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The Adaptive sampling revisited

Introduction

The problem of estimating the number n of distinct keys of a large collection of N data is well known in computer science. It arises in query optimization of database systems. It has many practical applications. For example consider a stream (or log) of login events for a large popular website. We would like to know how many unique users login per month. A naive approach would be to insert each login credential into a set which is stored in memory. The cardinality of the set will of course be equal to the number of unique logins. However, if the number of distinct logins makes the cardinality of the set too large to fit into memory, this simple method will not work. While strategies involving more machines and/or writing to disk exist, see the paper by Rajaraman and Ullman [START_REF] Rajaraman | Mining of Massive Datasets[END_REF], the estimation technique we study here is an alternative requiring no additional infrastructure.

A classical algorithm is the adaptive sampling (AS), the original idea of which is due to Wegman in [START_REF] Wegman | Sample counting[END_REF]. The mean and variance of AS are considered by Flajolet in [START_REF] Flajolet | On adaptive sampling[END_REF] . Let us summarize the principal features of AS. Elements of the given set of N data are hashed into binary keys. These keys are infinitely long bit streams such that each bit has probability 1/2 of being 0 or 1. A uniformity assumption is made on the hashing function .

The algorithm keeps a bucket (or cache) B of at most b distinct keys. The depth of sampling, d which is defined below, is also saved. We start with d = 0 and throw only distinct keys into B. When B is full, depth d is increased by 1, the bucket is scanned, and only keys starting with 0 are kept. (If the bucket is still full, we wait until a new key starting with 0 appears. Then d is again increased by 1 and we keep only keys starting with 00). The scanning on the set is resumed and only distinct keys starting with 0 are considered. More generally, at depth d, only distinct keys starting with 0 d are taken into account. When we have exhausted the set of N data, n can be estimated by R2 D , where R is the random final bucket (cache) size and D is the final depth at the end of the process (total execution number of the process). R is the number of (all distinct) keys in the final cache and is immediately computed. We can summarize the algorithm with the following pseudo code AS has some advantages in terms of processing time and conceptual simplicity. As mentioned in [START_REF] Flajolet | On adaptive sampling[END_REF] (see also the paper by Astrahan et al. [START_REF] Astrahan | Approximating the number of unique values of an attribute without sorting[END_REF]), AS outperforms standard sorting methods by a factor of about 8. In terms of storage consumptions, using 100 words of memory will provide for a typical accuracy of 12%. This is to be contrasted again with sorting, where the auxiliary memory required has to be at least as large as the file itself. Also an exact algorithm using a hash table will need a huge auxiliary memory. Finally AS is an unbiased estimator of cardinalities of large files that necessitates minimal auxiliary storage and processes data in a single pass.

In a paper by Gibbons [START_REF] Gibbons | Distinct sampling for highly-accurate answers to distinct values queries and event reports[END_REF] we are introduced to the Distinct Sampling approach for distinct value queries and reports over streams with known error bounds. This approach is based on adaptive selection of a sample during one single pass through the data and is very similar conceptually to AS. This sample is then used to estimate key queries such as "count distinct" or how many distinct values satisfy a given predicate?, and "Event Reports" or pre-scheduled, hard coded queries.

In fact [START_REF] Gibbons | Distinct sampling for highly-accurate answers to distinct values queries and event reports[END_REF] shows experimental results which are more than 5 times more accurate than previous work and 2-4 orders of magnitude faster. This work is currently being considered for improved implementation of the widely used open source Postgres SQL database. See [22].

Several new interesting questions can be asked about AS (some of them were suggested by P. Flajolet and popularized by J. Lumbroso). The distribution of W = log(R2 D /n) is known (see [START_REF] Louchard | Probabilistic analysis of adaptative sampling[END_REF]), but in Sec.3, we rederive this distribution in a simpler way. In Sec. [START_REF] Barbour | An introduction to Stein's method[END_REF] we provide new results on the moments of D and W . The final cache size R distribution is analyzed in Sec.5. Colored keys are considered in Sec.6: assume that we have a set of colors and that each key has some color. Assume also that among the n distinct keys, n C do have color C and that n C is large such that n C n = p = Θ(1). We show how to estimate p. We consider keys with some multiplicity in Sec.7: assume that, to each key κ i , we attach a counter giving its observed multiplicity µ i . Also we assume that the multiplicities of color C keys are given by iid random variables (RV), with distribution function F C , mean µ C , variance σ 2 C (functions of C). We show how to estimate µ C and σ 2 C . Sec.8 deals with the case where neither colors nor multiplicities are known. We want to estimate color of keys, their multiplicities and their number. An appendix is devoted to the case where the hashing function provides bits with probability different from 1/2.

Preliminaries.

Let us first give the main notations we will use throughout the paper. Other particular notations will be provided where it is needed. 

Z := R2 D n , lg := log 2 , W := lg(Z),
Flajolet gives the exact distribution in [START_REF] Flajolet | On adaptive sampling[END_REF] p(r, d) The sample of R elements at the end of the execution is random as the hashed keys are i.i.d random variables: AS produces random samples.

:= P(R = r, D = d) = n r 1 2 d r 1 - 1 2 d n-r 1 - b-r k=0 n -r k 1 2 d k 1 - 1 2 d n-r-k , (1) p 
We can now see Adaptive Sampling as an urn model, where balls (keys), are thrown into urn D = d with probability 1/2 d . We recall the main properties of such a model.

• ASYMPTOTIC INDEPENDENCE.

We have asymptotic independence of urns, for all events related to urn d (d large) containing O(1) balls. This is proved, by Poissonization-De-Poissonization, in [START_REF] Hitczenko | Distinctness of compositions of an integer: a probabilistic analysis[END_REF], [START_REF] Louchard | The number of distinct values of some multiplicity in sequences of geometrically distributed random variables[END_REF] and [START_REF] Louchard | On gaps and unoccupied urns in sequences of geometrically distributed random variables[END_REF]. This technique can be biefly described as follows. First we construct the corresponding generating function. Then we Poissonize (see, for instance, the paper by Jacquet and Szpankowski [START_REF] Jacquet | Analytic depoissonization and its applications[END_REF] for a general survey): instead of using a fixed number of balls, we use N balls, where N is a Poisson random variable. It follows that the urns become independent and the number of balls in urn is a Poisson random variable. We turn then to complex variables, and with Cauchy's integral theorem, we De-Poissonize the generating function, using [START_REF] Jacquet | Analytic depoissonization and its applications[END_REF]Thm.10.3 and Cor.10.17].

The error term is O(n -γ ) where γ is a positive constant.

• ASYMPTOTIC DISTRIBUTIONS. We obtain asymptotic distributions of the interesting random variables as follows. The number of balls in each urn is asymptotically Poisson-distributed with parameter n/2 d in urn d containing O(1) balls (this is the classical asymptotic for the Binomial distribution). This means that the asymptotic number of balls in urn d is given by

exp -n/2 d n/2 d ! ,
and with η = d -lg n, L := ln 2, this is equivalent to a Poisson distribution with parameter e -Lη . The asymptotic distributions are related to Gumbel distribution functions (given by exp (-e -x )) or convergent series of such. The error term is O(n -1 ).

• UNIFORM INTEGRABILITY. We have uniform integrability for the moments of our random variables. To show that the limiting moments are equivalent to the moments of the limiting distributions, we need a suitable rate of convergence. This is related to a uniform integrability condition (see Loève's book [START_REF] Loève | Probability Theory[END_REF]Section 11.4]). For Adaptive Sampling, the rate of convergence is analyzed in detail in [START_REF] Louchard | Asymptotics of the moments of extreme-value related distribution functions[END_REF]. The error term is O(n -γ ).

• MELLIN TRANSFORM. Asymptotic expressions for the moments are obtained by Mellin transforms (for a good reference to Mellin transforms, see the paper by Flajolet et al. [START_REF] Flajolet | Mellin transforms and asymptotics: Harmonic sums[END_REF]). The error term is O(n -γ ). We proceed as follows (see [START_REF] Louchard | Asymptotics of the moments of extreme-value related distribution functions[END_REF] for detailed proofs): from the asymptotic properties of the urns, we have obtained the asymptotic distributions of our random variables of interest. Next we compute the Laplace transform φ(α) of these distributions, from which we can derive the dominant part of probabilities and moments as well as the (tiny) periodic part in the form of a Fourier series. This connection will be detailed in the next sections.

• FAST DECREASE PROPERTY. The gamma function Γ(s) decreases exponentially in the direction i∞:

|Γ(σ + it)| ∼ √ 2π|t| σ-1/2 e -π|t|/2 .
Also, this property is true for all other functions we encounter. So inverting the Mellin transforms is easily justified.

• EARLY APPROXIMATIONS. If we compare the approach in this paper with other ones that appeared previously, then we can notice the following. Traditionally, one would stay with exact enumerations as long as possible, and only at a late stage move to asymptotics. Doing this, one would, in terms of asymptotics, carry many unimportant contributions around, which makes the computations quite heavy, especially when it comes to higher moments. Here, however, approximations are carried out as early as possible, and this allows for streamlined (and often automatic) computations of the higher moments.

We set η = d -lg n, (1) leads to

p(r, d) ∼ f (r, η) = exp(-2 -η ) 2 -rη r! 1 -exp(-2 -η ) b-r k=0 2 -kη k! , (2) 
and similar functions for P (r, d). Asymptotically, the distribution will be a periodic function of the fractional part of lg n. The distribution P (r, d) does not converge in the weak sense, it does however converge along subsequences n m for which the fractional part of lg n m is constant. This type of convergence is not uncommon in the Analysis of Algorithms. Many examples are given in [START_REF] Louchard | Asymptotics of the moments of extreme-value related distribution functions[END_REF]. From (2), we compute the Laplace transform, with α := α/L:

φ(r, α) = ∞ -∞ e αη f (r, η)dη = Γ(r -α) Lr! - b-r k=0 Γ(r + k -α) Lr!k!2 r+k-α .
The k-th moments of Z are already given in [START_REF] Louchard | Probabilistic analysis of adaptative sampling[END_REF] and [START_REF] Louchard | Asymptotics of the moments of extreme-value related distribution functions[END_REF]. As shown in [START_REF] Louchard | Probabilistic analysis of adaptative sampling[END_REF], we must have k ≤ b. For the sake of completeness, we repeat them here, with χ l := 2lπi L , k i denoting the Stirling number of the second kind, and V(X) denoting the Variance of the random variable X:

E[Z k ] ∼ m 1,k + w 1,k , m 1,k = 1 + (b -k)! L k-1 i=1 k i 2 k-i -1 (k -i)(b -i)! , w 1,k = l =0 1 L k-1 j=1 k j (1 -2 k-j Γ(j -k + χ l ) b -k + χ l b -j e -2lπi lg n , m 1,1 = 1, w 1,1 = 0, m 1,2 = 1 + 1 (b -1)L , V(Z) ∼ 1 (b -1)L . (3) 
w i,j will always denote a periodic function of lg n of small amplitude. Note that, in [START_REF] Flajolet | On adaptive sampling[END_REF], Flajolet already computed m 1,1 , m 1,2 , w 1,1 and w 1,2 .

3 Asymptotic distribution of W = D -lg n + lg R W corresponds to the bit size of Z and has some independent interest. Let us recover this distribution from (2). In the sequel, we will denote E(Y |A)P (A) by E(Y ; A), with Y either a Boolean event or a random variable. We have the following theorem Theorem 3.1 The asymptotic distribution of W = D -lg n + lg R, with R > 0 is given by

P(W ≤ α, R > 0) ∼ b r=1 l≥0 exp(-2 -ϕ ) 2 -rϕ r! 1 -exp(-2 -ϕ ) b-r k=0 2 -kϕ k! , where {x} := fractional part of x, ϕ := {lg n} -lg r + α -{lg n} -.
Proof.

P(W ≤ α, R > 0) = P[D ≤ lg n -lg R + α, R > 0] = P[D ≤ lg n + {lg n} -lg R + α , R > 0] ∼ b r=1 ≥0 exp(-2 -(η-) ) 2 -r(η-) r! 1 -exp(-2 -(η-) ) b-r k=0 2 -k(η-) k! , with η = {lg n} -lg r + α -{lg n}, or P(W ≤ α, R > 0) ∼ b r=1 l≥0 exp(-2 -ϕ ) 2 -rϕ r! 1 -exp(-2 -ϕ ) b-r k=0 2 -kϕ k! , with ϕ := {lg n} -lg r + α -{lg n} -.
This is exactly Theorem 4.1 in [START_REF] Louchard | Probabilistic analysis of adaptative sampling[END_REF] that we obtain here in a simpler way.

Moments of D -lg n and W

Recall that D is the final depth (number of times the cache is filtered = number of times the cache overflows). Two interesting parameters are given by the moments of D -lg n and W . Their asymptotic behaviour is given as follows, with ψ(x) denoting the digamma function (the logarithmic derivative of Γ(x))

Theorem 4.1 The moments of D -lg n and W are asymptotically given by

E[(D -lg n) k ; R = r] ∼ mk,r + wk,r ,
where mk,r := φ (k) (r, 0),

w k,r = l =0 φ (k) (r, α) α=-Lχ l e -2lπi lg n .
For instance Proof. Using the techniques developed in [START_REF] Louchard | Asymptotics of the moments of extreme-value related distribution functions[END_REF], we obtain the dominant (constant) part of the moments of D as follows:

m1,r = - ψ(r) L 2 r + b-r k=0 (ψ(r + k) -L)2 -(r+k) Γ(r + k) L 2 Γ(r + 1)Γ(k + 1) , r > 0, m1,0 = 1 2 + γ L + b k=1 (ψ(k) -L)2 -k kL 2 , w1,r = l =0 - ψ(r + χ l )Γ(r + χ l ) L 2 Γ(r + 1) + b-r k=0 (ψ(r + k + χ l ) -L)2 -(r+k) Γ(r + k + χ l ) L 2 Γ(r + 1)Γ(k + 1) e -2lπi lg n , r > 0, w1,0 = l =0 - ψ(χ l )Γ(χ l ) L 2 + b k=0 Γ(k + χ l ) L 2 k!2 k (ψ(k + χ l ) -L) . E(W ; R > 0) ∼ b r=1 m1,
E[(D -lg n) k ; R = r] ∼ mk,r + w k,r ,
where the non-periodic component is given by mk,r := φ (k) (r, 0), and the corresponding periodic term is given by

w k,r = l =0 φ (k) (r, α) α=-Lχ l e -2lπi lg n .
This was already computed in [START_REF] Louchard | Asymptotics of the moments of extreme-value related distribution functions[END_REF], but with some errors. The first corrected values are now provided.

As W = D -lg n + lg R, the rest of the proof is immediate

It will be useful to obtain an asymptotic for the expectation of D -lg n (non-periodic component) for large b. This is computed as follows. First of all, we rewrite b r=1 m1,r as

b r=1 m1,r = - b r=1 ψ(r) L 2 r + b u=1 u r=1 1 Γ(r + 1)Γ(u -r + 1) (ψ(u) -L)2 -u Γ(u) L 2 .
Now it is clear that the main contribution of the second term is related to large u. So we set r = u 2 + v. This gives, by Stirling,

Γ(r + 1) ∼ e -(u/2+v) e v+v 2 /u u 2 u/2+v √ πu,
and

Γ(r + 1)Γ(u -r + 1) ∼ e -u e 2v 2 /u u 2 u πu.
By Euler-Maclaurin, we have 

∼ 1 2 + γ L + b u=1 - ψ(u) L 2 u + (ψ(u) -L)2 -u uL 2 + (ψ(u) -L)2 -u Γ(u) L 2 e u u 2 u √ 2πu ,
and, to first order,

E(D -lg n) ∼ b r=0 m1,r b ∼ 1 2 + γ L - b u=1 1 Lu ∼ -lg b + O(1) (4) 
The expected total time cost of the algorithm, C n , is given by

E[C n ] = nO(lg b) + E[D]O(b) = nO(lg b) + lg nO(b),
where O(lg b) is the update cost of the cache for each key (we assume an efficient implementation of the cache, for instance a binary search tree) and O(b) is the update cost of the cache at each process execution.

Distribution of R

The asymptotic moments and distribution of the cache size R are given as follows Theorem 5.1 The non-periodic components of the asymptotic moments and distribution of R are given by

E(R) ∼ b 2L , E(R 2 ) ∼ b(3b + 1) 8L , V(R) ∼ b(3Lb -2b + L) 8L 2 , P(R = r) = p(r, .) ∼ 1 L 1 r - b-r k=0 Γ(r + k) r!k!2 r+k , r ≥ 1,
Similarly, the periodic components are given by

w 1 (R) = b r=0 r l =0 φ(r, -Lχ l )e -2lπi lg n , w 2 (R) = b r=0 r 2 l =0 φ(r, -Lχ l )e -2lπi lg n , w 0 (r) = l =0 φ(r, -Lχ l )e -2lπi lg n
Proof. We have

P(R = r) = p(r, .) ∼ φ(r, 0) = 1 L 1 r - b-r k=0 Γ(r + k) r!k!2 r+k , r ≥ 1,
and p(0, .) = 1 - b 1 p(r, .), with b 1 p(r, .) ∼ 1 L H b - b r=1 b-r k=0 Γ(r + k) r!k!2 r+k = 1 L H b - b u=1 (u -1)! 2 u u r=1 1 r!(u -r)! ,
Where H n denotes the n -th harmonic number. This quantity was already obtained in [START_REF] Louchard | Probabilistic analysis of adaptative sampling[END_REF] after some complicated algebra! This leads to p(0, .) ∼ 1 - which is also the probability of Z = 0. This is also easily obtained from lim r→0 φ(r, 0). Figure 1 gives p(r, .) for b = 50

The moments of R are computed as follows.

E(R) = b r=1 rp(r, .) ∼ 1 L b - b u=1 (u -1)! 2 u u r=1 r r!(u -r)! = 1 L b - b u=1 1 2 u [2 u-1 ] = b 2L .
More generally, the generating function of p(r, .) is given by

b r=1 z r p(r, .) ∼ 1 L b r=1 z r r - b u=1 (u -1)! 2 u u r=1 z r r!(u -r)! = 1 L b r=1 z r r - b u=1 1 u2 u [(1 + z) u -1] .

This leads to

E(R 2 ) ∼ b r=1 r 2 p(r, .) = b(3b + 1) 8L , V(R) ∼ b(3Lb -2b + L) 8L 2 .
Similarly, the periodic components are given by

w 1 (R) = b r=0 r l =0 φ(r, -Lχ l )e -2lπi lg n , w 2 (R) = b r=0 r 2 l =0
φ(r, -Lχ l )e -2lπi lg n .

Colors

Seasonal, or temporal context, has become increasingly important in data mining [START_REF] Chae | Spatiotemporal social media analytics for abnormal event detection and examination using seasonaltrend decomposition[END_REF]. For example its often important to be able to group events by the time which they occur or to understand event periodicity. We can represent different temporal contexts with colors. This motivates our analysis of colored keys.

Assume that we have a set of colors and that each key has some color. Let us give a simple example. We might be interested in knowing, for instance, the proportion p of elements whose multiplicity is below some constant M . So we say that such elements are of color "white", while the rest are of color "black". We attach to each distinct key κ a counter ν giving the number of times (multiplicity) this key appears in the sample. At the end of AS, we have in the cache U W white keys. AS produces random samples and it can gather exact counts of the frequency of the sampled elements (since a sampled element enters the sample in its very first occurrence and if an element is kicked out from the sample, it will never be sampled again).

This leads to the unbiased estimates ñW = 2 D U W , ñ = 2 D R, pW = U W /R. We note that the observed multiplicities will be used with more detail in Sec. 7, 8. Another example is as follows. A situation naturally maps to real life situations when data is "strongly seasonal". Such is the case when noisy "seasonal" differences in data are to be naturally expected, and therefore to be ignored when performing analytics of a data stream. For example, even though the number of viewers on two consecutive baseball games might show the second game receiving roughly half as many views as the first, it makes little sense to conclude that the baseball team is becoming less popular if the first was a night game and the second a weekend day game. See the report by Wong et al. [START_REF] Wong | Rad -outlier detection on big data[END_REF] for an example of outlier detection where seasonality must be ignored.

Assume now that among the n distinct keys, n C do have color C and that n C is large such that n C n = p = Θ(1), q := 1 -p. In the cache, the R keys (we assume R > 0) contain U keys with color C with probability distribution

P(U = u|R = r) = n C u n-n C r-u n r
, and, if r = o(n), this is asymptotically given by the conditioned binomial distribution Bin(r, p). We want to estimate p. We are interested in the distribution of the statistic p = U/R . We have Theorem 6.1 The asymptotic moments of the statistic p = U/R are given by

E U R ; R > 0 ∼ p, E U R 2 ; R > 0 ∼ p 2 + pqE 1 R ; R > 0 , (5) 
V U R ; R > 0 ∼ pqE 1 R ; R > 0 .
Proof. We have

P U R ≤ α; R > 0 = P(U ≤ αR; R > 0] ∼ b r=1 p(r, .) αr u=0 r u p u q r-u . (6) 
Now, conditioned on R, we have

E(U |R) ∼ Rp, E(U 2 |R) ∼ Rpq + R 2 p 2 .
So, conditioned on R,

E U R ∼ p, E U R 2 ∼ p 2 + pq R ,
and, unconditioning leads to the theorem.

Intuitively, if the cache size b is large, we should have an asymptotic Gaussian distribution for U/R. Actually, the fit is quite good, even for b = 30 (and p = 0.2). This is proved in the next subsections.

6.1 The distribution of U/R for large b .

Let R be a (possibly degenerate) random variable taking values on the (strict) positive integers. Conditionning on R, let U ∼ Bin(R, p) for some known 0 < p < 1, and set Y = U/R. It appears that, as R grows large, the distribution of Y becomes asymptotically Gaussian. This claim can be made precise as follows.

Theorem 6.2 Let V ∼ N (0, 1) and write Y * = √ R Y -p √ pq . Then there exists an absolute constant κ ∈ R such that

d W (Y * , V ) ≤ κE 1 √ R for d W (Y * , V
) the Wasserstein distance between the law of Y * and that of V ; moreover this constant is such that

κ ≤ q 2 -p 2 √ pq + 4 p 3 + q 3 pq -1 1/2 .
Proof. We will prove this theorem using the Stein methodology which, for h ∈ H, (H is a nice class of test functions), suggests to write

Eh(Y * ) -Eh(V ) = E (Y * f (Y * ) -f (Y * )) with f := f h such that xf (x) -f (x) = h(x) -Eh(V ). (7) 
(this is known as the Stein equation for the Gaussian distribution) so that

d W (Y * , V ) = sup h∈H E |h(Y * ) -h(V )| ≤ sup f h |E (Y * f (Y * ) -f (Y * ))| . (8) 
The reason why ( 8) is interesting is that properties of the solutions f of ( 7) are well-known -see, e.g., [4, Lemma 2.3] and [5, Lemma 2.3] -and quite good so that they can be used with quite some efficiency to tackle the rhs of ( 8). In the present configuration we know that f h is continuous and bounded on R, with

f h ≤ min (2 h -Eh(V ) , 4 h ) (9) 
and

f h ≤ 2 h . (10) 
In particular, if H is the class of Lipschitz-1 functions with h ≤ 1 (this class generates the Wasserstein distance) then f h ≤ 4 and f h ≤ 2.

These will suffice to our purpose. Our proof follows closely the standard one for independent summands (see, e.g., [START_REF] Ross | Fundamentals of Stein's method[END_REF]Section 3]). First we remark that, given R ≥ 1, we can write Y * as

Y * = 1 √ R R i=1 ξ i
where, taking X i i.i.d. Bin(1, p), we let ξ i = (X i -p)/ √ pq (which are centered and have variance 1).

Next, for r ≥ 1 and 1 ≤ i ≤ r, define

Y * r i = Y * - 1 √ r ξ i = 1 √ r j =i ξ j .
Next take f solution of ( 7) with h some Lipschitz-1 function. Then note that E {ξ i f (Y * r i )} = 0 for all 1 ≤ i ≤ r. We abuse notations and, given R, write

Y * R i = Y * i . Then E {Y * f (Y * ) | R} = E 1 √ R R i=1 ξ i f (Y * ) R = E 1 √ R R i=1 ξ i (f (Y * ) -f (Y * i )) R = E 1 √ R R i=1 ξ i (f (Y * ) -f (Y * i ) -(Y * -Y * i )f (Y * )) R + E 1 √ R R i=1 ξ i (Y * -Y * i )f (Y * ) R so that |E {Y * f (Y * ) -f (Y * ) | R} | ≤ E 1 √ R R i=1 |ξ i (f (Y * ) -f (Y * i ) -(Y * -Y * i )f (Y * ))| R + E f (Y * ) 1 - 1 √ R R i=1 ξ i (Y * -Y * i ) R =: |χ 1 (R)| + |χ 2 (R)|. Recall that Y * -Y * i = 1 √ R ξ i .
Then (by Taylor expansion) we can easily deal with the first term to obtain

|χ 1 (R)| = f 2 1 √ R E |ξ 1 | 3 .
Taking expectations with respect to R and using [START_REF] Hitczenko | Distinctness of compositions of an integer: a probabilistic analysis[END_REF] we conclude

E|χ 1 (R)| ≤ E |ξ 1 | 3 E 1 √ R . ( 11 
)
For the second term note how

|χ 2 (R)| = E f (Y * ) 1 - 1 R R i=1 ξ 2 i | R = E f (Y * ) R R i=1 1 -ξ 2 i R ≤ f R E R i=1 1 -ξ 2 i R . Since E R i=1 1 -ξ 2 i | R = 0 we can pursue to obtain |χ 2 (R)| ≤ f R V R i=1 (1 -ξ 2 i ) R = f √ R V (ξ 2 1 )
where we used (conditional) independence of the ξ i . Taking expectations with respect to R and using [START_REF] Gibbons | Distinct sampling for highly-accurate answers to distinct values queries and event reports[END_REF] we deduce (recall

V ξ 2 1 = Eξ 4 1 -1) E|χ 2 (R)| ≤ 4 Eξ 4 1 -1E 1 √ R . ( 12 
)
Combining ( 11) and ( 12) we can conclude

d W (Y * , V ) ≤ E|ξ 3 1 | + 4 Eξ 4 1 -1 E 1 √ R .
The claim follows.

So we need the moments of 1/R for large b (we limit ourselves to the dominant term).

Moments of 1/R, R > 0 for large b

We have the following property Theorem 6.3 The asymptotic moments of 1/R, R > 0 for large b, with R > 0 are given by

E 1 R α ; R > 0 b ∼ 1 Lαb α (2 α -1), α > 0.
Proof. We have

E 1 R ; R > 0 = b r=1 p(r, .)/r ∼ 1 L b r=1 1 r 2 - b u=1 (u -1)! 2 u u r=1 1 rr!(u -r)! = 1 L H (2) b - b u=1 1 2 u 2 F 2 [[1, -u + 1]; [2, 2]; -1] = 1 L -ψ(1, b + 1) + π 2 6 - ∞ u=1 1 2 u 2 F 2 [[1, -u + 1], [2, 2], -1] + 1 L ∞ u=b+1 1 2 u 2 F 2 [[1, -u + 1], [2, 2], -1].
where ψ(n, x) is the nth polygamma function, that is the nth derivative of the digamma function ψ(x) = Γ (x)/Γ(x) and 2 F 2 is the hypergeometric function.

But (i) ∞ u=1 1 2 u 2 F 2 [[1, -u + 1], [2, 2], -1] = ∞ r=1 ∞ u=r (u -1)! 2 u rr!(u -r)! = ∞ r=1 1 r 2 ∞ u=r (u -1)! 2 u (r -1)!(u -r)! = ∞ v=0 1 (v + 1) 2 ∞ u=v+1 (u -1)! 2 u v!(u -v -1)! = ∞ v=0 1 (v + 1) 2 ∞ w=v w! 2 w+1 v!(w -v)! = 1 2 ∞ v=0 1 (v + 1) 2 ∞ w=v w v 2 -w = 1 2 ∞ v=0 1 (v + 1) 2 ∞ s=0 s + v v 2 -(s+v) = 1 2 ∞ v=0 1 (v + 1) 2 2 -v ∞ s=0 -v -1 s (-2) -s = 1 2 ∞ v=0 1 (v + 1) 2 2 -v 1 - 1 2 -(v+1) = ∞ v=0 1 (v + 1) 2 = ζ(2) = π 2 6 . (13) 
Now

ψ(1, b + 1) b ∼ 1 b + O 1 b 2 ,
and

∞ u=b+1 1 2 u 2 F 2 [[1, -u + 1], [2, 2], -1] = T 1 + T 2 ,
where (i) We are indebted to H.Prodinger for this identity

T 1 = b+1 r=1 ∞ u=b+1 (u -1)! 2 u rr!(u -r)! = 1 2 b v=0 1 (v + 1) 2 ∞ w=b w v 2 -w , T 2 = ∞ r=b+1 ∞ u=r (u -1)! 2 u rr!(u -r)! = 1 2 ∞ v=b 1 (v + 1) 2 ∞ w=v w v 2 -w = 1 2 ∞ v=b 1 (v + 1) 2 2.
In order to compute T 1 , we now turn to the asymptotics of w v 2 -w for large w. We obtain, by Stirling and setting w = 2v + α,

w v 2 -w ∼ e -w w w √ 2πw e -(w-v) (w -v) w-v 2π(w -v)2 w e -v v v √ 2πv = e -(2v+α) (2v + α) 2v+α 2π(2v + α) e -(v+α) (v + α) v+α 2π(v + α)2 2v+α e -v v v √ 2πv ∼ e -v (2v) 2v+α 1 + α 2v 2v+α √ 2 v v+α 1 + α v v+α 2 2v+α e -v v v √ 2πv ∼ e α+ α 2 4v √ 2 
e α+ α 2 2v √ 2πv ∼ e -α 2 4v √ πv = 2 e -α 2 2σ 2 √ 2πσ ,
with σ 2 = 2v. This is a Gaussian function, centered at 2v with variance σ 2 = 2v. So, by Euler-Maclaurin, replacing sums by integrals, we obtain 13), but this will not be used in the sequel, and finally

• if b/2 < v ≤ b, ∞ w=b w v 2 -w b ∼ 2, • if 0 ≤ v < b/2, ∞ w=b w v 2 -w is exponentially negligible , • if v ≥ b, ∞ w=b w v 2 -w = 2 by (
T 1 + T 2 b ∼ 1 2   2 b v=b/2 1 (v + 1) 2 + 2 ∞ v=b 1 (v + 1) 2   b ∼ 2 b .
This leads to

E 1 R ; R > 0 b ∼ 1 L 2 b - 1 b = 1 Lb . (14) 
In the neighbourhood of v = b/2, only part of the Gaussian is integrated. But if we choose an interval

∆ := [b/2 -b 5/8 , b/2 + b 5/8 ], (b 5/8 σ), this contributes to O ∆ 1 v 2 dv = O(b -5/8 ) = o(1/b).
Similarly, we derive (we omit the details)

E 1 R 2 ; R > 0 b ∼ 3 2Lb 2 , V 1 R 2 ; R > 0 b ∼ 1 b 2 3 2L - 1 L 2 , E 1 R 1/2 ; R > 0 b ∼ 2( √ 2 -1)/(L √ b).
More generally,

E 1 R α ; R > 0 b ∼ 1 Lαb α (2 α -1), α > 0
Now we obtain, by [START_REF] Chae | Spatiotemporal social media analytics for abnormal event detection and examination using seasonaltrend decomposition[END_REF] and Thm 6.2 the following Thm Theorem 6.4 The limiting distribution of U/R for large b is Gaussian.

Note that, by ( 5) and ( 14), we obtain

E U R 2 ; R > 0 b ∼ p 2 + pq Lb , V U R ; R > 0 b ∼ pq Lb . (15) 
This provides a confidence interval for p. With a confidence level of 5% for instance, we have

U R -2 pq Lb ≤ p ≤ U R + 2 pq Lb ,
and, as we can estimate p by U R , this leads to

  U R -2 U R 1 -U R Lb ≤ p ≤ U R + 2 U R 1 -U R Lb   .

Several Colors

If we are interested in the joint distribution of the statistic U 1 /R, . . . U k /R, which correspond to k different colors among the present colors, we have an asymptotic conditional multinomial distribution. For instance, for k = 2, this leads to

r u 1 , u 2 , r -u 1 -u 2 p u1 1 p u2 2 (1 -p 1 -p 2 ) r-u1-u2 , with mean rp 1 , rp 2 . So E U 1 R ; R > 0 = p 1 , E U 2 R ; R > 0 = p 2 ,
and we obtain similarly, conditioned on R

E(U 1 U 2 ) = R(R -1)p 1 p 2 , E U 1 R U 2 R = p 1 p 2 - p 1 p 2 R ,
and, unconditioning,

E U 1 R U 2 R ; R > 0 b ∼ p 1 p 2 - p 1 p 2 Lb , or Cov U 1 R , U 2 R ; R > 0 b ∼ - p 1 p 2 Lb .

Multiplicities of colored keys

Counting the distinct number of keys is import for mining search engine data, see the paper by Kane et al [START_REF] Kane | An Optimal Algorithm for the Distinct Elements Problem[END_REF]. It is important for search engines to correctly identify seasonal (colors) queries and make sure that their results are temporally appropriate. See the conference paper by Shokouhi, [START_REF] Shokouhi | Detecting seasonal queries by time-series analysis[END_REF]. For example, queries with the key "Wimbledon" would take on a different color (season) throughout the year. In the winter we might return general information about the tennis tournament. In the spring perhaps logistics, travel and start date become more important. After the tournament starts the results of the matches become more relevant. During the championship match the local broadcast is the most relevant. One might be interested in estimating the size of these different seasons. How many tennis related queries do we expect to occur during the Wimbledon final? Assume that the multiplicities of color C keys are given by iid random variables (RV), with distribution function F C , mean µ C , variance σ 2 C (functions of C), all unknown. We want to estimate µ C and σ 2 C . Of course, we can estimate µ C by μC = N C /n C where N C is the total number of observed color C keys and n C is the number of distinct color C keys among the n distinct keys. n C is classically estimated by 2 D U (recall that U is the number of color C keys among the R distinct keys in the cache). But the classical AS algorithm is not efficient enough to provide an estimate for σ 2 C . We proceed as follows: to each color C key κ i , we attach a counter giving its observed multiplicity µ i . From Section 6 (see( 15)), we can estimate p := n C /n by p = (U/R; R > 0). We have

E(p; R > 0) b ∼ p, V(p; R > 0) b ∼ pq Lb .
Also, we can estimate mean µ C and variance σ 2 C by μC and σ2 C as given by (the observed multiplicities are extracted in the cache at the end of AS)

μC := V U , V := U 1 µ i , σ2 C := U 1 (µ i -μC ) 2 U .
Next we estimate n by ñ = R2 D (see Sec. 2). We have, conditioned on U , Theorem 7.1 The moments of μ = V /U are given by

E(μ) = µ, E(μ 2 ) = µ 2 + σ 2 E 1 U , V(μ) = σ 2 E 1 U .
Proof. We only need

E V 2 U 2 U = U σ 2 + U 2 µ 2 U 2 U
. Now we estimate n C by ñC = ñp = 2 D U . But if we have two independent RV, X, Y , with mean and variance respectively m X , m Y , σ 2 X , σ 2 Y , it is easy to see that

E(XY ) = m X m Y , (16) 
V(XY ) = σ 2 X m 2 Y + σ 2 Y m 2 X + σ 2 X σ 2 Y .
Here, our RV are not independent, but we can check that ( 16) is correct. The relation for the variances gives us a useful approximation. For instance

E(ñ C ) b ∼ np = n C
, and, using (3),

V(ñ C ) ∼ V(ñ)p 2 + V(p)n 2 + V(ñ)V(p) b ∼ n 2 p(Lb -L + pL + 1 -p) L 2 (b -1)b b ∼ n 2 p Lb for large b.
It remains to estimate E 1 U in order to complete E(μ 2 ), V(μ). Using the binomial distribution Bin(r, p) does not lead to a tractable expression. But, as R is large whp, we can use the Gaussian approximation for U as follows: conditioned on R = r, we have

E 1 U ∼ r 1 exp -(u-rp) 2 2rpq √ 2πrpqu du ∼ rq -rp exp -v 2 2rpq √ 2πrpq 1 rp 1 - v rp + v 2 r 2 p 2 + . . . ∼ ∞ -∞ exp -v 2 2rpq √ 2πrpq 1 rp 1 - v rp + v 2 r 2 p 2 + . . . ∼ 1 rp 1 + q rp .
Unconditionning, this gives

E 1 U ; R > 0 b ∼ 1 Lbp + 3q 4p 2 Lb 2 b ∼
1 Lbp that we insert now into Thm 7.1.

The Black-Green Sampling

This analysis was motivated by an oral question by P. Flajolet. In this section, we analyze a case in some sense opposite to the one of Sec. 6: here we do not observe the color of each key. At first sight, all colors are black. Nevertheless, observing their multiplicities, we want to recover their colors at the end of the algorithm.

One difficulty encountered in clustering multidimensional data streams is in maintaining summaries of each cluster which are often space intensive. Methods such as CSketch have been developed which use a count-min sketch to store the frequencies of attribute-value combinations in each cluster, see the paper by C. Aggarwal [START_REF]A Framework for Clustering Massive-Domain Data Streams[END_REF] and [START_REF] Swan | Data Mining[END_REF]. This motivates the model we study below, where from a slight variant of AS, we recover estimates of the number of keys appearing with each frequency (hence their colors).

We have two models: in Model I: only multiplicities can be observed, in Model II AS is speeding up when we can observe one extra color Model I: only multiplicities can be observed Assume that there are n distinct keys, among which n i = np i (0 < p i < 1) do have color C i , i = 1 . . . k. Assume also that each distinct color C i key κ i appears µ i times in the sample, all µ i s being different, but we can't observe the keys colors. So N = k 1 n i µ i . We want to estimate n, n i , µ i , all unknown. (Here, we consider only the mean of our estimates). We attach to each distinct key κ a counter ν giving the number of times (multiplicity) this key appears in the sample. At the end of AS, we have in the cache U i distinct color C i keys, i = 1..k, and each one will display the same value for ν i , which is obviously equal to µ i . Hence the colors are now distinguished. This leads to the unbiased estimates ñi = 2 D U i , ñ = 2 D R, pi = U i /R. (see Sec. 6.3).

Model II: AS speeding up when we can observe one extra color Now we assume that we have an extra color Green (G), with known multiplicity µ G > µ i , i = 1 . . . k. (µ i still unknown). We can improve the speed of AS as follows: at each depth d, d = 0..D, each time a key obtains the value ν = µ G , it is obviously G, and it is extracted from the cache. We have a vector counter H such that, each time a G key is extracted at depth d from the cache, H[d] is increased by 1. At the end of this new AS, the final number of process executions is D * , say, and we have the estimates ñi Intuitively, D * < D. To evaluate the difference D -D * , we turn to an example. Assume that among the n distinct keys, np (0 < p < 1) are Black (B), with multiplicity µ B and nq, q := 1 -p are Green (G), with known multiplicity µ G > µ B . For instance, assume that each B key is unique and each G key is present in triplicate. So we have a total of N = np + 3qn = n(3 -2p) keys. At the end of AS, each key with ν = 1 is obviously B. As all N keys are assumed to be distributed according to the uniform permutation distribution, we can consider the effect of each key on the cache as a Markov process: with probability p 3-2p , the key is B and it is inserted, with probability 3(1-p) 3-2p , the key is G and three cases can occur: assume that the observed key appears in position v, 1 ≤ v ≤ N . Set τ := v/N . Then • With probability τ 2 , the key was the third one among the three G keys with the same value, so it is deleted from the cache

= 2 D * U i , µ G ñG = N - k 1 µ i ñi , hence ñG , ñ = k 1 ñi + ñG , pi = ñi /ñ. A
• With probability 2τ (1 -τ ), the key was the second one, and it remains in the cache

• With probability (1 -τ ) 2 , the key is the first one, and it is inserted in the cache.

This can be seen as a Random walk on the cache. So the mean effect (on the cache size) of a G key at position v is given by -

τ 2 + 0 × 2τ (1 -τ ) + 1 × (1 -τ ) 2 = 1 -2τ.
Finally, the mean effect on the cache size of a key at position v is given by

π(τ ) = p 3 -2p + 3(1 -p) 3 -2p (1 -2τ ) = 3 -6τ -2p + 6pτ 3 -2p .
Consider now the process beginning (d = 0). How many keys (in the mean) must be read in order to fill up the b positions in the cache? This is given by v 0 , where b = V (0, v 0 ) and

V (u 1 , u 2 ) = u2 u1 π(τ )dv = N u2/N u1/N π(τ )dτ = 3(u 2 1 -u 2 2 ) + 3p(u 2 2 -u 2 1 ) -3N (u 1 -u 2 ) + 2N p(u 1 -u 2 ) N (3 -2p) .
This leads to v 0 = -3N + 2N p + [N (-3 + 2p)(2N p -12bp -3N + 12b)]

1/2 6(p -1) .

An average of b/2 keys (starting with bit 1) are killed for the next execution d = 1. But the mean number of available keys still to be read is also divided by 2. So the mean number of keys necessary to fill up the b/2 remaining positions in the cache is given by v 1 -v 0 , where b/2 = 1 2 V (v 0 , v 1 ). This leads to Indeed, imagine that we mark a key with a * as soon as it is decided to be G (because it is the third time we observe it). At depth 0, v ∈ [0, v 0 )], all marked keys are counted in

v 1 = -3N + 2N p + [N (-3 + 2p)(2N p -24bp -3N + 24b)]
H[0]. At depth 1, v ∈ [v 0 , v 1 ],
all marked keys (starting with 0) are counted in H [START_REF] Swan | Data Mining[END_REF], this corresponds in the mean, to 2H[1] G keys, etc. Actually, the vector counter H could be replaced by a single counter H into which, at each depth d, we add the number of extracted G keys ×2 d .

Conclusion

Once again, the techniques using Gumbel-like distributions and Stein methodology proved to be quite efficient in the analysis of algorithms such as Adaptive Sampling. Γ(r + k -α)q r+k-α(p/q) k Lr!k! .

In the sequel, we only provide the main related theorems. All detailed proofs can be found in this paper long version: [START_REF] Louchard | The adaptive sampling revisited[END_REF].

A.1 Moments of D -log n

We have (ψ(i + χ l ) -L)Γ(i + χ l )q i L 2 Γ(i + 1) e -2lπi log n , k > 0.

Algorithm 1 Parameter

 1 : bucket (or cache) B of at most b distinct keys. Input: a stream S = (s 1 , s 2 , . . . , s N ) Output: the final bucket size R and the final depth D Initialization: B := ∅ and d := 0 for all x ∈ S do if h(x) = 0 d . . . then if x / ∈ B then B := B ∪ x end if; end if; if |B| > b (overflow of cache) then d := d + 1 filter (B) (remove keys which hash value doesn't match 0 d . . .) end if; end for; D := d return R, D;

N

  := total number of keys, N large, n := number of distinct keys, n large, ∼ := asymptotic to, for large n, b := cache size, b fixed, independent of n, b ∼ := asymptotic to, for large n and b, R := number of keys in the cache, at the end of the process, D := depth of the cache, at the end of the process,

  (., d) := P(D = d) = b r=0 p(r, d), p(r, .) := P(R = r) = d p(r, d), P (r, d) := P(R = r, D ≤ d).

  r + b r=1 p(r, .) lg r + b r=1 w1,r , E(W 2 ; R > 0) ∼

Fig. 1 :

 1 Fig. 1: p(r, .) for b = 50

3 -

 3 More generally, the mean number of keys necessary to fill up the b/2 remaining positions in the cache at depth d is given by vd -v d-1 , where b/2 = 2 -d V (v d-1 , v d ). This leads to v d = -3N + 2N p + N (-3 + 2p)(2N p -2 d 12bp -3N + 2 d 12b) 1/2 6(p -1) ,and finally, the mean total number E(D) is given by E(D) = D * , where D * is the solution ofN = -3N + 2N p + N (-3 + 2p)(2N p -2 D * 12bp -3N + 2 D * 12b) 2p)b = lg N -lg b + lg p -lg((3 -2p)) = lg n -lg b + lg p. and D -D * = -lg p > 0.This is the more positive the less p is. Note that, at the end, the number of B keys in the sample is estimated by 2 D * × number of B keys in the cache, obviously only B keys (with ν = 1) remain in the cache and the number of G keys in the sample is estimated by

e

  α := α/L, {x} := fractional part of x,χ l := 2lπi L .So the asymptotic distribution is now given byp(r, d) ∼ f (r, η) = exp(-e -Lη ) e -Lrη r! 1 -exp(-e -Lη p/q) αη f (r, η)dη = Γ(r -α)Lr! -b-r k=0

Theorem A. 1 3 , 2 Γ

 132 The asymptotic moments of D -log n are given bym1,k = -k + i) -L)q k p i Γ(k + i) L 2 Γ(k + 1)Γ(i + 1) (k + i)L + L 2 + ψ(1, k + i) + ψ(k + i) 2 )q k p i Γ(k + i) L 3 Γ(k + 1)Γ(i + 1) (i)L + L 2 + ψ(1, i) + ψ(i) 2 )p i iL + χ l )Γ(k + χ l ) L k + i + χ l ) -L)Γ(k + i + χ l )q k+i L 2 Γ(k + 1)Γ(i + 1)e -2lπi log n , k > 0

  more precise estimate ñG is obtained as follows: we use ñG =

	D

* 0 2 d H[d] (see the detailed explanation below).
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A Asymmetric Adaptive Sampling

For the sake of completeness, we analyze in this section the Asymmetric Adaptive Sampling. Assume that the hashing function gives asymmetric distributed bits. Let p denote the probability of bit 1 (q := 1 -p). Now, the number of keys in the cache is asymptotically Poisson with parameter nq d and the number of keys in the twin bucket is asymptotically Poisson with parameter npq d-1 = n p q q d . So we set here

The non-periodic components of the moments of Z are given by

The periodic component is obtained as follows

The asymptotic distribution of R is given by