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The discharge flow in a cylindrical and a rectangular silo using both monodisperse and bidisperse mixtures of
spherical glass beads is studied experimentally. The flow rate is measured using a precision balance for a large
range of particle diameters, size ratios, and outlet diameters. A simple physical model is proposed to describe the
flow of bidisperse mixtures. It gives an expression for the flow rate and predicts that the bulk velocity follows a
simple mixture law. This model implies that a mixture diameter cannot be simply defined. Moreover it is shown
that bidisperse granular media allow for the transport of coarse particles below their jamming conditions.
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I. INTRODUCTION

The discharge flow of granular mixtures from silos is of
practical interest in many processes (for example, in food,
mining, ceramic, paint, and pharmaceutical industries). The
prediction of the discharge rate is of primary importance to
assure reproducible and efficient handling in plant operations.
Until now, most efforts have been made in the study of the
discharge rate of monodisperse particles in silos. Nedderman
et al. [1] published a review article in 1982 on the discharge
rate through orifices. One of the simplest and most used
empirical expressions for the flow rate was proposed by
Beverloo et al. [2] for flat-bottomed silos,

Q = Cρφg1/2(D − kd)5/2, (1)

where Q is the mass flow rate, g is the gravitational accelera-
tion, ρ is the particle density, φ is the particle volume fraction,
D is the outlet diameter, d is the particle diameter, and C and
k are fitted parameters. This model is based on dimensional
analysis with the concept of a free fall arch at the outlet which
was introduced first by Hagen in 1852 (traducted in [3]) and
recently observed experimentally by Janda et al. [4]. This arch
is supposed to scale with D giving a velocity at the outlet of
vo ≈ √

gD and a flow rate of Q ≈ φρvoSo ≈ φρ
√

gD5. This
scaling does not account for the dependence of the flow rate on
the particle diameter d, which has been introduced empirically
by Hagen (traducted in [3]) or Beverloo et al. [2] considering a
reduced outlet length (D − kd), where k is a fitting parameter
explained lately by the concept of a useless zone (an “empty
annulus”) for the flow close to the outlet walls [5]. This
empirical expression is widely used as it is in fairly good
agreement with most experimental results. However, silos’
discharge of monodisperse granular media remains an open
subject of research as shown by the abundant literature
available.

In practice not many systems are monosized. Concerning
the discharge of a granular mixture through silos, most of
the studies were devoted to the segregation phenomena, and
few authors have looked into the factors influencing the
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mixture flow rate. Arteaga and Tüzün [6] studied the flow of
a bidisperse mixture in a cylindrical and a conical silo. They
described two behaviors corresponding to a coarse continuous
phase and a fine continuous phase, depending on the fine
mass fraction (Xf ) and the size ratio (r = dc/df ), between the
coarse particles (dc) and the fine particles (df ). They proposed
a modification of the equation of Beverloo et al. [2],

Q = Cρmg1/2(D − kmd̄m)5/2, (2)

where ρm is the mixture density, km is a fitted coefficient
different for the two bed microstructures, and d̄m is a mixture
diameter which characterizes the empty annulus,

d̄m = Xf df + (1 − Xf )dc. (3)

Based on this paper, Humby et al. [7] proposed a semiempir-
ical approach to model the mixture density, taking into account
a “flowing density” and found that the empty annulus length
is best described using the weighted mean diameter of the
mixture [Eq. (3)] but with a small offset. Finally, Chevoir
et al. [8] studied experimentally the flow of a binary granular
mixture through a sieve, varying the fine mass fraction and the
sieve aperture L. They proposed an empirical equation for the
flow rate of the bidisperse mixture based on the expression of
Beverloo et al. [2] for the fine particles,

Q = Cρg1/2(L − kdf )5/2

[
1 −

(
L

L∗dc

)−n
]

, (4)

where L∗(Xf ) is the jamming threshold and n(Xf ) is a fitted
parameter ranging between 3 and 5.

Despite the broad literature about silo discharge, studies
which were dedicated to polydisperse materials appear to be
very limited. The current paper is devoted to the experimental
investigation of the flow in silo discharges using bidisperse
material in cylindrical and rectangular silos. First the experi-
mental setup is described, then we discuss the monodisperse
cases and compare our data with the expression of Beverloo
et al. [2]. Finally the bidisperse cases are studied, and a model
is proposed to predict the flow of a bidisperse mixture.
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FIG. 1. Schematic experimental apparatus of the cylindrical and
the rectangular silos.

II. EXPERIMENTS

We use two kinds of flat-bottomed hoppers as shown in
Fig. 1. The cylindrical hopper consists of a smooth Perspex
cylinder (of diameter L and height H ) with a cylindrical outlet
at the center of its bottom whose diameter D was varied.
The rectangular hopper was designed to obtain a visualization
of the flow. It consists of a smooth and narrow rectangular
tube (of height H , width L, and a thickness W which can be
varied). The walls are made of metal, except for the front wall,
which is made of Perspex to allow visualization. The apparatus
is grounded to prevent the buildup of static electricity. The
rectangular outlet located at the center of the bottom spans
the thickness W and has a length D which can be varied. The
silos’ characteristics are summed up in Table I.

The granular material consists of smooth spherical
glass beads (density ρ = 2500 kg/m3, supplied by Potters-
Ballotini) with different diameters reported in Table II. For
each outlet aperture, the experiments were first performed
using monodisperse beads. With the particles and aperture
available, the number of beads in the aperture (D/d) ranges
between 1 and 250. Then different binary mixture combina-
tions were tested corresponding to a size ratio (r = dc/df )
between the coarse particles (dc) and the fine particles (df )
varying from 1.9 to 11.9 (see Table III).

Keeping the outlet closed, the granular column is prepared
using the following steps. For a given set of parameters the
same total mass (mt ) of granular material was fed into the
container from the top, corresponding to a column height of
hp ≈ 450 mm in the rectangular silo and hp ≈ 350 mm in the
cylindrical silo. In the case of binary mixtures, ten layers of the
desired fine mass fraction (Xf ) previously mixed by hand were
poured successively and carefully into the silo. This process is

TABLE I. Silos’ characteristics.

Cylindrical Rectangular

L (mm) 64 60
H (mm) 400 500
W (mm) 3.5, 10
D (mm) 10, 20 Monodisperse: (1.8–18.5)

Bidisperse: 3.5, 5.5, 7.5, 10, 13.5

TABLE II. Particle mean diameters (the uncertainty is evaluated
to be ≈±10%) and symbols used in the figures.

d (μm) Symbol d (μm) Symbol d (μm) Symbol

78 + 490 � 1300 •
114 ◦ 720 � 2090 �
210 � 840 � 2500 �
330 � 1080 ×

used to prevent segregation during the filling and to obtain a
homogenous state at the scale of the measurement.

After the preparation phase, the column height (hp) was
measured, giving the initial bulk particle volume fraction φb =
mt/(ρhpSb), where Sb is the area of the silo cross section (Sb =
LW in the case of the rectangular silo and Sb = πL2/4 for the
cylindrical silo). Then the outlet is quickly opened manually.
The grains fall out of the silo and are collected in a vessel;
the temporal evolution of the mass m(t) is recorded using
an electronic scale (Mettler Toledo 6002S) with a precision of
0.1 g at 20 Hz. In the rectangular hopper the motion of particles
at the front plate is recorded using a video camera (Sony Exmor
HDR-XR520) with a resolution of 1920 × 1080 pixels at a rate
of 25 frames per second. Each experiment is repeated twice
to check the reproducibility of the process. For each binary
combination, nine mixtures were made from pure fine particles
to pure coarse particles with an increment of Xf = 12.5%.

A typical temporal evolution of the mass m(t) is shown
in Fig. 2(a) (see corresponding movie 1 in the Supplemental
Material [9]). The instantaneous mass flow rate Qi is obtained
by measuring the local slope of the mass versus time over 20
points (corresponding to 1 s). In most cases, the flow is found
to be steady, which validates the preparation phase, as can be
seen in Fig. 2(b) where the flow rate exhibits a large plateau
with small oscillations. The presence of oscillations, which
have been previously described by several authors (see, for
example, Refs. [10–12]), was not studied in detail. The mean
flow rate Q is measured by averaging the instantaneous flow
rate over the plateau with the uncertainty given by one standard

TABLE III. Binary combinations with df as the fine particle
diameter, dc as the coarse particle diameter, and r = dc/df as the
size ratio. Symbols used in the figures for the rectangular (R) and
cylindrical (C) silos.

Combinations df (μm) dc (μm) r Symbol R Symbol C

A 78 720 9.2 +
B 114 720 6.3 +
C 210 720 3.4 ◦ ◦
D 330 720 2.2 �
E 330 1080 3.3 �
F 114 1300 11.4 � �
G 210 1300 5.7 � �
H 490 1300 2.7 • •
I 720 1300 1.8 × ×
J 210 2500 11.9 ♦
K 720 2500 3.5 �
L 1300 2500 1.9 �
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FIG. 2. Temporal evolution for a fine mass fraction Xf = 0.625
of batch F (see Table III) with an outlet diameter of D = 5.4 mm
in the rectangular silo with W = 3.5 mm. (a) Temporal evolution of
the mass. (b) Temporal evolution of the instantaneous mass flow rate.
The dashed line represents the mean flow rate Q.

deviation. The data are available as Supplemental Material in a
text file [9] and as Supplemental Material in a MATLAB file [9].

III. RESULTS AND DISCUSSION

We will now present the experimental results obtained for
the discharge of the cylindrical and of the rectangular silos. We
will first focus on the monodisperse flow which will be used as
a reference for the bidisperse flow studied in the second part.
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FIG. 3. (Color online) Bulk particle volume fraction versus the
particle diameter in the monodisperse case for the cylindrical silo (•)
and the rectangular silo with W = 10 mm ( ) and W = 3.5 mm (�).
For each symbol only one error bar is shown for the sake of simplicity.
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FIG. 4. Flow rate in the monodisperse case for the cylindrical
silo for D = 10 mm (◦) and D = 20 mm (�): (a) flow rate Q versus
the particle diameter d and (b) flow rate Q made dimensionless by
φbρ

√
gd5 versus the outlet diameter D normalized by the particle

diameter d . The full line represents the expression of Beverloo
et al. [2] [Eq. (1)] with k = 1.88 and C = 0.64. The dashed line
represents the expression of Janda et al. [4] [Eq. (8)] with α =
0.96, β = 0.09, and C ′ = 0.75.

A. Monodisperse flow

In the monodisperse case, Fig. 3 shows the initial bulk
particle volume fraction φb as a function of particle diameter
for the two apparatuses. The measurements being scattered, φb

corresponds to the mean value of all the experiments for a given
particle diameter with an uncertainty estimated by one standard
deviation. We observe that the same tendency is recovered for
the cylindrical silo (•) and the largest rectangular silo ( ). The
smallest particles tend to give a slightly looser bed during
the filling process than the bigger ones. This effect seems
to saturate for the small particles (d < 400 μm) around 0.58
and for the big particles (d > 1000 μm) around 0.63. For the
narrowest rectangular silo (�), the filling process tends to give
a loose bed φb ≈ 0.58, whatever the particle diameter, except
for the biggest particle where the particle volume fraction
drops to φb ≈ 0.47 due to the fact that there is only one layer
of particle in the thickness of the silo.

We now turn to the study of the stationary flow of the
monodisperse cases. For the cylindrical silo, Fig. 4(a) shows
the flow rate Q versus the particle diameter d for the two outlet
diameters D = 10 mm (◦) and D = 20 mm (�). The flow rate
exhibits mainly a decrease when the particle diameter increases
and a strong dependence with the outlet diameter. To test
the expression of Beverloo et al. [2] [Eq. (1)], the flow rate,
made dimensionless by φbρ

√
gd5, is plotted in Fig. 4(b) versus

the outlet diameter D normalized by the particle diameter d.
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FIG. 5. (Color online) Flow rate in the monodisperse case for
the rectangular silo. (a) Flow rate Q versus the particles diameter
d for W = 3.5 mm with D = 3.5 mm (�) and D = 9.9 mm (◦)
and for W = 10 mm with D = 3.3 mm ( ). (b) Flow rate Q made
dimensionless by φbρW

√
gd3 versus the outlet length D made

dimensionless by the particle diameter d for the different particle
diameters (symbol given in Table II) and for the two thicknesses W =
3.5 mm (black symbols) and W = 10 mm [red (gray) symbols]. The
full line represents the expression of Beverloo et al. [2] [Eq. (5)] with
k = 1.36 and C = 0.91. The dashed line represents the expression of
Janda et al. [4] [Eq. (8)] with α = 0.66, β = 0.11, and C ′ = 0.90.

The data are all superimposed, suggesting that D/d is the good
control parameter, and well represented by the expression of
Beverloo et al. [2] (see the dashed line in the figure) with the
fitting parameters k = 1.88 and C = 0.64 (obtained using the
least squares method), which closely match those reported in
previous papers [1,13].

In the case of the rectangular silo, the orifice being a slit, i.e.,
spanning with the thickness, we first have tested the role played
by the thickness and the length of the outlet. Figure 5(a) shows
the flow rate Q versus the particle diameter d in the rectangular
silo for the two thicknesses [W = 10 mm: gray symbols
(red) and W = 3.5 mm: black symbol] and for two outlet
lengths (D ≈ 3.5 mm: triangles and D ≈ 10 mm: circles).
Again, the flow rate decreases slightly when increasing the
particles diameter as described by Beverloo et al. [2]. In the
graph, the two upper curves correspond to runs with the same
outlet surface So = WD but with two different thicknesses
and lengths [W = 3.5 and D = 9.9 mm (◦) and W = 10 and
D = 3.3 mm ( )]. It is clear that the two dimensions do not
play the same role, the flow being faster for the largest length
D. Taking as a reference the lowest curve corresponding to the
square outlet (D ≈ 3.5 and W ≈ 3.5 mm: �), the comparison
with the two previous curves suggests that the flow rate is
proportional to W and has a stronger variation with D.

0 1 2 3
0

5

10

15

d (mm)

D
(m

m
)

Flowing

Clogged

FIG. 6. Phase diagram of the two regimes observed (flowing: +
and clogged: �) in the (D,d) plane for the rectangular silo with
W = 3.5 mm. The solid line corresponds to D = 4.1d .

This behavior can be understood with reference to the
concept of the free fall arch. Due to the outlet configuration, it
is probable that no arch can develop over the thickness of the
silo, so we expect that the free fall arch scales with the length
D. With these observations, we can adapt the expression of
Beverloo et al. [2] [Eq. (1)] and write it for the rectangular
silo,

Q = Cρφbg
1/2W (D − kd)3/2. (5)

Figure 5(b) shows the flow rate Q, made dimensionless
by φbρW

√
gd3, versus the outlet length D normalized by the

particle diameter d for the different particle diameters (symbol
given in Table II) and the two available thicknesses. This choice
of dimensionless parameter results in a single curve for all of
the data, which suggests that the scaling on the thickness is
appropriate. The data are well represented by the expression
of Beverloo et al. [2] [Eq. (5), see the full line in the figure]
with the adjusted parameters k = 1.36 and C = 0.91 (using the
least squares method). These parameters are in good agreement
with those reported in previous papers and are slightly different
from the cylindrical ones [1,4,14].

Finally, we have studied the limit of jamming in the
narrowest rectangular silo (W = 3.5 mm) varying the length
of the outlet D and the particle diameters d. In Fig. 6,
the two regimes observed (flowing: + and clogged: �) are
represented in the (D,d) plane. The jamming seems to occurs
for D < 4.1d, which is compatible with previous results
in three dimensional [15,16] and two dimensional [17,18]
configurations.

The study of the flow of monodisperse particles in our
apparatus has shown that our data are well described by the
expression empirically developed first by Beverloo et al. [2].
The monodisperse study will be used in the following as
a reference for the bidisperse flow. The dependence on the
thickness of the silo being well described by a linear variation,
in the rest of this study the results are obtained with the
narrowest silo corresponding to the thickness W = 3.5 mm.

B. Bidisperse flow

In the case of a bidisperse mixture, the process of filling the
silo is described in Sec. II. The bulk particle volume fraction
obtained is given in Fig. 7 as a function of the fine mass fraction
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FIG. 7. Bulk particle volume fraction versus the fine mass fraction
(Xf ) (a) for the rectangular silo with dc = 720 μm and various df =
114 μm (+), 210 μm (◦), and 330 μm (�) and (b) for the cylindrical
silo with dc = 2500 μm and various df = 210 μm (♦), 720 μm (�),
and 1300 μm (�) (see the corresponding size ratios r in the legend).

for both silo geometries. As shown in the literature [6], φb

depends on the fine mass fraction (Xf ) and on the size ratio (r).
For low size ratios, φb is nearly constant, whereas for high
size ratios, φb goes through a maximum, around Xf ≈ 0.375,
corresponding to dense packing where the fine particles fill the
holes between the coarse particles.

In some cases, segregation occurs during silo discharge.
This can be seen, for example, in Fig. 8(a) where the flow
rate is plotted versus time for different fine mass fractions
(Xf = 0,0.25,1) for a mixture with a size ratio of r = 11.4
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FIG. 8. (a) Flow rate versus time for different fine mass fractions
(Xf = 0,0.25,1) from black to light gray for the rectangular silo with
r = 11.4 (batch F in Table III) and D = 5.5 mm. (b) Image of the
corresponding movie for Xf = 0.25 after 17.5 s of flow (the width
of the image corresponds to the width of the silo L = 60 mm).
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FIG. 9. Phase diagram of the two regimes of segregation observed
(×: no segregation and •: segregation) in the (Xf ,r) plane for the
cylindrical silo with D = 20 mm. The dashed lines are indicative of
the transition.

(batch F in Table III) in the rectangular silo with an outlet size
of D = 5.5 mm. The pure coarse (Xf = 0) and fine particles
(Xf = 1) exhibit a constant flow rate with time, whereas in
the case of a fine fraction of Xf = 0.25, the flow rate is first
constant and then decreases towards the value corresponding
to the pure coarse particles after 20 s. In Fig. 8(b) an image
of the particles is shown for Xf = 0.25, after 17.5 s of flow
(see the Supplemental Material movie 2 [9]). It can be clearly
seen that the upper part of the silo is filled mainly with the
coarse particles and not with the initial mixture as in the lower
part. This means that a segregation phenomenon has occurred
during the discharge, which can explain the behavior of the
corresponding flow rate in Fig. 8(a): Initially we observe the
flow rate of the mixture, then that of the segregated coarse
particles. From the flow rate variation with time we can extract
the cases where some segregation occurs. This is performed
in Fig. 9(a) in the (Xf ,r) plane for the cylindrical silo with
D = 20 mm. In this silo geometry, segregation occurs for large
size ratios and low fine mass fractions (r ≥ 9.2 and Xf ≤
0.375). The same behavior is recovered in the rectangular silo
where segregation is observed for r ≥ 6 and Xf ≤ 0.375. As
shown by Samadani et al. [19] segregation occurs only during
avalanches at the free granular surface and not in the bulk flow.
In our silo’s geometry, the segregation process was not studied
in detail, but we observe that the segregation tends to develop
only at the end of the flow. In the rest of this study, we will
focus on the flow rate of the mixture. In the few cases where
segregation occurs, we will use only the early time period of
the experiments, before the development of segregation.

Figures 10(a) and 10(b) show the mean flow rate of the
mixture versus the fine mass fraction for a given batch and
various outlet sizes in the rectangular and the cylindrical silos.
We find that the flow rate of the mixture always exceeds the
rate predicted by a simple mixture law that uses the flow rates
of the purely coarse particles and the purely fine particles. We
observe two behaviors: First the flow rate increases with the
fine mass fraction and, then, it tends to stabilize or slightly
decrease.

To understand this behavior, we have developed a model
based on the recent experimental paper of Janda et al. [4].
They proposed an expression for the flow rate of particles
through orifices for the velocity and density profiles at the
exit as a function of the horizontal position x in a two
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FIG. 10. Mean flow rate (Q) of the mixture versus the fine mass
fraction (Xf ) for various outlet sizes D (see the legend) for (a) the
rectangular silo with r = 6.3 (batch B, see Table III) and (b) the
cylindrical silo with r = 2.7 (batch H ).

dimensional silo. They found that the velocity profile is self-
similar, whatever the diameter of the aperture D, and wrote
v(x) = vo

√
1 − (2x/D)2. They obtained that the velocity vo

at the center of the outlet corresponds to a free fall from a
hypothetical arch, scaling with D, as commonly accepted

vo =
√

γgD. (6)

Their equation suggests that for a given outlet diameter,
the particle velocities at the outlet are the same whatever
the particle diameters. In the same way, the density profile
is found to be self-similar with φ(x) = φo[1 − (2x/D)2]0.22

where the variation in density at the center of the outlet
φo = φ∞[1 − α1e

−D/2α2 ] corresponds to an asymptotic growth
with the outlet size which can be fitted by an exponential
saturation. They concluded that, for small aperture, a dilatancy
occurs in order to avoid the formations of arches in order to
maintain the material flowing. Then they infer the concept of
the empty annulus is not necessary.

To adapt this concept to our configurations, we suppose that
the asymptotic value of the volume fraction for big orifices is
proportional to the initial bulk volume fraction (φ∞ = ξφb).
We assume that the fitting parameter α2 is proportional to the
particle diameter d as suggested by the authors. The particle
volume fraction at the center of the outlet is then given by

φo = ξφb[1 − αe−β(D/d)] = ξφb	d, (7)

where we note that 	d is the geometrical factor which depends
on the particle size (within the number of beads in the aperture
D/d) and which characterizes the dilatancy at the outlet. The
flow rate being defined by Q = ρ

∫∫
So

φv dS = C1ρφovoSo,

we can finally adapt the relation of Janda et al. [4] to our
configurations,

Q = C ′ρφb	d

√
gDSo. (8)

This expression represents well our data in the monodis-
perse cases: See the dashed lines in Figs. 4(b) and 5(b) with
the fitting parameters, obtained using the least squares method
C ′ = 0.75, α = 0.96, and β = 0.09 in the cylindrical silo and
C ′ = 0.90, α = 0.66, and β = 0.11 in the rectangular silo.
The fitting parameters are in good agreement compared to
those of Janda et al. [4]. In the range of explored parameters, we
are not able to distinguish the expression of Beverloo et al. [2]
from the expression of Janda et al. [4].

In the case of bidisperse flow, we follow Janda et al. [4],
who concluded that the self-similarity of the profiles indicates
the generality of the mechanism that controls the flow rate.
Then we expect that the velocity profile of the mixture keeps its
self-similar form, which is independent of the particle diameter
[Eq. (6)].

Concerning the volume fraction, by definition we can
decompose it into φ(x) = φf (x) + φc(x), where φf = Xf φ

is the fine volume fraction and φc = (1 − Xf )φ is the coarse
volume fraction. This remains valid at the center of the outlet
where

φo = φof + φoc. (9)

We first assume that for each particle size, the dilatancy
expression [Eq. (7)] is still valid independent of the other
particle size,

φo = ξφbf 	df
+ ξφbc	dc

, (10)

where φbf = Xf φb and φbc = (1 − Xf )φb, respectively, are
the fine and coarse initial bulk volume fractions.

Second we assume that the self-similarity of the density
profile remains valid for the mixture, leading by integration to
the flow rate of a bidisperse mixture,

Q = C ′[Xf 	df
+ (1 − Xf )	dc

]
ρφb

√
gDSo. (11)

This relation implies a complex variation in the flow rate Q

with the fine mass fraction Xf as the bulk particle volume
fraction φb also depends on Xf (Fig. 7). This is compatible
with the observations made in Figs. 10(a) and 10(b).

To simply test this model, we introduce the bulk velocity
vb = Q/(ρφbSb), where Sb is the area of the silo cross section,
which should vary linearly with the fine mass fraction,

vb = Xf vbf + (1 − Xf )vbc, (12)

where vbi = C ′	di

√
gDSo/Sb represents the bulk velocity in

the pure case (i = f,c). In Fig. 11 this velocity is plotted versus
the fine mass fraction for the same data as in Fig. 10. It is very
interesting to note that, as predicted by Eq. (12), the data for a
given batch and a given outlet diameter exhibit a linear trend.
The dashed lines correspond to the best linear fit excluding the
pure cases Xf = 0 and Xf = 1. To further test the validity of
Eq. (12), we extract from the fitting parameter the value of the
bulk velocity for the pure case vbi . In Fig. 12 we plot these
extrapolated velocities, made dimensionless by

√
gd5

i /Sb in
the cylindrical case and by W

√
gd3

i /Sb in the rectangular case,
versus D/d and compare them to the adjusted expressions
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FIG. 13. Bulk velocity (vb) versus the fine mass fraction (Xf )
for the rectangular silo with D = 3.5 mm, dc = 1300 μm, and
various df = 114 μm (�); 490 μm (•), and 720 μm (×) (see the
corresponding size ratios r in the legend). The dashed lines represent
the best linear fit excluding the pure case (Xf = 1) for each batch.

obtained in the case of monodisperse experiments [Figs. 4(b)
and 5(b)]. We observe good agreement with the data, which
gives confidence in the use of a simple mixture law on the bulk
velocity to obtain the flow rate of the mixture [Eq. (12)]. This
seems to show that there is not a different behavior between
the coarse continuous phase and the fine continuous phase as
previously suggested [6,7]. Moreover this model also suggests
that a mixture diameter cannot be simply defined to adapt the
monodisperse expressions to predict the bidisperse flow rate
as often proposed in the literature.

Finally, it is interesting to note that in Fig. 12(b) we obtained
data below the limit of jamming (vertical dashed-dotted line in
the graph) where no direct measurement is possible. These new
data are still in good agreement with the adjusted expressions
of Beverloo et al. [2] and Janda et al. [4]. They have been
obtained from Fig. 13 where we have plotted the bulk velocity
vb versus the fine mass fraction Xf for the rectangular silo
with D = 3.5 mm and different batches with the same coarse
diameter dc = 1300 μm. The coarse particles are below the
limit of jamming for this outlet diameter, but we observe
that they are able to flow when they are mixed with smaller
particles until a mass fraction of about 50%. This remains
true even for a small size ratio as seen in the data where
r = 1.8 (df = 720 μm: ×). The dashed lines represent the
best linear fit for each batch, excluding the pure fine case
(Xf = 1). They converge at Xf = 0 giving the extrapolated
bulk velocity which would correspond to particles of diameter
d = 1300 μm flowing in an outlet of length D = 3.5 mm,
i.e., less than three beads in the aperture. From a numerical
and experimental study in a cylindrical silo, Pournin et al. [15]
suggested that the jamming of bidisperse mixture follows the
same expression than that of monodisperse assemblies if we
consider the volume-averaged diameter of the constituting bed
[Eq. (3)]. This relation does not seem to represent our results,
however a more complete experimental study on this point
deserves to be performed.

IV. CONCLUSION

We have experimentally studied the flow discharge in a
cylindrical and a rectangular silo using both monodisperse and
bidisperse mixtures of spherical glass beads. We have shown
that a stationary regime is obtained during the discharge. In the
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case of monodisperse particles, the flow rate is well adjusted
both by the expression of Beverloo et al. [2] [Eq. (1)] and
the expression of Janda et al. [4] [Eq. (8)]. In the case of a
rectangular silo, the expression of Beverloo et al. [2] has been
successfully modified to take into account the effect of the
difference between the thickness and the length of the outlet,
the orifice being a slit [see Eq. (5)].

We have developed a simple model based on the experiment
of Janda et al. on monodisperse particles [4] to predict
the flow rate of the bidisperse granular media. This model
supposes that the particle velocities at the outlet are the
same whatever the particle diameters. Then it assumes that
the dilatancy expression [Eq. (7)] is still valid for each
particle size, independent of the other particle size. Finally
it presumes that the self-similarity of the density profile
remains valid for the mixture. Based on all these hypotheses,
we propose an expression for the flow rate of a bidisperse
mixture [Eq. (11)]. This model predicts that the bulk velocity
vb = Q/(ρφbSb) follows a simple mixture law [Eq. (12)]
which was validated experimentally. Furthermore, our model
suggests that a mixture diameter cannot be simply defined to
adapt the monodisperse expressions to predict the bidisperse
flow rate as commonly seen in the literature.

Finally we have shown that coarse particles can be trans-
ported in small outlets, below the jamming conditions up to
a mass fraction of about 50% and even for a small size ratio
(1.8 in this study). The extrapolated bulk velocities of the pure

coarse particles below the limit of jamming are still in good
agreement with the expressions of Beverloo et al. [2] and Janda
et al. [4].

The new data obtained could be used as a benchmark
to test theoretical models. In particular, the development of
a continuous rheology [20] has been found to successfully
predict the flow of particles in many geometries [21]. In the
case of the discharge of a granular silo, interesting results have
been obtained using this rheology in numerical studies [22–
24], however the dependence of the flow rate with the particle
diameters remains an open question in a continuous model.
Concerning bidisperse flow, the simple mixture law obtained
for the bulk velocity suggests that the mixture can potentially
be seen as a continuous media. It would be interesting now
to use our data to test a mixture rheology [25,26] in a
continuous model as previously performed for silo discharge
of monodisperse particles or flow down an inclined plane for
polydisperse particles [26].
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