Image filtering using morphological amoebas - Archive ouverte HAL Access content directly
Journal Articles Image and Vision Computing Year : 2007

Image filtering using morphological amoebas

Romain Lerallut,
  • Function : Author
Fernand Meyer

Abstract

This paper presents morphological operators with non-fixed shape kernels, or amoebas, which take into account the image contour variations to adapt their shape. Experiments on grayscale and color images demonstrate that these novel filters outperform classical morphological operations with a fixed, space-invariant structuring element for noise reduction applications. Tests on synthetic 3D images are then performed to show the high noise-reduction capacity of amoeba-based filters.
Fichier principal
Vignette du fichier
lerallut_ivc.pdf (666.87 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-01431825 , version 1 (25-01-2017)

Identifiers

Cite

Romain Lerallut,, Etienne Decencière, Fernand Meyer. Image filtering using morphological amoebas. Image and Vision Computing, 2007, 25 (4), pp.395-404. ⟨10.1016/j.imavis.2006.04.018⟩. ⟨hal-01431825⟩
178 View
242 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More