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Discrete particle simulations are used to study two-dimensional discharge flow from a silo using both
monodisperse and bidisperse mixtures. The density and the velocity profiles through the aperture are measured.
In the monodisperse case, two particles’ diameters are studied for different outlet diameters. In the bidisperse
case, we varied the fine mass fraction of the mixture. In all cases, the density and the velocity profiles are found
to follow the same self-similar law. Based on these observations and the previous work of Benyamine et al., a
physical model is proposed to describe the flow of bidisperse mixtures giving an explicit expression for the flow
rate that is in good agreement with the results.
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I. INTRODUCTION

The discharge flow of mixtures of particles from silos is
of concern to many processes in the food and pharmaceutical
industries. It is also of relevance to the ejection of fuel from
a typical fuel rod in a nuclear power station during some
hypothetical accidental conditions [1]. In most of situations
of practical interest, the granular mixture is not monodisperse,
however, few studies have been devoted to the discharge flow
of a polydisperse mixture. Arteaga and Tüzün [2], followed
by Humby et al. [3], studied the flow of bidisperse mixtures
through a cylindrical and a conical silo. They proposed to
describe the behavior of the mixture using the simplest and
most used correlation established by Beverloo et al. [4] for the
discharge of monodisperse granular media from flat-bottomed
silos. This correlation is based on dimensional analysis. It
supposes that a free-fall arch exists [5], which scales with
a reduce outlet length (D − kd) explained by the concept
of a useless zone (an empty annulus) for the particles close
to the wall [6]. This gives a velocity at the outlet of vo ≈√

g(D − kd) and the flow rate is then

Q = Cρφg1/2(D − kd)5/2, (1)

where Q is the mass flow rate, g the gravitational acceleration,
ρ the particle density, φ the particle volume fraction, D the
outlet diameter, d the particle diameter, and C and k are fitted
parameters. To describe the mixture flow rate, Arteaga and
Tüzün proposed to modify this correlation by

Q = Cρ̄g1/2(D − k̄d̄)5/2, (2)

where ρ̄ is the mixture density and d̄ is a mixture diameter,
which characterizes the empty annulus and depends on the fine
mass fraction (Xf ) and the diameter of the coarse (dc) and fine
particles (df ),

d̄ = Xf df + (1 − Xf )dc. (3)

The parameter k̄ is a fitted coefficient, which is found to depend
on the bed microstructure: k̄ = 1.85 for the coarse continuous
phase and k̄ = 1.4 for the fine continuous phase, where the
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transition between microstructures depends on the size ratio
(r = dc/df ).

Recently Benyamine et al. [7] performed an experimental
study of the discharge flow of a bidisperse granular media from
a silo, for a large range of particle diameters, size ratios, and
outlet diameters. They proposed a simple physical model to
describe the flow of bidisperse mixtures based on the recent
experimental work of Janda et al. [8] on monodisperse flow. In
a two-dimensional (2D) silo, Janda et al. found that the velocity
and the density profiles at the exit are self-similar, whatever
the radius of the aperture R = D/2, and wrote v(x) = vo[1 −
(x/R)2]0.5 and φ(x) = φo[1 − (x/R)2]0.22, where x is the
horizontal position. The velocity at the center of the outlet
follows,

vo =
√

γgD (4)

with γ = 1.1, and does not depend on the particle diameters.
This scaling of the velocity at the center of the outlet is
compatible with the concept of a free fall from a hypothetical
arch scaling with D. However, Rubio-Largo et al. [9] have
shown recently that the free fall arch does not exist as a region
below which particles fall solely under gravitational action.
Nevertheless, they explained the scaling of the exit velocity
based on the acceleration profiles, which collapsed with D.

The variation of density at the center of the outlet depends
on the outlet size and on the particle diameter, exhibiting a
dilatancy for small aperture in order to maintain the flow of
the material. It can be fitted by an asymptotic growth φo =
φ∞[1 − α1e

−D/2α2 ], where α2 = 3.3d. Benyamine et al. [7]
have adapted this concept to their configurations, by assuming
that the asymptotic value of the density for big orifices is
proportional to the initial bulk volume fraction (φ∞ = ξφb).
They wrote that the density at the center of the outlet is given
by

φo = ξφb

[
1 − αe−β D

d

] = ξφbG

(
d

D

)
, (5)

where G(d/D) = [1 − αe−β D
d ] is the geometrical factor,

which characterizes the dilatancy at the outlet. In the case
of bidisperse flow, the model developed by Benyamine et al.
[7] is based on the three following assumptions.
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(i) For each particle size the density keeps the same self-
similar form. Then the density at the center of the outlet can
be decomposed into

φo = φof + φoc, (6)

where φof and φoc are the fine and coarse density at the center
of the outlet, respectively.

(ii) For each particle size, the dilatancy expression [Eq. (5)]
is still valid independent of the other particle size,

φoi = ξφbiG

(
di

D

)
, (7)

for (i = f,c), where φbf = Xf φb and φbc = (1 − Xf )φb are
the fine and coarse initial bulk density, respectively.

(iii) The velocity profile of the mixture keeps its self-similar
form, which is independent of the particle diameter [Eq. (4)].

With these hypotheses, Benyamine et al. [7] predicted the
flow rate of a bidisperse mixture,

Q = C ′
[
Xf G

(
df

D

)
+ (1 − Xf )G

(
dc

D

)]
ρφb

√
gDSo, (8)

where So is the outlet surface. This prediction is found to
be in good agreement with their measurements, however,
a direct validation of the three presumed hypotheses is not
possible in the experimental configuration. To investigate the
validity of these assumptions, we performed discrete particle
simulations of the discharge flow of granular mixture from a
silo.

In the literature, discrete particle simulations have been
shown to successfully reproduce the discharge flow of
monodisperse granular media from a silo, where Beverloo’s
correlation is recovered (see Ref. [10] for a review). The
current work is devoted to the numerical investigation of
the flow in silo discharges using both monodisperse and
bidisperse material in a two-dimensional configuration. First
the simulated system is described, then we discuss the
monodisperse cases and compare our data with the observa-
tions of Janda et al. [8] on the velocity and density profiles
at the outlet. The evolution of these profiles in the bidisperse
cases is then studied and compared to the assumptions of
Benyamine et al. [7]. Finally, a model taking into account these
observations is proposed to predict the flow of a bidisperse
mixture.

II. SIMULATED SYSTEM

A. System description and numerical settings

To simulate the discharge flow of particles from a silo,
we use the LMGC90 software implementation of the contact
dynamics method [11]. The particles, interacting through a
dense granular flow, are treated as perfectly rigid and inelastic
[12]. Contact dissipation is modeled in terms of a friction
coefficient that we set to μp = 0.4 between particles and to
μw = 0.5 with the walls.

The two-dimensional silo (Fig. 1) consists of a rectangular
tube of height H and width L. The outlet is located at the
center of the bottom and has a length D, which was varied.

First, for monodisperse cases, three series of simulations
were performed for different disks mean diameter d: using

FIG. 1. (Color online) Example of a bidisperse granular media
(Xf = 0.375) in the silo before the discharge process is initiated.

either d = 2 mm or d = 6 mm, and then using a fixed outlet
size D = 36 mm (see Table I). To avoid crystallisation a weak
polydispersity of δd/d = 0.2 is introduced. With the particles
and aperture available, the number of beads in the aperture
(D/d) ranges between 6 and 36. Then, for the bidisperse case,
we consider the flow of a binary mixture corresponding to a
size ratio of r = dc/df = 3 between the coarse particles (dc =
6 mm) and the fine particles (df = 2 mm) for an outlet size of
D = 36 mm for various fine mass fractions Xf (see Table II).
The number of particles, reported in Tables I and II, was chosen
for each simulation to ensure that the discharge flow rate is
independent of the column height with 16D < H < 45D [13].

TABLE I. Simulations performed in the monodisperse case for a
fixed particle size (d = 2 mm and d = 6 mm) or a fixed outlet size
(D = 36 mm), where Np is the number of particles and Nt is the
number of time steps.

d = 2 mm d = 6 mm

D/d Np Nt Np Nt

6 5000 17600 4000 34000
8 7500 17600 5400 22000
10 10000 20000 8400 22600
12 11500 16000 12000 22600
14 13500 15000 14000 16000
16 15500 10000 16000 9360
18 20000 5200 18000 8000
20 20000 8000

D = 36 mm

D/d Np Nt

6.55 4000 27600
7.2 4350 25940
8 5400 26000
9 6750 25000
10.29 9000 20000
12 12000 20230
14.4 16000 5920
36 50000 1692
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TABLE II. Simulations performed in the bidisperse case with
df = 2 mm, dc = 6 mm, and D = 36 mm, where Xf is the fine mass
fraction, Npf and Npc are respectively the number of fine and coarse
particles, and Nt is the number of time steps.

Xf Npf Npc Nt

0.125 3500 2722 30000
0.25 7000 2333 25000
0.377 10500 1944 20000
0.5 14000 1555 17516
0.625 17500 1166 9000
0.75 21000 777 6000
0.876 21000 332 6000

To ensure that the lateral walls do not influence significantly the
flow, we impose L = 3D [14]. The wall thickness is imposed
to be equal to the diameter of the biggest particle in the silo
(dM ), with a circular shape at the edge of the outlet (see Fig. 1).

The granular column is prepared by the random deposition
of the particles, minimizing the gravitational potential, in the
closed silo. A typical bidisperse initial condition is shown in
Fig. 1. After the preparation phase, simulations are run with
a time step of δt = 5 × 10−4 s for the number of time steps
Nt reported in Tables I and II. The computational domain is
periodic in the vertical direction to keep constant the number
of particles. The horizontal boundaries of the computational
domain are set at a distance of 10dM below and above the silo.

B. Numerical statistics and averages

The simulated granular material and its flow are character-
ized by a set of ensemble-averaged properties that could vary
over different time (unsteady) and space (inhomogeneous)
scales. From the discrete numerical representation of LMGC90,
several averages are computed to study the processes at the
scale of the outlet that could govern the steady flow rate at the
silo scale.

The bulk volume fraction φb of a population of particles
filling the silo is measured before its discharge. It is obtained by
considering the space average of the particle indicator function,
whose value is 1 over the spatial extent of particles, and 0
otherwise. This average is calculated over the silo, excluding
a region near the boundaries of size D. That corresponds to
a sample leading to an accuracy of 5 × 10−3 of the absolute
value of φb.

For bidisperse cases, the mass fraction Xf of the population
is defined with respect to the whole set of particles initially in
the silo. The bulk particle volume fraction obtained is given in
Fig. 2 as a function of the fine mass fraction. As shown in the
literature [2], φb goes through a maximum around Xf ≈ 0.25,
corresponding to dense packing where the fine particles fill
the voids between the coarse particles. It can be noted that the
fine particles correspond to a packing slightly denser than the
coarse particles packing. Finally, the column height is given by
H = Sp/φbL, where Sp is the total area occupied by particles
in the silo.

Let us now consider the discharge. A snapshot of all
particle positions is recorded every two time steps. From
these snapshots, we first measured globally the instantaneous

0.00 0.25 0.50 0.75 1.00
Xf

0.810

0.825

0.840

0.855

φ
b

FIG. 2. Bulk particle volume fraction versus the fine mass fraction
(Xf ) in the bidisperse case (see Table II).

flow rate Qi = (
∑

δt Sp)/δt corresponding to the surface of
particles leaving the silo during a time interval δt = 0.1s. A
typical temporal evolution of the instantaneous flow rate is
shown in Fig. 3, where it is found to reach rapidly a rather
constant value corresponding to the steady state. The steady
flow rate Q is obtained by time averaging the instantaneous
flow rate during this steady state.

Then following Janda et al. [8], we measured the profile of
the particle volume fraction φ(x) and the velocity v(x) locally
at the outlet. These are the average of the statistics performed
over the set of snapshots of a computation of a steady flow
during, say 	t seconds. Since the studied flow is steady,
by ergodicity this time average is equivalent to an ensemble
average. For each snapshot, one considers the statistics to
be homogeneous over a rectangular domain centered on the
measurement location x. The width of this rectangle is 0.2d̄ ,
where d̄ is the mixture diameter defined in Eq. (3), that is
actually small with regard to the typical lateral variation of the
profiles (that scales with D). The typical length of the φ axial
variation due to free fall of particles of velocity v is v2/g. At
the outlet of the silo, the velocity v is scaled by

√
gD and

the length scales as D. The height of the rectangular domain
is chosen as the outlet wall thickness, which is small with
respect to D so that the ergodicity between the space average
performed over this square and an ensemble average is valid.
The particle volume fraction, φ(x), is the average over the
integration volume (in space and time) of the indicator function
of the particles. To reach a relative accuracy ε of the statistical

0 2 4 6 8
t(s)

0

150

300

450

Q
i(
m

2 /
s)

Q

FIG. 3. Temporal evolution of the instantaneous mass flow rate
for d = 2 mm and D = 16 mm in the monodisperse case. The dashed
line represents the mean flow rate Q.
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estimation of the average value of φ(x), it is required that 	t

be of the order of π d2/(v 0.2d̄ φ2 ε) for particles of size d and
velocity v. Scaling v by the average outlet velocity allows for
an estimate of the calculation time needed to obtain a given
accuracy. In the bidisperse case, these measurements are done
for the mixture, but also independently for the coarse and fine
particles. It is then obvious that relatively low accuracy will
be achieved for the coarse particles when their mass fraction
(and therefore φc) is low in comparison with the accuracy over
the fine particles at the same conditions. From the profiles of
φ, we define the mean outlet value φ̄ as the space average of
these profiles over the outlet width D.

The velocity profile at the outlet of a particle population
(mixture, fine or coarse) is obtained as the ensemble average
(over the same sample) of the individual particle velocity
weighted by their volume intersection with the integration
domain. It is therefore the space and time average of the prod-
uct of the indicator function by the individual velocity divided
by φ. Since standard deviation of the velocity distribution is
small, the convergence of statistics toward the average value is
more rapid than for φ. We checked that the the cross products
of the fluctuations is small since Q � vφ.

III. RESULTS AND DISCUSSION

We will now present the simulations results obtained for the
discharge of particles from the silo. We will first focus on the
monodisperse flow and we will compare our results with those
obtained experimentally by Janda et al. [8] and numerically by
Percier [15] in a similar 2D configuration. These results will
be used as a reference for the bidisperse flow studied in the
second part.

A. Monodisperse flow

In the monodisperse case, Fig. 4(a) shows the measured
particle volume fraction at the outlet, as a function of the
horizontal distance from the outlet center, x, for the particles of
diameter d = 2 mm and for all the outlet diameters simulated.
To verify the self-similarity of these profiles, as observed
experimentally by Janda et al. [8], we chose to normalize
the volume fraction by the mean volume fraction, φ̄, to avoid
the small scattering visible on the volume fraction in the center

of the outlet due to the uncertainty of the measurement. The
normalized volume fraction is plotted in Fig. 4(b) versus the
horizontal position normalized by the radius of the outlet
(R = D/2). As expected, the profile is found to be self-similar
as the data are all superimposed. Following Janda et al. [8] we
adjusted the normalized profile by

φ(x) = φ̄γ (νφ)

[
1 −

( x

R

)2
]νφ

, (9)

where γ (ν) = (2/
√

π )(ν + 3/2)/(ν + 1) was obtained by
integration. The fitting parameter νφ = 0.19 ± 0.01 is obtained
using the least-squares methods and closely matched those
reported in previous work [8,15]. We observe exactly the same
behavior for the simulations done with the particles of diameter
d = 6 mm and those with a constant outlet diameter D =
36 mm, where all the normalized volume fractions can be
adjusted by Eq. (9) with the same power law, νφ = 0.19.

We now turn to the study of the evolution of the mean
volume fraction, φ̄, with the parameters of the simulation.
Again, following Janda et al., Fig. 4(c) shows the mean volume
fraction at the outlet made dimensionless by the bulk volume
fraction versus the number of beads in the aperture, D/d, for
the three series of monodisperse simulations, d = 2 mm (◦),
d = 6 mm (�), and D = 36 mm (×). The data superimpose, as
observed experimentally by Janda et al., with the mean volume
fraction exhibiting an increase from a loose packing for small
numbers of beads in the aperture to a tendency to saturate
toward 89% of the bulk volume fraction for large numbers.
The data are well represented by the expression of Janda et al.
(see the full line in the figure),

φ̄ = ξφφb

[
1 − αe−β D

d

] = ξφφbG

(
d

D

)
, (10)

with the fitting parameters ξφ = 0.89, α = 0.45, and β = 0.13
(obtained using the least-squares method), which closely
match those reported in previous work [8,15]. We note that
G(d/D) = [1 − αe−β D

d ], the function that depends on the
number of beads in the aperture and characterizes the dilatancy
at the outlet due to the geometrical constraint.

In the same way, the profiles of the vertical component of
the velocity, v(x), and the profiles of the horizontal component
of the velocity, u(x), for the particles of diameter d = 2 mm are

(a)

−20 −10 0 10 20
x(mm)

0.2

0.4

0.6

0.8

φ

(b)

−1.0 −0.5 0.0 0.5 1.0
x/R

0.0

0.4

0.8

1.2

φ
/φ

D = 6d

D = 8d

D = 10d

D = 12d

D = 14d

D = 16d

D = 18d

(c)

0 15 30 45
D/d

0.4

0.6

0.8

1.0

φ
/φ

b

d = 2mm

d = 6mm

D = 36mm

FIG. 4. (Color online) Monodisperse flow of particles of diameter of d = 2 mm for different outlet diameters. (a) Horizontal profiles of
the volume fraction versus the position (x). (b) Horizontal profiles of the volume fraction normalized by the mean volume fraction (φ̄) versus
the position normalised by the outlet radius (R = D/2). The full line represents Eq. (9) with νφ = 0.19. (c) Mean volume fraction at the outlet
(φ̄) normalized by the bulk volume fraction (φb) versus the outlet diameter normalized by the particle diameter (D/d), for the three series of
monodisperse simulations. The full line represents Eq. (10) with ξφ = 0.89, α = 0.45, and β = 0.13.
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FIG. 5. (Color online) Monodisperse flow of particles of diameter of d = 2 mm for different outlet diameters. (a) Horizontal profiles of the
vertical velocity v. (b) Horizontal profiles of the horizontal velocity u. (c) Horizontal profiles of the vertical velocity made dimensionless by
the mean vertical velocity (v̄) versus the position normalized by the outlet radius (R = D/2). The full line represents Eq. (11) with νv = 0.38.

plotted, respectively, in Figs. 5(a), 5(b). The vertical velocity
profiles are quasiparabolic and depend on the outlet diameter,
whereas the horizontal velocity profile is found to be mainly
linear. These profiles show that the flow out of the silo is
not fully vertical but has a horizontal component towards the
center. It is interesting to note that the horizontal profiles seem
to be nearly self-similar without any normalization, whereas
the vertical profiles present a self-similarity when normalized
by the mean velocity as a function of the horizontal position
made dimensionless by the radius of the outlet, see Fig. 5(c).
Following Janda et al. [8], we have adjusted the vertical profile
by

v(x) = v̄γ (νv)

[
1 −

( x

R

)2
]νv

, (11)

with the fitting parameter νv = 0.38 ± 0.01 obtained using the
least-squares method. This coefficient, similar to that obtained
numerically in a 2D discrete simulation by Percier [15], is
slightly lower than that obtained experimentally by Janda
et al. (νv = 0.5). This may be explained by the difference
in the geometries between the simulations, corresponding to
a column of disks, and the experiments, corresponding to a
column of one layer of spheres between two plates. Again, we
observe exactly the same behavior for the simulations done
with the particles of diameter d = 6 mm and those with a
constant outlet diameter D = 36 mm, where all the normalized
vertical velocities can be adjusted by Eq. (11) with the same
power law, νv = 0.38.

Following Janda et al., the evolution of the mean vertical
velocity v̄ is plotted in Fig. 6(a) versus the outlet radius for the
three series of simulations in the case of monodisperse flow,
corresponding to constant particle diameters d = 2 mm (◦)
and d = 6 mm (�) or constant outlet diameter D = 36 mm
(×). The collapse of the data is not completely satisfactory and
the adjustment by a square root law is not as fair as expected
(see the full line in the figure corresponding to v̄ = 1.46

√
gD).

It seems in our simulation that the particle diameter plays a
role in the determination of the mean vertical velocity. This
is particularly visible for the data corresponding to a constant
outlet diameter (×) where the velocity is not constant when
the particle diameter varies.

To take this role into account, we have plotted in Fig. 6(b)
the mean velocity made dimensionless by

√
gd versus the

number of beads in the aperture D/d. In this representation,
the data collapse in a single curve. To be consistent with the
asymptotic value and with the observations made on the mean
volume fraction, we have adjusted the mean vertical velocity
by

v̄ = ξv

√
gD

[
1 − αe−β D

d

] = ξv

√
gDG

(
d

D

)
(12)

with the fitting parameter ξv = 1.55 and the same fitting
parameters in the geometrical function G(d/D) as the ones
obtained for the volume fraction. This suggests that the same
physical mechanism is responsible for the reduction in the

(a)
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0

500

1000

1500

2000

v
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m
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)

(b)

10 20 30
D/d
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7.5

10.0

v
/√ g

d

d = 2mm

d = 6mm

D = 36mm

FIG. 6. (a) Mean vertical velocity versus the length of the aperture
D. The full line represents the best fit with a square root law,
v̄ = 1.46

√
gD. (b) Mean vertical velocity made dimensionless by√

gd versus the number of beads in the apertures D/d . The full line
represents Eq. (12) with ξv = 1.55, α = 0.45, and β = 0.13.

062204-5



Y. ZHOU, P. RUYER, AND P. AUSSILLOUS PHYSICAL REVIEW E 92, 062204 (2015)

101
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Q

/(
φ

b
g
d

3 )

d = 2mm

d = 6mm

D = 36mm

FIG. 7. Flow rate made dimensionless by
√

gd3 versus the
number of beads in the aperture D/d . The full line represents Eq. (13)
with C = 1.42.

mean velocity and the mean volume fraction at the outlet
when the number of beads in the aperture decreases, which
is consistent with a continuous description of the granular
media throughout the silo, even close to the outlet [9,16].

Finally, we can deduce, from Eqs. (9)–(12), the discharge
flow rate of monodisperse beads from a two-dimensional silo,

Q =
∫ D/2

−D/2
φ(x)v(x)dx = C

[
G

(
d

D

)]2

φb

√
gD3, (13)

where C = ξφξvγ (νv)γ (νφ)
∫ 1

0 (1 − t2)dt = 1.42.
In Fig. 7, the measured flow rate made dimensionless by√

gd3 is plotted versus the number of beads in the aperture D/d

for the three series of simulations (constant particle diameters
d = 2 mm, ◦, and d = 6 mm, �, or constant outlet diameter
D = 36 mm, ×). We recover the classical result corresponding
to a collapse of the data on a single curve, which is in excellent
agreement with Eq. (13) with C = 1.42 (see the full line in
the figure). As pointed out by Janda et al. [8], the precise
knowledge of the profiles of the volume fraction and velocity
of particle through the outlet allow an accurate prediction of the
flow rate, based on physical observations. The monodisperse
study will be used in the following as a reference for the
bidisperse flow.
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FIG. 8. (Color online) Flow of a bidisperse mixture with df = 2 mm and dc = 6 mm for an outlet length D = 36 mm, for different fine
mass fractions: horizontal profiles of the volume fraction for (a) the fine particles, (b) the coarse particles, and (c) the mixture. Horizontal
profile of the volume fraction made dimensionless by the mean volume fraction, versus the horizontal position normalised by the radius of
the outlet, for (d) the fine particles, (e) the coarse particles, and (f) the mixture. The full line represents Eq. (9) with νφ = 0.19. Mean volume
fraction at the outlet φ̄ normalised by the bulk volume fraction (φb) versus the fine mass fraction Xf , for (g) the fine particles, (h) the coarse
particles, and (i) the mixture. The full lines represent respectively, Eqs. (16), (17), and (18).
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FIG. 9. (Color online) Flow of a bidisperse mixture with df = 2 mm and dc = 6 mm for an outlet length D = 36 mm, for different fine
mass fractions: horizontal profiles of the vertical velocity for (a) the fine particles, (b) the coarse particles, and (c) the mixture. Horizontal
profiles of the vertical velocity normalized by the mean vertical velocity, versus the horizontal position normalized by the radius of the outlet,
for (d) the fine particles, (e) the coarse particles, and (f) the mixture. The full line represents Eq. (11) with νv = 0.38.

B. Bidisperse flow

To predict the flow of a bidisperse mixture from a silo,
Benyamine et al. [7] have developed a model based on three
assumptions. The measurement of the horizontal profile of the
volume fraction and the velocity at the outlet of both the fine
and coarse particles will enable testing of these assumptions,
one by one.

(i) In their model, Benyamine et al. first assumed that
for each particle size the volume fraction keeps the same
self-similar form. In the case of the flow of bidisperse
mixture with df = 2 mm and dc = 6 mm for an outlet length
D = 36 mm, Figs. 8(a), 8(b) show the horizontal profile of
the volume fraction for various fine mass fractions, Xf , for
the fine and coarse particles. These profiles are found to be
self-similar when normalized by the mean volume fraction as
shown in Figs. 8(d), 8(e), and they correspond to the prediction
of Eq. (9), with νφ = 0.19 as for the monodisperse case
(full line in the figures). The first condition is consequently
fulfilled, which is demonstrated by the fact that horizontal
profile of the volume fraction of the mixture follows the same
self-similarity as can be seen in Figs. 8(c), 8(f). Subsequently
the mean volume fraction at the outlet can be decomposed
into

φ̄ = φ̄f + φ̄c, (14)

where φ̄f and φ̄c are respectively the fine and coarse mean
volume fraction at the outlet.

(ii) Second, they assumed that for each particle size, the
dilatancy expression obtained in the monodisperse case is still

valid independently of the other particle size,

φ̄i = ξφφbiG

(
di

D

)
, (15)

for (i = f,c). Considering that the fine and coarse initial bulk
density are respectively given by φbf = Xf φb and φbc = (1 −
Xf )φb, implies that

φ̄f = Xf φbξφG

(
df

D

)
, (16)

φ̄c = (1 − Xf )φbξφG

(
dc

D

)
, (17)

φ̄ = φbξφ

[
Xf G

(
df

D

)
+ (1 − Xf )G

(
dc

D

)]
. (18)

These predictions are compared to the results obtained from
the simulations in Figs. 8(g)–8(i) where the mean volume
fraction at the outlet (φ̄) normalized by the bulk volume
fraction (φb) is plotted versus the fine mass fraction Xf ,
respectively for the fine particles, the coarse particles and the
mixture. The agreement is found to be fairly good, which
validates this second hypothesis.

(iii) Finally, they assumed that the velocity profile of the
mixture keeps its self-similar form, which is independent of
the particle diameter. However, in our simulation the velocity
profile for the monodisperse case is found to depend on the
number of particles in the aperture. Nevertheless, Fig. 9 shows
that the vertical profile in the bidisperse case for the fine
particles, the coarse particles and the mixture retain their
self-similar form if normalized by the mean vertical velocity.
Again, Eq. (11), with νφ = 0.38, found for the monodisperse
case fits the data very well.
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FIG. 10. Mean velocity of the fine particles (◦), the coarse
particles (�), and the mixture (�) versus the fine mass fraction Xf .
The full line represents the best linear fit excluding the pure cases
(Xf = 0 and 1).

Figure 10 shows the mean velocity versus the fine mass
fraction for the fine particles (◦), the coarse particles (�), and
the mixture (�). The important finding exhibited in this figure
is that the velocity of the fine and coarse particle are identical
for a given fine mass fraction. This means that the mixture
behaves as a continuous media with v̄(Xf ) = v̄f (Xf ) =
v̄c(Xf ). This also implies that there is no segregation for our
conditions. Moreover the data, excluding the monodisperse
cases, seems to follow a linear trend,

v̄/
√

gD = ξv[1.07Xf + 0.72(1 − Xf )] = ξvK(Xf ); (19)

see the full line in the figure. These observations suggest that
the spatial arrangement of the grains close to the outlet is
the single feature that depends on the size distribution of the
granular material. In this hypothesis, the different behavior
of the monodisperse case could correspond to a specific
arrangement when the mixture is monosized. A future work
on the spatial organization of the grains near the outlet should
test this hypothesis.

Finally, using Eqs. (14)–(19), we obtain a new formula
to describe the discharge flow rate bidisperse beads from a
two-dimensional silo,

Q = CK(Xf )

[
Xf G

(
df

D

)
+ (1 − Xf )G

(
dc

D

)]
φb

√
gD3,

(20)
where C = 1.42 corresponds to the same prefactor as in
Eq. (13). This equation is plotted in Fig. 11 and is found to be in
good agreement with the results of the numerical simulations.

IV. CONCLUSION

We have numerically studied the discharge flow of both
monodisperse and bidisperse mixtures of disks from a two-
dimensional silo using discrete particle simulations in the
stationary regime. The density and the velocity profiles through
the aperture were measured, in the monodisperse case for
two particles’ diameters, varying the outlet diameters, and
for one outlet diameter, varying the particle diameters. In the
bidisperse case both profiles are measured for each species and
for the mixture.

0.00 0.25 0.50 0.75 1.00
Xf

0.75

1.00

1.25

Q
/φ

b
g
D

3

FIG. 11. Flow rate Q made dimensionless by φb

√
gD3 versus the

fine mass fraction Xf in the bidisperse case. The full line represents
a linear fit excluding the monodisperse cases given in Eq. (19).

In the case of monodisperse particles, we recovered most of
the experimental observations of Janda et al. [8]. The density
and the velocity profiles are found to follow a given self-similar
law in the whole range of parameters. The mean density at the
outlet exhibits a dilatancy depending on the number of beads
in the aperture. However, contrary to Janda et al. [8], the mean
vertical velocity is found to depend also on the number of
beads in the aperture, with the same geometrical factor as the
mean density.

In the case of the bidisperse particles, we validated the
hypothesis developed previously by Benyamine et al. [7] on
the density to predict the flow rate of the bidisperse granular
media from a silo. We found that the horizontal profiles of
the density of the fine particles, the coarse particles and the
mixture, keep the same self-similarity as for the monodisperse
case, whatever the fine mass fraction. Then, we showed that
the dilatancy expression is still valid for each particle size,
independent of the other particle size. Finally, the model of
Benyamine et al. assumes that the particle velocities at the
outlet are the same whatever the particle diameters. As the
velocity depends on the particle diameters, this hypothesis is
not fulfilled. However, we observed that the velocity profiles
follow the same self-similarity as for the monodisperse case.
For a given fine mass fraction, we observed that the mixture
behaves as a continuous media with the same mean velocity
for each species and the mixture. We found that the mixture
velocity is roughly proportional to the fine mass fraction. Based
on all of these hypothesis, we proposed an expression for the
flow rate of a bidisperse mixture [Eq. (20)], which is in good
agreement with our simulation data.

Our results suggest that during the discharge flow of a silo
the bidisperse mixture can be seen as a continuous media
even close to the outlet, as pointed out recently in the case of
monodisperse flow [9,16]. The dilatancy of the mixture at the
outlet plays a major role in the dependance of the flow rate
with the particle size.
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