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The motion of a ruck in a rug is used as an analogy to explain the role of dislocations in crystalline

solids. We take literally one side of this analogy and study the shape and motion of a bump, wrinkle or

ruck in a thin sheet in partial contact with a rough substrate in a gravitational field. Using a combination of

experiments, scaling analysis and numerical solutions of the governing equations, we quantify the static

shape of a ruck on a horizontal plane. When the plane is inclined, the ruck becomes asymmetric and

moves by rolling only when the inclination of the plane reaches a critical angle, at a speed determined by a

simple power balance. We find that the angle at which rolling starts is larger than the angle at which the

ruck stops; i.e., static rolling friction is larger than dynamic rolling friction. We conclude with a

generalization of our results to wrinkles in soft adherent extensible films.

DOI: 10.1103/PhysRevLett.103.174302 PACS numbers: 46.05.+b, 46.32.+x, 46.70.De, 46.70.Hg

To understand how dislocations in crystalline materials
allow for slip along lattice planes, an oft-used analogy,
attributed to Orowan [1], connects the motion of a dislo-
cation to that of a ruck in a rug. Just as it is easier to move a
rug by having a wrinkle or ruck roll through it rather than
by dragging it, it is easier for a crystal to deform by having
a dislocation glide or climb rather than having an entire
plane of atoms move. However this analogy does not trans-
late literally since a ruck in a rug does not have a quantized
Burgers vector, nor is it amenable to a simple elastic
treatment that the far field of a dislocation is.
Nevertheless, rucks in rugs are inherently interesting ob-
jects, and often appear in various guises at soft interfaces.
For example, motion at a rubber-glass interface occurs not
by sliding but via the generation and propagation of small
wrinkles [2]. Similarly, in thin films and filaments that
interact with a substrate frictionally or adhesively, motion
occurs via the rolling of wrinkles [3,4]. In flagellar axo-
nemes individual microtubules often slide relative to each
other via the motor-driven propagation of microscopic
wrinkles [5], while in animal cells, blebs, which are blisters
where the cell membrane is detached from the underlying
cortex, also propagate like rucks [6]. Finally inchworms
and their relatives move using propagating wrinkles [7],
and very likely played a role in the genesis of the analogy.

Motivated by these studies, we consider the statics and
dynamics of a ruck in a thin film of material such as latex,
lying on a rough plane, shown in Fig. 1(a) (latex thickness
h ¼ 0:25 mm), complementing earlier work [8–11] on the
shape of a heavy elastic filament on a substrate by using a
combination of experimental, scaling and numerical ap-
proaches. Assuming that the ruck is inextensible, the in-
stantaneous position of material points in the ruck xðs; tÞ,
yðs; tÞ parametrized using the arc length s and the orienta-
tion of the local tangent vector �ðs; tÞ relative to the rug
plane are related via the kinematic relations

@sx ¼ cos�; @sy ¼ sin�: (1)

Here @aA � @A=@a. Force balance parallel and perpen-
dicular to the plane yields the equations of motion [see
Fig. 1(b) for a pictorial derivation]:

@sF1 þ �gh sin�þ f1 ¼ �s@ttx;

@sF2 � �gh cos�þ f2 ¼ �s@tty

@sM� F1 sin�þ F2 cos�þm ¼ 0:

(2)
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FIG. 1. (a) A ruck in a thin latex rug on a flat substrate, of
height �, length measured along the arc S and horizontal extent
S� �. Here � is analogous to the Burgers vector. (b) A sche-
matic shows the ruck on a plane at an angle of inclination �. The
upper right hand corner shows the local stress and moment
resultants for a segment of length ds, where � is the angle
between the local ruck tangent and the plane.
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Here F1 and F2 are the integrated stress resultants in the
film of density �, M is the torque resultant and g is the
gravitational acceleration, and f1, f2, m are the volumetric
body forces and torques at a cross section (including the
effects of air drag, etc.) [12]. Closure of the system of
equations requires specification of the torque M. Latex
rubber is a viscoelastic material which we model as a
simple Voigt solid, so that we can write M ¼ EIa@s�þ
�Ia@

2
st�, where Ia is the area moment of inertia of the

cross section, E is the elastic modulus and � is the vis-
cosity of the material. Finding the shape of either the static
or dynamic ruck requires the specification of boundary
conditions at the two contact lines that demarcate the
locations where the ruck leaves and regains contact with
the substrate, and read

xð0Þ ¼ yð0Þ ¼ �ð0Þ ¼ @s�ð0Þ ¼ yðSÞ ¼ �ðSÞ ¼ 0: (3)

Here S is the freely suspended length of the ruck, and the
origin of the ruck has been chosen to be the left contact
line. Without adhesion, the curvature vanishes at either
end, which follows from the absence of localized torques
at the contact lines [13].

For small amplitude rucks, the excess length � � S, and
the projected length of the ruck l� S. Then the ruck height

�� ffiffiffiffiffi

�l
p

, and the ruck curvature ���=l2. Comparing the
elastic bending energy, Ue � EI�2l, with the gravitational
potential energy,Ug � �ghl�, together with the geometric

relations �� �=l2, I � h3 yields the dimensional scaling

laws l� �1=7ðEh2=�gÞ2=7, �� �4=7ðEh2=�gÞ1=7 so that
the dimensional energy per unit length of the ruck is

�gh‘9=7g �5=7. Using the elastic gravity length, ‘g¼
ðEh2�g Þ1=3 as a natural length scale in the problem then allows

us to write the dimensionless length and height of the ruck
as

l=‘g � �1=7; �=‘g � �4=7: (4)

For rucks of large amplitude, we must solve the free
boundary problem (1)–(3) in the static limit (with f1 ¼
f2 ¼ m ¼ @ttx ¼ @tty ¼ 0). We normalize all lengths by

the elastic gravity length, ‘g ¼ ðEIa�hgÞ1=3, stresses by N ¼
�gh‘g, to obtain the dimensionless variables x̂ ¼ x=‘g,

F̂1 ¼ F1=N, �̂ ¼ �=‘g, etc., but will drop the hats from

now on. Solving (1)–(3) using a shooting method imple-
mented in MATLAB allows us to determine the dimension-
less height � as a function of the dimensionless excess
length �. In Fig. 2(a) we show that the resulting curve
agrees very well with the experimentally determined
height of the ruck. In Fig. 2(b), we show that the complete
shape of the ruck for various values of �, determined
experimentally and numerically also agree well [14].

When the plane on which the ruck is formed is tilted, the
ruck becomes asymmetric, but does not move. Following
along our earlier argument results in the dimensionless
length of the ruck l=‘g � �1=7ðcos�Þ�2=7 and the dimen-

sionless height �=‘g � �4=7ðcos�Þ�1=7, while the dimen-

sional energy scales as �gh‘9=7g �5=7ðcos�Þ4=7. To go be-
yond scaling arguments, we solve the Eqs. (1)–(3) for
various values of the tilt � and excess length � leading to
the results shown in Fig. 2(c) along with the experimentally
observed shapes, which compare well as long as � is not
too large.

FIG. 2 (color online). (a) The scaled ruck height � as a
function of the excess length �, for different thicknesses [h ¼
0:25 mm (+), 0.5 mm (�), 0.75 mm (4), 1.0 mm (*), 1.5 mm
(�)] measured experimentally and calculated numerically by
solving (1)–(3) (solid line) collapse onto a single curve. All
lengths are normalized by the elastic gravity length, ‘g ¼
ðEh2�g Þ1=3. The inset shows the numerically calculated values (�)

of � as a function of � on a log-log plot and yields a power law
� ¼ �0:54 which compares well with the scaling law �� �4=7

given by (4). (b) Ruck shape as a function of the excess length, �;
the solid lines correspond to experimental measurements, while
the dashed lines correspond to numerical solutions of (1)–(3).
(c) The ruck shape on an inclined plane with sin� ¼ 0:3 shows
an increasing asymmetry as � increases. The solid lines corre-
spond to experiments and the dashed lines correspond to nu-
merical solutions of (1)–(3).
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When the angle of inclination is larger than a critical
threshold, the ruck begins to move. It does so by rolling
rather than sliding. Measuring �, the analog of the Burgers
vector, at the beginning and the end of the run, we find that
it is conserved to within 2%; i.e., there is little slippage
during the motion of the ruck. To quantify the rolling
motion, we follow the paths of points in the rug that are
transported by the ruck. Figure 3(a) shows such a particle
path, while the inset shows that it is consistent with the
cuspidal profile for a particle on a cycloidal trajectory, well
known to characterize the locus of particles on the rim of a
circle rolling on a plane. In Fig. 3(b), we show the particle
path calculated using a numerical solution of a stationary
ruck which compares well with experiments at low tilt
angles, when the static and dynamic shape of the ruck
are similar to each other.

To determine the critical angle �g at which a stationary

ruck starts rolling, we tilt the plane smoothly until the ruck
moves, wherein it quickly reaches a steady speed V. To
determine the angle �s at which a steadily moving ruck
stops, the incline is untilted slowly (keeping @t� � V=S).

In Fig. 4(a), we see a marked difference between static and
dynamic rolling friction characterized in terms of �g and

�s. �g is an indicator of a critical torque which a ruck (of a

given shape and size) must overcome in order to begin
rolling (a measure of static rolling friction), and �s < �g
measures dynamic rolling friction, analogous to the well
known, but still incompletely understood difference be-
tween static and dynamic sliding friction. The existence
of a critical inclination for the onset of rolling is similar to
the existence of a threshold force for the motion of dis-
locations [1] in crystals, and thus further extends Orowan’s
analogy.
When � > �g, the ruck rolls down at a steady speed V

and with a steady shape that is similar to its static shape for
small velocities. In Fig. 4(b), we show the variation of V
with the inclination � for different values of � and observe

that V � ðsin�Þ1=2. Since the ruck moves by rolling rather
than sliding, the gravitational power must be balanced by
either air drag or dissipation within the ruck. In the inset in
Fig. 4(b), we see that for ruck speeds of Oð1Þ m=s, the
rolling ruck is significantly distorted relative to its static
shape, suggesting that air drag is the dominant factor that
limits speed. Then, balancing the gravitational power
�hlVg sin� with the power dissipated by air drag �fV

3�

FIG. 3 (color online). (a) The path of a point on the rug as a
ruck (in white *) and time-lapse images of the ruck for � ¼ 1:25,
� ¼ 20�, V ¼ 0:7 m=s. The inset shows the path of a point on
the ruck as it approaches its zenith (*), compared with the curve
�� �2=3 that characterizes the trajectory of a point on a cyclo-
idal curve characterizing the rolling of a rigid circle. (b) The
numerically calculated shape of a static ruck (� ¼ 3:5,
� ¼ 17�—dashed line), and the path of a point on the rug (inset,
solid line) as the ruck moves through it.

FIG. 4 (color online). (a) The tilt for the onset of rolling �g and
its arrest �s as a function of the shape of the ruck, characterized
by the ratio of the excess length to the contour length �=S. Since
�s > �g dynamic rolling friction is less than static rolling fric-

tion. (b) Ruck speed V vs
ffiffiffiffiffiffiffiffiffi

sin�
p

when � > �s for � ¼ 0:5, 0.8
and 1.25, is consistent with V � ffiffiffiffiffiffiffiffiffi

sin�
p

(see text). The inset
shows the dynamic distortion of the shape of the ruck due to
air drag ( sin� ¼ 0:6, � ¼ 1:25). Velocity experiments used a
latex sheet of thickness h ¼ 0:75 mm.
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yields V � ð�gh sin�=�fÞ1=2ð‘g=�Þ3=14 for small ampli-

tude rucks. Using the parameter values �=�f � 103, h�
10�3 m, g� 10 m � s�2, ‘g=�� 1 yields V � 5 m � s�1.

To distinguish between the scaling of the speed with sin�

and
ffiffiffiffiffiffiffiffiffi

sin�
p

given the range of � accessible experimentally,
we also decreased the thickness of the sheet by a factor of 3
and found that the terminal velocity decreased by a factor

of 1=
ffiffiffi

3
p � 0:6 [15]. While the dependence of the speed on

the angle of inclination is consistent with our observations,
we do not see evidence that smaller rucks are faster than
larger ones as predicted by the scaling law. This is likely
because small rucks, for which the scaling law is valid, do
not move until the angle of inclination is so large that the
entire sheet slips before the ruck moves.

Our study has answered the simplest questions about the
shape and steady motion of an inextensible ruck in a rug.
To go beyond this and understand the transition to rolling
in a tilted ruck requires knowledge of the frictional and
adhesive interactions at the elastic contact lines which are
locally pinned by the asperities that indent the soft but
heavy ruck. Then the ruck remains stationary as long as the
net torque on the ruck Mr ¼ EI@s�ð0Þ � EI@s�ðSÞ þ
�gSlpð�=S; �Þ<Mc, where pð� � �Þ is a dimensionless
function of the shape of the ruck, and the slope of the
substrate, andMc is a threshold torque that depends on the
rug-substrate interaction. When Mr ¼ Mc, the ruck begins
to roll. Similarly, the start-stop rolling hysteresis may be
consequence of the fact that the ruck can be pinned to the
rough substrate only if the time for adhesion is comparable
to the time for the motion of the ruck.

We complete our study with brief consideration of how
blisters, rucks and wrinkles can form and move in soft,
extensible films that adhere to a substrate, generalizing the
analysis of rucks in an inextensible film [4]. Neglecting the
effects of gravity, the energy per unit width of the film of
length l is W ¼ Ua þUb þUc, where Ua � Jl is the
adhesive energy, Ub � Eh3�=l2 is the bending energy,
and Uc � Eh�2=l is the compressive strain energy. Here,
we have assumed that the longitudinal displacement � and
the lateral displacement � are related by the geometric

relation �� ð�lÞ1=2. MinimizingWð�; lÞ with respect to �,
l yields scaling laws for the critical compression �c �
ðJh3=EÞ1=4 required to create a ruck of a critical size lc �
ðEh5=JÞ1=4. Unlike the inextensible case, the ruck in an
extensible film arises via a subcritical instability, analo-
gous to the formation of a bubble in a liquid via a first-order
transition; i.e., the ruck when formed has a finite size.
These rucks move in an adhesion gradient rJ. Indeed,
balancing the power dissipated in the ruck �h3ð@t�Þ2l
with the driving power rJVl shows that the wrinkle speed

V � ðhrJ=�ÞðEh=JÞ3=2. Specializing these results to vari-
ous soft systems [4–6] remains a problem for the future.
From a broader perspective, we see that the existence

and motion of rucks in rugs generalizes the notion of
dislocations in bulk crystals to thin films. Just as glide,
climb, etc., correspond to soft modes of a dislocation in a
bulk crystal, a localized ruck characterizes the soft modes
of a thin film. In either case, the localized structure medi-
ates transitions between different, possibly metastable,
states of a system, and undoubtedly there are other ex-
amples of this phenomenon waiting to be explored.
J.M.K. acknowledges NSF IGERT DGE Grant

No. 0221682.
Note added.—As this work was being completed, we

became aware of [16] which addresses similar questions.
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