements to process while keeping all
the geometrical information that is lost with multi-resolution
approaches. Small objects disappear at low resolution levels,
whereas they can still be represented with one or several
superpixels. Nevertheless, superpixels remain underexploited
due to their irregular decomposition of the image content.

Many image processing and computer vision methods use
reference images. For instance, for labeling applications, these
images can be provided with their ground truth segmentation,
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labels, or semantic information that are used to process the
input image. In this context, matching algorithms can be useful
to find associations between the considered elements. In most
frameworks, patch-based approximate nearest neighbor (ANN)
search methods are used to find correspondences. Numerous
methods have been proposed to find ANN [2], [3], [4], [5]
within the same image, and between an image and one or
several reference ones. Among these methods, the PatchMatch
(PM) method [2] was designed to compute correspondences
between pixel-based patches.

When applying PM to large images, or when looking for
ANN in a database, the search for good ANN may require
many iterations. Therefore, multi-resolution PM [6] can be
considered to initialize the ANN correspondence map. How-
ever, as usually observed with such coarse-to-fine frameworks,
details are lost and a poor ANN is estimated for small
scale patterns. A regular decomposition of the image could
decrease the problem dimension, but it would not respect
the object contours, leading to non accurate processing. In
this context, the use of superpixels may be interesting to
preserve the image geometry and the respect of the image
object contours. Local superpixel-based matching models have
been proposed for many applications, e.g., video tracking [7],
[8]. However, superpixel-based ANN search algorithms have
been little investigated in the literature, and recent works such
as [9], [10] that compute superpixel correspondences between
the decompositions of two images, use complex models that
report prohibitive computational times.

Finally, for ANN matching, the neighborhood information
greatly helps in finding good correspondences, as demon-
strated in the patch-based literature. Therefore, to jointly de-
crease the number of elements to process, keep the geometrical
information, and find accurate matches, it appears necessary
to consider superpixels and to describe them using their
neighborhoods in a structure that includes spatial information.
Nevertheless, the lack of regularity between two superpixel
decompositions makes difficult the use of neighborhood for
computing relevant correspondences. Some attempts to use
superpixel neighborhood information have been proposed [11],
[12]. However, these methods are not adapted to the search of
ANN, since they perform a regularization on a graph built from
superpixel neighbors but do not include the relative spatial
information between superpixels in a dedicated structure.

A. Contributions

In this paper, we propose a novel structure of super-
pixel neighborhood called SuperPatch. Since the superpixel
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Fig. 1. Superpixels vs superpatches for superpixel matching. (a) and (b): two decompositions using [1] and [13]. (c) and (d): superpixel-based [14] and our
superpatch-based matching results. The same experiment is performed between (a) and the sheared image (e), with superpixel [14] (f) and superpatch matching
results (g). The displacement is illustrated with optical flow representation (h). The more the colored result is close to white, the lower the displacement is.

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 2. Superpixel matching on textured images. Two different parts of two close textures are combined in (a) and (b). (c) and (d): superpixel-based [14]
and our superpatch-based matching results where red superpixels indicate wrong matched texture. (e) and (f): two decompositions of a natural textured image
using [1] and [13]. Comparison of superpatch matching with color (g) and combination of color and texture features (h).

neighborhoods of two superpatches are not necessarily the
same (in terms of shape or number of elements), a generic
framework for comparing superpatches is introduced. A novel
method, called SuperPatchMatch (SPM), that generalizes the
PM algorithm [2], is proposed to perform fast and accurate
searches of ANN superpatches within images.

To the best of our knowledge, the specific combination of
PM with superpixels has been proposed in [14], [15] that
propose to match single superpixels using moves similar to
PM. For instance in [14], the superpixel features are pre-
computed using a learned distance metric, while the reported
labeling results do not reach the ones of state-of-the-art
methods. In [16], a more restricted framework is considered for
optical flow estimation: PM is used to refine the results within
selected superpixel bounding boxes. The purpose of our work
is thus completely different since we compare neighborhood
of structures defined on irregular image sub-domains.

To emphasize the interest of our method, we propose a
framework to perform fast segmentation and labeling from
an image database. SuperPatchMatch is well adapted to deal
with huge and constantly growing databases since no learning
phase is required, contrary to most existing approaches based
on supervised machine learning [17], [18], or recent neural
network methods [19], [20]. We apply SuperPatchMatch to the
challenging Labeled Faces in the Wild (LFW) database [21],
where the goal is to extract hair, face, and background within
images decomposed into superpixels, and to the segmentation
of tumors on non-registered Magnetic Resonance Images
(MRI). Finally, SuperPatchMatch outperforms, in terms of
computational cost and accuracy, state-of-the-art methods.

Fig. 1 and 2 consider several experiments to demonstrate
that superpatches enable to find more reliable superpixel ANN
than the ones obtained with single superpixel matching [14].
In Fig. 1, two decompositions are computed on the same
image using [1] and [13] (Fig. 1(a) and (b)). The aim is
to find the best superpixel match between (a) and (b) in
terms of superpixel feature (here `2-norm on normalized color
histograms in RGB space). We display the displacement mag-

nitude of matches with optical flow representation (Fig. 1(h)).
When matching only superpixels, as in [14], many outliers
are obtained (Fig. 1(c)), while the matching of superpatches
provides very accurate ANN (Fig. 1(d)). The same experiment
on a sheared image decomposed with [1] (Fig. 1(e)), provides
a uniform displacement (Fig. 1(g)) that indicates relevant
superpatch matching, and robustness of the proposed structure
to geometrical deformations. In Fig. 2, two different parts of
two close textures are combined in Fig. 2(a) and (b), and we
represent wrong matched texture with red superpixels in Fig.
2(c) and (d). Finally, in Fig. 2, we show that for a natural
image containing texture (Fig. 2(e) and (f)), the combination
of color and texture features (histogram of oriented gradients
[22]) can provide more accurate matching (Fig. 2(h)).

B. Outline

In this paper, we first present related works in Section
II. Then, we define the new superpatch structure and a
comparison framework between superpatches in Section III.
The SuperPatchMatch algorithm is next designed to perform
superpixel-based ANN search in Section IV. We further em-
phasize the interest of our method by proposing in Section
V a framework to perform labeling from an image database.
Finally, we present experiments of face labeling and seg-
mentation of medical images, and SuperPatchMatch results
outperform the ones of state-of-the-art methods.

II. RELATED WORKS

A. Superpixel Methods

Superpixel decomposition approaches try to group the pixels
of an image into meaningful homogeneous regions. They were
progressively introduced, for instance, from watershed [23] to
Quick shift [24] approaches. In the past years, most decom-
position methods start from an initial regular grid and refine
the superpixel boundaries by computing a trade-off between
color distance and superpixel shape regularity, e.g., [1], [25].
Recently, works such as [26], [27] propose to use gradient
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and contour information in the process to further increase
the superpixel decomposition accuracy with respect to the
image content. Finally, the computational cost is considered
since superpixels are mainly used as pre-processing, and recent
implementations report real-time performances, e.g., [28].

By considering features at the superpixel scale, the compu-
tational complexity of computer vision and image processing
tasks can be drastically reduced, while still considering the
image geometry and content. Superpixels have therefore be-
come key building blocks of many recent image processing
and computer vision pipelines such as multi-class object
segmentation [29], [30], [31], [32], body model estimation
[33], face and hair labeling [18], data associations across
views [12], object localization [34] or contour detection [35].
With these considerations, we propose in this work to use the
superpixel representation as the basis of our framework.

B. Including Spatial Information within Image Features

Pixel-based patches enable to describe the pixel neighbor-
hood and to find similar patterns with the same geometric
structure. They have progressively proven their efficiency
for several applications such as texture synthesis [36] and
image denoising [37], and in the design of computer vision
descriptors [38], [39] that include spatial information.

Recent works in object retrieval have demonstrated that
describing the objects with spatial information enables to reach
higher detection accuracy. In [40], [41], Force-Histogram
Decomposition descriptors are used to encode the pairwise
spatial relations between objects. Deformable part models
[42], [43] or adaptive bounding boxes of poselets [44] have
also been successfully applied to image retrieval, segmentation
or recognition. Finally, the necessity for including spatial
information is also studied in [45] that investigates fuzzy
approaches to define spatial relationships.

The superpixel itself is not sufficient to provide a robust
image descriptor, since the consistency of its neighborhood is
not considered. The superpixel neighborhood has been used
in [11] for saliency detection based on energy minimization.
For each superpixel, the two first adjacent neighbor rings
are used in a regularization term. However, the superpixel
features are separately included in a data term, leading to a
lack of spatial information consistency. The approach is thus
dependent on the superpixel decomposition and poorly robust
to very irregular decomposition. Consequently, we propose to
go further in this work and to take advantage of the superpixel
neighborhood to construct a novel representation, namely the
superpatch, that naturally includes spatial information.

C. Patch Matching Methods

Patch-based methods have demonstrated state-of-the-art re-
sults over various computer vision and image processing
applications such as: texture synthesis [36], denoising [37] or
super-resolution [46]. These approaches rely on the search of
ANN, i.e., similar patches. Many methods were proposed to
find ANN within the image itself, between two images or in an
entire database [2], [3], [4], [5]. When facing huge databases,
dimension reduction methods are usually considered to have

Fig. 3. Superpatch illustration. In blue: circle search of radius R centered
on ci, barycenter of Ai (yellow). The superpatch Ai is composed by all
superpixels having their barycenter within the circle.

fast computation of ANN, but they depend on the size of the
data. In this context, the PatchMatch (PM) algorithm [2] is
an efficient tool to compute ANN. Within an image itself,
the found ANN enable to perform several processings such as
image retargeting or completion [2]. Nevertheless, PM can also
find matches between several images, and easily handles large
databases, since its complexity only depends on the size of the
image to process, as shown in [47], [48] where the ANN are
used for exemplar-based segmentation of 3D medical images.

In this work, we introduce the SuperPatchMatch method
(SPM), that combines both the advantages of the PM al-
gorithm, and the superpixel decomposition of an image, to
compute robust correspondences of superpixels using super-
patches. The proposed superpatch structure enables to match
similar patterns at the superpixel level since it considers the
geometrical information between the contained superpixels,
which are described by image features such as color or texture.

III. SUPERPATCH

A. Superpatch Definition

Similarly to a patch of pixels, a superpatch is a patch
(a set) of neighboring superpixels. Let A be an image,
decomposed by any superpixel decomposition method, into
|A| superpixels such that A = {Ai}i∈{1,...,|A|}, where |.|
denotes the cardinality, and for two superpixels Ai, Aj ∈ A,
Ai ∩ Aj = ∅. A superpatch Ai is centered on a superpixel
Ai and is composed of its neighboring superpixels Ai′ such
that: Ai = {Ai′ , with ||ci − ci′ || ≤ R}, with ci the spatial
barycenter of the pixels contained in Ai. In other words, the
superpatch centered on a superpixel is defined by considering
all superpixels within a fixed radius R ≥ 0. Note that each
superpatch Ai contains at least the superpixel Ai. Fig. 3
illustrates the superpatch definition.

For the sake of clarity, we denote IAi ={i′, with Ai′ ∈ Ai},
the index set of superpixels Ai′ ∈ Ai. Each superpixel Ai is
described by a set of features FA

i . These features can be,
for instance, the coordinates of ci, the mean color, or any
superpixel descriptors that can be found in the literature.
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B. Superpatch Comparison Framework

The comparison between two regular square patches is com-
monly performed using the sum of squared differences (SSD),
computed in a scan order. When considering two superpatches,
their number of elements and geometry are generally different,
which makes difficult their comparison. In the following, we
consider two superpatches Ai and Bj, in different images
A and B. We propose to first register the relative positions
of all superpixels within the superpatches. To overlap two
superpatches, all positions cj′ of superpixels Bj′ ∈ Bj are
registered with the vector vij = ci−cj , where ci and cj are the
spatial barycenters of Ai and Bj , respectively. Contrarily to the
classical pixel setting, the number of elements and geometry
of two superpatches are likely to differ since their construction
depends on the initial superpixel decomposition. Therefore, a
registered superpixel Bj′ can overlap with several superpixels
Ai′ , and this information has to be considered.

To compute a distance between irregular structures, such as
superpixels, [12] proposes to use the editing distance. How-
ever, such distance computes one-to-one matching between
the structure elements and cannot accurately deal with the
overlap of superpixels that requires a one-to-many mapping.
Another limitation is that it mixes two different information:
superpixel similarities and the cost of removing or adding
superpixels. Therefore, this distance should be carefully tuned
with respect to the considered application. Consequently, to
define a relevant metric between superpatches, it is necessary
to consider the geometry of the superpatches within the
distance. We propose to define the symmetric distance D
between two superpatches Ai and Bj as:

D(Ai,Bj) =

∑
i′∈IAi

∑
j′∈IBj

w(Ai′ , Bj′)d(F
A
i′ , F

B
j′ )∑

i′∈IAi

∑
j′∈IBj

w(Ai′ , Bj′)
, (1)

where d is the Euclidean distance between the superpixel
features FA

i′ and FB
j′ , for instance, average superpixel color

or normalized cumulative color histogram, and w is a weight
depending on the relative position of the superpixels Ai′ and
Bj′ . Note that we consider an Euclidean distance, but any
distance on superpixel features can be computed with d.

1) Fast distance between superpixels: To compute the
weight between two superpixels Ai′ and Bj′ , we would ideally
like to measure their relative overlapping area, i.e., setting
w(Ai′ , Bj′) = |Ai′ ∩ Bj′ |/|Ai′ ∪ Bj′ |. Nevertheless, this
computation requires the expensive count of overlapping pixels
that cancels the computational advantage of the superpixel
representation. A fast method would be to compare a super-
pixel Ai′ to the spatially closest Bj′ , but we propose a more
robust framework that considers a spatial distance between the
superpixel barycenters. We define the symmetric spatial weight
between two superpixels Ai′ and Bj′ as:

w(Ai′ , Bj′) = exp
(
−xTi′j′xi′j′/σ2

1

)
ws(Ai′)ws(Bj′), (2)

where xi′j′ = cj′ − ci′ + vij is the relative distance between
ci′ and cj′ , ws(Ai′) weights the influence of Ai′ according
to its spatial distance to Ai such that ws(Ai′) = exp(−‖ci −
ci′‖22/σ2

2), and σ1 and σ2 are two scaling parameters. The
setting of σ1 depends of the superpixel decomposition scale.

Since the superpatches have been registered, and the aim
is to compare a superpixel Ai ∈ Ai to the closest ones
Bj ∈ Bj, σ1 can be set to half the average superpixel size,
i.e., half the average distance between superpixel barycenters,
such that σ1 = 1

2

√
h×w/K, for an image of size h×w

pixels decomposed into K superpixels. Finally, σ2 depends
on the superpatch size and can be set to

√
2R to weight the

contribution of closest superpixels.
2) Generalization of pixel-based patches: In the limit case

where each superpixel only contains one pixel, i.e., Ai′=ci′ ,
Bj′=cj′ , Ai and Bj have the same regular structure and the
same number of elements. With σ1 → 0 and σ2 →∞ in (2),
w(Ai′ , Bj′) = w(ci′ , cj′) = 1 if ci′ − ci = cj′ − cj and 0 oth-
erwise, and the proposed distance D (1) is a generalization of
the distance between patches, since it reduces to a normalized
standard SSD between two pixel-based patches:

D(Ai,Bj) =
1

|Ai|
∑

i′∈IAi ,j′∈IBj

d(Fi′ , Fj′)δci′−ci=cj′−cj ,

= SSD(Ai,Bj), (3)

where δa = 1 when a is true and 0 otherwise.

IV. SUPERPATCHMATCH

A. The SuperPatchMatch Algorithm

We propose the SuperPatchMatch method (SPM), an ex-
tension of the PatchMatch (PM) algorithm [2] dedicated to
our superpatch framework, for fast matching of irregular
structures from superpixel decompositions. In this section,
only direct adjacent neighborhood relationship needs to be
considered to design our algorithm. Nevertheless, as for pixels
described by regular patches, we demonstrate in Section V that
the proposed framework is significantly more efficient using
superpatches. In the following, as in Section III-B, we illustrate
the proposed method by considering two superpatches Ai and
Bj, in different images A and B, but our approach can be
applied to an entire database, as demonstrated in Section V.

PM is a method that computes pixel-based patch correspon-
dences between two images. The key point of this method is
that good correspondences can be propagated to the adjacent
patches within an image. The algorithm has three steps: ini-
tialization, propagation and random search. The initialization
consists in randomly associating each patch of the image A
with a patch of the image B, leading to an initial ANN field.
The following steps are then iteratively performed to improve
the correspondences. The propagation uses the assumption that
when a patch in A corresponds to a patch in B, then the
adjacent patches in A should also match the adjacent patches
in B. The random search consists in a sampling around the
current ANN to escape from possible local minima.

The lack of regular geometry between superpatches is the
main issue for adapting the PM algorithm. The notion of
adjacent patches has to be defined for an irregular superpixel
decomposition. For the sake of clarity, the current best ANN
of a superpixel Ai ∈ A, is denoted as B(i) = BM(i), withM
the ANN map which stores, for superpixels in A, the index in
B of their corresponding ANN.
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1) SPM initialization step: For each superpixel Ai ∈ A, we
assign a random superpixel B(i) ∈ B. Fig. 4 shows initializa-
tion examples. After this step, propagation and random search
are iteratively performed to improve the initial matches.

Fig. 4. SPM initialization step. Each superpixel Ai ∈ A is randomly assigned
to a superpixel B(i) ∈ B.

2) SPM propagation step: In [2], the propagation step tries
to improve the current ANN by using the ones of the directly
adjacent neighbors in A. Pixels are processed according to a
scan order, e.g., from top-left to bottom-right. The propagation
only considers previously processed and directly adjacent
neighbors, e.g., top and left. Their ANN are shifted to respect
the relative position of pixels in A, providing ANN candidates
to the currently processed pixel. With superpixels, the selection
of top, left, bottom and right adjacent superpixels is not direct,
since there is no regular geometry between them. We propose
to define the superpixel scan order from the raw pixel order
on A (left to right, top to bottom), and to consider in the
propagation step all adjacent superpixels that were processed
during the current iteration. The selection of candidates from
adjacent neighbors is illustrated in Fig. 5.

Fig. 5. SPM propagation step. According to the scan order, only top-left
superpixels of A1 are considered on even iterations (A2, A3 and A4). The
remaining neighbors (in gray) are tested on odd iterations. Current matches
are denoted by B(i), while C(i) represent the new candidates to test as ANN.

When an adjacent superpixel Ai′ and its ANN B(i′) are
considered, a neighbor of B(i′) is selected as a candidate
to improve the correspondence of Ai. However, the ANN
B(i′) cannot be shifted as done for regular patches, since
the superpixels are defined on irregular domains. Therefore,
to improve the ANN of Ai, one particular neighbor of B(i′),
denoted as C(i′) ∈ B is tested. It is given by the superpixel
whose relative position to B(i′) is the most similar to θii′ , the
angle between Ai and Ai′ . Hence, the ANN candidate C(i′)
to test is obtained as:

C(i′) = argmin
k∈NB

M(i′)

|(θii′ + π)− θi′k|, (4)

with θi′k the angle between B(i′) and its set NB
M(i′) of

adjacent superpixels Bk. Note that all angles are computed
from superpixel barycenters. The selection of the candidate for
A3, which is on top-left position of A1, is illustrated in Fig.

Fig. 6. To improve the ANN of the superpixel A1, the neighbor A3 is
considered. Its current ANN is B(3). The selected superpixel C(3) to test is
the adjacent superpixel of B(3) with the most similar symmetric orientation,
i.e., the superpixel Bk which angle to B(3), θ3k , is the closest to π + θ13.

6. To keep the same relative position, the new superpixel to
test as ANN for A1 is the neighbor of B(3) that is the closest
to its bottom-right position, according to the angle θi′k.

3) SPM random search step: The random search step
consists in a sampling around the current ANN to escape
from possible local minima [2]. Candidates are selected at
an exponentially decreasing distance from the barycenter of
the best current match. A random pixel position is computed
within decaying boxes, and the superpixel containing this pixel
is the candidate to test. Fig. 7 illustrates the random search
step, where the boxes are depicted in dotted lines.

Fig. 7. SPM random search step. The sampling is performed at a decreasing
distance around the barycenter of the ANN B(1) of A1. The superpixels
containing the selected positions (crosses) are the candidates to test.

B. Library of Training Images

One advantage of the SPM algorithm is that its complexity
only depends on the size of the image to process and not on
the size of the compared image database. This important fact
enables SPM to perform fast ANN searches within a large
database with no increase on the computational time.

All example images within the database are grouped into a
single library T . In the case of a training database, SPM steps
are adapted so the ANN can be found within all images. The
initialization is extended: the ANN is randomly selected within
T . The propagation step still tests the shifted ANN of the
neighbors, that are not necessarily in the same training image.
Finally, the random search is performed within the current best
image, and within a random image in T , as in [47].

C. Multiple SPM

Contrary to PM, that only estimates one ANN, SPM com-
putes k-ANN matches in the library T , since the diversity of
information from multiple ANN may help to perform more
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accurate processing. In the literature, an extension of the
original PM algorithm to the k-ANN case has been proposed
in [6]. The suggested strategy is to build a constantly updated
data structure of the best visited correspondences. However,
to parallelize such an approach, the current test image must
be split into several parts which leads to boundary issues.
Therefore, we chose to implement the k-ANN search by k
fully independent SPM, leading to a simpler scheme.

V. APPLICATION TO IMAGE LABELING

To demonstrate the interest of the superpatch structure and
the SPM algorithm, we adapt our approach to exemplar-based
labeling. We consider two experiments: face labeling on the
LFW dataset [21], and segmentation and labeling on non-
registered medical images from the BRATS dataset [49].

A. Label Fusion Method

The proposed algorithm is particularly interesting for label-
ing applications. The superpixel decomposition segments the
image into homogeneous regions that try to respect existing
contours, and SPM finds superpixel-based correspondences
whose labels can be transfered. In this application, a library T
of training images with their label ground truths is considered,
and SPM provides k-ANN matches. We denote as l(Tj) ∈
{1, . . . ,M} the label of the training superpixel Tj contained
in T . The labels of the selected ANN within T are merged by
a patch-based label fusion [50], inspired from [37].

At the end of the ANN search, k-ANN are estimated for all
superpixels in the test image A. To obtain the final labeling,
for a superpixel Ai and Km

i = {Tj} the set of its k-ANN
matches with label l(Tj) = m, its label fusion map Lm(Ai)
is defined by:

Lm(Ai) =

∑
Tj∈Km

i
ω(Ai, Tj)∑M

m=1

∑
Tj∈Km

i
ω(Ai, Tj)

, (5)

where ω(Ai, Tj) is the weight contributing to label m, and
depends on the similarity between the superpatch Ai ∈ A,
and the ANN superpatch Tj ∈ T . This label map Lm gives
the probability of assigning the label m to the superpixel Ai.

Some applications can also deal with registered images,
where structures of interest between A and images of T are
spatially close. Therefore, good superpatch matches should not
be spatially too far in the image domain. In this case, to enforce
the spatial coherency of the selected k-ANN, each labeling
contribution is weighted by the spatial distance between the
central superpixels barycenters ci ∈ A and cj ∈ T :

ω(Ai, Tj) = exp

(
1−

(
D(Ai,Tj)

h(Ai)2
+
‖ci − cj‖2

β2

))
, (6)

where h(Ai)
2 = α2 min

Tj∈∪
m

Km
i

(D(Ai,Tj) + ε), with ε → 0, and

α and β are scaling parameters. With the function h(Ai), the
distance of the current contribution is divided by the minimal
distance among all k-ANN contributions. For each superpixel
Ai, the final labeling map L(Ai) is obtained with the label of
highest probability:

L(Ai) = argmax
m∈{1,...,M}

Lm(Ai). (7)

The relation (7) gives a superpixel-wise decision that may
have some irregularities. As in [11], we can use (5) as a
multi-label data term and consider the following regularization
problem, that consists in minimizing the energy J , defined on
the graph built from adjacent superpixels:

J(L)=
|A|∑
i=1

 ∑
i′∈IAi

exp

(
−d(Fi, Fi′)

γ

)
δi,i′+1−LL(Ai)(Ai)

 ,

(8)

where γ is a regularization parameter, the data term 1 −
LL(Ai)(Ai) is close to 0 (respectively 1) when the probability
of label L(Ai) is high (respectively low), and δi,i′ = 1 when
L(Ai) 6= L(Ai′) and 0 otherwise.

B. Face Labeling Experiments

Face segmentation and labeling are challenging tasks due to
several issues such as the diversity of hair styles, background,
color skins, or occlusions. We evaluate the proposed SPM ap-
proach for face labeling on the funneled version of the Labeled
Faces in the Wild (LFW) dataset [21]. The dataset contains
2927 images of size 250×250 pixels, that have been coarsely
aligned [51], and segmented into 225 to 250 superpixels. LFW
is a widely used database for validating new methods based on
superpixels since it contains decompositions with associated
superpixel-wise ground truths, and comparisons with state-of-
the-art methods are not biased by the ground truth superpixel
decomposition one would have to compute.

1) Parameter settings: SPM was implemented with MAT-
LAB using C-MEX code. Our experiments are performed on
a standard Linux server of 16 cores at 2.6 GHz with 100
GB of RAM. To compare to [18], [19], we use the same 1
500 training images, and the same 927 images for testing.
Nevertheless, we could use all images in a leave-one-out
procedure since our method does not need any training step.

The number of SPM iterations is set to 5, as in [2]. We only
use a `2-norm between histogram of oriented gradients (HoG)
[22] as distance d in (1). In Eq. (2), since the images are
h×w = 250×250 pixels, and decomposed into approximately
K = 250 superpixels, σ1 is set to 8. In Eq. (6), parameters α
and β are respectively set to 2 and 4. Finally, we set γ to 0.5
and use the α-expansion algorithm [52] to minimize (8). The
reported times for SPM in Fig. 8 (b) include k-ANN searches,
label fusion and the complete labeling with regularization.

2) Influence of the superpatch size: We first investigate
the influence of the superpatch size and number of ANN.
Fig. 8 represents the superpixel-wise labeling accuracy and
computational time. The labeling accuracy is increased with
our superpatch structure. Best results are obtained with R=50
pixels (95.08% with k=50 ANN). Such superpatch size cor-
responds in average to the capture of the three neighboring
rings of superpixels, since superpixels are approximately of
size 16×16 pixels. Fig. 8 also represents the corresponding
ROC curves obtained with k=50 ANN for the three classes
(face, background, hair). Without the superpatch structure, i.e.,
only computing the distance on central superpixels (R=0 pix-
els), worse ANN are found, decreasing the labeling accuracy
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Fig. 8. Influence of the superpatch size on superpixel-wise labeling accuracy (a) with corresponding computational time (b). ROC curves with area under
curves (AUC) for several superpatch sizes (k=50) for face (c), background (d) and hair (e). R = 50 pixels gives the best results for all labels.

TABLE I
LABELING ACCURACY ON LFW

Method Superpixel Pixel Computational
accuracy accuracy time

PatchMatch 87.73% 87.02% 3.940s
Spatial CRF [18] 93.95% not reported not reported
CRBM [18] 94.10% not reported not reported
GLOC [18] 94.95% not reported 0.323s
DCNN [19] not reported 95.24% not reported
SuperPatchMatch 95.08% 95.43% 0.255s
Computational times are given per subject. SPM results are obtained

with k=50 ANN, and R=50 pixels. The presented values are the pub-
lished results, therefore, some evaluation metrics could not be reported.

(93.29% with k=50 ANN). The superpatch size must be large
enough to capture the information contained within the super-
pixel neighborhood. However, with too large superpatches, i.e.,
R > 50 pixels, too many neighboring superpixels contribute,
leading to less relevant ANN and less accurate labeling. Note
that we propose in (6) a slight improvement of the label fusion
step to take into account the LFW database registration but we
obtain very comparable results (95.00% instead of 95.08%)
without any position a priori, i.e., β=∞ in (6).

Fig. 9 illustrates the regularization process. Labeling prob-
abilities (5) obtained from SPM are displayed for each label
(Fig. 9(d)). The spatial regularization (8) gives more consistent
results (Fig. 9(f)) than taking the label of highest probability
(Fig. 9(e)). Finally, Fig. 10 shows the superpatch influence on
labeling for various examples. Labeling failures are mostly due
to high similarity between hair and background, or inaccurate
superpixel segmentation.

3) Comparison with the state-of-the-art methods: SPM is
compared to the recent methods applied to the LFW database
in Table I. In [18], the GLOC (GLObal and LOCal) method
uses a restricted Boltzmann machine as complement of a con-
ditional random field labeling [53]. This combination reduces
the error in face labeling of single models which do not use
global shape priors, at the expense of a higher computational
cost. In [19], a method based on a deep convolutional neural
network (DCNN) is proposed. For all compared methods,
learning steps, that can be up to several hours, are necessary
to train the models. Moreover, they consider priors learned
from semantic information into the process, e.g., hair label
should be on top of face label in the segmentation. We also
provide the results of a pixel-wise PM applied with the same
framework, where a SSD between patches of size 9×9 pixels
in RGB color space is used as distance.

To compare to all methods, we provide in Table I superpixel
and pixel-wise accuracy results. The presented values are the
results published by the authors, therefore, all the evaluation
metrics could not be reported. SPM superpixel-wise labeling
accuracy outperforms the ones of the compared methods
(95.08%), while being performed on basic features, and faster
(0.255s per subject) than the best compared method with
reported computational time. The pixel-wise accuracy of SPM
(95.43%) also outperforms the reported result of the DCNN
architecture [19], that has been optimized to perform on the
LFW dataset. Note that the increase of pixel accuracy over
superpixel accuracy demonstrates that our method mostly fails
at labeling small and stretched superpixels. This comes from
the initial LFW segmentation that may produce inaccurate
color clustering and allows irregular superpixel shapes.

The global computational time is another important compar-
ison point. SPM outperforms the compared methods in term of
labeling accuracy without any training step. Contrary to other
methods, with SPM, computational efforts needed for learning
are canceled, and new training images are directly considered
in the library. To illustrate this point, for each processed image,
we add the remaining test ones to the library. This way, SPM
reaches 95.26% of superpixel-wise labeling accuracy. This
result highlights the impact of the image diversity within the
database, which leads to find more accurate ANN. Moreover,
results are obtained with no computational time increase, since
the algorithm complexity only depends on the test image size.
Hence, SPM easily integrates new images in the database,
and provides very competitive results in limited computational
time, without model or shape priors.

4) Robustness to superpixel decomposition method: To
emphasize the robustness of our method to the used superpixel
method, we have segmented the test images with another
method [1] that produces more regular superpixels (see an
example in Fig. 11). The new decompositions are computed
with respect to the ground truth label mask of each image.
Hence, they are still constrained by the initial segmentations
provided with LFW but only on the edges of each class (hair,
face, background). Even with test and training decompositions
computed with different methods, we get similar superpixel-
wise labeling accuracy (95.05%), showing that our method can
compare superpixel neighborhoods of various shapes.

C. Non-Registered MRI Segmentation Experiments

To demonstrate the robustness of the superpatch structure
and the proposed framework, we apply SPM to brain tu-
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Fig. 9. Labeling results with SPM. (a) Image. (b) Superpixel decomposition. (c) Associated ground truth. (d) Label fusion maps for the 3 classes (face,
background, hair). (e) Labeling with the highest probability from (7). (f) Labeling after regularization.
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Fig. 10. Labeling examples obtained with SPM for R=0, and R=50 pixels, i.e., using superpatches, with superpixel-wise labeling accuracy.

(a) (b) (c) (d)

Fig. 11. Re-segmentation of the LFW dataset. (a) Initial image. (b) Ground
truth labels. (c) LFW initial decomposition. (d) Decomposition using [1].

mor segmentation on multi-modal non-registered Magnetic
Resonance Images (MRI). Classical patch-based and multi-
atlas structure segmentation methods are based on registered
subjects. Consequently, they cannot be efficiently applied in
this non-registered context, due to the substantial variation
in tumor shape and locations. Superpixels enable to better
capture the tumor geometry, thus increasing the segmentation
accuracy. Superpixel and supervoxel-based approaches have
been applied to tumor segmentation [54]. However, in this
work, the neighborhood is not considered and the ANN search
is exhaustive, and computed on a large multi-modal histogram
descriptor, leading to prohibitive computational time.

SPM can be efficiently applied to tumor segmentation
since it quickly finds good correspondences without image
registration, and uses the superpixel neighborhood to improve
the matching. In this application, the segmentation is computed

from a superpixel decomposition [1], then each region (tumor
or background) is labeled with SPM.

We present results obtained on the MICCAI multi-modal
Brain Tumor Segmentation (BRATS) dataset [49]. This chal-
lenging dataset contains real and simulated patient data, with
overall poor resolution and large variation of tumor shape
and position. For both types, high grade (HG) and low grade
(LG) tumors are provided with four modalities: T1, contrast
enhanced T1 (T1C), T2, and FLAIR. Overall, there are 20 and
10 real patient data with respectively HG and LG tumors, and
25 images for both HG and LG simulated tumor data. We use
the same SPM parameters as in Section V-B, taking a multi-
modal histogram, containing the levels of gray intensity on
all MRI modalities as descriptor for superpatch matching, and
performing the regularization (8) at the pixel scale to compare
with pixel-wise ground truths. Each subject is segmented by
the remaining of its type in a leave-one-out procedure.

In Fig. 12, we show several tumor segmentation results for
all data types. In Table II, we compare results obtained using
different descriptor structures: patch-based [48], superpixel-
based [54], and superpatch-based (R=25 pixels). We use the
Dice coefficient [55] as evaluation metric, measuring the
overlap between the automatically segmented structure and
the ground truth. The superpixel-based approach appears very
limited since it fails at capturing the tumor context and their
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Fig. 12. Examples of patch, superpixel and superpatch-based tumor segmentation results. The four modalities are displayed for simulated HG data.

TABLE II
DICE COEFFICIENT AND COMPUTATIONAL TIME RESULTS FOR DIFFERENT

STRUCTURE DESCRIPTORS

Method Simulated Data Real Data Computational
HG LG HG LG time

Superpixel-based 73.95% 41.95% 44.63% 38.07% 0.33s
Patch-based 69.11% 49.55% 52.59% 68.92% 2.69s
Superpatch-based 90.75% 82.40% 61.87% 73.34% 0.94s

location in other images. Regular patches are also limited
in this context, due to the variations in the structure shapes.
Superpatches provide a robust descriptor, since they follow
image intensities and capture the superpixel neighborhood,
leading to more accurate segmentation. These experiments
demonstrate that superpatches within the SPM framework
provide fast and accurate segmentation results even on
non-registered multi-modal images with poor resolution.

VI. CONCLUSION AND PERSPECTIVES

In this paper, we propose a new structure based on patches
of superpixels that can use irregular and non stable image
decompositions. These superpatches include neighborhood in-
formation and lead to more accurate matching. We also intro-
duce SuperPatchMatch, a general and novel correspondence
algorithm of superpatches.

We have demonstrated the interest of our framework by
obtaining state-of-the-art results for face labeling and tumor
segmentation on non-registered MRI. SuperPatchMatch does
not need any learning phase, that can be up to several hours
for many methods of the literature. By including spatial
consistency, superpatches are able to reach the accuracy of
highly tuned approaches, and provide more reliable descriptors
than single superpixels.

Our work opens new insights for future adaptations to
superpixel-based methods, e.g., segmentation [34], [43], la-
beling [14], saliency detection [11], or color and style transfer
[10]. For instance, SuperPatchMatch can be considered for
defining good ANN initializations at the pixel level, when the
size of the database is too large. A possible application is the
optical flow initialization, instead of mutli-resolution schemes,
to better capture large displacements of small objects.
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[35] P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik, “Contour detection
and hierarchical image segmentation,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 33, no. 5, pp. 898–916, 2011.

[36] A. Efros and T. Leung, “Texture synthesis by non-parametric sampling,”
in Proc. IEEE ICCV, 1999, pp. 1033–1038.

[37] A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for image
denoising,” in Proc. IEEE CVPR, 2005, pp. 60–65.

[38] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, 2004.

[39] H. Bay, T. Tuytelaars, and L. Van Gool, “SURF: Speeded up robust
features,” in Proc. ECCV, 2006, pp. 404–417.

[40] M. Garnier, T. Hurtut, and L. Wendling, “Object description based on
spatial relations between level-sets,” in Proc. DICTA, 2012, pp. 1–7.

[41] M. Clément, M. Garnier, C. Kurtz, and L. Wendling, “Color object
recognition based on spatial relations between image layers,” in Proc.
VISAPP, 2015, pp. 427–434.

[42] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan,
“Object detection with discriminatively trained part based models,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 32, no. 9, pp. 1627–1645, 2010.

[43] E. Trulls, S. Tsogkas, I. Kokkinos, A. Sanfeliu, and F. Moreno-Noguer,
“Segmentation-aware deformable part models,” in Proc. IEEE CVPR,
2014, pp. 168–175.

[44] G. Sharma, F. Jurie, and C. Schmid, “Expanded parts model for human
attribute and action recognition in still images,” in Proc. IEEE CVPR,
2013, pp. 652–659.

[45] I. Bloch, “Fuzzy spatial relationships for image processing and interpre-
tation: A review,” Image and Vision Comp., vol. 23, no. 2, pp. 89–110,
2005.

[46] W. Freeman, T. Jones, and E. Pasztor, “Example-based super-resolution,”
IEEE Trans. Comp. Graph. App., vol. 22, no. 2, pp. 56–65, 2002.

[47] W. Shi, J. Caballero, C. Ledig, X. Zuang, W. Bai, K. Bhatia, A. Mar-
vao, T. Dawes, D. O’Regan, and D. Rueckert, “Cardiac image super-
resolution with global correspondence using multi-atlas PatchMatch,” in
Proc. MICCAI, 2013, pp. 9–16.

[48] R. Giraud, V.-T. Ta, N. Papadakis, J. V. Manjón, D. L. Collins, P. Coupé,
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