
HAL Id: hal-01431924
https://hal.science/hal-01431924

Submitted on 11 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scale-free channeling patterns near the onset of erosion
of sheared granular beds

Pascale Aussillous, Zhenhai Zou, Élisabeth Guazzelli, Le Yan, Matthieu Wyart

To cite this version:
Pascale Aussillous, Zhenhai Zou, Élisabeth Guazzelli, Le Yan, Matthieu Wyart. Scale-free channeling
patterns near the onset of erosion of sheared granular beds. Proceedings of the National Academy of
Sciences of the United States of America, 2016, 113 (42), pp.11788 - 11793. �10.1073/pnas.1609023113�.
�hal-01431924�

https://hal.science/hal-01431924
https://hal.archives-ouvertes.fr


Scale-free channeling patterns near the onset of
erosion of sheared granular beds
Pascale Aussillousa, Zhenhai Zoua, Élisabeth Guazzellia, Le Yan (晏乐)b, and Matthieu Wyartc,1

aAix-Marseille Université, CNRS, Institut Universitaire des Systèmes Thermiques Industriels, 13453 Marseille, France; bKavli Institute for Theoretical Physics,
University of California, Santa Barbara, CA 93106; and cInstitute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

Edited by David A. Weitz, Harvard University, Cambridge, MA, and approved August 30, 2016 (received for review June 3, 2016)

Erosion shapes our landscape and occurs when a sufficient shear
stress is exerted by a fluid on a sedimented layer. What controls
erosion at a microscopic level remains debated, especially near the
threshold forcing where it stops. Here we study, experimentally, the
collective dynamics of the moving particles, using a setup where
the system spontaneously evolves toward the erosion onset. We find
that the spatial organization of the erosion flux is heterogeneous in
space and occurs along channels of local flux σ whose distribution
displays scaling near threshold and follows P(σ)≈ J=σ, where J is the
mean erosion flux. Channels are strongly correlated in the direction
of forcing but not in the transverse direction. We show that these
results quantitatively agree with a model where the dynamics is
governed by the competition of disorder (which channels mobile
particles) and particle interactions (which reduces channeling). These
observations support that, for laminar flows, erosion is a dynamical
phase transition that shares similarity with the plastic depinning
transition occurring in dirty superconductors. The methodology we
introduce here could be applied to probe these systems as well.

gravel bed river | dynamical phase transition | plastic depinning

The response of erodible granular beds to shearing flows is of
central importance in numerous natural phenomena such

as sediment transport in rivers and estuaries, the evolution of
mountains and landscapes, and the formation of dunes in the
desert or underwater. The response also affects many engi-
neering processes such as slurry transport in mining or petroleum
industries. However, and despite more than a century of studies,
there is still not a complete fundamental understanding of the
process. One of the essential issues is to describe the onset of
solid flow. The incipient motion of the grains is controlled by the
Shields number, θ= τb=ðρp − ρf Þgd, which is the shear stress τb
induced by the fluid at the top of the bed scaled by the hydro-
static pressure difference across the grains of diameter d. Here ρp
and ρf are the density of the solid and the fluid, respectively, and
g is the acceleration due to gravity. One observes a critical
Shields number θc below which motion stops (1), following a first
transitory and intermittent regime in which the granular bed is
continually reorganizing (2). This aging or armoring of the bed
leads to a saturated state of the bed independent of its prepa-
ration (2–6). Once a stationary state is reached, the rate J of
particle transport above this threshold follows J ≈ ðθ− θcÞβ with
β∈ ½1,2�, as reviewed in ref. 7.
Several approaches have been introduced to describe these

observations. Bagnold (8) and followers (9) emphasize the role
of hydrodynamics. In their view, moving particles carry a fraction
of the total stress proportional to their density m, such that the
bed of static particles effectively remains at the critical Shields
number. The hydrodynamic effect of a moving particle on the
static bed is treated on average, which neglects fluctuations.
Erosion−deposition models (2) are another kind of mean field
description, which emphasize instead that moving particles can
fill up holes in the static bed, leading to the armoring phenomenon
described above. Deposition and erosion are modeled by rate
equations, which implicitly assumes that the moving particles visit
the static bed surface entirely. More recently, collective effects

have been emphasized. In ref. 10, it was proposed that the erosion
threshold is similar to the jamming transition that occurs when a
bulk granular material is sheared (10). Finally, two of us (11) have
proposed that the competing effects of bed disorder and interactions
between mobile particles control the erosion onset.
New observations are required to decide which theoretical

framework is most appropriate for the erosion problem, and for
which conditions. In this article, we study, experimentally, the
collective dynamical effects of the mobile particles near threshold,
by measuring and averaging the trajectories of all of the grains on
the top of the bed. Previously, a few studies have explored particle
dynamics, but they have focused on isolated trajectories (2). Here,
instead, we analyze the spatial organization of the erosion flux. We
use a setup where the Shield number slowly and spontaneously
decreases as erosion occurs, as also occurs in gravel rivers (12).
This effect allows us to investigate precisely the approach to
threshold. Strikingly, we find that, after averaging over time, the
flux does not become homogeneous in space. Instead, fluctuations
remain important, and particles follow favored meandering paths.
As the threshold is approached from higher Shields numbers, we
find that most of the erosion flux is carried only by a few channels
within the bed. Quantitatively, the distribution PðσÞ of local flux σ
in different channels is found to be extremely broad and to follow
a power-law distribution PðσÞ≈ 1=σ. Moreover, channels are un-
correlated in the direction transverse to the flow, but they display
power-law correlations decaying as the inverse square root of the
distance in the longitudinal direction. We perform a detailed
comparison between these observations and the model introduced
in ref. 11, and we find quantitative agreements for a wide range
of flows spanning from the viscous to the inertial regimes. Our
work thus demonstrates the key role of disorder and particle
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interactions on the erosion threshold, and the need to use a
framework that goes beyond mean field approaches. In addition, it
opens ways to study dynamical phase transitions where both in-
teractions and disorder are key, as is the case for the plastic
depinning of vortices in dirty superconductors (13–15) or sky-
rmions (16), in a setting where table-top experiments can
be performed.

Experimental Setup
In gravel-bed rivers, erosion occurs until the fluid stress at the
top of the river bed reaches its threshold value (12, 17, 18). We
use this effect and perform experiments in a model sediment
river in which the Shield number continuously decreases as
erosion occurs and eventually stops. In this setup, the distance to
threshold can be accurately monitored by measuring the particle
flux J, which slowly decreases with time until it vanishes.
We use a model flume apparatus consisting of a rectangular

perspex channel (height 3.5 cm, width 6.5 cm, and length 100 cm;
Fig. 1). We fill up the channel entrance with a granular bed of acrylic
spherical particles (of radius a= 1 mm and density ρp = 1.19 g·cm−3)
while leaving an empty buffer space near the outlet. To cover both
the viscous and inertial regimes of flows, this granular bed can be
immersed in two different fluids, water (of viscosity η= 1.0 cP and
density ρf = 1.00 g·cm−3) and a mixture of water and UCON oil (of
viscosity η= 44.5 cP and density ρf = 1.06 g·cm−3). A given flow rate
driven by a gear pump is then imposed and kept constant for the
duration of each experimental run. At the inlet of the channel, the
fluid flows through a packed bed of large spheres, providing a ho-
mogeneous and laminar flow. At the outlet, the fluid is run into a
thermostated fluid reservoir, which ensures a constant temperature
of 25 C° across the whole flow loop.
In this geometry, eroded particles fall out into the empty buffer

space at the outlet. This leaves an upstream region exhibiting a flat
fluid−particle interface, whose height decreases with time until
cessation of motion. At constant fluid flow, θ decreases with the
thickness of the fluid layer hf (which increases with time) until the
threshold of motion is reached from above (4). The experimental
measurements are undertaken in the vicinity of the onset of motion,
i.e., in a flow regime where only the particles located in the top one-
particle-diameter layer of the bed are in motion; they consist of
recording sequences of images of the top of the bed in a test section
of the channel using a specially designed particle-tracking system
(see details in Methods). The real-time positions and velocities of
the moving particles are collected, and both local and total particles
fluxes, σ and J, respectively, are inferred, as will be described in the
following sections.

Channeling Pattern
Using particle tracking, the downstream and lateral velocities of
each moving particle, u and v, respectively, are obtained. Time-
averaging over all of the moving particles in the N processed
images is then performed. The mean transverse velocity is found
to be zero, whereas the mean downstream (or longitudinal) ve-
locity is approximately constant for all of the runs for a given
fluid (19). This is consistent with earlier findings that, as
threshold is approached, the density m of moving particles van-
ishes, but not their average speed (2, 20, 21). Averaging over all
runs yields a mean longitudinal velocity U = 2.2 mm/s for the
water−Ucon mixture and U =36.1 mm/s for water.*
From the measurement of these local particle velocities, the

normalized local particle flux,

σði, jÞ= 1
N

X

particles

ðu=UÞ, [1]

can be inferred at a given site ði, jÞ within a box having the size of
one pixel in the image (one pixel is ∼0.15 mm). Note that the
sum of the normalized local velocities u=U is undertaken over all
of the moving particles in the N processed images.
An example of the flux spatial organization σði, jÞ is given in Fig.

2, Left as a grayscale level. One of our central findings is that, after
time-averaging, the erosion flux is not uniform. Darker regions
indicate paths that are more often visited by particles. Close to
incipient motion, only a few channels are explored by the particles
(see the first image of Fig. 2, Left). Farther from threshold, a
greater number of preferential paths are followed, and, eventually,
the particle trajectories cover the whole bed surface (see the third
and fourth images of Fig. 2, Left).

Surface Visited by Moving Particles
We now quantify how the mean number of visited sites depends
on the distance to the erosion threshold. The total normalized
particle flux J is defined as the spatial average of the local par-
ticle flux σ over the Npixels boxes in the image,

J =
1

Npixels

X

i, j

σði, jÞ. [2]

Because the Shields number cannot be directly measured when the
bed is viewed from above, the total flux J, which is a continuous
function of the Shields number θ, is chosen as the control parameter
of the experiment. As J increases, we find that the number of sites
explored by the particles increases and eventually saturates when the
whole surface of the test section is visited for a value Jmax = 0.081.
Note that J can be seen as the surface concentration of the moving
particles, and thus the saturation occurs when the mobile particles
cover ∼8% of the total surface. In Fig. 3, Left, the surface density of
visited sites, ρsites (defined as the fraction of visited pixels in images
such as those shown in Fig. 2), is plotted versus J. Interestingly, the
data recorded in the viscous (×) and inertial (∘) regimes (i.e., data
obtained with the water−Uconmixture and pure water, respectively)
have the same trend and even are close to collapsing onto the same
curve. Fig. 3, Left, Inset shows that the number of moving particles is
linear in particle flux and vanishes at threshold for both the viscous
and inertial data.

Light

Camera

2a

Fig. 1. Cross-section sketch of the experimental setup. The model flume ap-
paratus consists of a rectangular perspex channel. It is filled with spherical par-
ticles of radius awhile leaving an empty buffer space in the downstream region.
When a constant flow rate is imposed, eroded particles fall out into the empty
buffer space. This leaves an upstream region exhibiting a flat fluid−particle in-
terface, the height h of which decreases with time until cessation of motion. A
test section of this flat fluid−particle interface is imaged by a camera, and the
real-time positions and velocities of the moving particles are collected.

*This value of U can be simply recovered by balancing the drag force CDρfπa
2U2=2 on a

particle with the friction force on the top of the bed 4μπa3ðρp − ρf Þg=3, where
CD = ½24=Rep�½1+ 0.15Re0.687p � is the Schiller−Naumann correlation for the drag coefficient
with the particle Reynolds number defined as Rep = ρf aU=η and μ≈ 0.33 is the friction
coefficient, the value of which is in agreement with that found in previous work for
suspensions (22, 23). The particle Reynolds number is Rep = 0.05 for the water−Ucon
mixture and is Rep = 36.10 for pure water.
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Distribution of Channel Strengths
To quantify the spatial organization of the erosion flux, we compute
the distribution PðσÞ of the local particle fluxes σ as J is varied. Our
key findings are shown in Fig. 4, Left and are as follows:

i) Close to threshold, the different curves Pðσ, JÞ can be col-
lapsed using the functional form Pðσ, JÞ= J   f ðσÞ. Such scaling
collapse is reminiscent of a continuous critical point. Note
that this collapse holds in the range of local flux σ probed
experimentally, but it cannot hold always, because the distri-
bution must integrate to 1, as discussed below.

ii) For both the viscous (×) and inertial (∘) regimes, the function
f ðxÞ is well fitted by the function 1=x (solid lines in the
graphs), leading to

PðσÞ=J ∝ σ−1. [3]

Such a broad distribution is characteristic of a channeling phenom-
enon, for which some sites are almost never visited, whereas others
are visited very often. Eq. 3 has no scale, indicating that the channel
pattern is a fractal object. Obviously, at large σ, this distribution is
cut off, as shown in Fig. 4, Upper Left; this simply indicates that
there is a maximum possible flux a site can carry, if particles have a
finite speed. More surprisingly, Eq. 3, together with the constraint
that PðσÞ integrates to 1, indicates the presence of a cutoff
σmin ≈ e−1=J, a quantity so small, however, that it does not appear
in our observations at small J. However, for J=Jmax J 0.37, the
scaling form of Eq. 3 breaks down at small σ (Fig. 4, Lower Left).

Spatial Correlations of the Channel Network
We now turn to the analysis of the spatial correlations of the
particle flux, defined as

CTðΔjÞ= hσði, jÞσði, j+ΔjÞic
�hσði, jÞσði, jÞic, [4]

CLðΔiÞ= hσði, jÞσði+Δi, jÞic
�hσði, jÞσði, jÞic, [5]

in the transverse and longitudinal directions, respectively. Here
the symbol h•i indicates a spatial average, and hxyic ≡ hxyi− hxihyi.
Fig. 5, Left shows that there is no correlation in the transverse

direction beyond ∼2a (for smaller distances, we observe anti-
correlations that become more prominent as J increases). By

contrast, long-range correlations appear in the longitudinal di-
rection beyond ∼2a (delimited by a dashed line in the graphs).
For small J, the decay can be well represented by a power law,
ðΔi=aÞα with α≈−0.5 (solid line in the bottom graph), and is
independent of J. This observation further supports that the
channel pattern is fractal with no characteristic length scales. For
larger J, the decay deviates from this law and becomes stronger
with increasing J.

Theoretical Model
We now show that these observations quantitatively agree with a
theory incorporating two ingredients: (i) the channeling induced
by the disorder (resulting from the presence of an essentially static
bed) and (ii) the interaction among mobile particles. Why the first
ingredient implies the second can be argued as follows: The tra-
jectory of a single mobile particle must, overall, follow the main
direction of forcing, but it will meander because it evolves on a bed
that is disordered and static. Thus, there are favored paths that
particles follow. If there are several mobile particles, this effect of
the disorder tends to channel particles together along these paths.
If mobile particles were not interacting, nothing would stop this
coarsening from continuing, and, eventually, all particles would be
attracted to the same optimal path. Obviously, this scenario is
impossible for a large system, as the density along the favored path
would be much larger than unity. Particle interaction is thus key to
limiting channeling. Interactions result in two effects: First, a
mobile particle cannot move into a site already occupied by an-
other particle. Second, another particle can push on a mobile one
and can deviate the latter from its favored path.
In ref. 11, these effects were incorporated in a model where

both space and time were discretized, and where inertial effects
as well as long-range hydrodynamic interactions were neglected.
The static bed is treated as a frozen background of random
heights hl, where l labels the different sites of a square lattice. A
fraction n of the lattice sites are occupied by particles that can
move under conditions discussed below. The direction of forcing
is along the lattice diagonal, indicated by the arrow in Fig. 6.
There are two inlet bonds and two outlet bonds for each node.
Bonds l→m are directed in the forcing direction, and are char-
acterized by a declination θl→m = hl − hm. For an isolated particle
on site l, motion occurs if there is an outlet for which θ+ θl→m > 0,
where θ is the magnitude of the forcing acting on all particles.
Flow occurs along the steepest of the two outlets, resulting in

Fig. 2. Typical channeling patterns: (Left) experiments at J/Jmax = 0.09, 0.35, 0.54, and 0.95 (from top to bottom), where Jmax = 0.081, and (Right) model at
J/Jmax = 0.18, 0.25, 0.46, and 0.78 (from top to bottom), where Jmax = 0.25. (Left) Experimental trajectories of the moving particles where the grayness indicates
the magnitude of the local flux (see also Movies S1–S6 for both the pure water and the water−UCON mixture at different J/Jmax). Darker paths correspond to
paths that are more often visited by particles. (Right) The solid lines show the local fluxes σ along the edges, whose magnitudes measured in the steady state
are indicated by the grayscale of the lines.
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channeling. When particles move, they do so with a constant ve-
locity; thus the flux J is simply the density of mobile particles, and
is bounded by Jmax = n (the value of n does not affects the critical
properties for J � 1; in Figs. 2–5, n= 0.25).
Finally, particles cannot overlap, but they can exert repulsive

forces on particles below them. Such forces can untrap a particle
that was blocked, but they can also deviate a moving particle
from its course, as illustrated in Fig. 6. The path of a particle thus
depends also on the presence of particles above it. As long as
these features are present, we expect the model predictions to be
independent of the details of the interactions. The detailed
implementation of forces are presented in Methods.

Numerical Results
As shown in Fig. 2, the channeling map generated by the model
reproduces qualitatively the experimental ones. Likewise, the
dependence of the surface visited by mobile particles on the flux
J shown in Fig. 3 closely matches experimental findings.
Our central result, however, is that this agreement is quanti-

tative: The model predicts asymptotic behaviors that are con-
sistent with observations. Although the range of flux and length
scales available experimentally is smaller than in the model, the

comparison is made with no fitting parameters and thus supports
that the model is correct. First, as shown in Fig. 4, both the
model and the experiment obtain the same form for PðσÞ≈ J=σ.
This result is unusual. It is not captured, for example, by simple
models of river networks (24) that also display some channeling.
We are not aware of any alternative theory making such a pre-
diction. As J increases, scaling breaks down, and PðσÞ becomes
peaked both in experiments and in the model.
Second, the same quantitative agreement is found for the

spatial correlations of the channel strength CT and CL, as shown
in Fig. 5: There are, essentially, no correlations in the transverse
direction (except at small distances and large J), but correlations
are long-range and decay as 1=

ffiffiffiffiffiffi
Δy

p
at small J, where Δy is the

distance between two sites along the flow direction.

Conclusion
We have shown, experimentally, that, near the erosion onset, the
flow of particles is heterogeneous and concentrates into channels
whose amplitude is power-law-distributed. Such channels display
long-range correlations in the main direction of flow, but no
correlations in the transverse direction.

Fig. 4. Probability density of local fluxes PðσÞ=J for (Upper) small flux J and (Lower) large J: (Left) experiments using the water−UCON mixture (×) and pure
water (∘) and (Right) the theoretical model. The values in the legend are J=Jmax, and the black solid lines scale as σ−1.
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Fig. 3. Density of visited sites ρsites versus particle flux J scaled by the maximum value Jmax: (Left) experiments using the water−UCON mixture (×) and pure
water (∘) and (Right) model. Inset on Left shows that the number of moving particles is linear in particle flux.
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These observations agree with a model where the particle
dynamics is controlled by the disorder of the bed of static par-
ticles, as well as by local interactions between mobile particles.
This quantitative agreement suggests that effects ignored in the
model are irrelevant (in the sense of critical phenomena) near
the transition, at least for the regime of flow reported here; this
includes long-range hydrodynamic interactions, as well as the
very slow creep flow of the granular bed below the mobile par-
ticles (10). Larger experiments, in which a broader range of
length and time scales can be probed, would be extremely useful
to measure exponents very precisely and settle these issues.
In the framework that emerges from our work, the interplay

between disorder and interactions leads to a dynamical phase
separating between an arrested phase and a flowing one. The
transition is continuous, as supported by the scale-free channel
organization near threshold reported here. Generally, near such
transitions, the dynamics is expected to be singular, and, indeed,
the model predicts J ≈ ðθ− θcÞβ, with β= 1 (11). This exponent is
consistent with previously experimentally reported values, but
precise data accurately measuring β would be very valuable to
test this theory further.
Finally, the proposed framework supports a direct comparison

between the erosion threshold and other dynamical systems where
interacting particles are driven in a disordered environment (13,
14, 25, 26). A classical example is type II superconductors in which
the disorder is strong enough to destroy the crystallinity of the
vortex lattice (13–15). If the forcing (induced by applying a mag-
netic field) is larger than some threshold, vortices flow along
certain favored paths, reminiscent of the dynamics reported here
(13), a phenomenon referred to as “plastic depinning,” which is
not well understood theoretically (15). Previous theoretical mod-
els of this phenomenon (14) did not consider that the interaction
between particles can deviate them from their favored path. Such
models lead to channels whose amplitude σ is zero or 1 [i.e., PðσÞ
is the sum of two delta functions], at odds with the broad distribu-
tion reported here. It would be very interesting to check if our
framework applies to plastic depinning in general, by testing, as

we have done here, if the distribution of channel strength is,
indeed, power law, or is bimodal.

Methods
Experiment. The experimental measurements are performed in a channel test
section of length L= 150 mm and width W = 40 mm, located at a distance of
∼500 mm from the channel entrance. This test section is illuminated from
below by a homogeneous light and is imaged from above by a digital camera
(Basler Scout) with a resolution of 1,392 × 1,040 pixels (Fig. 1). For a given run,
typically three to four sequences of typically 300 images are recorded. Note
that the different sequences correspond to different decreasing bed heights
and thus to different decreasing particle fluxes J until cessation of motion is

Fig. 6. Illustration of the model, embedded on a square lattice of length L
and width W. At each moment, each lattice site indicated by a small circle can
accommodate, at most, one particle, represented by a disk. The black arrow
along the square diagonal indicates the downstream direction. Solid lines
extended from the particles infer the outlets with positive forces. The outlet of
the larger force is shown in blue, and the smallest is shown in red. The green
discs show the particles moved from the step (Left) t to (Right) t + 1.

Fig. 5. (Upper) Transverse CT ðΔjÞ and (Lower) longitudinal correlations CLðΔiÞ for various J: (Left) experiments including both data for water−UCON mixture
and water and (Right) model. The black dashed lines indicate the distance 2a in the experiment and one lattice constant in the model. The black solid lines
show ðΔj=aÞ−0.5 in the experiment and Δy−0.5 in the model, where the space is measured in the unit of the lattice constant.
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reached. The images are recorded at a rate of 30 frames per second for water
and at a rate of 3.75 frames per second for the water−Ucon mixture. Note
that the duration necessary to record a sequence of experimental images is
typically of the order of 10 to 100 s, whereas the time necessary for the
system to reach the erosion threshold corresponds to several hours. These two
time scales are different enough to ensure that sediment transport is in quasi-
steady state during an experimental movie. The number of images N that is
eventually processed is chosen so as to correspond to a traveled length of
193 mm, i.e., N= 160 for water and N= 257 for the water−Uconmixture. These
images are then processed to infer real-time positions and velocities of the
moving particles. First, for each image of a given sequence, the moving me-
dian gray-level image is calculated over a subset of 11 images surrounding the
given image (the five preceding and following images in addition to the given
image). This moving median image is then subtracted from the given image.
This provides a new image that only highlights the moving particles. Second, a
convolution of this new image is performed with a disk having the same size
as the particles. The resulting maximum intensities yield the centers of the
moving particles. Particle trajectories and velocities are finally calculated by
using a simple particle-tracking algorithm that relied on the small displace-
ment of the tracked particles between two sequential images by imposing an
upper bound condition on particle displacement. Note that these conditions
depend on the direction, i.e., the downstream and lateral bounds are smaller
than the upstream bound.

Model. Particles interact when they are adjacent. We denote by f the un-
balanced force acting on one particle, coming both from particles above it (if
they are present) and from a combination of gravity and forcing. The force
vector is decomposed into two scalar components along the two outlets: The
component fl→m on bond l→m is determined by

fl→m =maxðfl′→l + θl→m + θ, 0Þ, [6]

where fl′→l is the unbalanced force on particle l′ in the direction of the bond
l′→ l, in the same direction as l→m, as depicted in Fig. 6. If the site l′ is
empty, fl′→l = 0. That term fl′→l captures that, if a particle pushes on another
one below, the latter has a stronger unbalanced force in that direction. The
term θl→m + θ characterizes the strength of the forcing with respect to the
inclination of the link l→m.

From a given state at time t, we first compute all of the forces, illustrated
by the red and blue lines in Fig. 6. Then particles that present nonzero un-
balanced forces will move in the direction where the force is greatest, if that
site below is empty. In practice, we start from the bottom row. For each row,
the particles are moved to the unoccupied sites in the row below, starting
from the largest unbalanced forces fl→m. Rows are updated one by one to-
ward the top of the system. In our model, we use periodic boundaries. After
all L rows (each of width W) have all been updated, time t increases to t + 1.

For a given Shields number θ, we initialize the system with particles
randomly positioned and study dynamic quantities in the steady state t→∞.
In practice, we average the properties in t ∈ ½LW , 2LW �. Our results are
shown for L=256 and W = 64.
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