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Abstract

This paper investigates the passive control of a rotor instability named helicopter Ground Res-
onance (GR). The passive device consists of a set of essential cubic nonlinear absorbers named
Nonlinear Energy Sinks (NES) each of them positioned on a blade. A dynamic model reproduc-
ing helicopter GR instability is presented and transformed to a time-invariant nonlinear system
using a multi-blade coordinate transformation based on Fourier transform mapping the dynamic
state variables into a non-rotating reference frame. Combining complexification, slow/fast par-
tition of the dynamics and averaging procedure, a reduced model is obtained allowed us to use
the so-called geometric singular perturbation analysis to characterize the steady state response
regimes. As in the case of a NES attached to the fuselage, it is shown that under suitable
conditions, GR instability can be completely suppressed, partially suppressed through peri-
odic response or strongly modulated response. Relevant analytical results are compared, for
validation purposes, to direct integration of the reference and reduced models.

Keywords: Helicopter ground resonance ; Passive control ; Nonlinear energy sink ; Complex
multi-blade coordinate transformation ; Relaxation oscillations ; Strongly modulated response

1 Introcuction

A Nonlinear Energy Sink (NES) is a passive nonlinear absorber which introduces non linear coupling
between the main structure and the absorber for controlling the vibratory response of the structure
under external excitation. A NES consists on a nonlinear oscillator with an essentially nonlinear
restoring force and generally a small mass compared to the main structure. The objective of the
NES is to capture the energy of the main structure and to dissipate it. This is done through the
Targeted Energy Transfer (TET) concept. TET is based on the capacity of the essential nonlinear
oscillator to be resonant at any frequencies giving possible tuning with the main structure to be
controlled. TET has been widely studied in the literature [1, 2, 3, 4].

NES also represents an alternative device for control systems with self-excitation. The possible
suppression of the limit cycle oscillations of a van der Pol oscillator coupled to a NES is demon-
strated numerically in [5] and the self-excitation response regimes are investigated theoretically
in [6] where an asymptotic analysis of the system related to slow/super-slow decomposition of the
averaged flow reveals periodic responses, global bifurcations of different types and basins of attrac-
tion of various self-excitation regimes. A series of papers [7, 8, 9, 10] are dedicated to aeroelastic
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instability. It is demonstrated that a NES coupled to a rigid wing in subsonic flow can partially or
even completely suppress aeroelastic instability. The suppression mechanisms are investigated nu-
merically in [7] and [9] for one and multi-DOF NES. Several aspects of the suppression mechanisms
are validated expermentally in [8]. Finally an asymptotic analysis is reported in [10] demonstrating
the existence of the three passive suppression mechanisms based on TET. Suppression of aeroelastic
instability of a long span bridge model is also considered in [11] whereas [12] is dedicated to a general
class of nonlinear multi degree of freedom system including aeroelastic forces. In [13, 14] it is shown
that a NES is able to quench chatter instability in turning process whereas in [15] the stabilization
of drill-string systems is considered. Note that in [16], it is demonstrated that a nonlinear tuned
vibration absorber possessing a linear spring and a nonlinear spring whose mathematical form is
determined according the nonlinearity in the host system can suppress limit cycle oscillations.

In this paper, we focus on the instability in helicopter rotor named Ground Resonance (GR)
problem. GR is related to the coupling of the rotor blade in-plane motion with the airframe
motion on its landing gear. The standard reference of the GR analysis is the paper by Coleman
and Feingold [17] where it is established, considering an isotropic rotor, that GR is due to a
frequency coalescence between a lag mode and the fuselage mode. The range of rotor speeds for
which this frequency coalescence occurs is predicted analytically. More references can be found
in [18, 19, 20, 21] and a recent analysis of helicopter GR with asymmetric blades can be found
in [22]. Traditionally, GR instability is prevented by increasing damping in the landing gear and
blades [23, 24]. A robustness analysis is discussed in [25]. Active control of GR has been also
studied in [21].

The initial application of a NES to control GR instability was considered in [26, 27]. A theoreti-
cal/numerical analysis of the steady-state responses of a helicopter model with a minimum number
of degrees of freedom that can reproduce Helicopter Ground Resonance instability when a NES
is attached on the fuselage in an ungrounded configuration was performed. The system was first
simplified using successively Coleman transformation [17] and binormal transformation [23] fol-
lowed by a complexification-averaging method together with geometric singular perturbation. Four
steady-state responses are highlighted and explained analytically: complete suppression, partial
suppression through strongly modulated response, partial suppression through periodic response
and no suppression of the Helicopter Ground Resonance.

In this study, the same problem is considered but now the NES on the fuselage is removed and
it is replaced by a set of NES, each of them been positioned on a blade. A similar configuration has
been considered in [28, 29] where the efficiency of NES on rotating part of a rotor has been analyzed
under mass eccentricity force [28] and under an external forcing [29]. One of the advantages of this
configuration is to reduce the weight due to the additional absorbers. Here, response regimes are in-
vestigated extending the theoretical/numerical analysis developed in [26] using a Fourier coordinate
transformation as in [30]. In contrast to the Colman transformation, this multi-blade coordinate
transformation can be easily combined with the complexification-averaging method together with
geometric singular perturbation.

The next section introduces the helicopter model including a fuselage and four blades with a
NES attached on each blade. Only one direction of the fuselage motion, the lag motion of each
blade and the lag motion of each associated NES are considered. Based on Fourier coordinate
transform, the model is reduced to a time-invariant nonlinear system involving complex variables.
In Sect. 3, linear stability analysis is performed on this reduced model showing that this model is
able to reproduce GR phenomenon. In Sect. 4, the analytical procedure [26] based on averaging
method together with geometric singular perturbation theory is adapted to the reduced system.
It is shown that it is able to characterize the situations for which trivial solution is unstable. In
Sect. 5, numerical analysis is performed and discussed considering analytical results validated from
direct integration of the reference model and the reduced model. Finally in Sect. 6, few words
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(a) (b)

Figure 1: Descriptive diagram of the used helicopter system. (a) Overview of the system. (b) View from
the top.

Figure 2: Descriptive diagram of the NES attachment on the i-th blade. The length [OGϕ,i] is called Lϕ.

about the comparison between blade and fuselage NES attachments are expounded.

2 The model

2.1 Initial equations of motion

The helicopter model studied is shown Fig. 1. It consists of a fuselage and a 4-blades rotor rotating
at a constant speed Ω. This model is very similar to that described for example in [18, 19, 21].

The fuselage is a simple mass-spring damped system with mass my, spring constant ky, viscous
damper of damping coefficient cy and the translational DOF y. It is assumed that the center of
inertia Gf of the fuselage at rest coincides with the origin O of the earth-fixed system of coordinates
(O, x0, y0, z0). Each blade is assumed to be a point mass Gδ,i (with i ∈ [1, 4]) with mass mδ linked
to the axis (O, z0) with a bar without mass of length Lδ and an articulation with torsional spring
kδ and viscous damper of damping coefficient cδ. Only lag motions of the blades, characterized by
the lag angle δi (with i ∈ [1, 4]), are taken into account.

This simple model is used to study the effect of attaching a NES in ungrounded configuration on
each blade of the helicopter (as shown Fig. 2) in order to control lagging motion and consequently
ground resonance instability.
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Each NES is a nonlinear-spring mass damped system (see Fig. 2) with mass mh at the mass
point Gϕ,i (with i ∈ [1, 4]), linear spring constant k1h, cubic spring constant k3h, and viscous
damper of damping coefficient ch. Each NES is placed at distance Lϕ from the axis (O, z0) and it
is characterized with only the lag angle DOF ϕi which is related to the relative displacement hi by
hi = Lϕ sin(ϕi − δi).

Starting from the position of the center of inertia and the corresponding velocity of the i-th
blade (respectively the i-th NES) in the plane (O, x0, y0), defined as

OGδ,i =
(
Lδ cos (Ωt+ ψi + δi)
y + Lδ sin (Ωt+ ψi + δi)

)
, (1)

and,

vδ,i =

−Lδ (Ω + δ̇i
)

sin (Ωt+ ψi + δi)
ẏ + Lδ

(
Ω + δ̇i

)
cos (Ωt+ ψi + δi)

 , (2)

and,

OGϕ,i =
(
Lϕ cos (Ωt+ ψi + ϕi)
y + Lϕ sin (Ωt+ ψi + ϕi)

)
, (3)

vϕ,i =
(
−Lϕ (Ω + ϕ̇i) sin (Ωt+ ψi + ϕi)
ẏ + Lϕ (Ω + ϕ̇i) cos (Ωt+ ψi + ϕi)

)
(4)

with,
ψi = −π2 (i− 1) (5)

the equations of motion of the whole system is derived using Lagrange equations from the kinetic
energy T , the potential energy V and the Rayleigh dissipation function D written as

T = 1
2myẏ

2 +
4∑
i=1

1
2mδv

2
δ,i +

4∑
i=1

1
2mϕv

2
ϕ,i, (6)

V = 1
2kyy

2 +
4∑
i=1

1
2kδδ

2
i +

4∑
i=1

1
2k1 sin2(ϕi − δi) +

4∑
i=1

1
4k3 sin4(ϕi − δi), (7)

D = 1
2cyẏ

2 +
4∑
i=1

1
2cδ δ̇

2 +
4∑
i=1

1
2cϕ sin2(ϕ̇i − δ̇i), (8)

with k1 = L2
ϕk1h, k3 = L4

ϕk3h and cϕ = L2
ϕch.

Assuming small angles (|ϕi| � 1 and |δi| � 1) and also small angle differences (|ϕi − δi| � 1,
the equations of motion reduce to a nonlinear differential system with periodic coefficient



(my + 4(mδ +mϕ)) ÿ + cyẏ + kyy

+ Mδ

4∑
i=1

{(
δ̈i − Ω2δi

)
cos (Ωt+ ψi)− 2Ωδ̇i sin (Ωt+ ψi)

}

+ Mϕ

4∑
i=1

{(
ϕ̈i − Ω2ϕi

)
cos (Ωt+ ψi)− 2Ωϕ̇i sin (Ωt+ ψi)

}
= 0 (9a)

Iδ δ̈i + cδ δ̇i + cϕ(δ̇i − ϕ̇i) + kδδi + k1 (δi − ϕi) + k3 (δi − ϕi)3 +Mδÿ cos (Ωt+ ψi) = 0, i = 1, 4(9b)

Iϕϕ̈i − cϕ(δ̇i − ϕ̇i)− k1 (δi − ϕi)− k3 (δi − ϕi)3 +Mδÿ cos (Ωt+ ψi) = 0, i = 1, 4. (9c)
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where " ˙ " denotes the derivative with respect to time t andMδ = mδLδ and Iδ = mδL
2
δ (respectively

Mϕ = mϕLϕ and Iϕ = mϕL
2
ϕ) are the static moment and the moment of inertia of each blade

(respectively NES).
It is important to note that the cosine and sine functions do not now depend on the angle

variables δi and ϕi (see for the record Eqs. (1)-(4)) as the result of the small angle assumption
(all the cosine and sine terms have been expanded in a first-order Taylor series around the trivial
equilibrium position).

2.2 Scaled equations of motion: the Reference Model (RefM)

Our objective is to show that the lightweight ungrounded NES can be effective passive absorbers
and local energy dissipators to mitigate instabilities.

Defining the lightweight of a NES with respect to a blade as the ratio of the moments of inertia

ε = Iϕ
Iδ
. (10)

and introducing the barycentric coordinates vi(t) and wi(t) as

vi = δi + ε ϕi and wi = δi − ϕi, for i = 1, · · · , 4, (11)

Eqs. (9) become



ÿ + ελyẏ + ω2
yy + 1

2(1 + ε)

4∑
i=1

{
(12a)

εΩ sin (Ωt+ ψi)
(
− (Sd + εTd)(Ω + εΩ + 2v̇i) + 2ε(Td − Sd)ẇi

)
+ε cos (Ωt+ ψi)

(
(Sd + εTd)(v̈i − Ω2vi)− ε(Td − Sd)(ẅi − Ω2wi)

)}
= 0 (12b)

v̈i + ελδ
v̇i + εẇi
ε+ 1 + ω2

δ

vi + εwi
ε+ 1 +

ε(Sc + εTc)ÿ cos (Ωt+ ψi) = 0, i = 1, 4 (12c)

ẅi + ελδ
v̇i + εẇi
ε+ 1 + ω2

δ

vi + εwi
ε+ 1 − ε(Tc − Sc)ÿ cos (Ωt+ ψi)

+µ(1 + ε)ẇ + α1(1 + ε)wi + α3(1 + ε)w3
i = 0, i = 1, 4 (12d)

where the following notations defining rescaled parameters

ω2
y = ky/ (my + 4(mδ +mϕ)) , (13a)
ω2
δ = kδ/Iδ, (13b)

ελy = cy/ (my + 4(mδ +mϕ)) , (13c)
ελδ = cδ/Iδ, (13d)
εµ = cϕ/Iδ, (13e)
εα1 = k1/Iδ, (13f)
εα3 = k3/Iδ, (13g)
εSc = Mδ/Iδ = 1/Lδ, (13h)
ε2Tc = Mϕ/Iδ, (13i)
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εSd = 2Mδ/ (my + 4(mδ +mϕ)) , (13j)
ε2Td = 2Mϕ/ (my + 4(mδ +mϕ)) , (13k)

have been used.
In the sequel, we will be assumed that ε� 1 with λy, λδ, µ, α1, α3, Sd, Td ,Sc, Tc ∼ O(1). We

point that expression (13i) definingMϕ/Iδ = ε/Lϕ is already of the order of ε. In the same way, if we
reason with scaled parameters S̃d = 2Mδ/ (my + 4(mδ +mϕ)) and T̃d = 2Mϕ/ (my + 4(mδ +mϕ)),
therefore, T̃d = S̃d (Mϕ/Mδ) = S̃dε (Lδ/Lϕ) = Sdε

2 (Lδ/Lϕ). Therefore, ε2 appears in Eqs. (13i)
and (13k) resulting of the assumption that the lengths Lδ and Lϕ are the same order of magnitude.
Eqs. (12) defines the Reference Model (RefM).

2.3 The time-invariant system

To develop an analytic method for characterizing the motions of the helicopter when Ground
Resonance (GR) can occur, RefM has to be reduced (and/or simplified) to a time-invariant system.
Classically, a Coleman transform [17] is used. Coleman transform consists in a change of variables
which transforms individual motions of the blades (described by the lagging angles) into collective
motions described by the so-called Coleman coordinates. Coleman transform applied to a linear
system with periodic coefficients gives a linear system with constant coefficients.

Here a complex transformation, first proposed in [30] and used for example in [28], is preferred
to Coleman transform because this complex transformation deals easily with nonlinearities. Indeed,
we can first work in the rotating reference frame applying the following complex transformation of
the variables vi and wi (for i = 1 to 4)

vi(t) =
4−1∑
k=0

ak(t)e−jkψi , with i = 1, · · · , 4 (14)

given equivalently

ak(t) = 1
4

4∑
i=1

vi(t)ejkψi , with k = 0, · · · , 3 (15)

and,

wi(t) =
4−1∑
k=0

bk(t)e−jkψi , with i = 1, · · · , 4 (16)

given equivalently

bk(t) = 1
4

4∑
i=1

wi(t)ejkψi , with k = 0, · · · , 3 (17)

with j2 = −1. The new variable ak and bk (for k = 0 to 3), called modal coordinates, are now
complex and satisfy the following relations a4−k = a∗k and b4−k = b∗k where " ∗ " is the usual notation
for the complex conjugate.

Substituting Eqs. (14) and (16) into Eqs. (12), it can be observed that the modal coordinates
a0 and a2 are uncoupled from a1, a3, b1, b3 and the rotor lateral vibration y. Moreover the modal
coordinates b0 and b2 are linearly uncoupled from a1, a3, b1, b3 and the rotor lateral vibration y.
In a linear approximation, the components a0, a2, b0 and b2 are neglected. Recalling that a3 = a∗1
and b3 = b∗1, we therefore consider only the equations of motion associated to y, a1 and b1. For
convenience, variables a1 and b1 are now noted simply a and b.
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(a) (b)

Figure 3: Evolution of imaginary (a) and real (b) parts of the eigenvalues of the vector function F1
evaluated at the trivial equilibrium. Parameters used: λy = 0.2, ωy = 1, Sd = 1, Td = 0.1, Sc = 3, Tc = 1,
λ = 0.2, ωδ = 2, µ = 0.2, α1 = 0.5 and ε = 0.1.

Finally, equations of motion are written in the inertia reference frame using the variables A and
B defined as follow

A(t) = a(t)ejΩt and B(t) = b(t)ejΩt. (18)

where A and B are also complex variables. The equations of motion associated to y, A and B

reduce to



ÿ + ελyẏ + ω2
yy + ε

Sd + εTd
1 + ε

(
Ä+ Ä∗

)
+ ε2

Sd − Td
1 + ε

(
B̈ + B̈∗

)
= 0 (19a)

Ä+
(
ελδ

1 + ε
− 2jΩ

)
Ȧ+ −Ω(Ω + ε(iλδ + Ω)) + ω2

δ

1 + ε
A+ 1

2ε (Sc + Tcε) ÿ + ε2λδ
1 + ε

Ḃ + ε
−jελδΩ + ω2

δ

1 + ε
B = 0(19b)

B̈ +
(
µ− 2jΩ + ε

(
µ+ λδε

ε+ 1

))
Ḃ + α1(1 + ε)2 + Ω

(
−j
(
ε2λδ + (1 + ε)2µ

)
− (1 + ε)Ω

)
+ εω2

δ

1 + ε
B

+1
2(Sc − Tc)εÿ + ελδ

1 + ε
Ȧ+ −jελδΩ + ω2

δ

1 + ε
A+ 3α3(1 + ε) |B|2B = 0. (19c)

High harmonic terms in e4jtΩ appearing in Eqs. (19c) have been ignored. The resulting equations
are now time-invariant system of equations. They will be used to perform linear stability analysis
of the trivial solution and also as starting point of the nonlinear analysis.
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3 Preliminary results

3.1 Ground resonance analysis

Helicopter ground resonance is a consequence of a dynamic instability which appears in the RefM
for given values of the rotor speed Ω. Considering the time-variant (or parametrically excited)
systems (9) or (12) the instability is a parametric combination resonance of the summed type,
see e.g. [31]. This king of instability can be analyzed using classical methods for linear time-
variant ordinary differential equations as Floquet theory, see e.g. [31, 32]. However, is it easier
(and equivalent) to perform the stability analysis on the time-invariant system (19) in which the
instability becomes a mode coupling instability. Usually, the ground resonance phenomenon is
analyzed on a time-invariant system resulting of Coleman transformation (see [18] for more details)
instead of the used complex transformation defined by Eqs. (14-17).

It is easy to show that the only fixed point of Eqs. (19) is the trivial solution y = A = A∗ = B =
B∗ = 0. As usual, stability of the fixed point is found by looking the sign of the eigenvalues real
parts of the Jacobian matrix of the vector function F1 evaluated at the trivial equilibrium. The
vector function F1 characterizes the system of Eqs. (19) when it is formally written in state-space
form

U̇ = F1 (U), with U =
[
y A A∗ B B∗ ẏ Ȧ Ȧ∗ Ḃ Ḃ∗

]t
. (20)

The evolution, with respect to the rotor speed Ω, of the 10 complex conjugates eigenvalues of the
Jacobian matrix of the vector function F1 are plotted in Fig. 3. Near Ω = ωy + ωδ, a phenomenon
of frequency coalescence is observed, the real part of one of the eigenvalues becomes positive and
a dynamic instability occurs; this is the helicopter ground resonance. Due to the presence of the
NES attachments, a second frequency coalescence appears near Ω = ωy + √α1 ≈ 1.7. This can
be a problem if one wants to build such a device. However, the assumption that the lengths Lδ
and Lϕ are the same order of magnitude leading to Eq. (13k) implies a weak coupling between the
NES and the fuselage. As a result, in this situation, this frequency coalescence does not produce a
dynamic instability. Indeed, no real part of the eigenvalues become positive (see Fig. 3(b)).

3.2 Some steady-state response regimes

Using numerical integration of the RefM, Eqs. (12), four different types of response regimes which
may be highlighted. They are classified into two categories depending on the fact that the trivial
solution of the RefM, calculated in Sect. 3.1, is stable or not:

• The trivial solution of the RefM is stable:

– Complete suppression. In this case, the additional damping due to the NES attachment
stabilizes the system and the GR instability is completely suppressed.

• The trivial solution of RefM is unstable:

– Partial suppression through Periodic Response (PR). In this case, the steady-state re-
sponse regime is periodic with frequency close to ωy1.

– Partial suppression through Strongly Modulated Response (SMR). In this case, the steady-
state response regime is a quasiperiodic regime which exhibits a "fast" component with
frequency close to ωy and a "slow" component corresponding to the envelope of the sig-
nal. The term "Strongly modulated response" has been introduced by Starosvetsky and
Gendelman [4] for the study of a harmonic forced linear system coupled to a NES.

1This can be shown for example by computing the power spectrum of the steady part of the signal.
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– No suppression of GR. The NES is not able to maintain stable steady-state regimes. We
observe exponential growth of the system.

These four responses are also observed by Bergeot et al. [26] when one NES is attached on the
fuselage of the helicopter.

4 Theoretical study: asymptotic analysis

Our objective is to develop a similar procedure as in Bergeot et al. [26] to characterize the periodic
solution with period ωy for Ω in the neighborhood of ωy+ωδ. The proposed method combines reduc-
tion by complexfication-averaging (CA-X) procedure [33, 3] and analysis using geometric singular
perturbation theory (GSPT) [34, 35, 36].

4.1 The slow-flow

Starting from Eqs. (19), complexification2 can be achieved re-writing the variable y as

ξ = ẏ + jωyy, (21)

giving reciprocally,

y = ξ − ξ∗

2jωy
, ẏ = ξ + ξ∗

2 and ÿ = ξ̇ − jωy
2 (ξ + ξ∗) . (22)

Then, averaging method is developed in the way of the complexification-averaging method first
introduced by Manevitch [33] and discussed in detail by Vakakis et al. [3]. Only the main steps are
given here after.

We assume that the variable ξ, A and B may be broken down into fast and slow components
introducing the following representation

ξ1 = φ1(τ)ejωyt , A = φ2(τ)ejωyt , B = φ3(τ)ejωyt, (23)

where τ = εt (τ defines the super-slow time scale, see hereafter for more details about this desig-
nation) and φi (with i ∈ [1, 3]) is the complex slow modulated amplitude of the fast component
ejωyt.

The following steps are performed to obtain the slow flow of Eqs. (19):

1. Eqs. (22) and (23) are substituted into Eqs. (19);

2. An averaging over one period of the frequency ωy is performed;

3. The resulting equations are written with respect to the super-slow time scale, taking into
account the fact that

dφi(τ)
dt

= ε
dφi(τ)
dτ

and d2φi(τ)
dt2

= ε2
dφi(τ)
dτ2 , (24)

4. The equations are rewritten with respect to the slow time scale t;

5. A first-order Taylor series around ε = 0 is performed.
2The complexification is not necessary for the variable A(t) and B(t) because they are already complex variables.
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Finally, Eqs. (19) are reduced as


φ̇1 = εf1 (φ1, φ2, φ3) (25a)
φ̇2 = εf2 (φ1, φ2, φ3) (25b)
φ̇3 = f3 (φ1, φ2, φ3, ε) (25c)

where the functions f1, f2 and f3 are given by

f1 (φ1, φ2, φ3) =
(
−λy2 φ1 + ω2

ySdφ2

)
(26a)

f2 (φ1, φ2, φ3) = − 1
2j

(
− jωySc

4ωδ
φ1 + (ωδ + 2σ + jλδ)φ2 − ωδφ3

)
(26b)

f3 (φ1, φ2, φ3, ε) = − ω2
δ

µ− 2jωδ
φ2 + ω2

δ − α1 + jµωδ
µ− 2jωδ

φ3 −
3α3

µ− 2jωδ
φ3 |φ3|2

− ε

µ− 2jωδ

(
jωy(Tc + Sc)

4 φ1 +
(
ω2
δ − jλδωδ

)
φ2 +

(
ω2
δ + α1 − 2σωδ − jµ(ωδ + σ)

)
φ3 + 3α3φ3 |φ3|2

)
.(26c)

Note that Ω has been replaced by

Ω = ωy + ωδ + εσ, (27)

introducing the detuning term σ (with σ ∼ O(1)) to analyze the system for Ω around ωy + ωδ.
Eqs. (25) describe the slow-flow of the RefM (12) and fixed points of this slow-flow trivially char-
acterize periodic responses of the RefM model. It will be called the Reduced Model (RedM).

4.2 Geometric singular perturbation analysis

Eqs. (25) can be transformed by switching from the slow time scale t to the super-slow time scale
τ = εt as


φ′1 = f1 (φ1, φ2, φ3) (28a)
φ′2 = f2 (φ1, φ2, φ3) (28b)
ε φ′3 = f3 (φ1, φ2, φ3, ε) , (28c)

where " ′ " denotes the derivative with respect to time τ .
Eqs. (25) and (28) highlight the "slow/fast" nature of the system (recalling that ε is small).

In this paper, we prefer to use the terminology introduced by Gendelman and Bar [6] for which
the terms fast and slow are replaced by slow and super-slow respectively, whereby the term fast is
reserved for the fast component ejωyt. Therefore, (25) and Eqs. (28) consist of one slow complex
variable φ3 and two super-slow complex variables φ1 and φ2. As already mentioned, Eq. (25) is the
slow-flow of the system written at the time scale t.

Some of steps that have been developed to obtain equivalently Eqs. (25) (or (28)) are very hard
to justify mathematically. So it will be important to numerically verify that the behaviors of the
solutions captured by RedM is also observed with the complete model RefM.

4.2.1 Definition of the Critical Manifold

Solutions of Eqs. (25) (or equivalently (28)), can exhibit slow and super-slow epochs character-
ized by the speed at which the solution advances. The Geometric Singular Perturbation Theory
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(GSPT) [34, 35, 36] is used to describe these dynamics for 0 < ε � 1. To achieve that, stating
ε = 0, Eqs. (25) and (28) are reduced respectively to the slow subsystem


φ̇1 = 0 (29a)
φ̇2 = 0 (29b)
φ̇3 = f3 (φ1, φ2, φ3, 0) , (29c)

and to the super-slow subsystem 
φ′1 = f1 (φ1, φ2, φ3) (30a)
φ′2 = f2 (φ1, φ2, φ3) (30b)
0 = f3 (φ1, φ2, φ3, 0) . (30c)

Then, we use the following result of the GSPT: if 0 < ε� 1, the dynamics of the system during
slow (resp. super-slow) epoch is given by the dynamic of the slow subsystem (29) (resp. super-slow
subsystem (30)).

The so-called Critical Manifold (CM) [35] associated to Eqs. (29) and (30) is defined by the
algebraic equation (30c) as

CM :=
{

(z1, z2, z3) ∈ C3 ∣∣ f3 (z1, z2, z3, 0) = 0
}
. (31)

The CM is the set of the fixed points of the slow subsystem Eqs. (29) and it is also the subspace
where the trajectories of Eqs. (30) take place.

From the expression of the function f3, the CM takes the form

φ2 = φ3F (|φ3|) , ∀φ1, (32)

where the complex-valued function F of a real positive variable is given by

F (x) = FR(x) + jFI(x) = 1− α1
ω2
δ

− 3α3
ω2
δ

x2 + j
µ

ωδ
. (33)

Note that the CM only depends on the resonance frequency of the blades and the damping and
the cubic spring constant of the NES.

The structure of the CM as defined by Eqs. (32) and (33) has the same form as the structure
of the CM obtained in [26] considering only one NES on the fuselage replacing the resonance
frequency ωy associated to the fuselage motion by the resonance frequency ωδ associated to the lag
motion. Moreover, this structure is similar to the structure of the CM obtained by Starosvetsky
and Gendelman [4]3 studying harmonic forced vibration of one DOF linear system coupled to a
NES and also in [10, 6] studying a nonlinear self-excitated system coupled to a NES. In [4, 10, 6] the
studied systems involve only two DOF therefore the CM is defined in C2. The distinctive feature
of this work is the fact that the system involves three DOF and hence the CM is defined in C3,
keeping an equivalent form in the (φ3, φ2)-space.

The CM can be analyzed in the real domain. To achieve this, polar coordinates are introduced

φ1 = N1e
jθ1 , φ2 = N2e

jθ2m and φ3 = N3e
jθ3 . (34)

and we compute successively the module and the argument of (32), that lies to
3In the reference [4] the critical manifolds is called Slow Invariant Manifold.
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(a) (b)

Figure 4: Critical Manifold (CM). Following parameters are used: ωδ = 2, α1 = 0.5, α3 = 2 and µ = 0.1.
(a) In the (N3, N2)-plane and (b) In the (N3, N2, N1)-space.


N2

2 = H(N3), (35a)

θ2 = θ3 + arctan
(
FI(N3)
FR(N3)

)
, (35b)

where

H(x) = x2
[
FR(x)2 + FI(x)2

]
, (36)

is a real-valued function.

The shape of the CM in the (N3, N2)-plane depends on the existence of local extrema of the
function H. The local extrema of the function H(x) are given by the positive roots of its derivative
H ′(x). An easy calculus shows that two local extrema occur at

N3,M = 1
3

√√√√2
(
ω2
δ − α1

)
+
√(

ω2
δ − α1

)2 − 3µ2ω2
δ

α3
(37)

N3,m = 1
3

√√√√2
(
ω2
δ − α1

)
−
√(

ω2
δ − α1

)2 − 3µ2ω2
δ

α3
, (38)

if the following relation holds

µ <
1√
3
ω2
δ − α1
ωδ

, (39)

and in this case N3,M < N3,m. This situation is illustrated Fig. 4(a). Including the third variable
φ1 as N1, the CM is a surface in the 3D-space plotted Fig. 4(b).
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4.2.2 Stability analysis on Critical Manifold

Stability analysis of the CM can be performed in terms of fixed points of the slow subsystem (29).
As in [4], it can be shown that the stability condition of the CM is equivalent to

H ′ (N3) > 0. (40)

Hence the stability range of the CM is characterized by the points (N3,m, N2,m) and (N3,M , N2,M )
where

N2,M =
√
H (N3,M ) and N2,m =

√
H (N3,m) (41)

which are therefore called fold points [37]. At each fold point it is associated a landing point,
(N3,d, N2,m) and (N3,u, N2,M ) respectively, where N3,d and N3,u are solutions of

H (N3,d) = H (N3,m) and H (N3,u) = H (N3,M ) (42)

respectively.
A typical Critical Manifold and it stability range are depicted in (N3, N2)-plane (see Fig. 4(a))

and in the (N3, N2, N1)-space (see Fig. 4(b)). In the (N3, N2, N1)-space, each fold point defines a
folded line (LM and Lm) co-linear to the N1-axis. The points N3,d and N3,u define respectively the
line Ld and Lu which are also co-linear to the N1-axis.

4.2.3 Steady-state regimes

The shape and the stability property of the CM (i.e. the existence of folded lines on which the
stability of the CM changes) shown in Fig. 4 allows to define at least three steady-state regimes of
the RedM model (25) in coherence with the steady-state response regimes described in Sect. 3.2.

To describe the steady regimes of the slow flow we consider situations on which, after an
transient regime, the trajectory of the system arrives at a point M0 on the CM. After that, three
steady-state regimes may be considered:

A fixed point of the RedM is reached. These situations corresponds to a periodic solutions
of the RefM. Note that to have equivalence between fixed point of the RedM and Periodic
Solutions (PR) of the RefM, the RedM must be written using polar coordinates and argument
differences must be considered, see Appendix A of [26] for more details.

Relaxation oscillations. The S-shape of the CM in the (N3, N2)-plane suggests also the possible
existence of relaxation oscillations [38]: from M0 the system reaches a point S0 ∈ LM , jumps
to a point S1 ∈ Lu and undergoes a super-slow evolution (in the stable domain of the CM)
until it reaches a point S2 ∈ Lm. After another jump from S2 to S3 ∈ Lu and a super-slow
evolution (in the stable domain of the CM), the trajectory of the system returns to S0 ∈ LM .
Such scenario of relaxation oscillations for the slow-flow can explain the existence of Strongly
Modulated Responses [10, 6, 4] (SMR) for the RefM. Note that if µ > 1√

3
ω2
δ−α1
ωδ

, the S-shape
nature of the CM is lost and therefore relaxation oscillations are note possible.

Explosion. Until a first jump the slow-flow evolves the same way as for relaxation oscillations
mechanism. However, instead of moving toward a stable fixed point or the folded line Lm, the
trajectory of the system follows the CM to the infinity. This scenario explains no suppression
regime for the RefM.

The existence of one of the three steady-state regimes described above (or an other) depends
of the position and the stability of the fixed points of the RedM (25). Indeed, a stable fixed point
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of the RedM placed on the stable part of the CM is a necessary condition to obtain PR of the
RefM (12). On the other hand, the relaxation oscillations of the RedM (i.e SMR for the RefM)
can exist if both folded lines LM and Lm have attractive parts. Position and stability of the fixed
points of Eq. (25) and attractivity (or repulsively) of the folded lines are determined through the
study of the super-slow subsystem (30).

4.2.4 Super-slow subsystem analysis

Introducing the CM Eq. (32) in Eqs. (30a) and (30b), the super-slow subsystem is written only
with respect to the variables φ1 and φ3


dφ1
dτ

= f1 (φ1, φ3F (|φ3|) , φ3) (43a)

d [φ3F (|φ3|)]
dτ

= f2 (φ1, φ3F (|φ3|) , φ3) . (43b)

Using the polar coordinates (34) and separating real and imaginary parts, Eqs. (43) can be
finally reduced (after some calculation steps) to the following form



g(N3)dN3
dτ

= fN3 (N1, N3, δ31) (44a)

g(N3)dδ31
dτ

= fδ31 (N1, N3, δ31) (44b)

dN1
dτ

= fN1 (N1, N3, δ31) , (44c)

where
g(x) = H ′(x)

2 . (45)

From Eqs. (44), it is possible to detect fixed points and folded singularities. The (regular) fixed
points of Eqs. (44), {N e

1 , N
e
3 , δ

e
31}, are defined by as

fN3 (N e
1 , N

e
3 , δ

e
31) = 0, (46a)

fδ31 (N e
1 , N

e
3 , δ

e
31) = 0, (46b)

fN1 (N e
1 , N

e
3 , δ

e
31) = 0 (46c)

g(N e
3 ) 6= 0. (46d)

If ε � 1, fixed points computed from Eqs. (46) corresponds to fixed points of the RedM
model (25). As usual, stability of the fixed points are found by looking the sign of the eigenvalues
real parts of the Jacobian matrix of the vector function F2 = (fN3/g, fδ31/g, fN1) evaluated at
{N e

1 , N
e
3 ,∆e

31}. From this, a theoretical bifurcation diagram can be obtained showing amplitudes
and stability range of the fixed point (resp. periodic regimes) of the RedM (25) (resp. RefM (12))
with respect of the detuning term σ.

As a remark, Eqs. (44) have the same form that the equivalent equations obtained when one
NES is attached on fuselage (see Eq. (68) of [26]). In the previous cited paper, detailed analysis
Eqs. (44) is proposed. In particular, folded singularities, which are signs of SMR in the system
and gives indications about attractivity (or repulsively) of the folded lines are highlighted and
computed. This analysis is not recalled here.
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(a) (b)

(c)

Figure 5: Comparison between theoretical bifurcation diagram, obtained from Eq. (46) (gray dots sta-
ble fixed points and black dots for unstable fixed points) and maximum steady-state amplitudes obtained
from numerical simulations of the RefM (12) (blue squares) and from numerical simulations of the RedM
model (25) (red circles). Bifurcation diagram and maximum steady-state amplitudes are plotted for the
variables (a) N1, (b) N2 and (c) N3 as a function of σ. When the trivial solution is unstable, parameter
range in which PR or SMR are observed are specified on the figure. The parameters used are: λy = 0.3,
ωy = 1, λδ = 0.2, ωδ = 2, Sd = 1, Td = 1, Sc = 2, Tc = 2, µ = 0.1, α1 = 0.05, α3 = 7 and ε = 0.01.

5 Benchmark of theoretical results and discussion

In this section, a bifurcation analysis deduced from the theoretical results discussed in previous
section is compared with a bifurcation analysis obtained from numerical integration of the RefM
model (12) and of the RedM model (25). The comparison between numerical simulations of RefM
and RedM (i.e. the slow-flow) is important because the capacity of the RedM to reproduce the
behavior of RefM reflect the validity and quality of all mathematical developments which derive
from (even those not presented in this paper). It is important to note that the NES is not subject
to an optimization. The parameters used in this section are chosen to illustrate with only two sets
of parameters the potential of the NES to modify the response regime after the bifurcation of the
trivial solution.

The detuning parameter σ is used as the bifurcation parameter. For each given σ, the solver
NDSolve available in Mathematica is used to solve the ordinary differential equations ((12) and (25))
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Figure 6: Comparison between the trajectory of the simulated RedM (25) in the plane (N3, N2) and the
Critical Manifold (35a). Parameters and initial conditions are the same as for Fig. 5 with σ = 0.

over [0, T ] with large T (long time integration to reach the steady state regime) with the following
options: MaxSteps → Infinity, AccuracyGoal → Automatic, PrecisionGoal → Automatic,
WorkingPrecision → MachinePrecision. The steady state-regimes are characterized by the
maximum amplitude of the considered signal evaluated on the end time interval [T − Tss, T ] (with
Tss � T ). Numerical bifurcation diagrams are then built starting from the smaller value of σ
solving the ordinary differential equations with initial conditions as a small perturbation of the
trivial solution and next increasing σ and solving the ordinary differential equations with initial
conditions corresponding to the steady-state regimes obtained for the previous value of σ.

A first comparison is shown in Fig. 5 where the bifurcation diagrams associated to the three
variables N1 (Fig. 5(a)), N2 (Fig. 5(b)) and N3 (Fig. 5(c)) are plotted for σ ∈ [−1.5, 1.5] (see Fig. 5
caption to know the used parameters). The chosen set of parameters (see Fig. 5 caption) has been
used to illustrate the suppression of the GR instability over a whole σ-interval [−1.5, 1.5]. The
corresponding numerical values of the parameters characterizing the RefM model (12) are deduced
from (13), they are not reported here.

First of all, it interesting to note that the responses obtained by numerical integrations of
Eqs. (12) and Eqs. (25) are very close. Moreover, these responses are also very close to the responses
predicted by the analytical method when the stability criterion is satisfied i.e for −1.5 ≤ σ ≤
−0.13 and 0.64 ≤ σ ≤ 1.5 (Fig. 5, gray dot markers). We can observe that, starting from σ =
−1.5, the transition from complete suppression of GR instability to partial suppression through
PR occurs when the trivial solution loses its stability (at σ ≈ −0.6, numerical value given by
the theoretical approach). In the same way, the transition from partial suppression through PR
to partial suppression through SMR, manifested as a jump of the steady-state amplitudes of the
numerical simulations, occurs when the stable fixed points of the RedM lose their stability (at
σ ≈ −0.13, numerical value given by the theoretical approach). For −0.13 < σ < 0.64, fixed points
of the RedM are unstable and SMR are observed on numerical simulations. Finally, for σ > 0.64
(numerical value given by the theoretical approach), the trivial solution get its stability back and
complete suppression is again observed on numerical simulations for both RefM and RedM.

To complete this first comparative study, a trajectory of the RedM (25) when SMR occurs is
plotted, Fig. 6, in the (N3, N2)-plane and compared to the Critical Manifold given by Eq. (35a).
The numerical value σ = 0 is used. This simulation illustrates the relaxation oscillations scenario.

These results illustrate how the analytical approach is able to predict different types of steady
state regimes and explain the suppression mechanism. However, two comments have to be made on
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(a) (b)

Figure 7: Comparison between numerical integration of the RefM (12) (gray line) and of the RedM
model (25) (black line). The parameters are the same as for Fig. 5 with σ = −0.3 and two set of initial
condition are used: (a) the systems are initialized close to its stable steady-state regime (fixed point for the
RedM and PR for the RefM), (b) the initial conditions are: y(0) = 0.3 for the RefM and φ1(0) = j0.3 for
the RedM, all others initial conditions are equal to zero.

the limitation of the proposed procedure. The first point concerns the existence of the SMR. The
proposed procedure allows finding only necessary conditions for the SMR and does not give any
sufficient condition as it time-invariant done for example in [4] considering external forced systems
problem or for example in [6] considering self-excited systems. Indeed, in works in which the super-
slow flow subsystem can be reduced to a one-dimensional system [39, 10, 6], global structure of
possible response regimes can be deduced from the linear stability analysis of the slow-flow (i.e. the
RedM). In our study, the super-slow subsystem (44) is a three-dimensional system. In this case,
the linear stability analysis is not sufficient to predict unequivocally the nature of the steady-state
response regimes. Indeed, depending of the initial conditions, a stable fixed point of the RedM
in the (δ31, N3, N1)-space can never be reached. The second point concerns the co-existence of
distinct stable steady-state responses. The nature of the steady-state response regimes (PR or
SMR) depends of the stability of the fixed points of the RedM but also of their basin of attraction.
In the example of Fig. 5 the basin of attraction of the stable fixed points reduces when σ approaches
the transition value σ ≈ −0.13. Consequently the transition from partial suppression through PR to
partial suppression through SMR may occur at a smaller value than that which corresponds to the
loss of stability of the fixed point of the slow-flow. This is illustrated in Fig. 7. Indeed, in Fig. 7(a),
the RefM and RedM are initialized with initial conditions close to the stable steady-regime and
the expected responses (periodic regime for the RefM and fixed point for the RedM) are actually
observed. In Fig. 7(b), other initial conditions are chosen (see figure caption the exact value)
and SMR is observed even if the fixed point of the RedM is stable. These previous observations
highlight that situations in which a competition between a stable fixed point and a stable relaxation
oscillations cycle of the slow-flow can occur. Similar problems due to the relatively high dimension
of the system was already encountered in previous study by the authors [26] and also when a NES
is used as a passive control device for a nonlinear elastic string, in internal resonance conditions,
excited by an external harmonic force [40].

A second comparison is shown in Fig. 8 considering the same set of numerical values except for
λy = 0.3, Sd = 1, α1 = 0.05 and α3 = 7. For this set of values, the suppression of the GR instability
is not satisfied over the whole σ-interval [−3, 3]. As in Fig. 5, starting from σ = −3., the transition
from complete suppression of GR instability to partial suppression through PR occurs when the
trivial solution loses its stability (at σ ≈ −1.8, numerical value given by the theoretical approach).
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(a) (b)

(c)

Figure 8: Comparison between theoretical bifurcation diagram, obtained from Eq. (46) (gray dots sta-
ble fixed points and black dots for unstable fixed points) and maximum steady-state amplitudes obtained
from numerical simulations of the RefM (12) (blue squares) and from numerical simulations of the RedM
model (25) (red circles). Bifurcation diagram and maximum steady-state amplitudes are plotted for the
variables (a) N1, (b) N2 and (c) N3 as a function of σ. When the trivial solution is unstable, parameter
range in which PR SMR or Explosion are observed are specified on the figure. The parameters used are:
λy = 0.075, ωy = 1, λδ = 0.2, ωδ = 2, Sd = 4, Td = 1, Sc = 2, Tc = 2, µ = 0.1, α1 = 0, α3 = 10 and ε = 0.01.

Partial suppression through PR is satisfied up to σ ≈ −1.45, where the stable fixed points of
the RedM lose their stability. For σ > 1.8 (numerical value given by the theoretical approach),
the trivial solution get its stability back and complete suppression is again observed. Finally, for
−1.45 ≤ σ ≤ 1.8, numerical simulations show responses with partial suppression through SMR and
responses with no suppression of GR. Unfortunately, the theoretical bifurcation diagram does not
give elements to discriminate SMR, the reason is also the fact that the super-slow subsystem (44)
is a three-dimensional system.

As a final remark, to conclude unequivocally about the nature of the steady-state response of
the system for a given set of parameters and a given set of initial conditions two informations are
missing: the stability range of the relaxation oscillations and the size of the basins of attraction of
the stable solutions. This may be subject of future work.

18



6 About the comparison between blade and fuselage NES attachments

The configuration using NES on the fuselage (as presented in [26]) and configuration using NES
attached directly on the blades (as presented here) have the same potential to mitigate GR insta-
bility.

This section does not present a rigorous comparison between the two configurations but only
few words about it are expounded. The reason is the fact that the efficiency of a NES depends of its
design. Therefore, the comparison between NES attached on the fuselage and NES attached on the
blades depends more, in our view, on the technical implementation of each solution, which is not the
purpose of the paper. However, the blade NES attachments leave more possibilities for engineers
for a possible implementation because in this case the small dimensionless parameter depends on
both the mass ratio and the squared length ratio between the NES and the blades. Regarding to
the fuselage NES attachment configuration in which the small dimensionless parameter depends
only on the mass ratio between the NES and the fuselage.

7 Conclusion

We studied the response of a ground resonance helicopter model including ungrounded NES at-
tached on the blades of the engine. An helicopter model involving fuselage, blades and the cubic
NES dynamics was reduced applying a complex multi-blade transformation to the blades and to
the NES, defining the Reference Model (RefM).

As usual, in the framework of NES properties exploration and particularly in the context of
dynamic instabilities mitigation, four steady-state response regimes were highlighted: complete
suppression, partial suppression through periodic response, partial suppression through strongly
modulated response and no suppression of the GR instability.

The first regime corresponds to the local stability of the trivial solution of the RefM. To explain
all the regimes the slow-flow of the system is determined using complexification-averaging (CA-X).
The presence of a small dimensionless parameter related to the moments of inertia of the NES in the
slow-flow system implies that it involves one "slow" complex variable and two "super-slow" complex
variables. The "super-slow/slow" nature of the system allowed us to use the so-called geometric
singular perturbation theory to analyze it.

In particular, the Critical Manifold of the slow-flow was determined as well as its theoretical bi-
furcation diagram which predicts the possible periodic responses of the RefM et their stability. The
S-shape of the Critical Manifold, involving two folded lines, and the associated stability properties
provide an analytical tool to explain the existence of three regimes: periodic response regimes,
strongly modulated response regimes and no suppression regimes which appear when the trivial
solution is unstable. Moreover, the theoretical bifurcation diagram gives indications about the
nature the steady-state responses of the system. However, because the super-slow flow subsystem
cannot be reduced to a one-dimensional system, the nature the steady-state responses cannot be
predicted unequivocally. Indeed, two informations are missing: the stability range of the SMR and
the size of the basins of attraction of the stable solutions. This may be subject of future work.
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