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An elastic strip is transversely clamped in a curved frame. The induced curvature decreases as the strip
opens and connects to its flat natural shape. Various ribbon profiles are measured and the scaling law for the
opening length validates a description where the in-plane stretching gradually relaxes the bending stress.
An analytical model of the strip profile is proposed and a quantitative agreement is found with both
experiments and simulations of the plates equations. This result provides a unique illustration of smooth
nondevelopable solutions in thin sheets.
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Geometry-induced rigidity is a fundamental feature of
thin structures [1], which has long been used in engineering
and architecture to design stiff fuselages, hulls, roofs, and
deployable structures [2–4]. It is also widely encountered in
living structures, such as in plant leaves where curvature
can prevent the collapse of the leaves under their own
weight [5]. A simple illustration of this rigidity induced by
curvature is given by a strip of paper held at one end. When
the strip is flat, it is unable to sustain its own weight and
bends downward under gravity. However, if the end of the
paper is slightly curved transversely, the strip straightens up
and becomes much stiffer. Rigidity in these systems arises
because bending in one direction is coupled to the trans-
verse curvature and cannot occur without stretching the
sheet—a costly mode of deformation in thin plates in terms
of elastic energy [6]. Knowing the distance over which an
induced curvature spreads is thus an important issue for
predicting the rigidity of thin plates and shells.
In this Letter, we address the question of the persistence

length of curvature in thin sheets on a minimal system: a flat
elastic ribbon of thickness t, width W, and length L ≫ W,
which is clamped at one end over a cylinder of radius R
[Fig. 1(a)]. After what distance from the clamp does the
ribbon unfold and recover its flat natural shape? This
deceptively simple problem is actually not straightforward
as, to unfold, the ribbon has to stretch—a forbiddenmode of
deformation in the inextensible limit. In thin sheets, this
constraint is usually resolved by focusing the stretch in
elastic defects or singularities, such as the ridges and peaks
of a crumpled paper, the rest of the surface being fully
developable (i.e. free of stretching) [7–14]. However,
another way to obtain the stretching of a thin sheet is to
consider that the curvature variation on large distances is
associated with a regular stretching, i.e., without defects.
Surprisingly, the first insights of this approach are found in
the studies of defects such as ridges [15] and pinches [16],

where both the focused-stress and the diffuse-stress are
present [17]. In each of these situations, regular developable
solutions exist away from the defect but they are not
observed as the bending energy can be progressively
released by a small in-plane stretching (see also [18,19]).
The stretching over large distances is also involved in the
shape of drapes [20] and curtains [21], the tearing of sheets
[22], or the dynamics of curved ribbons [23,24]. Our
prototypal system provides a reduced model to probe these
situations and the transition between smooth and singular
solutions in strained sheets.
A first observation of the opening is displayed in Fig. 1(b),

using an acetate elastic sheet (t ¼ 110 μm, W ¼ 4.5 cm)
clamped in a circular frame of radius R ¼ 2.5 cm. The strip
is positioned vertically to limit the out-of-plane deflection
caused by its weight. Away from the clamping, the strip
opens and its curvature decreases and connects to the flat
stress-free region over a finite length Lp. The opening also
results in a small deflection of the strip corresponding to a tilt
angle θ of the centerline. The persistence length of curvature
Lp can be estimated from a balance between the stretching
and bending elastic energies using scaling arguments similar
to [15]. On one hand, the bending energy of the ribbon scales
as Eb ∼ EtWLpðt=RÞ2, where E is the Young modulus of
the medium. On the other hand, the opening of the ribbon
requires the stretching of the edges of the ribbon over a
length Lp. This is associated with a stretching energy
Es ∼ EtWLpϵ2, where ϵ ∼ Z2=2L2

p is the typical in-plane
strain and Z ∼W2=8R is the out-of-plane deflection of the
ribbon at the clamp [see Fig. 1(b) inset]. The trade off
between the two energies Es and Eb gives Lp ∼W2=

ffiffiffiffiffi
tR

p
or

equivalently [15] Lp ∼W
ffiffiffiffiffiffiffiffi
Z=t

p
. The persistence length of

the curved region is independent of the Young modulus and
increases when the thickness is reduced.
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To test this scaling law and accurately measure the shape
of the ribbon, a modified moiré technique [25] is used, in
which a grid pattern made of horizontal lines is projected at
low angle on the sheet [Figs. 2(a) and 2(b)]. The deflection
of the ribbon in the z direction is obtained from the phase
shift of the fringes pattern along y [Fig. 2(c)]. Figure 2(d)
shows the curvature profile cðxÞ along the strip centerline
y ¼ 0, for strips having the same width and initial curvature
(W ¼ 4 cm, R ¼ 5.5 cm) but different thicknesses t. The
persistence length of curvature increases when the thick-
ness decreases, which implies that the shape of the ribbon
involves both stretching and bending modes of deforma-
tion. When the distance to the clamp x is normalized by the
persistence length scaling W

ffiffiffiffiffiffiffiffi
Z=t

p
, the profiles collapse

[Fig. 2(d) left].
Figure 3 shows the measured persistence length Lp as a

function of Z=t for the whole range of ribbon thickness,
width, and radius of curvature studied experimentally.
Within the range of deflection accessible to the experiment
(Z from t to 100 × t), the persistence length is in a good
agreement with the scaling law proposed before (exponent
1=2). This scaling is also confirmed by numerical simu-
lations of the plates equations using Surface Evolver [26].
The low-deflection regime Z < t is difficult to observe
experimentally but can be studied using the numerical
simulations. For Z < t, the persistence length seems to be
bounded by a lower limit Lp ∼W=2. Note that the collapse
of the persistence length using the single dimensionless
number

ffiffiffiffiffiffiffiffi
Z=t

p
was not obvious a priori, since dimensional

analysis states that the shape of the ribbon might depend
also on the wrapping parameter W=R. This parameter
characterizes the degree of rolling of the ribbon around

the circular clamp as shown in Fig. 4. The numerical
simulations confirm that W=R has a weak influence on the
persistence length as long as W ≲ R. However, for highly
wrapped ribbons (W=R ∼ 2π), the persistence length tends
to increase [Fig. 4].
The scaling law derived so far only gives the dependence

of Lp with the dimensions of the ribbon but not the numeric
prefactor of the law. In the following, we introduce a 1D
model that allows for an analytical and quantitative solution
of the strip opening profile. This type of description is
possible here because a strip has three separated scales
t ≪ W ≪ Lp and a bending deformation imposed to the
intermediate scale W. For large deflections Z ≫ t, the first
inequality t ≪ W implies that only pure bending is allowed
in the transverse direction. Moreover, because of the second
inequality W ≪ Lp (discussed above), the longitudinal
bending can be neglected. Consequently, the only possible
mechanical coupling is between the transverse bending and
the longitudinal stretching. To describe this nonlinear
coupling, we use a description inspired by the kinematics
of a ruled surface, except that here, the moving line defining
the surface can be curved: any strip profile is given by the
translation in the x direction of an inextensible curved line
with curvature cðxÞ. This description is compatible with the

FIG. 1 (color online). (a) Schematic view of a flat strip of
width W clamped onto a cylinder of radius R (the dashed lines
signal the cylinder surface associated with no in-plane stretching
in the strip). Z ¼ R½1 − cosðW=2RÞ% is the imposed out-of-plane
deflection and Lp is the opening length. (b) Snapshot of the
opening profile obtained with an acetate sheet (W ¼ 4.5 cm,
t ¼ 110 μm, R ¼ 2.5 cm, Lp ¼ 14.2 cm). The arrow signals a
deflection comparable to the ribbon thickness. A black back-
ground is added to visualize the slight tilt angle θ of the centerline
y ¼ 0. Inset: the opening of the ribbon over a distance
Lp requires a stretching of the longitudinal material lines. FIG. 2 (color online). (a) Sketch of the modified moiré

technique used to measure the ribbon shape (only two fringes
are drawn for clarity). (b) Snapshot of the fringes pattern when
the ribbon is deflected (W ¼ 7 cm, t ¼ 76 μm, R ¼ 3.5 cm), and
(c) corresponding ribbon deflection Zðx; yÞ relative to the
centerline deduced from (b). Four transverse profiles (dashed
lines) are selected and compared to parabolic fitting functions
(solid lines). (d) Curvature profiles cðxÞ along the strip centerline
y ¼ 0 for elastic ribbons of different thicknesses t (W ¼ 4 cm,
R ¼ 5.5 cm).
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observation of Fig. 2(c) in which the transverse profiles are
nearly parabolic. The interest of this approach is to circum-
vent the coupled equations of plates [30,31] and simplify
the computation of curvature energies: the bending energy
per unit surface is then simply given by a 1D-function
Et3cðxÞ2=24 [32] in which the Poisson ratio has been set
to zero.
The strip opening is first considered for a sheet described

by its transverse curvature cðxÞ only (rigid centerline). The

variation of the transverse curvature cðxÞ induces a stretch-
ing of the longitudinal lines because of the deflection out
of plane. When W=R ≪ 1, the deflection is given by
Zðx; yÞ ¼ cðxÞy2=2. If dx is the distance between two
points, this distance is stretched to dxþ δdx ¼
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂Z=∂xÞ2p

and the in-plane displacement is
εxx ¼ δdx=dx ¼ c02y4=8. This deformation introduces a
stretching energy per unit surface given by Etεxx2=2. The
total elastic energy is given by the sum of the bending and
stretching energies:

E0ðc; c0Þ ¼
Z

x;y

"
1

23 × 3
Et3cðxÞ2 þ 1

27
Etc0ðxÞ4v8

#
dxdy;

ð1Þ

and after integration on y ∈ ½−W=2;W=2%, the energy is

E0ðc; c0Þ ¼
Z

∞

0
½γc2 þ αc04%dx; ð2Þ

where γ ¼ Et3W=ð23 × 3Þ and α ¼ EtW9=ð215 × 32Þ. The
equilibrium profile for cðxÞ corresponds to δE=δc ¼ 0 and
leads to

12αc00c02 ¼ 2γc: ð3Þ

The solution of Eq. (3) that connects to the flat configu-
ration for x¼Lp is a parabolic profile cðxÞ ¼ ðx − LpÞ2=λ3,
with λ3 ¼ 4

ffiffiffiffiffiffiffiffiffiffi
3α=γ

p
. The clamping condition is cð0Þ ¼ 1=R

and the persistence length is

Lp;c ¼
1

4

W2

ffiffiffiffiffi
tR

p ¼ W
1ffiffiffi
2

p
$
Z
t

%
1=2

: ð4Þ

This first model with cðxÞ as a unique shape function
gives the expected scaling exponent 1=2 (dashed line in
Fig. 3), which means that it correctly describes the coupling
between bending and stretching deformations. However,
the prefactor for the scaling law is not satisfying. This is
because, first, the opening has been described with a rigid
centerline, which does not agree with the strip profile
exhibiting a tilt angle θ when no vertical force is applied
on the strip [see Fig. 1(b)]. Second, in this first model, the
longitudinal stretching is always positive εxx¼c02y4=8>0,
which means that the strip would undergo a net longitudinal
mechanical tension, again incompatible with the free end
boundary condition [26].
To get an optimal agreement between theory and experi-

ment, one should a priori consider the opening of the strip
surface with all the possible displacement of a moving
curved line in the 3D space. To do so, two parameters are
introduced to allow for the displacement of the centerline in
the longitudinal direction and in the out-of-plane direction
[axðxÞ and azðxÞ; note that the reference state is chosen as

2π

1

10

0.01 0.1 1 10

FIG. 4 (color online). Persistence length as function of the
wrapping parameterW=R for Z=t ¼ 4 (diamonds) and Z=t ¼ 70
(bullets) obtained from the numerical simulations. The images
show the simulated shape of the curved ribbon (side and top
view) for Z=t ¼ 70, in the case of a low rolling (W=R ¼ 0.2) and
a complete rolling around the circular clamp (W=R ¼ 2π).
The yellow area corresponds to a transverse curvature greater
than 3% of the imposed initial curvature. The error bars give the
typical dispersion on several simulations.

FIG. 3. Normalized persistence length Lp=W as a function of
the normalized deflection Z=t for all experimental data (crosses,
W ¼ 3–16 cm, t ¼ 50–2000 μm, R ¼ 1.5–5.5 cm) and simula-
tions (squares, 0.25<Z=t<243, 0.01<W=R<1.5). The persist-
ence length in both cases is defined by cðLpÞ ¼ 0.03 × cð0Þ.
Dashed line: prediction of the one-dimensional model with
curvature only [Eq. (4)]. Solid line: prediction of the model
with the compression and the tilt angle [Eq. (8)]. Right insert:
picture of the curved ribbon showing a spontaneous nucleation of
defects for large deflections (Z=t ¼ 605).
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the tilted flat strip far away the clamp, see Fig. 5(a)]. As the
location of the edge is ½xþ axðxÞ%~xþ ½azðxÞ þ Zðx; yÞ%~z,
the stretched length of a material line of length dx is
now dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ax0Þ2 þ ½ð∂Z=∂xÞ þ az0%2

p
. At first order, the

stretching displacement is modified to εxx ¼ ax0 þ
c02y4=8þ az0c0y2=2 and the stretching energy now equals

Eax;azðc; c
0Þ ¼ E0ðc; c0Þ þ

Z
∞

0
½τax02 þ μax0c02 þ βaz0c03

þ δaz02c02 þ ηc0ax0az0%dx ð5Þ

with τ¼EtW=2, μ¼EtW5=ð275Þ, β¼EtW7=ð2107Þ, δ ¼
EtW5=ð275Þ, and η ¼ EtW3=ð233Þ. The equilibrium
solutions for ax0 and az0 correspond to the functional
derivatives δE=δax0 ¼ 0 and δE=δaz0 ¼ 0. After some
algebra, these two equations give

ax0 ¼ −
3

27 × 5× 7
W4c02 and az0 ¼

3

23 × 7
W2c0: ð6Þ

When the expressions for ax0 and az0 are introduced in
Eq. (5), the elastic energy simplifies to

Eax;azðc; c
0Þ ¼

Z
∞

0

"
γc2 þ α

$
8

35

%
2

c04
#
dx: ð7Þ

The introduction of ax0 and az0 yields a reduction of the
stretching term by a factor ð8=35Þ2. The persistence length
is thus changed to

Lp;fc;ax;azg ¼ W
2ffiffiffiffiffi
35

p
$
Z
t

%
1=2

: ð8Þ

With this expression, the experiments and simulations
are remarkably reproduced in Fig. 3 for 10 < Z=t < 100
(solid line). The model is also providing the entire surface
profile of the ribbon. Figure 5(a) displays the snapshot
of a ribbon opening (W ¼ 3 cm, t ¼ 110 μm, and
R ¼ 2.5 cm) with the superimposition of the profile pre-
dicted by the model with the parameters ax and az.
Quantitative agreement is obtained not only for the curva-
ture profile [Fig. 5(b)] but also for the tilt angle, as long
as Z=t is large [Fig. 5(c)]. While the deformation of the
centerline is small (jax0j < 0.1%, az0 < 0.06), its influence
is significant because the persistence length is reduced
by a factor

ffiffiffiffiffiffiffiffiffiffi
35=8

p
≈ 2.1.

In the previous analysis, the curvature energy is only
attributed to the energy for the bending of the transverse
lines of the strip [transverse bending cðxÞ]. The bending
in the longitudinal direction might be estimated by
∂2Z=∂x2 ∼ Z=L2

p ∼ t=W2. The transverse curvature is
prescribed by the cylindrical anchor c ∼ 1=R. The ratio
between these two curvature terms is R∂2Z=∂x2 ∼W2=L2

p.
This dimensionless number indicates that the transverse

curvature and the longitudinal curvature have the same
order of magnitude if the persistence length approaches
the width of the ribbon. This situation occurs when Z ≪ t,
i.e. when stretching effects are negligible. The equilibrium
profile for the ribbon is then a minimal surface [33]
imposing the same curvature 1=R (and the same profile)
in the x and y directions. Consequently, for the smallest
deflections, the persistence length should equal W=2
[see Fig. 3].
We have demonstrated the existence of smooth diffuse-

stress solutions in thin sheets, where bending and stretching
balances over a distance that diverges when the thickness
vanishes. The analytical model presented here is simple
and quantitative and could be easily adapted to predict
the persistence lengths of other geometries. In the case of
strips with varying width WðxÞ, the dimensional prefac-
tors in Eqs. (2) and (5) depend on the distance x. For
precurved strips, the bending energy per unit length
equals Et3½cðxÞ − cn%2=24, where cn is the natural trans-
verse curvature.
Unlike in [17], the opening of the sheet in our case is not

accompanied by a stress-focusing zone at the transition
between the curved and flat states. However, for large
deflections (typically Z=t > 430 in the experiment), this
purely smooth solution is no longer observed and pairs
of defects spontaneously nucleate close to the frame [see
the right insert in Fig. 3]. These defects coexist with the
diffuse-stress region as in [17] and are similar to the
developable cones observed during the indentation of thin
plates [9,10]. Understanding the parameters that control
this smooth or singular transition is an open issue that
should be relevant to many situations involving the confine-
ment of thin sheets.

FIG. 5 (color online). (a) Snapshot of a strip clamped in a
cylindrical frame of radius R with the superimposition of the
profile predicted by the model with the curvature deformations
(b). The model uses the solution of Eq. (7), without free
parameters. W ¼ 3 cm, t ¼ 110 μm, R ¼ 2.5 cm. (c) Numerical
simulation of the total deflection angle as a function of normal-
ized thickness t=R for small (Z=t < 10) and large (Z=t > 10)
transverse deflection at the clamp. The solid line is the angle
dependence predicted by the model [az0ðLpÞ − az 0ð0Þ].
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We conclude by noting a possible implication of our
study in botany for understanding the shape of some plant
leaves like maize or grass (monocots familly). During
growth, the leaves of these plants unfold and flatten while
their base remains attached to the cylindrical stem. Besides
genetic factors [34], one may wonder to what extent the
open length of these leaves is constrained by mechanics,
and the same elastic balance between bending and stretch-
ing as the one studied here. An additional ingredient is,
however, that leaves’ shapes results from a growth
(i.e. plastic) process, which should be taken into account
to fully address this question.

We acknowledge Basile Audoly, José Bico, Arezki
Boudaoud, and Jérémy Hure for fruitful discussions. We
also thank K. Brakke for developing and maintaining the
Surface Evolver software.
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