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We present a phase diagram of the different dune patterns observed when a bed composed
of spherical particles is subjected to a pipe flow. While the threshold for incipient motion
is determined by the Shields number, that for dune formation seems to be controlled by
the Reynolds number. A simple linear stability analysis based on a particle flux derived
by Ouriemi, Aussillous & Guazzelli (2009) accounts reasonably well for the experimental
observations.

1. Introduction

A very common feature that arises when bed constituted of particles are submitted
to shearing flows is the formation of ripples, i.e. small waves on the bed surface having
wavelengths scaling with the particle size, or of dunes, i.e. larger mounds or ridges having
wavelengths comparable to or larger than the fluid height.

Since the seminal work of Kennedy (1963), the prevalent mechanism for dune or ripple
formation is the fluid inertia or more precisely the phase-lag between the bottom shear
stress and the bed waviness generated by the fluid inertia. In that case, the shear stress,
the maxima of which are slightly shifted upstream of the crests, drags the particles from
the troughs up to the crests. This destabilising mechanism seems to be robust enough
to apply to any steady flow, either turbulent, see e.g. Engelund (1970), Richards (1980),
Sumer & Bakioglu (1984), Colombini (2004) and Claudin & Andreotti (2006), or viscous,
see e.g. Charru & Mouilleron-Arnould (2002), and Charru & Hinch (2006).

A few stabilising mechanisms have been proposed, among which a well identified sta-
bilising effect due to the inclination of the bed, see e.g. Fredsøe (1974), Richards (1980),
Sumer & Bakioglu (1984), Charru & Mouilleron-Arnould (2002), Charru & Hinch (2006)
and Charru (2006). For nonzero slope, the gravity force parallel to the bed surface favours
the downhill motion of the particles and conversely impedes the uphill motion. Another
stabilising mechanism related to particle inertia was also suggested to arise from the
phase-lag between the bottom shear stress and the particles flow rate. This effect can
be expressed in term of an inertial length, see e.g. Andreotti, Claudin & Douady (2002),
or a deposition length coming from a stabilising crest-erosion process, see e.g. Charru &
Hinch (2006) and Charru (2006).

However, a complete description of the bed instability is still lacking as the coupling
between the granular media and the fluid is poorly understood. Usually, one first calcu-
lates the fluid flow as if the wavy bottom were fixed by considering the superposition of
a base flow on the flat bed and a perturbation induced by the wavy bottom. Then, one
needs to relate the particle flow rate to the calculated shear stress at the top of the bed.
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Authors Flow Threshold Prediction

Sumer & Bakioglu (1984) turbulent Rep =
du∗

ν
= 10 − 26

Charru & Mouilleron-Arnould (2002) laminar θ = θc
0

„

30

θc
0
Gaµ

«

1/2
d

hf

Charru & Hinch (2006) laminar Ga =
396

θc
0

„

d

hf

«3

Table 1. Stability analysis prediction for the instability threshold. The particle Reynolds
number is Rep (with d the particle size, u∗ the shear velocity, and ν the kinematic
viscosity of the fluid). The Shields number, θ, is constructed as the ratio of the shear
stress at the top of the bed to the apparent weight of a single particle. The critical Shields
number for incipient particle motion is θc

0, the friction coefficient µ, and the fluid height
is hf . The Galileo number Ga = d3(ρp − ρf )g/ν (with ρp and ρf the particle and fluid
density, respectively) is the Reynolds number based on the Stokes settling velocity of the
particles.

Particle mass conservation equation is finally solved to provide the linear growth rate of
the instability. Several algebraic law relating the particle flow rate to the bottom shear
stress have been proposed in the literature, see tables 1 and 2 of Ouriemi, Aussillous
& Guazzelli (2009), leading to different control parameters for the instability threshold,
such as the Reynolds, Shields, or Galileo numbers, see table 1 where some predictions
of linear stability analyses, which are of particular interest for the present study, are
presented.

There is not yet a complete experimental proof that this type of modelling captures the
essence of the instability. The stability analyses of Sumer & Bakioglu (1984) and Charru
& Mouilleron-Arnould (2002) having the particle transport described by an algebraic law,
a Bagnold-type law and a cubic law respectively, have found preferred initial wavelengths
to be an order of magnitude smaller than the observed dune lengths. A recent stability
analysis by Charru (2006) seems to improve the predictions by including a phase-lag
which erodes the peaks, i.e. the additional stabilisation mentioned above.

The present contribution aims at investigating dune formation in a confined, well-
controlled flow, namely a flow in a closed pipe. In § 2, we present an experimental study
of the evolution of a particle bed in a pipe flow. Different dune patterns are observed as
the flow rate is increased from the laminar to the turbulent regimes. We then focus on the
threshold for destabilisation of the flat bed leading to dune formation. In § 3, we adapt
the stability analysis of Charru & Hinch (2000) to a Poiseuille flow and choose to use
simply the algebraic law relating the particle flux to the cube of the Shields number found
by Ouriemi, Aussillous & Guazzelli (2009). The control parameter of the instability is the
Reynolds number and the predicted wavelength at onset scales with the fluid thickness. In
§ 4, a phase diagram for the different dune patterns observed is proposed and comparison
with theoretical predictions provided.
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Batch Composition d (µm) ρp (g/cm3) Supplier
A Glass 132 ± 22 2.490 ± 0.003 Potters-Ballotini
B Polystyrene 538 ± 24 1.051 ± 0.002 Maxi-Blast
C PMMA 193 ± 30 1.177 ± 0.002 Lehmann & Voss & Co.

Table 2. Particle characteristics. The particle density, ρp, was measured with a pycnome-
ter and a fluid of measured density. The particle size distributions were determined with
a digital imaging system. The mean diameter is noted d and the error corresponds to
one standard deviation.

Fluid η (cP) ρf (g/cm3)

1 0.7 ± 1 0.999 ± 0.001
2 6.7 ± 1 1.016 ± 0.001
3 8 ± 1 1.018 ± 0.001
4 10 ± 1 1.022 ± 0.001
5 12 ± 1 1.023 ± 0.001

Table 3. Fluid characteristics at T = 35◦C. The viscosity, η, was measured with a
falling ball viscometer and the fluid density, ρf , with a pycnometer.

2. Experimental observations

2.1. Experimental set-up

The experimental test section was a horizontal glass tube of inner diameter D = 3 cm
and length L = 1.8 m. The measurement zone was located at ≈ 50 cm from the entrance.
This length corresponded to the entry length necessary for the laminar flow to develop
fully inside the tube at Repipe ≈ 250, where Repipe = 4Qpipeρf/πDη is the tube Reynolds
number with Qpipe the flow rate, ρf the fluid density, and η the viscosity. Experiments
were performed in the range 10−1 . Repipe . 104. For Repipe . 250, the laminar flow
was then fully developed in all the measurement zone while it was not for 250 . Repipe .

2500. The transition toward turbulence occurred for Repipe ≈ 2500.
Three different batches of spheres and five different mixtures of distilled water and

UCON oil 75H-90000 were used in the experiments as indicated in tables 2 and 3. First,
the tube was filled with fluid and the particles were carefully introduced to form an
uniform flat bed. Secondly, in order to avoid flow perturbations from a pump, the flow
was driven by gravity. The fluid was delivered to the tube by continuous overflow from an
overhead tank of variable height. At the outlet of the tube, the particles were captured
by a mesh while the fluid was run into a reservoir. A pump carried the fluid back to the
overflowing tank. The temperature of the fluid was maintained at 35 ± 1◦ C by using
a thermostated bath as a fluid reservoir in the fluid circulating loop. To measure Qpipe,
we collected a given volume of fluid at the outlet of the tube in a given time. It is worth
mentioning that, even though the flow is controlled by gravity, the pressure losses in the
flow loop result in an imposed flow-rate in the test section despite the changes in the
tube section as particles are lost.

2.2. Classification of dune patterns

Five different regimes can be observed as summarised in figure 1 for two different batches
of particles (batches A and C) and using fluids of varying viscosity to explore the full
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Repipe range. For convenience, we have chosen to represent their domain of validity
as a function of Repipe. Below the critical Shields number for incipient particle motion,
θc
0 ≈ 0.12 (the 0 subscript indicates that this threshold corresponds to a flat bed), the bed

shape does not evolve, see Charru, Mouilleron-Arnould & Eiff (2004), Loiseleux, Gondret,
Rabaut & Doppler (2005), and Ouriemi, Aussillous, Medale, Peysson & Guazzelli (2007).
Note that this first threshold is determined by the Shields number and not the Reynolds
number. Above this first threshold, we observe a second regime where the bed shape
evolves but without dune formation. In this regime, a few layer of particles are set in
motion at the surface of the bed by the fluid flow. The bed shape evolves, becomes
slightly tilted and the bed height decreases with increasing time as the test section is not
fed in with particles. When the experiment is run for a long enough time, the bed shape
eventually freezes, exhibiting a flat surface.

Increasing again Repipe, three regimes exhibiting different dune patterns can be found.
For the first dune regime, which only exists in laminar flow, the dunes denoted ‘small
dunes’ present small amplitudes. The second dune regime is observed either in laminar
or turbulent flow. In this regime, the dunes are characterised by the existence of vortices
located at their front as can be seen in online movie 1. The vortices erode the particle bed
(see figure 1 top view of the vortex dunes). This thus leads to dunes of very large ampli-
tude denoted ‘vortex dunes’. Finally, when the flow is turbulent (and only in that case),
we observe a new dune pattern that we called ‘sinuous dune’. The bottom photograph of
figure 1 shows a top view of a ‘sinuous dune’. The particle bed is eroded asymmetrically
leading to the formation of a pattern having a double periodicity. This may be explained
by a destabilisation of the initial vortices observed in the ‘vortex dunes’.

2.3. Evolution of dune amplitude, wavelength, and phase velocity

To quantify more precisely the time-evolution of the dunes, we recorded the evolution of
the bed height as a function of time, for a combination of fluid and particles, a given flow
rate Qpipe, and an initial height of the bed, hstart

p . Using the same experimental technique
as in Ouriemi, Aussillous & Guazzelli (2009) where further details can be found, the bed
height was measured by imaging the upper layer of the bed illuminated by a laser sheet
aligned with the tube length in its middle. The measurement zone spanned over 45 or
75 cm and started at ≈ 50 cm from the entrance of the tube. The use of such a large
measurement zone provided a precise study of the wavelength evolution over a long
time but leaded to a poor resolution in dune amplitude as the accuracy in height was
≈ 2 − 3 mm.

Here, we focus on the two first dune regimes, i.e. the regimes of small and vortex
dunes. The spatio-temporal evolution of the bed height for three experiments are plotted
in figure 2, in the small dune regime (a) and in the vortex dune regime (b) and (c), with
bed heights coded in grey scale. In both regimes, we observe the formation of initial dunes
in the measurement zone. These dunes have a relatively uniform wavelength and move in
the flow direction inside the tube. However, the initial dunes preceding the vortex dunes
differ from the small dunes as will be evidenced later.

In the case of vortex dunes, the flow perturbation at the entrance of the tube generates
a first vortex dune whose vortices create a second dune downstream and so on. The vor-
tex perturbation by propagating downstream creates dunes downstream over the entire
length of the tube which progressively take over the initial dunes, see the top plots of
figure 2 (b) and (c). At the same time, the dune pattern moves downstream as the dunes
themselves are moving in the flow direction. With increasing time, the vortices between
two adjacent dunes erode the particle bed and the dunes are separated by regions emp-
tied of particles. Even though no dune coalescence is observed, the pattern wavelength
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Figure 1. The different dune patterns.

increases with time whereas the dune velocity decreases. The dune motion eventually
stops as the tube is not fed in with particles and the dunes are completely separated,
see the bottom plots of figure 2 (b) and (c). We can note that the length-scale depends
on the particles. The time-scale also differs. For batch C in fluid 1, the dunes stop after
less than one week, while, for batch A in fluid 1 with a flow rate of the same order of
magnitude, they move during approximately two weeks before stopping.

In the case of the small dunes, there is also a propagation of dunes created by the
entrance perturbation. But, as these dunes have no vortex, the velocities of dunes due
to the entrance perturbation and of the initial dunes are similar and thus these dunes do
not overtake the initial dunes created in the measurement zone, see the top plot of figure
2 (a). As time is increased, the wavelength increases without showing any saturation,
the dune velocity decreases, and the dune amplitude increases, see the bottom plot of
figure 2 (a). The small dunes never stop moving downstream and eventually leave the
tube when they reach the tube outlet. When all the dunes have left the tube, the bed
becomes flat again. A strong change in the pattern can be observed at the bottom of
figure 2 (a) as a ripple instability is observed.

Small dunes and vortex dunes exhibit different behaviours. While the particle bed
eventually freezes in both cases, their final states also differs. For vortex dunes, due to
presence of vortices, the final state corresponds to immobile dunes separated by regions
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Figure 2. Spatio-temporal plots for (a) batch A in fluid 2 with Qpipe = 3.40 10−5m3s−1

and hstart
p = 22 mm (small dune regime), (b) batch A in fluid 1 with Qpipe = 3.79 10−5s−1

and hstart
p = 21 mm (vortex dune regime), and (c) batch C in fluid 1 with

Qpipe = 3.96 10−5m3s−1 and hstart
p = 15 mm (vortex dune regime). The grey scale

represents the height hp of the bed in mm.
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Figure 3. Dimensionless dune (a) amplitude, A, (b) velocity, V , and (c) wavelength, λ,
for batch C in fluid 1 with Qpipe = 3.96 10−5m3.s−1 (◦, vortex dune regime) and for
batch A in fluid 4 with Qpipe = 3.46 10−5m3.s−1 (�, small dune regime)

emptied of particles. For small dunes, as there are no vortices to dig out the particle
bed, the small dunes move downstream until they leave the pipe and the remaining state
is a flat bed. These two behaviours are shown in online movies 2 and 3. Beside, their
length-scales and time-scales are dissimilar even at the initial stage.

To obtain a quantitative comparison, we have measured the amplitude, wavelength,
and phase velocity of the dunes in both regimes. The bed height measurements described
above are further analysed to determine the local minima and maxima of the height
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Figure 4. Poiseuille flow on a wavy bottom.

profile. For each acquisition time, the wavelength is given by the average of the distance
between two maxima over the measurement zone. In a similar way, the amplitude is given
by the averaged difference in height between the minima and maxima. The velocity is
given by averaging the displacements of maxima over typically 5 acquisition times.

Figure 3 shows the evolution of amplitude, wavelength, and phase velocity with time of
dunes appearing in the measurement zone in the small (�) and vortex (◦) dune regimes.
The quantities have been made dimensionless by using D as a length scale and the mean
velocity of the flow U = 4Qpipe/πD2 as a velocity scale. The time scale of dune formation
differs by a factor ten between the two dune regimes. The amplitude and wavelength are
similar in the first instant. However, the phase velocity of the initial dunes is about ten
times larger in the vortex dune regime than in the small dune regime as shown in figure 3
(b). The behaviour also differs as it increases initially in the vortex dune regime while it
presents a slow decrease in the small dune regime. This clearly shows that the dynamics
of the initial dunes which precede the fully developed vortex dunes differ from those
of the small dunes. At later instant, for a dimensionless time ≈ 900 in figure 3, there
is a dramatic increase of both amplitude and wavelength as well as a maximum in the
phase velocity in the vortex dune regime. This corresponds to the take-over of the fully
developed vortex dune having vortices which intensify the dynamics. For further times,
the amplitude and wavelength of the vortex dunes saturate as the dunes progressively
become detached entities. Their speed decreases and the dunes eventually stop moving.
Small dunes have an amplitude about five times smaller than vortex dunes at their later
stage. Their wavelength shows a slow and continuous increase.

3. A simple linear stability analysis

3.1. Poiseuille flow on a wavy bottom

To determine the fluid flow over a wavy bottom in a two-dimensional channel, we follow
the approach of Charru & Hinch (2000) initially undertaken for a Couette flow that we
adapt for a Poiseuille flow. We consider a fluid layer lying between a flat upper wall and
a wavy bottom which is assumed to be perturbed sinusoidally as ξ = ξ1 cos(kx) with
wave-number k and amplitude ξ1 as sketched in figure 4. Following the previous studies
of Charru & Hinch (2000) and Charru & Hinch (2006), we assume that the time scale of
the fluid flow is much shorter than the time scale of the bed evolution. The fluid flow can
then be calculated as if the wavy bottom were fixed, by considering the superposition of
a base flow, u0 along the x direction, over a flat bed and a disturbance, u1 and v1 along
the x and y directions respectively, induced by the wavy bottom.

We decide to make all the values dimensionless by scaling the length by the channel
thickness hf , the velocity by qf/hf where qf is the fluid flow rate, and the pressure by
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a viscous pressure ηfqf/h2
f . Therefore the time is scaled by h2

f/qf . We note Re2D =
qf/ν the Reynolds number of the channel. The dimensionless velocity and pressure are
decomposed into a base Poiseuille flow, ū0 = 6ȳ(1 − ȳ) and ∂p̄0/∂ȳ = −ρfgh3

f/ηfqf ,

and a disturbance [ū1(ȳ), v̄1(ȳ), p̄1(ȳ)]eik̄x̄. Here, the upper bar indicates dimensionless
values, the 0 subscript the base state, and the 1 subscript the perturbation.

Substituting this flow into the dimensionless linearized mass and momentum conser-
vation equations, we obtain a set of linear ordinary differential equations

ik̄ū1 +
∂v̄1

∂ȳ
= 0,

Re2D

(

i6k̄ū1ȳ(1 − ȳ) + 6v̄1(1 − 2ȳ)
)

= −ik̄p̄1 − k̄2ū1 +
∂2ū1

∂ȳ2
,

i6Re2Dk̄v̄1ȳ(1 − ȳ) = −
∂p̄1

∂ȳ
− k̄2v̄1 − ik̄

∂ū1

∂ȳ2
. (3.1)

The kinematic boundary conditions become

ū1(0) = −6ξ̄1 and ū1(1) = v̄1(1) = v̄1(0) = 0. (3.2)

Equations (3.1) with the boundary conditions (3.2) can be solved numerically using
a Chebychev spectral collocation method, see Gottlieb, Hussaini & Orszag (1984). It
is also interesting to find an analytical solution in the shallow viscous regime, k̄ ≪

1, by performing an asymptotic expansion for the small dimensionless wave-number k̄.
Assuming Re2D = O(1), the fluid velocity components can be expended in powers of k̄
which gives the shear-rate

dū1

dȳ
= −6ξ̄1(6ȳ − 4) + iξ̄1

Re2D

70

(

504ȳ5 − 1260ȳ4 + 840ȳ3 − 108ȳ + 12
)

k̄ + O(k̄2). (3.3)

This exhibits the phase-lag of the bottom shear rate disturbance k̄Re2D/140 due to
inertia similar to that found by Charru & Hinch (2000) for Couette flow.

3.2. Dune formation

The dune growth is determined by the conservation equation for the particle flux, qp,
which is obtained by integrating the particle mass conservation equation over the bed
height

∂q̄p

∂x̄
+ φ0

∂ξ̄

∂t̄
= 0, (3.4)

where φ0 is the particle volume fraction inside the bed.
We assume that the dynamics of the particle is well accounted by the algebraic law re-

lating the dimensionless particle flux to the Shields number found by Ouriemi, Aussillous
& Guazzelli (2009)

q̄p = φ0
η

ηe

Ga

24Re2D

θ3

θc2 , (3.5)

where Ga = ρf∆ρgd3/η2 is the Galileo number, θ = (ηdu/dy)/∆ρgd the Shields number,
and ηe an effective viscosity of the mixture of the particles and fluid that was found to
equate well to the Einstein viscosity η(1 + 5/2φ0). This algebraic law has been shown to
be valid for moderate Shields numbers 0.5 . θ . 1.5, i.e above the threshold for incipient
motion (the moving thickness is larger than one particle diameter) but for shearing flow
not substantially perturbed by the motion of the granular media, see Ouriemi, Aussillous
& Guazzelli (2009).
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We now introduce the time evolution of the bed surface, ξ̄ = ξ̄1e
i(k̄x̄−ω̄t̄). We decompose

the Shields number into a base Shields number θ0 corresponding to a flat bed and a
perturbation θ1e

i(k̄x̄−ω̄t̄). In the same way, we write the critical Shields number as θc =
θc
0 + θc

1e
i(k̄x̄−ω̄t̄). Linearising equation (3.5), we obtain

q̄p =
η

ηe

φ0
Ga

24Re2D

θ3
0

θc
0
2 (1 + 3

θ1e
i(k̄x̄−ω̄t̄)

θ0
− 2

θc
1e

i(k̄x̄−ω̄t̄)

θc
0

). (3.6)

The local inclination of the bed surface modifies the critical Shields number, see e.g
Fredsøe (1974), Richards (1980), Charru & Hinch (2006), and Charru (2006), which
becomes

θc = θc
0(1 +

∂ξ̄/∂x

µ
) = θc

0 +
θc
0

µ
ik̄ξ̄, (3.7)

giving by identification

θc
1 =

θc
0

µ
ik̄ξ̄1, (3.8)

where µ is a friction coefficient which is the tangent of the angle of repose of the grains
and mainly depends on the grain geometry.

We suppose that the time evolution of the bed surface is slow enough to relate the
Shields number to the shear rate calculated at the top of the fixed wavy bottom found
in the preceding section

θ =
Re2D

Ga
(

d

hf

)2
[

dū0

dȳ
(ξ̄) +

dū1

dȳ
(ξ̄)ei(k̄x̄−ω̄t̄)

]

. (3.9)

The linearized shear rate calculated at the top of the fixed wavy bottom is given by the
two equations

dū0

dȳ
(ξ̄) =

dū0

dȳ
(0) + ξ̄

d2ū0

d2ȳ
(0) + O(ξ̄2),

dū1

dȳ
(ξ̄) =

dū1

dȳ
(0) + O(ξ̄2), (3.10)

exhibiting

θ0 =
Re2D

Ga
(

d

hf

)2
dū0

dȳ
(0),

θ1 =
Re2D

Ga
(

d

hf

)2
[

ξ̄1
d2ū0

d2ȳ
(0) +

dū1

dȳ
(0) + O(ξ̄2

1 )

]

. (3.11)

Considering the time evolution of the bed surface and introducing the linearized flow-
rate given by equation (3.6), the conservation equation of the particle flux at leading
order in ξ̄1 becomes

ω̄ξ̄1 = k̄
η

ηe

Ga

24Re2D

θ3
0

θc
0
2

(

3
θ1

θ0
− 2

θc
1

θc
0

)

. (3.12)

Clearly, the perturbation in critical Shields number due to the local inclination of the bed
surface (which is purely imaginary) has always a stabilising effect while the imaginary
part of the perturbation in Shields number contains the destabilising effect due to inertia.
The frequency ω̄ is directly given by equation (3.12) where θ1 is obtained using the
numerical computation of equations (3.1) with the boundary conditions (3.2) mentioned
in the preceding section. The frequency can be separated into an imaginary part and a
real part, giving the growth rate ω̄i and the phase velocity ω̄r/k̄.
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Figure 5. (a) Numerical ω̄i as a function of k̄ for Re2D = 35 (♦), Re2D = 49.3 (◦),
Re2D = 54.3 (×), and Re2D = 70 (�). The lines represent equation (3.15) for Re2D = 35
(small-dashed line), Re2D = 49.3 (dotted line), Re2D = 54.3 (solid line), and Re2D = 70
(long-dashed line) and (b) blow-up.

In the shallow viscous regime, k̄ ≪ 1, equation (3.12) can be solved analytically by
using the shear rate given by equation (3.3). At leading order in k̄, this gives

ω̄ = k̄
η

ηe

Ga

24Re2D

θ3
0

θc
0
2 (6 + i

3Re2D

35
k̄ − 2ik̄

1

µ
), (3.13)

which leads to

ω̄r

k̄
=

η

ηe

Ga

4Re2D

θ3
0

θc
0
2 , (3.14)

ω̄i = k̄2 η

ηe

Ga

24Re2D

θ3
0

θc
0
2 (

3Re2D

35
− 2

1

µ
). (3.15)

The instability threshold, corresponding to ωi = 0, occurs at

Rec
2D =

70

3µ
. (3.16)

The important finding is that the control parameter for the dune instability is the
Reynolds number, Re2D, and not the Shields number, θ. It is worth mentioning that
the threshold for having a monolayer of particles in motion on a flat bed has been found
to be θc

0 = µφ0/2 which is proportional to the friction coefficient µ and to the volume
fraction of the particle inside the bed φ0, see Ouriemi, Aussillous & Guazzelli (2009).
The threshold for dune instability involves the Reynolds number and is also related to
the friction coefficient. Using the above expression for θc

0, it can be expressed as

Rec
2D =

35φ0

3θc
0

. (3.17)

These thresholds, θc
0 and Rec

2D, differ but are related. Consequently, the onset for the
instability may not coincide with the onset for particle motion. In this simple modelling,
these thresholds only depend on two physical parameters, the particle volume fraction
inside the bed and the friction coefficient.

Figure 5 shows the dimensionless growth-rate, ω̄i, versus dimensionless wave-number,
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Figure 6. Phase-Diagram of the dune patterns in the plane Repipe, Ga(hf/d)2. The
different regimes represented are: ‘no motion’ (×), ‘flat bed in motion’ (�) and (�) when
outside the domain of validity of the model, ‘small dunes’ (◦), ‘vortex dunes’ (N), and
‘sinuous dunes’ (△). The dashed line is the predicted threshold for particle motion, the
horizontal solid line is the predicted instability threshold, and the dotted line indicates
the domain of validity of the particle flux law. The dashed-dotted line is the prediction
for instability threshold of Charru & Mouilleron-Arnould (2002) and the vertical solid
line is that of Charru & Hinch (2006).

k̄, for φ0 = 0.55 and θc
0 = 0.12 as found experimentally by Ouriemi et al. (2007) (or

equivalently µ = 0.43). Equation (3.15) valid in the shallow viscous regime, k̄ ≪ 1, shows
a long wavelength instability with a threshold at Rec

2D = 54.3. The numerical predictions
present a good agreement with this asymptotic case for k̄ . 0.1. However, the numerical
solution indicates that the instability is not a long-wave instability at threshold but
presents a finite value k̄ ≈ 1.7 for a slightly different threshold Rec

2D = 49.3, see blow-up
in figure 5. This is an interesting finding as it indicates that the wavelength at onset is
of the order of the fluid thickness.

4. Discussion and conclusion

Figure 6 presents the phase diagram of the dune patterns in the plane Repipe, Ga(hf/d)2.
We choose this plane to exhibit both the threshold for incipient particle motion controlled
by the Shields number and that for dune instability predicted to be controlled by the
Reynolds number in the linear stability analysis of § 3. In this plane, the threshold for par-
ticle motion is given by the dashed line Repipe = (2θc

0/3βπ)Ga(hf/d)2 ≈ 0.014 Ga(hf/d)2

with θc
0 = 0.12 as found experimentally by Ouriemi et al. (2007) with the same ex-

perimental apparatus. The predicted instability threshold is the horizontal solid line
Repipe = 140φ0/3βπθc

0 ≈ 37. Indeed, in the case of a pipe flow, the Reynolds number
is Repipe = 4ρfQpipe/πηD and the threshold equation (3.17) obtained for a two dimen-
sional channel needs to be modified by replacing Re2D by βπRepipe/4 (or equivalently
qf by βQpipe/D) where β = 1.85 has been found from numerical analysis in the limit
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Figure 7. (a) Dimensionless initial dune velocity against equation (3.14) (the solid line
corresponds to the slope one) and (b) dimensionless initial wavenumber as a function of
Repipe (the solid line represents the numerical prediction of the most unstable wave-num-
ber and the dotted line the instability threshold) for batch A in fluids 2 (◦), 3 (△), 4
(�), and 5 (×).

0.2 6 hf/D 6 0.8, see Ouriemi et al. (2007). Note that this predicted threshold only
depends on a single parameter (µ or θc

0). The dotted line indicates the domain of va-
lidity of the algebraic law relating the dimensionless particle flux to the Shields number
found by Ouriemi, Aussillous & Guazzelli (2009) and thus indicates the domain of va-
lidity of the instability threshold prediction of § 3. The three regimes of ‘no motion’ (×),
‘flat bed in motion’ (� and � when outside the domain of validity of the model), and
‘small dunes’ (◦) are well delineated by these boundaries in the given limit of validity.
Clearly, the threshold for incipient particle motion and that for small dune instability
are observed to differ as there is a large region of ‘flat bed in motion’ without any dune
formation. The instability threshold is well described by Repipe as a control parameter
and not by θ which would be a line parallel to the dashed line nor by Ga which would be
a vertical line in figure 6. The threshold prediction of the simple linear stability analysis
of § 3 (horizontal solid line Repipe ≈ 37) provides a correct boundary for the ‘small dune’
instability. Furthermore, the regimes of ‘vortex dunes’ (N) and ‘sinuous dunes’ (△) seem
separated and their thresholds also well described by Repipe as a control parameter.

We have also tested in figure 6 the prediction for instability threshold of Charru &
Mouilleron-Arnould (2002) (dashed-dotted line) and Charru & Hinch (2006) (vertical
solid line) listed in table 1. Below both of these predicted thresholds, no dune is observed
as expected but these boundaries do not properly delimitate the regime of small dune
formation. Note that we did not calibrate the adjustable coefficients of these two models
but used the original calibration of Charru & Mouilleron-Arnould (2002) and Charru
& Hinch (2006) respectively. Different coefficients would produce boundaries having the
same slope as the dashed-dotted and vertical solid lines. These would still be unable to
describe the small dune threshold in figure 6. The difference between the stability analysis
of § 3 and that of Charru & Mouilleron-Arnould (2002) lies into the algebraic law relating
qp to θ. The analysis of § 3 uses qp ∝ θ3/θc2 while Charru & Mouilleron-Arnould (2002)
takes qp ∝ (θ − θc)3. Using a power law involving the excess Shields number yields a
threshold depending both on the Reynolds and Galileo numbers (see table 1) and having
the slope of the dashed-dotted line in figure 6. The analysis of Charru & Hinch (2006)
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differs from the present analysis by the use of a different model for particle transport
which is meant to be applied only to a mobile monolayer and which introduces the new
stabilising effect of crest erosion. The competition between this new stabilising effect and
the destabilising fluid inertia depends on the Galileo number. If the Galileo number is
smaller than a critical number (given in table 1 and vertical solid line plotted in figure 6),
crest erosion overcomes and the bed is stable. In the opposite case, the bed is unstable
above a critical Shields number. This last threshold would correspond to a line with a
slope similar to that of the dashed line in figure 6 which clearly does not delimitate the
observed instability.

Further quantitative comparisons with the predictions of the stability analysis of § 3
can be attempted for the onset of small dunes. Figure 7 (a) compares the initial dune
velocity with equation (3.14). Despite large error bars and some dispersion of the data,
the agreement is good. Figure 7 (b) presents the initially observed wave-numbers as well
as the most amplified numerical wavenumber as a function of Repipe. Clearly, a long-wave
instability is not observed in the experiments and a finite value ≈ 1.2 h−1

f is obtained at
threshold. The experimental wave-numbers seem rather independent of Repipe with val-
ues ≈ 1 − 5 h−1

f while the numerical wavenumber is ≈ 1.7 h−1
f at threshold and presents

an increase with increasing Repipe. Nonetheless, same order of magnitude is recovered
close to threshold. It should be, however, mentioned that experimental measurements at
instability onset are very delicate and thus do not permit further detailed comparisons.
Note that, as expected, the stability analysis developed here is unable to account for the
onset of the vortex dunes. Equation (3.14) underestimates by a factor 104 the experi-
mental velocity of the vortex dunes. Note also that, while in figure 6, the experimental
data for small dunes are obtained with particles of batches A to C with fluids 1 to 5, in
figure 7 only the data for particles of batch A and fluids 2 to 5 are used.

In conclusion, we have given the experimental phase diagram of the different dune
patterns observed when a bed composed of spherical particles is submitted to a shearing
flow in a pipe. ‘Small dunes’ present small amplitudes and only exist in laminar flow.
‘Vortex dunes’ are characterised by the existence of vortices at their front and are found
either in laminar or turbulent flow. ‘Sinuous dunes’, showing a double periodicity, appear
in turbulent flow. While the threshold for incipient motion is determined by the Shields
number, that for dune formation seems to be described by the Reynolds number and
not by the Shields or Galileo numbers. Moreover, the dune instability is not a long-
wave instability at threshold but do present a finite vawelength of the order of the fluid
thickness.

To predict the small dune formation, we have performed a simple linear stability analy-
sis where inertia in the fluid produces a phase-lag in the shear stress which is destabilising,
while the component of gravity down an incline stabilises the perturbations. We first cal-
culated the perturbed fluid flow over a wavy bottom considered as if fixed. Then, we
used the particle flux found by Ouriemi, Aussillous & Guazzelli (2009) to relate the bed
height evolution to the shear stress at the top of the bed through the particle mass con-
servation. The threshold for dune formation is found to be controlled by the Reynolds
number. This threshold prediction with a single adjustable parameter that we have taken
to be realistic provides a correct boundary for the onset of ‘small dunes’. The predicted
wavelength at instability threshold is of the order of the fluid thickness in agreement with
the experiments.

This simple stability analysis containing the basic ingredient of the destabilising fluid
inertia and stabilising gravity is found sufficient to provide realistic predictions. It is worth
pointing out that the two-phase nature of the problem has been only accounted for in the
particle conservation equation in the present study and in most of the studied found in the
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literature. The interesting questions are whether there is any delay in the flux adapting to
a change in the shear stress and whether this additional stabilising mechanism as well as
particle inertia and feed back production are significant. Undertaking a stability analysis
using the complete two-phase modelling developed by Ouriemi, Aussillous & Guazzelli
(2009) should enable to answer these issues in the future.

Acknowledgement

We would like to thank Y. Forterre and O. Pouliquen for discussions regarding the
dune stability analysis, F. Charru and E. J. Hinch for comments and critical reading, and
P. Cervetti, S. Martinez, and F. Ratouchniak for technical assistance. Funding from the
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