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The Adaptive sampling revisited

Guy Louchard* Yvik Swan �

January 11, 2017

Abstract

The problem of estimating the number n of distinct keys of a large collection of N data is
well known in computer science. A classical algorithm is the adaptive sampling (AS). n can be
estimated by R2J , where R is the final bucket size and J is the final depth at the end of the
process. Several new interesting questions can be asked about AS (some of them were suggested
by P.Flajolet and popularized by J.Lumbroso). The distribution of W = log(R2J/n) is known, we
rederive this distribution in a simpler way. We provide new results on the moments of J and W .
We also analyze the final cache size R distribution. We consider colored keys: assume also that
among the n distinct keys, m do have color K We show how to estimate p = m

n . We study keys
with some multiplicity : we provide a way to estimate the total number M of some color K keys
among the total number N of keys. We consider the case where we know a priori the multiplicities
but not the colors. There we want to estimate the total number of keys N . An appendix is devoted
to the case where the hashing function provides bits with probability different from 1/2.

Keywords: Adaptive sampling, moments, periodic components, hashing functions, cache, colored
keys, key multiplicity, Stein method, urn model, asymmetric adaptive sampling

2010 Mathematics Subject Classification: 68R05, 68W40.

1 Introduction

The problem of estimating the number n of distinct keys of a large collection of N data is well known
in computer science. It arises in query optimization of data base systems. A classical algorithm is
the adaptive sampling (AS) . The mean and variance of AS are considered in Flajolet [3] . Let us
summarize the principal features of AS. Elements of the given set of N data are hashed into binary
keys. These keys are infinitely long bit streams such that each bit has probability 1/2 of being 0 or 1.
A uniformity assumption is made on the hashing function .

The algorithm keeps a bucket (or cache) B of at most b distinct keys. The depth of sampling, j
which is defined below , is also saved. We start with j = 0 and throw only distinct keys into B . When
B is full, depth j is increased by 1, the bucket is scanned, and only keys starting with 0 are kept. The
scanning on the set is resumed and only distinct keys starting with 0 are considered. More generally,
at step j , only distinct keys starting with 0j are taken into account. When we have exhausted the
set of N data, n can be estimated by R2J , where R is the final bucket size and J is the final depth at
the end of the process.

AS has some advantages in terms of processing time and of conceptual simplicity. As shown in [3],
AS outperforms standard sorting methods by a factor of about 8. In terms of storage consumptions,
using 100 words of memory will provide for a typical accuracy of 12%. This is to be contrasted again
with sorting, where the auxiliary memory required has to be at least as large as the file itself. Finally
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AS is an unbiased estimator of cardinalities of large files that necessitates minimal auxiliary storage
and processes data in a single pass.

Several new interesting questions can be asked about AS (some of them were suggested by
P.Flajolet and popularized by J. Lumbroso). The distribution of W = log(R2J/n) is known (see
[7]), but in Sec.3, we rederive this distribution in a simpler way. In Sec.4 we provide new results on
the moments of J and W . The final cache size R distribution is analyzed in Sec.5. Colored keys are
considered in Sec.6: assume that we have a set of colors and that each key has some color. Assume
also that among the n distinct keys, m do have color K and that m is large such that m

n = p = Θ(1).
We show how to estimate p. We consider keys with some multiplicity in Sec.7: assume that, to each
key κi, we attach a counter giving its observed multiplicity µi. Also we assume that the multiplicities
of color K keys are given by iid random variables (RV), with distribution function F , mean µ, variance
σ2 (functions of K). We show how to estimate the total number M of color K keys among the total
number N of keys. Sec.8 deals with the case where we know a priori the multiplicities but not the
colors. We want to estimate the total number of keys N . An appendix is devoted to the case where
the hashing function provides bits with probability different from 1/2.

2 Preliminaries.

Let us first give the notations we will use throughout the paper.

N := total number of keys, N large , key κi appearing with multiplicity µi say,

n := number of distinct keys, n large,

∼ := asymptotic to, for large n,

b := cache size , b fixed, independent of n,

b∼ := asymptotic to, for large n and b,

R := number of keys in the cache, at the end of the process,

J := depth of the cache, at the end of the process,

Z :=
R2J

n
,

W := log(Z),

P(λ, u) := e−λλu/u!, (Poisson distribution),

log := log2,

η := j − log n,

L := ln 2,

α̃ := α/L,

{x} := fractional part of x,

χl :=
2lπi

L
,

p := In Section 6: parameter related to the color K, q := 1− p,
p := In the Appendix: parameter related to the probability of bit 1 in the Asymmetric Adaptive Sampling,

V(X) := Variance of random variable X,

w := (small) periodic function of log n.

From Flajolet [3], we have the exact distribution

p(r, j) := P(R = r, J = j) =

(
n

r

)( 1

2j

)r(
1− 1

2j

)n−r[
1−

b−r∑
k=0

(
n− r
k

)( 1

2j

)k(
1− 1

2j

)n−r−k]
, (1)
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p(j) := P(J = j) =
b∑

r=0

p(r, j),

pr := P(R = r) =
∑
j

p(r, j),

P (r, j) := P(R = r, J ≤ j).

We can now see Adaptive Sampling as an urn model, where balls (keys), are thrown into urn J = j
with probability 1/2j . We recall the main properties of such a model.

� Asymptotic independence. We have asymptotic independence of urns, for all events related
to urn j containing O(1) balls. This is proved, by Poissonization-De-Poissonization, in [9], [10]
and [5]. The error term is O(n−C) where C is a positive constant.

� Asymptotic distributions. We obtain asymptotic distributions of the interesting random
variables as follows. The number of balls in each urn is asymptotically Poisson-distributed with
parameter n/2j in urn j containing O(1) balls (this is the classical asymptotic for the Binomial
distribution). This means that the asymptotic number ` of balls in urn j is given by

exp
(
−n/2j

) (n/2j)`
`!

,

and with η = j− log n, this is equivalent to P
(
e−Lη, `

)
. The asymptotic distributions are related

to Gumbel distribution functions (given by exp (−e−x)) or convergent series of such. The error
term is O(n−1).

� Extended summations. Some summations now go to ∞. This is justified, for example, in [9].

� Uniform Integrability. We have uniform integrability for the moments of our random vari-
ables. To show that the limiting moments are equivalent to the moments of the limiting distribu-
tions, we need a suitable rate of convergence. This is related to a uniform integrability condition
(see Loève [6, Section 11.4]). For Adaptive Sampling, the rate of convergence is analyzed in
detail in [8]. The error term is O(n−C).

� Mellin transform. Asymptotic expressions for the moments are obtained by Mellin trans-
forms (for a good reference to Mellin transforms, see Flajolet et al. [4]). The error term is
O(n−C). We proceed as follows (see [8] for detailed proofs): from the asymptotic properties
of the urns, we have obtained the asymptotic distributions of our random variables of interest.
Next we compute the Laplace transform φ(α) of these distributions, from which we can derive
the dominant part of probabilities and moments as well as the (tiny) periodic part in the form
of a Fourier series. This connection will be detailed in the next sections.

� Fast decrease property. Γ(s) decreases exponentially in the direction i∞:

|Γ(σ + it)| ∼
√

2π|t|σ−1/2e−π|t|/2.

Also, we this property is true for all other functions we encounter. So inverting the Mellin
transforms is easily justified.

� Early approximations. If we compare the approach in this paper with other ones that
appeared previously, then we can notice the following. Traditionally, one would stay with exact
enumerations as long as possible, and only at a late stage move to asymptotics. Doing this, one
would, in terms of asymptotics, carry many unimportant contributions around, which makes
the computations quite heavy, especially when it comes to higher moments. Here, however,
approximations are carried out as early as possible, and this allows for streamlined (and often
automatic) computations of the higher moments.
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We set η = j − log n, (1) leads to

p(r, j) ∼ f(r, η) = exp(−2−η)
2−rη

r!

[
1− exp(−2−η)

b−r∑
k=0

2−kη

k!

]
, (2)

and similar functions for P (r, j). Asymptotically, the distribution will be a periodic function of the
fractional part of log n. The distribution P (r, j) does not converge in the weak sense, it does however
converge along subsequences nm for which the fractional part of log nm is constant. This type of
convergence is not uncommon in the Analysis of Algorithms. Many examples are given in [8].

From (2), we compute the Laplace transform

φ(r, α) =

∫ ∞
−∞

eαηf(r, η)dη =
Γ(r − α̃)

Lr!
−

b−r∑
k=0

Γ(r + k − α̃)

Lr!k!2r+k−α̃
.

The moments of Z are already given in [7] and [8]. As shown in [7], we must have d ≤ b. For the sake
of completeness, we repeat them here:

E[Zd] ∼ m1,d + w1,d,

m1,d = 1 +
(b− d)!

L

d−1∑
k=1

{
d
k

}
2d−k − 1

(d− k)(b− k)!
,

w1,d =
∑
l 6=0

1

L

d−1∑
j=1

{
d
j

}[
(1− 2d−j

]
Γ(j − d+ χl)

(
b− d+ χl
b− j

)
e−2lπi logn,

m1,1 = 1, w1,1 = 0,m1,2 = 1 +
1

(b− 1)L

V(Z) ∼ 1

(b− 1)L
.

Note that, in [3], Flajolet already computed m1,1,m1,2, w1,2, w1,2.

3 Asymptotic distribution of W = J − log n+ logR

Let us recover this distribution from (2). In the sequel, we will denote by E(A;R > 0) the expectation
of event A related to positive R. We have

Theorem 3.1

P(W ≤ α;R > 0) ∼
b∑

r=1

∑
l≥0

exp(−2−ϕ)
2−rϕ

r!

[
1− exp(−2−ϕ)

b−r∑
k=0

2−kϕ

k!

]
,

with
ϕ := b{log n} − log r + αc − {log n} − `.

Proof.

P(W ≤ α;R > 0) = P[J ≤ log n− logR+ α;R > 0]

= P[J ≤ blog nc+ b{log n} − logR+ αc;R > 0]

∼
b∑

r=1

∑
`≥0

exp(−2−(η−`))
2−r(η−`)

r!

[
1− exp(−2−(η−`))

b−r∑
k=0

2−k(η−`)

k!

]
,

with
η = b{log n} − log r + αc − {log n},
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or

P(W ≤ α;R > 0) ∼
b∑

r=1

∑
l≥0

exp(−2−ϕ)
2−rϕ

r!

[
1− exp(−2−ϕ)

b−r∑
k=0

2−kϕ

k!

]
,

with
ϕ := b{log n} − log r + αc − {log n} − `.

This is exactly [7, Thm 4.1] that we obtain here in a simpler way.

4 Moments of J − log n and W

Two interesting parameters are given by the moments of J− log n and W . Their asymptotic behaviour
is given as follows

Theorem 4.1
E[(J − log n)k;R = r] ∼ m̃k,r + wk,r,

where

m̃1,r = −ψ(r)

L2r
+

b−r∑
k=0

(ψ(r + k)− L)2−(r+k)Γ(r + k)

L2Γ(r + 1)Γ(k + 1)
, r > 0,

m̃1,0 =
1

2
+
γ

L
+

b∑
k=1

(ψ(k)− L)2−k

kL2
,

w1,r =
∑
l 6=0

[
−ψ(r + χl)Γ(r + χl)

L2Γ(r + 1)
+

b−r∑
k=0

(ψ(r + k + χl)− L)2−(r+k)Γ(r + k + χl)

L2Γ(r + 1)Γ(k + 1)

]
e−2lπi logn, r > 0,

w1,0 =
∑
l 6=0

[
−ψ(χl)Γ(χl)

L2
+

b∑
k=0

Γ(k + χl)

L2k!2k
(ψ(k + χl)− L)

]
.

E(W ;R > 0) ∼
b∑

r=1

m̃1,r +
b∑

r=1

pr log r +
b∑

r=1

w1,r,

E(W 2;R > 0) ∼
b∑

r=1

m̃2,r + 2
b∑

r=1

m̃1,r log r +
b∑

r=1

pr(log r)2 +
b∑

r=1

w2,r + 2
b∑

r=1

w1,r log r.

Proof. Using the techniques developed in [8], we obtain the dominant (constant) part of the moments
of J as follows:

E[(J − log n)k;R = r] ∼ m̃k,r + wk,r,

where the non-periodic component is given by

m̃k,r := φ(k)(r, 0),

and the corresponding periodic term is given by

wk,r =
∑
l 6=0

φ(k)(r, α)
∣∣∣
α=−Lχl

e−2lπi logn.

This was already computed in [8], but with some errors. The first corrected values are now provided.
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As W = J − log n+ logR, the rest of the Thm is immediate

It will be useful to obtain an asymptotic for the expectation of J− log n (non-periodic component)
for large b. This is computed as follows. First of all, we rewrite

∑b
r=1 m̃1,r as

b∑
r=1

m̃1,r = −
b∑

r=1

ψ(r)

L2r
+

b∑
u=1

[
u∑
r=1

1

Γ(r + 1)Γ(u− r + 1)

]
(ψ(u)− L)2−uΓ(u)

L2
.

Now it is clear that the main contribution of the second term is related to large u. So we set r = u
2 +v.

This gives, by Stirling,

Γ(r + 1) ∼ e−(u/2+v)ev+v2/u
(u

2

)u/2+v√
πu,

and
Γ(r + 1)Γ(u− r + 1) ∼ e−ue2v2/u

(u
2

)u
πu.

By Euler-Maclaurin, we have

u∑
r=1

1

Γ(r + 1)Γ(u− r + 1)
∼ 2

u/2∑
v=0

eu(
u
2

)u
πu
e−2v2/u ∼

∫ ∞
0

2e−2v2/udv
eu(

u
2

)u
πu

=
eu(

u
2

)u√
2πu

,

and, finally,

b∑
r=0

m̃1,r
b∼ 1

2
+
γ

L
+

b∑
u=1

[
−ψ(u)

L2u
+

(ψ(u)− L)2−u

uL2
+

(ψ(u)− L)2−uΓ(u)

L2

eu(
u
2

)u√
2πu

]
,

and, to first order,

E(J − log n) ∼
b∑

r=0

m̃1,r
b∼ 1

2
+
γ

L
−

b∑
u=1

1

Lu
∼ − log b+O(1) (3)

5 Distribution of R

The asymptotic moments and distribution of R are given as follows

Theorem 5.1 The non-periodic components are given by

E(R) ∼ b

2L
,

E(R2) ∼ b(3b+ 1)

8L
,

V(R) ∼ b(3Lb− 2b+ L)

8L2
,

P(R = r) ∼ pr =
1

L

[
1

r
−

b−r∑
k=0

Γ(r + k)

r!k!2r+k

]
, r ≥ 1,

Similarly, the periodic components are given by

w0(R) =
b∑

r=0

∑
l 6=0

φ(r,−Lχl)e−2lπi logn,

w1(R) =

b∑
r=0

r
∑
l 6=0

φ(r,−Lχl)e−2lπi logn,
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w2(R) =
b∑

r=0

r2
∑
l 6=0

φ(r,−Lχl)e−2lπi logn,

w0(r) =
∑
l 6=0

φ(r,−Lχl)e−2lπi logn

Proof. We have

P(R = r) ∼ pr = φ(r, 0) =
1

L

[
1

r
−

b−r∑
k=0

Γ(r + k)

r!k!2r+k

]
, r ≥ 1,

and p0 = 1−
∑b

1 pr, with

b∑
1

pr =
1

L

[
Hb −

b∑
r=1

b−r∑
k=0

Γ(r + k)

r!k!2r+k

]

=
1

L

[
Hb −

b∑
u=1

(u− 1)!

2u

u∑
r=1

1

r!(u− r)!

]
.

This quantity was already obtained in [7] after some complicated algebra! This leads to

p0 = 1−
b∑

u=1

1

u2uL
,

which is also the probability of Z = 0. This is also easily obtained from limr→0 φ(r, 0). Figure 1 gives
pr for b = 50

0

0.01

0.02

0.03

0.04

10 20 30 40 50

Figure 1: pr for b = 50

Conditionning on R > 0, the expectation of event A is now given by

E(A;R > 0)

1− p0
.
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Also
w0(r) =

∑
l 6=0

φ(r,−Lχl)e−2lπi logn.

The moments of R are computed as follows.

E(R) ∼
b∑

r=1

rpr =
1

L

[
b−

b∑
u=1

(u− 1)!

2u

u∑
r=1

r

r!(u− r)!

]

=
1

L

[
b−

b∑
u=1

1

2u
[2u−1]

]

=
b

2L
.

More generally, the generating function of pr is given by

b∑
r=1

zrpr =
1

L

[
b∑

r=1

zr

r
−

b∑
u=1

(u− 1)!

2u

u∑
r=1

zr

r!(u− r)!

]

=
1

L

[
b∑

r=1

zr

r
−

b∑
u=1

1

u2u
[(1 + z)u − 1]

]
.

This leads to

E(R2) ∼
b∑

r=1

r2pr =
b(3b+ 1)

8L
,

V(R) ∼ b(3Lb− 2b+ L)

8L2
.

Similarly, the periodic components are given by

w1(R) =

b∑
r=0

r
∑
l 6=0

φ(r,−Lχl)e−2lπi logn,

w2(R) =

b∑
r=0

r2
∑
l 6=0

φ(r,−Lχl)e−2lπi logn.

6 Colors

Assume that we have a set of colors and that each key has some color. Assume also that among the
n distinct keys, m do have color K and that m is large such that m

n = p = Θ(1), q := 1 − p. In the
cache, the R keys (we assume R > 0) contain U keys with color K with probability distribution

P(U = u|R = r) =

(
m
u

)(
m−m
r−u

)(
n
r

) ,

and, if r = o(n), this is asymptotically given by the conditioned binomial distribution Bin(r, p). We
want to estimate p. We are interested in the distribution of the statistic p̃ = U/R . We have

8



Theorem 6.1

E
(
U

R
;R > 0

)
∼ p,

E

((
U

R

)2

;R > 0

)
∼ p2 + pqE

(
1

R
;R > 0

)
, (4)

V
(
U

R
;R > 0

)
∼ pqE

(
1

R
;R > 0

)
.

Proof. We have

P
[(

U

R

)
≤ α;R > 0

]
= P(U ≤ αR;R > 0] ∼

b∑
r=1

pr

bαrc∑
u=0

(
r

u

)
puqr−u. (5)

Now, conditioned on R, we have

E(U |R) ∼ Rp,E(U2|R) ∼ Rpq +R2p2.

So, conditioned on R,

E
(
U

R

)
∼ p,

E

((
U

R

)2
)
∼ p2 +

pq

R
,

and, unconditionning leads to the theorem.

Intuitively, if the cache size b is large, we should have an asymptotic Gaussian distribution for
U/R. Actually, the fit is quite good, even for b = 30 (and p = 0.2).

This is proved as follows.

6.1 The distribution of U/R for large b .

Let R be a (possibly degenerate) random variable taking values on the (strict) positive integers.
Conditionning on R, let U ∼ Bin(R, p) for some known 0 < p < 1, and set Y = U/R. It appears that,
as R grows large, the distribution of Y becomes asymptotically Gaussian. This claim can be made
precise as follows.

Theorem 6.2 Let V ∼ N (0, 1) and write Ψ =
√
RY−p√

pq . Then there exists an absolute constant κ ∈ R
such that

dW (Ψ, V ) ≤ κE
{

1√
R

}
for dW (Ψ, V ) the Wasserstein distance between the law of Ψ and that of V ; moreover this constant

is such that

κ ≤ q2 − p2

√
pq

+ 4

[
p3 + q3

pq
− 1

]1/2

.

Proof. We will prove this theorem using the Stein methodology which, for h ∈ H, ( H is a nice class
of test functions), suggests to write

Eh(Ψ)− Eh(V ) = E
(
Ψf(Ψ)− f ′(Ψ)

)
9



with f := fh such that
xf(x)− f ′(x) = h(x)− Eh(V ). (6)

(this is known as the Stein equation for the Gaussian distribution) so that

dW(Ψ, V ) = sup
h∈H

E |h(Ψ)− h(V )| ≤ sup
fh

∣∣E (Ψf(Ψ)− f ′(Ψ)
)∣∣ . (7)

The reason why (7) is interesting is that properties of the solutions f of (6) are well-known – see,
e.g., [1, Lemma 2.3] and [2, Lemma 2.3] – and quite good so that they can be used with quite some
efficiency to tackle the rhs of (7). In the present configuration we know that fh is continuous and
bounded on R, with

‖f ′h‖ ≤ min
(
2‖h− Eh(V )‖, 4‖h′‖

)
(8)

and
‖f ′′h‖ ≤ 2‖h′‖. (9)

In particular, if H is the class of Lipschitz-1 functions with ‖h′‖ ≤ 1 (this class generates the Wasser-
stein distance) then

‖f ′h‖ ≤ 4 and ‖f ′′h‖ ≤ 2.

These will suffice to our purpose.
Our proof follows closely the standard one for independent summands (see, e.g., [11, Section 3]).

First we remark that, given R ≥ 1, we can write Ψ as

Ψ =
1√
R

R∑
i=1

ξi

where, taking Xi i.i.d. Bin(1, p), we let ξi = (Xi − p)/
√
pq (which are centered and have variance 1).

Next, for r ≥ 1 and 1 ≤ i ≤ r, define

Ψr
i = Ψ− 1√

r
ξi =

1√
r

∑
j 6=i

ξj .

Next take f solution of (6) with h some Lipschitz-1 function. Then note that E {ξif (Ψr
i )} = 0 for all

1 ≤ i ≤ r. We abuse notations and, given R, write ΨR
i = Ψi. Then

E {Ψf(Ψ) |R} = E

{
1√
R

R∑
i=1

ξif(Ψ)

∣∣∣∣∣ R
}

= E

{
1√
R

R∑
i=1

ξi (f(Ψ)− f(Ψi))

∣∣∣∣∣ R
}

= E

{
1√
R

R∑
i=1

ξi
(
f(Ψ)− f(Ψi)− (Ψ−Ψi)f

′(Ψ)
) ∣∣∣∣∣ R

}

+ E

{
1√
R

R∑
i=1

ξi(Ψ−Ψi)f
′(Ψ)

∣∣∣∣∣ R
}

so that

|E
{

Ψf(Ψ)− f ′(Ψ) |R
}
| ≤ E

{
1√
R

R∑
i=1

∣∣ξi (f(Ψ)− f(Ψi)− (Ψ−Ψi)f
′(Ψ)

)∣∣ ∣∣∣∣∣ R
}

+

∣∣∣∣∣E
{
f ′(Ψ)

(
1− 1√

R

R∑
i=1

ξi(Ψ−Ψi)

)∣∣∣∣∣ R
}∣∣∣∣∣

10



=: |χ1(R)|+ |χ2(R)|.

Recall that Ψ − Ψi = 1√
R
ξi. Then (by Taylor expansion) we can easily deal with the first term to

obtain

|χ1(R)| = ‖f
′′‖

2

1√
R
E |ξ1|3 .

Taking expectations with respect to R and using (9) we conclude

E|χ1(R)| ≤ E |ξ1|3E
(

1√
R

)
. (10)

For the second term note how

|χ2(R)| =

∣∣∣∣∣E
{
f ′(Ψ)

(
1− 1

R

R∑
i=1

ξ2
i

)
|R

}∣∣∣∣∣
=

∣∣∣∣∣E
{
f ′(Ψ)

R

R∑
i=1

(
1− ξ2

i

) ∣∣∣∣∣ R
}∣∣∣∣∣

≤ ‖f
′‖
R

E

{∣∣∣∣∣
R∑
i=1

(
1− ξ2

i

)∣∣∣∣∣
∣∣∣∣∣ R
}
.

Since E
{∑R

i=1

(
1− ξ2

i

)
|R
}

= 0 we can pursue to obtain

|χ2(R)| ≤ ‖f
′‖
R

√√√√V

(
R∑
i=1

(
1− ξ2

i

) ∣∣∣∣∣ R
)

=
‖f ′‖√
R

√
V
(
ξ2

1

)
where we used (conditional) independence of the ξi. Taking expectations with respect to R and using
(8) we deduce (recall V

(
ξ2

1

)
= Eξ4

1 − 1)

E|χ2(R)| ≤ 4
√
Eξ4

1 − 1E
(

1√
R

)
. (11)

Combining (10) and (11) we can conclude

dW(Ψ, V ) ≤
(
E|ξ3

1 |+ 4
√
Eξ4

1 − 1

)
E
(

1√
R

)
.

The claim follows.

So we need the moments of 1/R for large b (we limit ourselves to the dominant term).

6.2 Moments of 1/R,R > 0 for large b

We have the following property

Theorem 6.3

E
(

1

Rα
;R > 0

)
b∼ 1

Lαbα
(2α − 1), α > 0.

11



Proof. We have

E
(

1

R
;R > 0

)
∼

b∑
r=1

pr/r =
1

L

[
b∑

r=1

1

r2
−

b∑
u=1

(u− 1)!

2u

u∑
r=1

1

rr!(u− r)!

]

=
1

L

[
H

(2)
b −

b∑
u=1

1

2u
2F2[1,−u+ 1; 2, 2;−1]

]

=
1

L

[
−ψ(1, b+ 1) +

π2

6
−
∞∑
u=1

1

2u
2F2[[1,−u+ 1], [2, 2],−1]

]

+
1

L

∞∑
u=b+1

1

2u
2F2[[, 1− u+ 1], [2, 2],−1].

But1

∞∑
u=1

1

2u
2F2[[1,−u+ 1], [2, 2],−1]

=
∞∑
r=1

∞∑
u=r

(u− 1)!

2urr!(u− r)!

=

∞∑
r=1

1

r2

∞∑
u=r

(u− 1)!

2u(r − 1)!(u− r)!

=
∞∑
v=0

1

(v + 1)2

∞∑
u=v+1

(u− 1)!

2uv!(u− v − 1)!

=
∞∑
v=0

1

(v + 1)2

∞∑
w=v

w!

2w+1v!(w − v)!

=
1

2

∞∑
v=0

1

(v + 1)2

∞∑
w=v

(
w

v

)
2−w

=
1

2

∞∑
v=0

1

(v + 1)2

∞∑
s=0

(
s+ v

v

)
2−(s+v)

=
1

2

∞∑
v=0

1

(v + 1)2
2−v

∞∑
s=0

(
−v − 1

s

)
(−2)−s

=
1

2

∞∑
v=0

1

(v + 1)2
2−v

(
1− 1

2

)−(v+1)

=

∞∑
v=0

1

(v + 1)2

= ζ(2) =
π2

6
. (12)

Now

ψ(1, b+ 1)
b∼ 1

b
+O

(
1

b2

)
,

and

∞∑
u=b+1

1

2u
2F2[[1,−u+ 1], [2, 2],−1]

1We are indebted to H.Prodinger for this identity
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= T1 + T2,

T1 =

b+1∑
r=1

∞∑
u=b+1

(u− 1)!

2urr!(u− r)!

=
1

2

b∑
v=0

1

(v + 1)2

∞∑
w=b

(
w

v

)
2−w,

T2 =
∞∑

r=b+1

∞∑
u=r

(u− 1)!

2urr!(u− r)!

=
1

2

∞∑
v=b

1

(v + 1)2

∞∑
w=v

(
w

v

)
2−w

=
1

2

∞∑
v=b

1

(v + 1)2
2.

In order to compute T1, we now turn to the asymptotics of
(
w
v

)
2−w for large w. We obtain, by

Stirling and setting w = 2v + α,(
w

v

)
2−w ∼ e−www

√
2πw

e−(w−v)(w − v)w−v
√

2π(w − v)2we−vvv
√

2πv

=
e−(2v+α)(2v + α)2v+α

√
2π(2v + α)

e−(v+α)(v + α)v+α
√

2π(v + α)22v+αe−vvv
√

2πv

∼
e−v(2v)2v+α

(
1 + α

2v

)2v+α√
2

vv+α
(
1 + α

v

)v+α
22v+αe−vvv

√
2πv

∼ eα+α2

4v

√
2

eα+α2

2v

√
2πv

∼ e−
α2

4v

√
πv

= 2
e−

α2

2σ2

√
2πσ

,

with σ2 = 2v. This is a Gaussian function, centered at 2v with variance σ2 = 2v. So, by Euler-
Maclaurin, replacing sums by integrals, we obtain

� if b/2 < v ≤ b,
∞∑
w=b

(
w

v

)
2−w

b∼ 2,

� if 0 ≤ v < b/2,
∞∑
w=b

(
w

v

)
2−w is exponentially negligible ,

� if v ≥ b,
∞∑
w=b

(
w

v

)
2−w = 2 by (12),

but this will not be used in the sequel,
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and finally

T1 + T2
b∼ 1

2

2
b∑

v=b/2

1

(v + 1)2
+ 2

∞∑
v=b

1

(v + 1)2

 b∼ 2

b
.

This leads to

E
(

1

R
;R > 0

)
b∼ 1

L

[
2

b
− 1

b

]
=

1

Lb
. (13)

In the neighbourhood of v = b/2, only part of the Gaussian is integrated. But if we choose an interval
∆ := [b/2− b5/8, b/2 + b5/8], (b5/8 � σ), this contributes to

O
(∫

∆

1

v2
dv

)
= O(b−5/8) = o(1/b).

Similarly, we derive (we omit the details)

E
(

1

R2
;R > 0

)
b∼ 3

2Lb2
,

V
(

1

R2
;R > 0

)
b∼ 1

b2

[
3

2L
− 1

L2

]
,

E
(

1

R1/2
;R > 0

)
b∼ 2(
√

2− 1)/(L
√
b).

More generally,

E
(

1

Rα
;R > 0

)
b∼ 1

Lαbα
(2α − 1), α > 0

Now we obtain, by (5) and Thm 6.2 the following Thm

Theorem 6.4 The limiting distribution of U/R for large b is Gaussian.

Note that, by (4) and (13), we obtain

E

((
U

R

)2

;R > 0

)
b∼ p2 +

pq

Lb
,

V
(
U

R
;R > 0

)
b∼ pq

Lb
. (14)

This provides a confidence interval for p. With a confidence level of 5% for instance, we have[
U

R
− 2

√
pq

Lb
≤ p ≤ U

R
+ 2

√
pq

Lb

]
,

and, as we can estimate p by U
R , this leads toU

R
− 2

√
U
R

(
1− U

R

)
Lb

≤ p ≤ U

R
+ 2

√
U
R

(
1− U

R

)
Lb

 .
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6.3 Several Colors

If we are interested in the joint distribution of the statistic U1/R, . . . Uk/r, which correspond to k
different colors among the present colors, we have an asymptotic conditional multinomial distribution.
For instance, for k = 2, this leads to(

r

u1, u2, r − u1 − u2

)
pu11 pu22 (1− p1 − p2)r−u1−u2 ,

with mean rp1, rp2. So

E
(
U1

R
;R > 0

)
= p1,E

(
U2

R
;R > 0

)
= p2,

and we obtain similarly, conditioned on R

E(U1U2) = R(R− 1)p1p2,

E
((

U1

R

)(
U2

R

))
= p1p2 −

p1p2

R
,

and, unconditionning,

E
((

U1

R

)(
U2

R

)
;R > 0

)
b∼ p1p2 −

p1p2

Lb
,

or

Cov

(
U1

R
,
U2

R
;R > 0

)
b∼ −p1p2

Lb
.

7 Multiplicities of colored keys

Assume that, to each key κi, we attach a counter giving its observed multiplicity µi. Also we assume
that the multiplicities of color K keys are given by iid random variables (RV), with distribution
function F , mean µ, variance σ2 (functions of K). We can estimate the total number M of color K
keys among the total number N of keys as follows.

Let m be the number of distinct color K keys among the n distinct keys. We recall that U is the
number of color K keys among the R keys in the cache. From Section 6 (see(14)), we can estimate
p := m/n by p̃ = (U/R;R > 0). We have

E(p̃;R > 0)
b∼ p,

V(p̃;R > 0)
b∼ pq

Lb
.

Also, we can estimate mean µ and variance σ2 by µ̃ and σ̃2 as given by

µ̃ :=
V

U
, V :=

U∑
1

µi,

σ̃2 :=

∑U
1 (µi − µ̃)2

U
.

Next we estimate n by ñ = R2J (see Sec. 2). We have, conditioned on U ,

Theorem 7.1

E(µ̃) = µ,

E(µ̃2) = µ2 + σ2E
(

1

U

)
,

V(µ̃) = σ2E
(

1

U

)
.

15



E(ñ) ∼ n,

E(ñ2) ∼ n2

(
1 +

1

(b− 1)L

)
,

V(ñ) ∼ n2

(b− 1)L
.

Proof. We only need

E
[
V 2

U2

∣∣∣∣U] =

[
Uσ2 + U2µ2

U2

∣∣∣∣U]
.

Now we estimate m by m̃ = ñp̃ = 2JU and M by M̃ = m̃µ̃. . But if we have two independent RV,
X,Y , with mean and variance respectively mX ,mY , σ

2
X , σ

2
Y , it is easy to see that

E(XY ) = mXmY , (15)

V(XY ) = σ2
Xm

2
Y + σ2

Ym
2
X + σ2

Xσ
2
Y .

Here, our RV are not independent, but we can check that (15) is correct. The relation for the variances
gives us a useful approximation. For instance

E(m̃)
b∼ np = m,

and the approximation

V(m̃) ∼ V(ñ)p2 + V(p̃)n2 + V(ñ)V(p̃)
b∼ n2p(Lb− L+ pL+ 1− p)

L2(b− 1)b

b∼ n2p

Lb
for large b.

It remains to estimate E
(

1
U

)
in order to complete E(µ̃2),V(µ̃). Using the binomial distribution

Bin(r, p) does not lead to a tractable expression. But, as R is large whp, we can use the Gaussian
approximation for U as follows: conditioned on R = r, we have

E
(

1

U

)
∼
∫ r

1

exp
(
− (u−rp)2

2rpq

)
√

2πrpqu
du

∼
∫ rq

−rp

exp
(
− v2

2rpq

)
√

2πrpq

1

rp

(
1− v

rp
+

v2

r2p2
+ . . .

)

∼
∫ ∞
−∞

exp
(
− v2

2rpq

)
√

2πrpq

1

rp

(
1− v

rp
+

v2

r2p2
+ . . .

)
∼ 1

rp

(
1 +

q

rp

)
.

Unconditionning, this gives

E
(

1

U
;R > 0

)
b∼ 1

Lbp
+

3q

4p2Lb2
b∼ 1

Lbp

8 The Black-Green Sampling

Assume that there are n distinct keys, among which np (0 < p < 1) are Black (B), with known
multiplicity µB and nq, q := 1 − p are Green (G), with known multiplicity µG > µB. We consider a
case in some sense opposite to the one of Sec. 6: here we do not observe the color of each key, but we
know a priori the multiplicities. We want to estimate the total number of keys: N = npµB + qnµG.
(Here, we consider only the mean of our estimates). For instance, assume that each B key is unique
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and each G key is present in triplicate. So we have a total of N = np + 3qn = n(3 − 2p) keys. In
the cache, we affect each key with an integer ν, representing the number of times this key has been
observed. At the end, each key with ν = 1 is obviously B. At each step j, j = 0..J , each time a
key obtains the value ν = 3, it is obviously G, and it is extracted from the cache. We have a vector
counter C such that, each time a G key is extracted at step j from the cache, C[j] is increased by 1.
As all N keys are assumed to be distributed according to the uniform permutation distribution, we
can consider the effect of each key on the cache as a Markov process: with probability p

3−2p , the key

is B and it is inserted, with probability 3(1−p)
3−2p , the key is G and three cases can occur: assume that

the observed key appears in position v, 1 ≤ v ≤ N . Set τ := v/N . Then

� With probability τ2, the key was the third one among the three G keys with the same value, so
it is deleted from the cache

� With probability 2τ(1− τ), the key was the second one, and it remains in the cache

� With probability (1− τ)2, the key is the first one, and it is inserted in the cache.

This can be seen as a Random walk on the cache. So the mean effect (on the cache size) of a G key
at position v is given by

−τ2 + 0× 2τ(1− τ) + (1− τ)2 = 1− 2τ.

Finally, the mean effect of a key at position v is given by

π(τ) =
p

3− 2p
+

3(1− p)
3− 2p

(1− 2τ) =
3− 6τ − 2p+ 6pτ

3− 2p
.

Consider now the first step (j = 0). How many keys (in the mean) must be read in order to fill up
the b positions in the cache? This is given by v0, where b = V (0, v0) and

V (u1, u2) =

∫ u2

u1

π(τ)dv = N

∫ u2/N

u1/N
π(τ)dτ =

3(u2
1 − u2

2) + 3p(u2
2 − u2

1)− 3N(u1 − u2) + 2Np(u1 − u2)

N(3− 2p)
.

This leads to

v0 =
−3N + 2Np+ [N(−3 + 2p)(2Np− 12bp− 3N + 12b)]1/2

6(p− 1)
.

An average of b/2 keys (starting with bit 1) are killed for the next step j = 1. But the mean number of
available keys is also divided by 2. So the mean number of keys necessary to fill up the b/2 remaining
positions in the cache is given by v1 − v0, where b/2 = 1

2V (v0, v1). This leads to

v1 =
−3N + 2Np+ [N(−3 + 2p)(2Np− 24bp− 3N + 24b)]1/2

6(p− 1)
.

More generally, the mean number of keys necessary to fill up the b/2 remaining positions in the cache
at step j is given by vj − vj−1, where b/2 = 2−jV (vj−1, vj). This leads to

vj =
−3N + 2Np+

[
N(−3 + 2p)(2Np− 2j12bp− 3N + 2j12b)

]1/2
6(p− 1)

,

and finally, the mean total number J of steps is given by J = dJ∗e, where J∗ is the solution of

N =
−3N + 2Np+

[
N(−3 + 2p)(2Np− 2J

∗
12bp− 3N + 2J

∗
12b)

]1/2
6(p− 1)

.

This gives

J∗ = log

(
Np

(3− 2p)b

)
= logN − log b+ log p− log((3− 2p)).
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This is significally better than (3) only if p� 1.
Note that, at the end, the number of B keys in the sample is estimated by

2J × number of B keys in the cache,

obviously only B keys (with ν = 1) remain in the cache and the number of G keys in the sample is
estimated by

3.
J∑
j=0

2jC[j].

Indeed, imagine that we mark a key with a ∗ as soon as it is decided to be G (because it is the third
time we observe it). At step 0, v ∈ [0, v0)], all marked keys are counted in C[0]. At step 1, v ∈ [v0, v1],
all marked keys (staring with 0) are counted in C[1], this corresponds in the mean, to 2C[1] G keys,
etc. Actually, the vector counter C could be replaced by a single counter C into which, at each step
j, we add the number of extracted R keys ×2j .

9 Appendix: Asymmetric Adaptive Sampling

For the sake of completeness, we analyze in this section the Asymmetric Adaptive Sampling. Assume
that the hashing function gives asymmetric distributed bits. Let p denote the probability of bit 1
(q := 1− p). Now, the number of keys in the cache is asymptotically Poisson with parameter nqj and
the number of keys in the twin bucket is asymptotically Poisson with parameter npqj−1 = npq q

j . So
we set here

Q := 1/q,

Z :=
RQJ

n
,

log := logQ,

L := lnQ,

α̃ := α/L,

{x} := fractional part of x,

χl :=
2lπi

L
.

So the asymptotic distribution is now given, with η := j − log n, by

p(r, j) ∼ f(r, η) = exp(−e−Lη)e
−Lrη

r!

[
1− exp(−e−Lηp/q)

b−r∑
k=0

e−Lkη(p/q)k

k!

]
, (16)

and

p(j) := P(J = j) =
b∑

r=0

p(r, j).

This leads to

φ(r, α) =

∫ ∞
−∞

eαηf(r, η)dη =
Γ(r − α̃)

Lr!
−

b−r∑
k=0

Γ(r + k − α̃)qr+k−α̃(p/q)k

Lr!k!
.

9.1 Moments of J − log n

Now we have
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Theorem 9.1

m̃1,r = −ψ(r)

L2r
+

b−r∑
k=0

(ψ(r + k)− L)qrpkΓ(r + k)

L2Γ(r + 1)Γ(k + 1)
, r > 0,

m̃1,0 =
1

2
+
γ

L
+

b∑
k=1

(ψ(k)− L)pk

kL2
,

m̃2,r =
ψ(1, r) + ψ(r)2

L3r
+

b−r∑
k=0

−(−2ψ(r + k)L+ L2 + ψ(1, r + k) + ψ(r + k)2)qrpkΓ(r + k)

L3Γ(r + 1)Γ(k + 1)
, r > 0,

m̃1,0 =
1

3
+
γ

L
+

π2

6L2
+
γ2

L2
+

b∑
k=1

−(−2ψ(k)L+ L2 + ψ(1, k) + ψ(k)2)pk

kL3
,

w1,r =
∑
l 6=0

[
−ψ(r + χl)Γ(r + χl)

L2Γ(r + 1)
+

b−r∑
k=0

(ψ(r + k + χl)− L)Γ(r + k + χl)q
r+k

L2Γ(r + 1)Γ(k + 1)

]
e−2lπi logn, r > 0,

w1,0 =
∑
l 6=0

[
−ψ(χl)Γ(χl)

L2
+

b∑
k=0

(ψ(k + χl)− L)Γ(k + χl)q
k

L2Γ(k + 1)

]
e−2lπi logn, r > 0.

Proof. This is classical computer algebra (using Maple, with human guidance as usual) from φ(r, α).

9.2 Moments of Z

Theorem 9.2 The non-periodic components are given by

m1,d = 1 +
(b− d)!

L

d−1∑
k=1

{
d
k

}
qk−d − 1

(d− k)(b− k)!
,

V(Z) ∼ p

(b− 1)qL
.

The periodic component is obtained as follows

w1,d =
∑
l 6=0

1

L

d−1∑
j=1

{
d
j

}[
(1− qj−d

]
Γ(j − d+ χl)

(
b− d+ χl
b− j

)
e−2lπi logn.

Proof. We follow now the lines of [7] and [8], with suitable modifications.

E[Zd] ∼ m1,d =
d∑
r=1

lim
α→Ld

φ(r, α).

Let us compute Lm1,d.

� for r ≥ d+ 1, this gives

T1 =
b∑

r=d+1

rd
(r + d− 1)!

r!
,

T2 = −
b∑

r=d+1

rd
b−r∑
k=0

(r + k − d− 1)!qr+k−d(p/q)k

r!k!
,
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� for r ≤ d, we first obtain, for k > d− r,

T3 = −
d∑
r=1

rd

r!

[
b−r∑

k=d−r+1

(r + k − d− 1)!qr+k−d(p/q)k

k!

]
,

� for r ≤ d and k ≤ d− r, we must return to (16), in order to avoid singularities. This gives

T4 =
d∑
r=1

rd

r!

∫ ∞
0

e−u

[
1− e−up/q

d−r∑
k=0

uk(p/q)k

k!

]
du

ud−r+1

=
d∑
r=1

rd

r!
Π(d− r),

Π(j) =

∫ ∞
0

e−u

[
1− e−up/q

j∑
k=0

uk(p/q)k

k!

]
du

uj+1
. (17)

We have

Π(0) =

∫ ∞
0

e−u
[
1− e−up/q

] du
u

= L,

and, by parts,

Π(j) =

∫ ∞
0

[
−e−u +

1

q
e−u/q

j∑
k=0

uk(p/q)k

k!
− e−u/q

j∑
k=0

kuk−1(p/q)k

k!

]
du

juj

=

∫ ∞
0

[
−e−u +

1

qj!
e−u/quj(p/q)j + e−u/q

j−1∑
k=0

uk(p/q)k

k!

]
du

juj

= −Π(j − 1)

j
+

(p/q)j

jj!
.

Set

Π(j) =
(−1)jL

j!
+

(−1)jB(j)

j!
.

This leads to

B(j)(−1)j = B(j − 1)(−1)j + (p/q)j
1

j
,

or

B(j) =

j∑
1

(−1)k

k
(p/q)k, B(0) = 0.

Returning to (17), this gives (with an identity proved in [7]),

T4 =
d∑
r=1

rd

r!

[
(−1)d−rL

(d− r)!
+

(−1)d−rB(d− r)
(d− r)!

]
= L+ T5,

with

T5 =

d∑
r=1

rd
(−1)d−r

r!(d− r)!
B(d− r).

Now T2 and T3 can be grouped, by setting u = r + k. This gives

T6 = −
b∑

u=d+1

u∑
r=1

rd

r!

(u− d− 1)!q−dpu(q/p)r

(u− r!)
.
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Let us try to simplify T7 := T6 + T1

T6 = −
b∑

u=d+1

u∑
r=0

d∑
k=0

{
d
k

}
rku!q−dpu(q/p)r

r!(u− r!)ud+1

=

b∑
u=d+1

q−dpu
d∑

k=0

{
d
k

}
p−uqkuk

ud+1
,

T1 =
b∑

r=d+1

d∑
k=0

{
d
k

}
rk

rd+1
,

T7 = T6 + T1 =
b∑

u=d+1

d−1∑
k=0

{
d
k

}[
1− qk−d

] 1

(u− k) . . . (u− d)

=

d−1∑
k=0

{
d
k

}
d− k

[
1

(d− k)!
− (b− d)!

(b− k)!

] [
1− qk−d

]
.

Putting everything together, this finally leads to

m1,d =
1

L
[L+ T5 + T7] .

But even that could again be simplified!

T5 =
d∑
r=1

rd
(−1)d−r

r!(d− r)!
B(d− r)

=

d−1∑
i=0

(d− i)d(−1)i

i!(d− i)!
∑

1≤j≤i

(−1)j

j
(p/q)j

=

d∑
λ=0

{
d
λ

} d−λ∑
i=0

(d− i)!(−1)i

(d− i− λ)!i!(d− i)!
∑

1≤j≤i

(−1)j

j
(p/q)j

=

d∑
λ=0

{
d
λ

} d−λ∑
i=0

(−1)i

(d− i− λ)!i!

∑
1≤j≤i

(−1)j

j
(p/q)j

=

d∑
λ=0

{
d
λ

} ∑
1≤j≤d−λ

(−1)j

j
(p/q)j

1

(d− λ)!

d−λ∑
i=j

(−1)i
(
d− λ
i

)

=

d−1∑
λ=0

{
d
λ

} ∑
1≤j≤d−λ

(−1)j

j
(p/q)j

1

(d− λ)!
(−1)j

(
d− λ− 1

j − 1

)

=

d−1∑
λ=0

{
d
λ

}
1

(d− λ)(d− λ)!

∑
1≤j<d−λ

(
d− λ
j

)
(p/q)j

=
d−1∑
λ=0

{
d
λ

}
qλ−d − 1

(d− λ)(d− λ)!
.

Now

m1,d = 1 +
1

L

d−1∑
k=1

{
d
k

}
qk−d − 1

(d− k)(d− k)!
+

1

L

d−1∑
k=1

{
d
k

}
d− k

[
1

(d− k)!
− (b− d)!

(b− k)!

] [
1− qk−d

]
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= 1 +
(b− d)!

L

d−1∑
k=1

{
d
k

}
qk−d − 1

(d− k)(b− k)!
,

V(Z) ∼ p

(b− 1)qL
.

The periodic component is obtained as follows

w1,d =
∑
l 6=0

d∑
r=1

rd lim
α→L(d−χl)

φ(r, α)e−2lπi logn

=
∑
l 6=0

d∑
r=1

rd lim
α→L(d−χl)

[
Γ(r − α̃)

Lr!
−

b−r∑
k=0

Γ(r + k − α̃)qr+k−α̃(p/q)k

Lr!k!

]
e−2lπi logn

=
∑
l 6=0

1

L

d−1∑
j=1

{
d
j

}[
(1− qj−d

]
Γ(j − d+ χl)

(
b− d+ χl
b− j

)
e−2lπi logn.

after all simplifications (we omit the details). Again, m1,1 = 1, w1,1 = 0. The moments of W can be
similarly computed. We leave this to the interested reader.

9.3 Distribution of R

Theorem 9.3

P(R = r) ∼ pr = φ(r, 0) =
1

L

[
1

r
−

b∑
u=r

(u− 1)!

r!(u− r)!
pu(q/p)r

]
, r ≥ 1,

E(R) ∼ 1

L
[b− qb] =

pb

L
,

E(R2) ∼ 1

L

[
b(b+ 1)/2− q2 b(b− 1)

2
− qb

]
.

Proof. We have

P(R = r) ∼ pr = φ(r, 0) =
1

L

[
1

r
−

b∑
u=r

(u− 1)!

r!(u− r)!
pu(q/p)r

]
, r ≥ 1

and

p0 = 1−
b∑
1

pr

= 1− 1

L

[
Hb −

b∑
r=1

b∑
u=r

(u− 1)!

r!(u− r)!
pu(q/p)r

]

= 1− 1

L

[
Hb −

b∑
u=1

(u− 1)!pu
u∑
r=1

1

r!(u− r)!
(q/p)r

]
(18)

= 1− 1

L

[
Hb −

b∑
u=1

1

u
pu

u∑
r=1

(
u

r

)
(q/p)r

]

= 1− 1

L

b∑
u=1

pu

u
.
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Again, this can obtained from limr→0 φ(r, 0).
The moments of R are computed as follows

E(R) ∼
b∑
1

rpr =
1

L

[
b−

b∑
u=1

(u− 1)!pu
u∑
r=1

r

r!(u− r)!
(q/p)r

]

=
1

L

[
b−

b∑
u=1

pu(1/p)u−1 q

p

]

∼ 1

L
[b− qb] =

pb

L
,

E(R2) ∼
b∑
1

r2pr =
1

L

[
b(b+ 1)/2−

b∑
u=1

pu(u− 1)(q/p)2(1/p)u−2 − qb)

]

=
1

L

[
b(b+ 1)/2−

b∑
u=1

(u− 1)q2 − qb

]

=
1

L

[
b(b+ 1)/2− q2 b(b− 1)

2
− qb

]
.

9.4 Moments of 1/R,R > 0 for large b

Theorem 9.4

E
(

1

R
;R > 0

)
b∼ 1

Lb

p

q
.

Proof. Using (18), we have

E
(

1

R
;R > 0

)
∼

b∑
r=1

pr/r =
1

L

[
b∑

r=1

1

r2
−

b∑
u=1

(u− 1)!pu
u∑
r=1

1

rr!(u− r)!
(q/p)r

]

=
1

L

[
H

(2)
b −

∞∑
u=1

(u− 1)!pu
u∑
r=1

1

rr!(u− r)!
(q/p)r +

∞∑
u=b+1

(u− 1)!pu
u∑
r=1

1

rr!(u− r)!
(q/p)r

]

=
1

L

[
−ψ(1, b+ 1) +

π2

6
−
∞∑
u=1

(u− 1)!pu
u∑
r=1

1

rr!(u− r)!
(q/p)r

+
∞∑

u=b+1

(u− 1)!pu
u∑
r=1

1

rr!(u− r)!
(q/p)r

]

Now

∞∑
u=1

(u− 1)!pu
u∑
r=1

1

rr!(u− r)!
(q/p)r

=

∞∑
r=1

∞∑
u=r

(u− 1)!

rr!(u− r)!
pu(q/p)r

=
∞∑
v=0

1

(v + 1)2
(q/p)v+1

∞∑
w=v

(
w

v

)
pw+1
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= p

∞∑
v=0

1

(v + 1)2
(q/p)v+1pv

∞∑
s=0

(
−v − 1

v

)
(−p)s

= p
∞∑
v=0

1

(v + 1)2
(q/p)v+1pv(1− p)−(v+1)

= ζ(2) =
π2

6
. (19)

This is the same value as in the symmetric case!
Now

ψ(1, b+ 1)
b∼ 1

b
+O

(
1

b2

)
,

and
∞∑

u=b+1

(u− 1)!pu
u∑
r=1

1

rr!(u− r)!
(q/p)r

= T1 + T2,

T1 =
b+1∑
r=1

(q/p)r
∞∑

u=b+1

pu
(u− 1)!

rr!(u− r)!

= p
b∑

v=0

1

(v + 1)2
(q/p)v+1

∞∑
w=b

(
w

v

)
pw,

T2 =
∞∑

r=b+1

(q/p)r
∞∑
u=r

pu
(u− 1)!

rr!(u− r)!

= p
∞∑
v=b

1

(v + 1)2
(q/p)v+1

∞∑
w=v

(
w

v

)
pw

=
∞∑
v=b

1

(v + 1)2
.

We now turn to the asymptotics of
(
w
v

)
pw for large w. We obtain, by Stirling and setting w = yv+α,

(y will be fixed later on)(
w

v

)
pw ∼ e−www

√
2πw

e−(w−v)(w − v)w−v
√

2π(w − v)e−vvv
√

2πv
pyv+α

=
e−(yv+α)(yv + α)yv+α

√
2π(yv + α)

e−((y−1)v+α)((y − 1)v + α)(y−1)v+α
√

2π((y − 1)v + α)e−vvv
√

2πv
pyv+α

∼
e−v(yv)yv+α

(
1 + α

yv

)yv+α√
y/(y − 1)

((y − 1)v)(y−1)v+α
(

1 + α
(y−1)v

)(y−1)v+α
e−vvv

√
2πv

pyv+α

∼
e
α+ α2

2yv
√
y/(y − 1)

e
α+ α2

2(y−1)v
√

2πv

yyv+α

(y − 1)(y−1)v+α
pyv+α

Let us choose y such that
yα

(y − 1)α
pα = 1

This gives

y =
1

q
, y − 1 =

p

q
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This finally leads to (
w

v

)
pw ∼ e

−α
2q2

2vp√
2πvp/q2

pv

qv+1

This is a Gaussian function, centered at v/q with variance σ2 = pv/q2 and multiplied by pv

qv+1 . Pro-
ceeding as in Section 6.2, and omitting the details, we finally obtain

T1
b∼

b∑
v=bq

1

(v + 1)2

and

E
(

1

R
;R > 0

)
b∼ 1

Lb

p

q
.

The moments of
(

1
Rα ;R > 0

)
are computed as in Section 6.2.

10 Conclusion

Once again, the techniques using Gumbel-like distributions and Stein methodology proved to be quite
efficient in the analysis of algorithms such as Adaptive Sampling.
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