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Small energy traveling waves for the Euler-Korteweg system

Corentin Audiard ∗†

January 11, 2017

Abstract

We investigate the existence and properties of traveling waves for the Euler-Korteweg
system with general capillarity and pressure. Our main result is the existence in dimension
two of waves with arbitrarily small energy. They are obtained as minimizers of a modified
energy with fixed momentum. The proof builds upon various ideas developed for the
Gross-Pitaevskii equation (and more generally nonlinear Schrödinger equations with non
zero limit at infinity). Even in the Schrödinger case, the fact that we work with the
hydrodynamical variables and a general pressure law both brings new difficulties and some
simplifications. Independently, in dimension one we prove that the criterion for the linear
instability of traveling waves from [6] actually implies nonlinear instability.

Résumé

On étudie les ondes progressives des équations d’Euler-Korteweg pour des lois de cap-
illarité et pression générales. Le principal résultat est l’existence en dimension 2 d’ondes
d’énergie arbitrairemet petite. Elles sont obtenues comme minimiseurs d’une énergie mod-
ifiée à moment fixé. La preuve suit plusieurs idées développées pour les équations de
Schrödinger non linéaires avec limite non nulle à l’infini. Même dans ces cas, le fait de tra-
vailler en variables hydrodynamiques apporte de nouvelles difficultés, mais aussi quelques
simplifications. Indépendamment, on montre en dimension un que le critère d’instabilité
linéaire des ondes progressives de [6] implique en fait l’instabilité non linéaire.
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1 Introduction

The Euler-Korteweg system is a modification of the usual Euler equations for compressible
fluids that includes capillary effects. Mathematically it reads in dimension d as the following
system of d+ 1 equations combining the conservation of mass and momentum ∂tρ+ div(ρu) = 0,

∂tu+ u · ∇u+∇g(ρ) = ∇
(
K(ρ)∆ρ+ 1

2K
′(ρ)|∇ρ|2

)
,
x ∈ Rd. (1.1)

The variables ρ and u are the density and speed of the fluid, the right hand side of the second
line is the so called capillary tensor. The functions K, g are defined on R+∗ and are supposed
to be smooth and positive. For the equations to make sense, it is necessary that ρ > 0 a.e .
The Korteweg tensor was first derived in the work of Dunn and Serrin [20] for models of phase
transition, however the equations can appear in very various settings, from water waves (see
[13]) to quantum hydrodynamics.
When u is potential (the irrotational case) (1.1) has a hamiltonian structure : indeed if we
write u = ∇φ, the second line of (1.1) rewrites

∂tφ+
|∇φ|2

2
+ g(ρ) = K∆ρ+

1

2
K ′(ρ)|∇ρ|2,

For G a primitive of g, we define the energy

E(ρ, φ) =

ˆ
K(ρ)|∇ρ|2 + ρ|∇φ|2

2
+G(ρ)dx, (1.2)

then (1.1) reads 
∂tρ−

δE

δφ
= 0,

∂tφ+
δE

δρ
= 0.

(1.3)
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In particular, for (ρ, φ) a solution with enough integrability and smoothness, E(ρ, φ)(t) is
conserved. One can also check formally the conservation of momentum: if lim

|x|→∞
ρ = ρ0 ∈ R+∗,

d~P

dt
:=

d

dt

ˆ
Rd

(ρ− ρ0)∇φ = 0. (1.4)

Concerning the analysis of well-posedness, it was observed in [7] that for smooth solutions
without vacuum (1.1) is equivalent to a quasi-linear degenerate Schrödinger equation. Due to
this very nonlinear structure, the analysis of the Cauchy problem is quite involved. If ρ, u is
a reference smooth solution, local well-posedness for (ρ0, u0) ∈ (ρ(0) +Hs+1)× (u+Hs), s >
d/2 + 1 was obtained in [4]. The energy of the system allows to control at best (ρ− ρ, u− u)
in H1 × L2, so in any dimension global well-posedness has remained mostly an open problem.

In the special case K = κ/ρ, with κ a positive constant and u = ∇φ is irrotational, up to some
rescaling there exists a formal correspondance with the nonlinear Schrödinger equation

i∂tψ + ∆ψ = g(|ψ|2)ψ, (1.5)

through the Madelung transform (ρ,∇φ) 7→ ψ :=
√
ρeiφ, introduced in [28] (for more details

see the review article [14]). We will not dwell upon it but only mention that the nonlinearity g
in (1.5) becomes the pressure term, and if ρ vanishes the transform becomes singular. Antonelli
and Marcati [1] managed to exploit this correspondance in order to pass from global solutions
of NLS (whose existence is standard, see the reference book [16]) to global weak solutions of
(1.1). In general such solutions admit vacuum and one can not hope to deduce uniqueness from
such arguments. In the special case g(ρ) = ρ − 1, (1.1) corresponds to the Gross-Pitaevskii
equation which has received a lot of attention over the last fifteen years. In particular, global
dispersive solutions of (1.5) were constructed in [23]. Such results were used to construct global
unique solutions of (1.1) for small irrotational data by the author and B.Haspot in [2].
The result was later extended by the same authors in [3] for general K, g and d ≥ 3: for initial
data near the constant state (ρ0, 0) with the stability condition g′(ρ0) > 0, the solution is global
and converges to a solution of the linearized equation near (ρ0, 0) (in other words it scatters).
The price to pay for this generalization is the necessity to work with much smoother functions,
basically: ρ−ρ0 ∈ H50. The idea behind this result is that the Euler-Korteweg equations (1.1)
and the Gross-Pitaevskii equation share the same linearized system (near (ρ, u) = (ρ0, 0), resp.
ψ = 1) so that the same small data technics from the field of dispersive equations can be used.

A natural question is then wether such an analogy is still true for nonlinear phenomena
and in particular the existence for traveling waves which is known for a large class of nonlinear
Schrödinger equations. This article gives a partial positive answer: our main result (theorem
1.1) is the existence of small traveling waves in dimension 2. Before turning to a precise state-
ment, let us give some background about this issue.
The existence of planar traveling waves, that is solutions of the form (ρ(x1 − ct), u(x1 − ct))
is a simpler problem as in this case (1.1) can be reduced to a system of two ODEs. Due to
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the hamiltonian nature of the equations these ODEs are integrable by quadrature. If g is not
monotone (for example with a Van der Waals pressure law) all three types of interesting solu-
tions exist (homoclinic, heteroclinic and periodic). In dimension one, the stability/unstability
of such solutions is related to the notion of moment of instability from the seminal paper [22]
of Grillakis-Shatah-Strauss. In the absence of global well-posedness result, only conditional
stability was derived for the corresponding traveling waves. On this topic, we offer a small con-
tribution with theorem B.4 which states that failure of the stability criterion from [5] implies
nonlinear instability. For more details on planar traveling waves we refer to the rich review
article [6].

The existence of localized solitary waves In dimension larger than 1 the existence of
localized traveling waves that depend on x−~ct, with ~c the direction and speed of propagation,
has been so far an open problem. Our main result is the existence of small energy traveling
waves (see theorem 1.1). The interest is twofold: besides giving global solutions to (1.1),
the existence of arbitrarily small solitary waves in dimension 2 is in strong contrast with the
scattering of small solutions in dimension ≥ 3. Note that while our results apply to general
K, g, in the special case K(ρ) = κ/ρ, g(ρ) = ρ − 1, the existence of solitary waves to (1.1)
might be deduced thanks to the Madelung transform from the existence of non-vanishing
solitary waves to (1.5). However if K is not proportional to 1/ρ (even K ≡ constant), new
difficulties appear due to the quasilinear nature of (1.1).
Concerning the expected range of speeds, the linearization of the Euler equations (without
capillary terms) near ρ = ρ0, u = 0 is{

∂tρ+ ρ0divu = 0,
∂tu+ g′(ρ0)∇ρ = 0.

If g′(ρ0) > 0, ρ satisfies the wave equation ∂2
t ρ − ρ0g

′(ρ0)∆ρ = 0, with the so-called sound
speed cs(ρ0) =

√
ρ0g′(ρ0). By analogy with the Gross-Pitaevskii case, we expect that traveling

waves with limit at infinity (ρ0, 0) can only exist for subsonic speeds |~c| ≤ cs. Obviously, the
direction of the speed does not matter, thus from now on we restrict ourselves to ~c = c ~e1.

Some results on (1.5) with nonzero condition at infinity If g(1) = 0, a natural
problem is the construction of solitary waves such that lim|x|→∞ |ψ| = 1. The case of the
Gross-Pitaevskii equation g(ρ) = ρ − 1 has attracted a lot of attention since the series of
papers of Roberts and al [24][25]. Their formal and numerical computations brought a number
of conjectures on the existence of branches of solitary waves with speeds c covering the subsonic
range (0,

√
2) (the number

√
2 is related to

√
1 · g′(1) = 1 after some rescaling), their stability

and limit in the transonic regime. In dimension 2 traveling waves were constructed for any |c|
small enough by Béthuel and Saut ([11], 98) with a moutain pass argument. More recently
they used with P. Gravejat in [10] a constrained minimization method, that we will also follow.



1 INTRODUCTION 5

To shortly describe it, let us introduce the momentum and energy

(momentum) (~PNLS(ψ) =
1

2
Re

ˆ
Rd
i∇ψ(ψ − 1)dx.

(energy) ENLS(ψ) =
1

2

ˆ
Rd
|∇ψ|2 +G(|ψ|2)dx

where G is a primitive of g. In the Gross-Pitaevskii case, we simply have G = (|ψ|2 − 1)2/2.
These two quantities are formally conserved by the flow, also it is not hard to check formally

cδPNLS,1(ψ) = δENLS(ψ)⇔ −ic∂1ψ + ∆ψ = (|ψ|2 − 1)ψ.

It is thus tempting to construct solitary waves as minimizers of the energy with PNLS,1(ψ) = p

fixed. However, it is a bit tedious to give a functional framework where both ENLS and ~PNLS
make sense, and the existence of a lifting of ψ on subsets of Rd, while extremely useful, raises
significant topological difficulties. Finally, in this approach the speed c is only obtained as a
Lagrangian multiplier, which precludes to reach the whole range c ∈ (0,

√
2). Nevertheless in

[10] the authors proved the existence of a branch of solutions parametrized by the momentum
p ∈ (p0,∞) in dimension 2 and 3 (p0 = 0 in dimension 2, > 0 in dimension 3). With an
alternative approach, Maris [29] obtained the existence of traveling waves for the full range
c ∈ (0,

√
2) in dimension ≥ 3 for a class of equations more general than Gross-Pitaevskii.

The proof relied on the minimization of energy with a more subtle constraint based on a
Pohozaev type identity. Finally, the construction of solitary waves by minimization with fixed
momentum was recently improved by Maris and Chiron [17], giving the precompactness of
minimising sequences (which is a classical ingredient for orbital stability).

Remark 1. Note that in the case K = 1/ρ, energy and momentum conservation for ψ exactly
correspond to energy and momentum conservation in (1.2),(1.4) with ψ =

√
ρeiφ/2. Indeed

ENLS(ψ) =
1

2

ˆ
Rd

1

4ρ
|∇ρ|2 +

ρ

4
|∇φ|2 +G(ρ)dx, ~PNLS =

1

4

ˆ
ρ∇φ =

1

4

ˆ
(ρ− 1)∇φdx.

Rescaling, modified energy and main result We construct solutions of (1.1) of the
form (ρ(x1 − ct, x2), u(x1 − ct, x2)), the system of partial differential equations to solve is −c∂1ρ+ div(ρ∇φ) = 0,

−c∂1φ+
|∇φ|2

2
−K∆ρ− K ′|∇ρ|2

2
+ g(ρ) = 0.

(1.6)

We will focus on the existence of localized traveling waves near the constant state (ρ0, 0)
with g(ρ0) = 0, g′(ρ0) > 0. We use the following rescaling :

(ρ, φ) =

(
ρ0ρr

(√
g′(ρ0)

ρ0)
x

)
, φr

(√
g′(ρ0)

ρ0)
x

))
, Kr(ρr) =

K(ρ0ρr)

ρ0
,

gr(ρr) =
g(ρ0ρr)

g′(ρ0)ρ0
, cr =

c√
ρ0g′(ρ0)

.
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Then (1.6) is equivalent to −cr∂1ρr + div(ρr∇φr) = 0,

−cr∂1φr +
|∇φr|2

2
−Kr∆ρr −

K ′r|∇ρr|2

2
+ gr(ρ) = 0.

(1.7)

Of course, the point of this rescaling is that the constant state is now 1, g′r(1) = 1 and the
sound speed is

√
1g′r(1) = 1. From now on we drop the r index and work on the rescaled

system.
If we define the scalar momentum P as

P (ρ, φ) =

ˆ
Rd

(ρ− 1)∂1φdx,

our starting point is that similarly to NLS, (1.7) can be recast as *

cδP (ρ, φ) = δE(ρ, φ).

The scalar momentum P is well-defined on1 H := {(ρ, φ) ∈ (1+H1)×Ḣ1}. On the other hand,
the energy has two flaws: depending on G it may not make sense for general (ρ, u) ∈ H, and
even in the simple case G = (ρ− 1)2/2 it satisfies no coercive inequality E(ρ, φ) & ‖(ρ, φ)‖2H.
Since we are interested in the regime |ρ − 1| << 1, the remedy is to work with a modified
energy that we define now. We fix χ ∈ C∞(R+) nondecreasing such that

χ(ρ) = ρ if |ρ− 1| < 1/3, χ|]−∞,1/2] = 1/2, χ[2,∞[ = 2, (1.8)

and define G̃ as follows: since G′′(1) = g′(1) = 1, G′(1) = g(1) = 0, we have G(ρ) ≥ (ρ− 1)2/3
on some interval (1 − δ, 1 + δ), according to Borel’s lemma there exists a smooth extension g̃

of g on [1 + δ, 1 + 2δ], [1 − 2δ, 1 − δ] such that for any k ∈ N, g̃(k)(1 ± 2δ) = dk(ρ−1)
dρk

(1 ± 2δ),

and G̃ > 0, then we set g̃ = ρ− 1 on (1− 2δ, 1 + 2δ)c, G̃ =
´ ρ

1 g̃(r)dr. The function G̃ satisfies

G̃ ∈ C∞(R), G̃|(1−δ,1+δ) = G, G̃ & (ρ− 1)2, |G̃′| . |ρ− 1|. (1.9)

Now let us set

Ẽ(ρ, φ) =

ˆ
Rd

1

2
(χ(ρ)|∇φ|2 +K(χ(ρ))|∇ρ|2) + G̃(ρ)dx. (1.10)

Obviously, if ‖ρ− 1‖∞ is small enough then E(ρ, φ) = Ẽ(ρ, φ), and from (1.8),(1.9)

∀ (ρ, φ) ∈ H, Ẽ(ρ, φ) & ‖ρ− 1‖2H1 + ‖∇φ‖22.

If (ρ, φ) is a solution of the minimization problem

inf{Ẽ(ρ, φ), (ρ, φ) ∈ H : P (ρ, φ) = p}, (1.11)

1In dimension 2 the space Ḣ1 requires a bit of cautiousness, see definition 2.1
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it should satisfy the following Euler-Lagrange equations where g̃ := G̃′

∃ c :

 −c∂1ρ+ div(χ(ρ)∇φ) = 0,

−c∂1φ+ χ′(ρ)
|∇φ|2

2
−K(χ(ρ))∆ρ− (K ◦ χ)′|∇ρ|2

2
+ g̃(ρ) = 0.

(1.12)

Since a solution of (1.12) such that ‖ρ− 1‖∞ << 1 is a solution of (1.7), our approach will be
to prove that for p small enough, there exists existence of a solution to (1.11), the minimizer is
smooth and satisfies ‖ρ− 1‖∞ << 1. We can now give a precise statement of our result, that
we chose to state for the non-rescaled variables in order to underline the role of the physical
variables.

Theorem 1.1. Let ρ0 ∈ R+∗ such that g′(ρ0) > 0, for p > 0 we set

Ẽmin(p) := inf
(ρ,φ)∈(ρ0+H1)×Ḣ1,P (ρ,φ)=p

Ẽ(ρ, φ). (1.13)

Under the assumption Γ := 3 + ρ0g′′(ρ0)
g′(ρ0) 6= 0, there exists p0 > 0 such that for any 0 ≤ p ≤ p0,

the infimum is attained at a minimizer (ρp, φp) ∈ ∩j≥0(ρ0 +Hj)× Ḣj, such that (ρp, φp) is a
solution of (1.6) for some cp > 0. Moreover let cs =

√
ρ0g′(ρ0), then

∃α, β > 0 : ∀ 0 ≤ p ≤ p0, csp− βp3 ≤ Ẽmin(p) = E(ρp, φp) ≤ csp− αp3, (1.14)

cs − βp2 ≤ cp ≤ cs − αp2. (1.15)

Remark 2. It is not clear if (ρp, φp) is a constrained minimizer of E.

Remark 3. The assumption Γ 6= 0 is not technical. In the case of NLS it appears in the recent
paper [17] as necessary and sufficient for the strict concavity of ENLS,min near 0, a condition
which is important, if not unavoidable, for the construction of minimizers. If Γ = 0 scattering
of solutions of (1.1) for small data seems expectable but remains so far open, even for NLS.

Idea of proof We first point out that (contrary to the NLS case), it is not easy to get
elliptic regularity from equations (1.7), indeed they basically look like ∆f = |∇f |2, and the
argument f ∈ H1 ⇒ |∇f |2 ∈ L1 ⇒ f ∈ W 2,1 ↪→ H1 does not allow to bootstrap trivially
regularity. But since the failure is somewhat “critical”, working with ‖(ρ, φ)‖H << 1 allows to
overcome this issue (this is done in proposition 2.3).

The major issue is of course the defect of compactness in R2. In the spirit of [10], this is
overcome by first solving the minimization problem on large tori T2

n = (R/2πnZ)2, on which
thanks to the compact embedding H1 ↪→ L2 the existence of a minimizer is easy. In order to
handle smoothness issues, we follow a regularization procedure: we use a “mollified energy”

Ẽnε (ρ, φ) = Ẽ +
ε

2

ˆ
T2
n

|∆φ|2 + |∆ρ|2dx
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and prove that minimizers of small energy satisfy elliptic estimates independent of ε (smallness
is essential for this step). Letting ε→ 0, this provides a solution (ρn, φn) of the minimization
problem on T2

n. Next we let n→∞, and prove the convergence of (ρn, φn) to (ρ, φ), solution
of the constrained minimization problem (1.11).
The main tool to get some compactness of the sequence (ρn, φn) is the strict concavity2 of
the minimal energy Ẽmin(p) which is obtained by mixing general abstract arguments and ad
hoc computations. To get a feeling of how concavity is used, consider the following simplified
version of dichotomy in Lions’s concentration compactness principle: assume that instead of
converging to a minimizer, (ρn, φn) splits in two parts, namely there exists functions (ρ1, φ1),
(ρ2, φ2) such that Ẽnmin(ρn, φn) −→ Ẽ(ρ1, φ1) + Ẽ(ρ2, φ2), P (ρn, φn) −→ P (ρ1, φ1) +P (ρ2, φ2).
Then passing to the limit in n we have

P (ρ1, φ1) + P (ρ2, φ2) = p1 + p2 = p,

Ẽmin(p1 + p2) = Ẽ(ρ1, φ1) + Ẽ(ρ2, φ2) ≥ Ẽmin(p1) + Ẽmin(p2).

On the other hand, by strict subadditivity Ẽmin(p1 + p2) < Ẽmin(p1) + Ẽmin(p2), which is a
contradiction. For a remarkably clear and general discussion on this strategy, we refer to the
seminal paper of P.L. Lions [27].

Plan of the paper The rest of the article is organized as follows: in section 2, we prove
a key elliptic estimate for solutions of (1.12) in a simple case, in section 3 we establish the
concavity of Ẽmin and the upper bound Ẽmin ≤ p − αp3 from which we deduce its strict
subadditivity. Theses sections are preliminaries to section 4 where we prove the existence of
solutions to the minimization problem (1.11): we first study the minimization problem on T2

n

for fixed n. We obtain the existence of constrained minimizers for the mollified energy Ẽnε ,
from which we deduce the existence of smooth minimizers for the nonregularized problem.
Letting n → ∞, we obtain the convergence of minimizers on T2

n to a minimizer on R2 with a
concentration compactness argument. Finally we complete the a priori estimates of Ẽmin and
c thanks to Pohozaev type identities in section 5. The concentration compactness argument
relies on a kind of profile decomposition essentially similar to the one in [10], for completeness
we prove its existence in the appendix A. In appendix B we discuss the one-dimensional case,
where explicit computations allow to observe very strong similarities with one-dimensional
NLS, and prove a new nonlinear instability property of some solitary waves.

Notations If a ≤ Cb, a, b, C > 0, C a constant independent of the parameters, we write
a . b. If C1a ≤ b ≤ C2a with C1, C2 positive constants, we write a ∼ b if there is no ambiguity
with the usual meaning of ∼. We denote the Fourier transform of an application φ as φ̂.
As mentioned in the introduction, H = {(ρ, φ) ∈ (1 +H1)× Ḣ1}.

2Actually the key is not concavity, but a consequence: strict subadditivity.
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2 An elliptic estimate

We first clarify our functional framework.

Definition 2.1. The space Ḣ1 is the set of φ ∈ L2
loc such that ∇φ ∈ L2 in the distributional

sense. We define L2
curl := ∇Ḣ1 with norm ‖∇φ‖L2.

We shall need the following standard density result.

Proposition 2.2. L2
curl coincides with {u ∈ L2 : curl(u) = 0}, and thus is a Hilbert space, in

which ∇C∞c (R2) is dense.

Proof. For the first part see e.g. [30] or [31]. For the second part it suffices to check (∇C∞c )⊥ =
{0}. If∇φ ∈ (∇C∞c )⊥ then ∆φ = 0 (D′), and∇φ ∈ L2 thus ∆φ = 0 (S ′). Thus |ξ|2ϕ̂ = 0. This
implies that ϕ̂ is a linear combination the Dirac distribution at 0 and its first order derivatives,
equivalently ϕ is a first order polynomial. The condition ∇φ ∈ L2 then implies that ϕ is a
constant, so that u = 0.

Proposition 2.3. Let M > 0, (ρ, φ) a solution of (1.12) with |c| ≤M . There exists ε, C > 0
depending only on M3 such that

(ρ,∇φ) ∈ 1 +H2 ×H1 and Ẽ(ρ, φ) < ε⇒ ‖ρ− 1‖∞ < C

√
Ẽ(ρ, φ).

In particular for Ẽ(ρ, φ) small enough, a (smooth) solution of (1.12) is a traveling wave of the
Euler-Korteweg system.

Proof. Setting u = ∇φ and denoting χ for χ(ρ) we have from the first equation

∆φ+
∇χ · u
χ

− c∂1ρ

χ
= 0⇒ ∆u+∇

(
∇ ln(χ) · u

)
− c∇

(
∂1ρ

χ

)
= 0

Taking the gradient of the equation, the scalar product with u and integrating, we getˆ
|∇u|2 +

(
∇ lnχ · u− c∂1ρ

χ

)
divu dx = 0

so that from Cauchy-Schwarz’s inequality

1

2
‖∇u‖22 ≤ 2‖∇ lnχ · u‖22 + 2c‖∂1ρ/χ‖22 ≤ 2‖∇ lnχ‖24‖u‖24 + 2c‖∂1ρ/χ‖22.

If d = 2, we use ‖u‖4 . ‖u‖Ḣ1/2 . ‖u‖1/22 ‖∇u‖
1/2
2 so that

‖u‖24 ≤ C‖u‖2‖∇u‖2 ≤
√

2C‖u‖2(‖∇ lnχ‖4‖u‖4 + +c‖∂1ρ/χ‖2),

⇒ ‖u‖24 ≤ C√
2
‖u‖22‖∇ lnχ‖24 +MC

√
2‖u‖2‖∂1ρ/χ‖2

. ‖u‖22‖∇ρ‖24 + ‖u‖2‖∂1ρ‖2,
3of course it depends also on K ◦ χ and G̃ but it does not matter for the analysis.
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where we used ‖χ′∇ρ‖2 . ‖∇ρ‖2. Next we rewrite the momentum equation as

∆ρ =
−c∂1ρ

K ◦ χ
+

χ′

2K ◦ χ
|∇φ|2 − (K ◦ χ)′

2K ◦ χ
|∇ρ|2 +

g̃

K ◦ χ
.

Since K is smooth, positive on ]0,∞[, (K ◦ χ)′ and 1/K ◦ χ are uniformly bounded, and from
(1.9) taking the L2 norm gives

‖∆ρ‖2 . ‖∂1ρ‖2 + ‖∇φ‖24 + ‖∇ρ‖24 + ‖ρ− 1‖2
. ‖∂1ρ‖2 + ‖∂1ρ‖2‖u‖2 + ‖∇ρ‖24 + ‖u‖22‖∇ρ‖24 + ‖ρ− 1‖2.

Next we use again Sobolev’s embedding ‖∇ρ‖24 . ‖∇ρ‖2‖∆ρ‖2 which gives

‖∆ρ‖2 ≤ C
(
‖∂1ρ‖2 + ‖∂1ρ‖2‖u‖2 + ‖ρ− 1‖2 + (1 + ‖u‖22)‖∇ρ‖2‖∆ρ‖2

)
.

We recall that Ẽ(ρ, φ) & ‖ρ − 1‖2H1 + ‖∇φ‖22, so that if Ẽ(ρ, φ)is small enough, C(1 +
‖u‖22)‖∇ρ‖2 < 1/2 and we deduce

‖∆ρ‖2 ≤ C
(
‖∂1ρ‖2 + ‖∂1ρ‖2‖u‖2 + ‖ρ− 1‖2) .

√
Ẽ(ρ, φ).

From Sobolev’s embedding we conclude ‖ρ − 1‖∞ . ‖ρ − 1‖H2 .
√
Ẽ(ρ, φ). In particular if

the energy is small enough χ(ρ) = ρ, G̃(ρ) = G(ρ) and ρ is a solution of (1.7).

3 Properties of the energy

We recall Ẽmin(p) = infP (ρ,φ)=p Ẽ(ρ, φ). We start with some properties that are true in generic

minimization settings (continuity, concavity of Ẽmin) before tackling the strict subadditivity
of Ẽmin, where we use the structure of Ẽ and P .

Lemma 3.1. For any p ≥ 0, there exists a minimising sequence (ρn,∇φn) ∈ (1 + C∞c (R2))×
C∞c (R2).

Proof. The case p = 0 is obvious. For p > 0 it suffices to prove that for any (ρ − 1,∇φ) ∈
H1×L2, there exists (ρn− 1, φn) ∈ (C∞c (R2))2 such that P (ρn, φn) = p, Ẽ(ρn, φn)→ Ẽ(ρ, φ).
By density (prop. 2.2), there exists (rn − 1,∇ψn) ∈ C∞c (R2) such that

‖rn − ρ‖H1 + ‖∇ψn −∇φ‖L2 →n 0, rn → ρ a.e. .

Clearly P (rn, ψn)→ p,
´
R2 G̃(rn)→

´
R2 G̃(ρ)dx, and up to an extraction such that rn → ρ a.e.

we have by dominated convergenceˆ
R2

χ(rn)|∇ψn|2 − χ(ρ)|∇φ|2dx =

ˆ
R2

(χ(rn)− χ(ρ))|∇φ|2 + χ(rn)(|∇φ|2 − |∇ψn|2)dx,

−→n 0,
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ˆ
R2

K(χ(rn))|∇rn|2 −K(χ(ρ))|∇ρ|2dx −→n 0,

from which we deduce E(rn, ψn)−E(ρ, φ)→ 0. Let εn = p− P (rn, ψn), we construct a slight
modification (ρn, φn) of (rn, ψn) such that P (ρn, φn) = p : let ϕ ∈ C∞c (R2), A := ∂1ϕ with
‖∂1ϕ‖2 = 1. Up to a translation (that depends on n), we can assume supp(ϕ)∩ (supp(1−rn)∪
supp(ψn)) = ∅, and define

ρn = rn + sign(εn)
√
|εn|A, φn = ψn +

√
|εn|ϕ.

We conclude

P (ρn, φn) = P (rn, ψn) + εn = p,

Ẽ(ρn, φn) = Ẽ(rn, ψn) +
1

2
εn

ˆ
R2

K(χ(ρn)|∇A|2

+χ(ρn)|∇ϕ|2 +O(A2) dx

= Ẽ(rn, ψn) +O(εn) −→n Ẽ(ρ, φ).

Proposition 3.2. The application p ∈ R+ 7→ Ẽmin(p) is 1-Lipschitz, concave, non decreasing.

Proof. We split the proof in three steps:

Ẽmin is Lipschitz Let p < q, δ > 0 to be fixed, according to lemma 3.1, there exists
(ρ−1, φ) ∈ (C∞c )2 such that P (ρ, φ) = p, Ẽ(ρ, φ) ≤ Ẽmin(p)+δ. Combining proposition 3.3 and
lemma 3.1 there exists (ρ0−1, φ0) ∈ (C∞c (R2))2 such that P (ρ0, φ0) = q−p, Ẽ(ρ0, φ0) ≤ q−p.
Up to a translation, we can assume (ρ0 − 1, φ0) have disjoint support with (ρ− 1, φ), so that

P (ρ+ ρ0 − 1, φ+ φ0) = p+ q − p = q, Ẽ(ρ+ ρ0 − 1, φ+ φ0) ≤ Ẽmin(p) + δ + q − p.

Since δ is arbitrary, Ẽmin(q)− Ẽmin(p) ≤ q− p. The reverse inequality can be obtained with a
similar argument (using −φ0 instead of φ0).

Ẽmin is concave Since Ẽmin is continuous, it suffices to prove that for any p1 < p2 ∈ [0, p0],

Ẽmin((p1 + p2)/2) ≥ Ẽmin(p1)+Ẽmin(p2)
2 . This relies on a classical reflection argument. For f

defined on R2, we define T+
a (f) (resp T−a f) as the function symmetric with respect to the

line x2 = a and that coincides with f on x2 > a (resp. x2 < a). The maps T+
a , T

−
a are

linear continuous H1 → H1, and from Lebesgue’s dominated convergence theorem T+
a →+∞

0, T−a →−∞ 0, a 7→ T±a is continuous. This also implies

‖T+
a f‖L2 →−∞ 2‖f‖L2 , ‖∇T+

a f‖L2 →−∞ 2‖∇f‖L2 ,
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and the symmetric property for T−a . We also note that for any function F , as soon as the
integrals make sense ˆ

R2

F (T+
a f) + F (T−a f)dx = 2

ˆ
R2

F (f)dx. (3.1)

Now let δ > 0, (ρ, φ) be such that P (ρ, φ) = p1+p2

2 , Ẽ(ρ, φ) ≤ Ẽmin

(
p1+p2

2

)
+ δ. Since

lim
+∞
‖P (T+

a (ρ, φ))‖2 = 0 < p1, there exists a1 such that P (T+
a1

(ρ, φ)) = p1, and from (3.1),

P (T−a1
(ρ, φ)) = p2. Then using again (3.1)

Ẽmin(p1) + Ẽmin(p2) ≤ Ẽ
(
T+
a1

(ρ, φ)
)

+ Ẽ
(
T−a1

(ρ, φ)
)
≤ 2Ẽmin

(
p1 + p2

2

)
+ 2δ.

Since δ is arbitrary, we get Ẽmin((p1 + p2)/2) ≥ Ẽmin(p1)+Ẽmin(p2)
2 .

Ẽmin(p) is non decreasing Obvious since it is concave and nonnegative.

The next proposition gives a sharp upper bound for Ẽmin.

Proposition 3.3. There exists p0 > 0, α > 0 such that

∀ 0 < p < p0, ∃ (ρp, φp) ∈ H : P (ρp, φp) = p, Ẽ(ρp, φp) ≤ p− αp3.

In particular Ẽmin(p) ≤ p− αp3. Moreover, up to taking a smaller p0 if (ρ, φ) is a minimiser,
then ‖ρ− 1‖∞ & p2.

Proof. The idea is to construct an approximate minimizer by using the following formal asymp-
totic (rigorously justified for the Gross-Pitaevskii equation [9]): set ρ = 1 + ε2Aε(z1, z2), φ =
εϕε(z1, z2), z1 = εx1, z2 = ε2x2. If (ρ, φ) is a solution of (1.7) with speed c =

√
1− ε2, the

mass conservation reads

−c∂1Aε + ∂2
1ϕε + ε2(∂2

2ϕε +Aε∂
2
1ϕε + ∂1Aε∂1ϕε) = O(ε4).

Next using Taylor’s expansion g̃ = ε2Aε + g′′(1)ε4A
2
ε

2 +O(ε4), the momentum equation gives

−c∂1ϕε +Aε + ε2

(
g′′(1)A2

ε + (∂1ϕε)
2

2
−K(1)∂2

1Aε

)
= O(ε4).

At first order, we have ∂1φε = Aε + O(ε2), next if we multiply the mass equation by c, apply
∂1 to the momentum equation and add them, we get

∂1Aε + ∂2
2∂
−1
1 Aε + (3 + g′′(1))Aε∂1Aε −K(1)∂3

1Aε = O(ε2), (3.2)
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Note that γ := 3 + g′′(1) is the rescaled version of Γ = 3 + ρ0g
′′(ρ0)/g′(ρ0) thus by assumption

γ 6= 0. (3.2) is a KP1 type equation, the normalized KP1 equation is

∂1w + w∂1w + ∂2
2∂
−1
1 w − ∂3

1w = 0 (3.3)

One can pass from a solution of (3.3) to a solution of (3.2) by setting

A =
1

γ
w(x1/

√
K(1), x2/

√
K(1)). (3.4)

In [19], solutions of the KP equation are constructed, any such solution satisfy

EKP (w) :=
1

2

ˆ
R2

|∂2∂
−1
1 w|2 + w3/3 + |∂1w|2dx <∞, (3.5)

Moreover, such solutions are smooth, belong to Lq for any 1 < q ≤ ∞ as well as their gradients,
there exists a smooth v ∈ Lp for any 2 < p ≤ ∞ such that ∂1v = w, ∇v ∈ Lq, and EKP (w) =
−
´
R2 w

2/6 < 0 (see [19] or [10] p.41). Let w be such a solution 4, we define A by (3.4), and

set ρ = 1 + ε2A(εx1, ε
2x2), φ = ε∂−1

1 A(εx1, ε
2x2). Since A is bounded, |ρ − 1| = O(ε2) so

that E and Ẽ coincide for ε small enough. We have E
K̃P

(A) = K(1)
γ2 EKP (w) < 0, and basic

computations give

P (ρ, φ) = ε4

ˆ
A2(εx1, ε

2x2)dx = ε‖A‖22,

Ẽ(ρ, φ) =
1

2

ˆ
R2

(1 + ε2A)
(
ε4A2 + ε6(∂2∂

−1
1 A)2

)
+K(1 + ε2A)

(
ε6(∂1A)2 + ε8(∂2A)2

)
+ε4A2(εx1, ε

2x2) + (2G(1 + ε2A)− ε4A2)dx

≤ ε‖A‖22 +
ε3

2

ˆ
R2

(∂2∂
−1
1 A)2 +A3 +K(1)(∂1A)2(z1, z2) +

(max G̃′′′)A3

3
dz +R

where R =
ε5

2

ˆ
A(∂2∂

−1
1 A)2 +

K(1 + ε2A)− 1

ε2
(∂1A)2 +K(1 + ε2A)(∂2A)2dx = O(ε5). As a

consequence by definition of Ẽmin(p)

Ẽmin(ε‖A‖22) ≤ Ẽ(ρε, φε) ≤ ε‖A‖22 + ε3E
K̃P

(A) + Cε5,

taking ε ≤
√
−E

K̃P
/(2C) completes the first part of the proof.

Now if (ρ, φ) is a minimiser, from
´
R2 G̃(ρ) =

(
1 +O(‖ρ− 1)‖∞)

) ´
R2

(ρ−1)2

2 dx we have

p =

ˆ
R2

(ρ− 1)∂1φ ≤
1

inf
R2

√
χ(ρ)

ˆ
R2

(ρ− 1)2 + χ|∇φ|2

2
dx ≤

(
1 +O(‖ρ− 1)‖∞)

)
Ẽmin(p)

inf
√
χ

≤
(
1 +O(‖ρ− 1)‖∞)

)
(p− αp3)

inf
√
χ

.

4some optimization can be done by choosing a so-called ground state, but it is not really useful here.
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There are two possibilities:

• if inf
√
χ ≤ 1− αp2/2, then inf

√
ρ ≤ 1− αp2

• else 1 +O(‖ρ− 1‖∞) ≥ inf
√
χ/(1− αp2) ≥ 1 + αp2/2 +O(p4), then ‖ρ− 1‖∞ & p2.

As pointed out in the introduction, rather than concavity we will use subadditivity:

Proposition 3.4. The application Ẽmin : R+ → R+ satisfies the following properties:

1. it is differentiable at p = 0 and Ẽ′min(0) = 1.

2. it is strictly subadditive : ∀ 0 < p1, p2, Ẽmin(p1 + p2) < Ẽmin(p1) + Ẽmin(p2).

3. the application

(p1, p2) ∈ (R+)2 → D(p1, p2) := Ẽmin(p1) + Ẽmin(p2)− Ẽmin(p1 + p2)

is nonnegative and nondecreasing in both p1 and p2. Moreover

p1, p2 > 0⇒ D(p1, p2) > 0. (3.6)

Proof. 1. From proposition 3.3 we have lim0
Ẽmin(p)

p ≤ 1. Conversely, consider a sequence
pn → 0, and pick approximate minimizers (ρn, φn) such that

∀n ≥ 1, P (ρn, φn) = pn, Ẽ(ρn, φn) ≤ Ẽmin(pn)(1 + 1/n).

Then ‖ρn − 1‖2H1 + ‖∇φn‖2L2 ∼ Ẽ(ρn, φ) −→n 0 and from Young’s inequality

pn = P (ρn, φn) ≤
ˆ
R2

(ρn − 1)2

2χ(ρn)
+
χ|∇φn|2

2
dx

Since G̃′′(1) = 1, G̃′(1) = G̃(1) = 0 and G̃ = O(ρ − 1)2, from Taylor’s expansion we have

G̃(ρ)− (ρ−1)2

2χ = O(ρ− 1)3. Combining it with Sobolev’s embedding H1 ↪→ L3

pn ≤
ˆ
R2

G̃(ρn) +
χ|∇φn|2

2
+O(ρn − 1)3dx ≤ Ẽ(ρn, φn) +O(Ẽ(ρn, φn))3/2

≤ Ẽmin(pn)(1 +O(Ẽmin(pn))1/2)(1 + 1/n)

This readily implies limn
Ẽmin(pn)

pn
≥ 1, and 1) is thus true.

2. This is a basic concavity argument. First we remark that Ẽmin is not linear on any interval
[0, p], since Ẽ′min(0) = 1 and Ẽmin(p) < p. Assume there exists p1 ≤ p2 such that Ẽmin(p1+p2) =
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Ẽmin(p1) + Ẽmin(p2). For a unified treatment, if p1 = p2 we write
Ẽmin(p2)− Ẽmin(p1)

p2 − p1
for the

right derivative of Ẽmin. By concavity and using Ẽmin(0) = 0

Ẽmin(p1)

p1
≥ Ẽmin(p2)− Ẽmin(p1)

p2 − p1
≥ Ẽmin(p1 + p2)− Ẽmin(p2)

p1 + p2 − p2
=
Ẽmin(p1)

p1
.

Therefore for any p ∈ [p1, p1 + p2], Ẽmin(p)−Ẽmin(p1)
p−p1

= Ẽmin(p1

p1
⇔ Ẽmin(p) = Ẽmin(p1)

p1
p. Also

∀ p ∈ [0, p1],
Ẽmin(p1)

p1
=
Ẽmin(p1 + p2)− Ẽmin(p1)

p1 + p2 − p1
≤ Ẽmin(p1)− Ẽmin(p)

p1 − p
≤ Ẽmin(p1)

p1

⇒ Ẽmin(p1)

p1
(p) =

Ẽmin(p1)

p1
p,

Hence, Ẽmin is linear on [0, p1 + p2], this is a contradiction.

3. Direct consequence of the subadditivity, and the fact that for any concave function f ,
x→ f(x+p2)−f(x)

p2
is decreasing.

Remark 4. The better lower bound Ẽmin(p) ≥ p− βp3 is based on some Pohozaev’s identities,
that in turn require the existence of minimizers, therefore their proof is postponed to section
5.

4 Existence of minimizers

The existence is obtained by following the procedure in [10], which is the following

• If one replaces R2 by the torus T2
n = R2/(2nπZ)2, the existence of a minimiser to (1.11)

for any p is easy thanks to elliptic estimates and compact embeddings.

• Any minimiser (ρpn, u
p
n) satisfies ‖ρpn− 1‖ ≥ Cp2, with C independent of n (torus version

of proposition 3.3).

• Letting n→∞, up to translation and extraction (ρpn, φ
p
n) converges to (ρp̃, φp̃), which is

a non trivial solution of equation (1.12) with Ẽ(ρp, φp) ≤ Ẽmin(p).

• The sequence (ρpn, φ
p
n) actually converges globally so that P (ρp, φp) = limn Pn(ρpn, φ

p
n) =

p. This is the most difficult point, which requires a careful analysis of the difference
between the energy density K|∇ρpn|2 +χ(ρpn)|∇φn|2 + G̃(ρn) and the momentum density
(ρn − 1)∂1φn on the “vanishing set” |ρn − 1| << 1.

We point out that one of the reasons why F. Bethuel, P. Gravejat and J.C. Saut used the
preliminary minimization on the torus was the difficulty to define P (ρ, φ). This is not an issue
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here, however working on the torus is essential to get strong a priori estimates and start a
compactness procedure.
In order to use the (torus version of) elliptic estimate in proposition 2.3, we first use the
smoothened energy

Ẽεn(ρ, φ) :=
1

2

ˆ
T2
n

ρ|∇φ|2 +K(χ(ρ))|∇ρ|2 + 2G(ρ) + ε
(
(∆φ)2 + (∆ρ)2

)
dx,

and the notation (Ẽεn)min(p) := infPn(ρ,φ)=p Ẽ
ε
n(ρ, φ). We provide a collection of lemmas that

mimick the situation on R2, without the regularizing terms.

4.1 Minimizers on large tori

The first step is a very rough version of proposition 3.3.

Lemma 4.1. There exists M > 0 such that for any 0 ≤ p ≤ 1, n ≥ 5/p2, 0 ≤ ε ≤ 1,

(Ẽεn)min(p) ≤Mp.

Proof. We start with an ansatz similar to proposition 3.3: let θ ∈ C∞c (R2) such that supp(θ) ⊂
B(0, 5), ‖∂1θ‖2 = 1, ‖∂1θ‖∞ ≤ 1/2, set A = ∂1θ and ρ = 1+p2A(px1, p

2x2), φ = pθ(px1, p
2x2).

Since supp(ρ) ∪ supp(φ) ⊂ B(0, 5/p2), there is an obvious way to define them as functions
(ρn, φn) ∈ C∞(T2

n) for any n ≥ 5/p2. Next using p ≤ 1, χ(ρ) = ρ, basic computations give

Pn(θ, ϕ) = p,

Ẽεn(ρn, φn) =

ˆ
R2

1 + p2A(z1, z2)

2
(p(∂1θ)

2 + p3(∂2θ)
2) +

K(ρ)

2

(
p3(∂1A)2 + p5(∂2A)2 + G̃

+
ε

2

(
p3
(
∂2

1θ + p2∂2
2θ
)2

+ p5
(
∂2

1A+ ∂2
2A
)2)

dz

≤ p
(

3

4
(1 + ‖∂2θ‖22) + max

[1/2,3/2]
K
‖∂1A‖22 + ‖∂2A‖22

2
+

max G̃′′

2

+‖∂2
1θ‖22 + ‖∂2

2θ‖22 + ‖∂2
1A‖22 + +‖∂2

2A‖22
)

The constant in factor of p is clearly independent of p, n, ε.

Lemma 4.2. For any p > 0, n ≥ 1, ε > 0 the minimization problem

inf

{
Ẽεn(ρ, φ) with (ρ− 1,∇φ) ∈ H2 ×H1, Pn(ρ, φ) =

ˆ
T2
n

(ρ− 1)∂1φdx = p

}
.
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admits a minimizer (ρεn(p)− 1, φεn(p)) ∈ H2 ×H2, solution of −cn,ε∂1ρ
ε
n + div(χ(ρεn)∇φεn)− ε∆2φεn = 0,

−cn,ε∂1φ
ε
n + χ′(ρεn)

|∇φεn|2

2
−K(χ(ρεn))∆ρεn −

(K ◦ χ)′|∇ρεn|2

2
+ g̃(ρεn) + ε∆2ρεn = 0,

(4.1)
Moreover, there exists p1,M such that for p ≤ p1, n ≥ 5/p2, ε ≤ 1,

cn,ε ≤M, ‖ρεn(p)− 1‖H2 + ‖∇φεn(p)‖H1 ≤Mp.

Furthermore for any j ≥ 2, there exists Fj(p)→0 0 such that

‖(ρεn − 1,∇φεn)‖Hj×Hj−1 ≤ Fj(p).

Proof. We follow the scheme of proof of proposition 2.3 with a few technical additions. For
simplicity of notations, we drop the ε, n indices. If ρk, ϕk is a minimizing sequence, by weak
compactness and proposition 2.2 we can assume ρk − 1 ⇀ ρ − 1 (H2), ∇ϕk ⇀ ∇φ (H1), and
from Rellich’s compact embedding we have

lim
k

ˆ
T2
n

ρk|∇φk|2 +K(χ(ρk))|∇ρk|2 + G̃(ρk)dx =

ˆ
T2
n

ρ|∇φ|2 +K(χ(ρ))|∇ρ|2 + G̃(ρ)dx,

p = lim

ˆ
T2
n

(ρk − 1)∂1φkdx =

ˆ
T2
n

(ρ− 1)∂1φdx.

We combine it with lower semi-continuity to obtain limkẼ
ε
n(ρk, ϕk) ≥ Ẽεn(ρ, φ), so that (ρ, φ) is

a minimiser and solves (4.1) for some c(n, p, ε). By standard elliptic regularity, (ρ, u) is smooth
(with norms a priori depending on ε). Multiplying the first equation by φ and integrating by
parts, we find

c

ˆ
T2
n

(ρ− 1)∂1φdx =

ˆ
χ(ρ)|∇φ|2 + ε|∆φ|2dx ≤ 2(Ẽεn)min(p)⇔ 0 < c ≤ 2(Ẽεn)min(p)

p

We deduce n ≥ 5/p2 ⇒ c < 2M with M the constant of lemma 4.1. With this bound
on c(n, p, ε) we can now obtain uniform elliptic estimates. The same computations as for
proposition 2.3 lead toˆ

T2
n

χ|∆φ|2 + ε|∇∆φ|2dx ≤ 2c‖∂1ρ‖22 + 2‖∇χ(ρ)‖24‖∇φ‖24,
ˆ
T2
n

K(χ(ρ))(∆ρ)2 + ε|∇∆ρ|2dx ≤
(
c‖∂1φ‖2 + ‖(K ◦ χ)′‖∞‖∇ρ‖24 + ‖ρ− 1‖2

)
‖∆ρ‖2

As in proposition 2.3 we use ‖∇ψ‖24 . ‖∇ψ‖2‖∆ψ‖2 to get for some C > 0 independent of
M, ε, n ≥ 5/p2

‖∆ρ‖22 + ‖∆φ‖22 . ‖∂1φ‖22 + ‖∂1ρ‖22 + ‖∆ρ‖2‖ρ− 1‖2 + ‖∇φ‖44 + ‖∇ρ‖44
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⇒
(
‖∆ρ‖22 + ‖∆φ‖22

)
(1− C(‖∇ρ‖22 + ‖∇φ‖22)) . ‖∂1φ‖22 + ‖∂1ρ‖22) + ‖ρ− 1‖22

. Ẽεn(ρ, φ).

Using Ẽεn ≤Mp from lemma 4.1, we obtain for p << 1/C

‖∆ρ‖22 + ‖∆φ‖22 ≤M ′p, M ′ indepent of p, ε, n ≥ 5/p2.

The estimate for j = 2 follows since the energy controls ‖ρ − 1‖H1 + ‖∇φ‖L2 , the case j > 2
is a standard bootstrap argument.

Proposition 4.3. Let p1 as in lemma 4.2. For any p ≤ p1, n ≥ 5/p2, there exists (ρn, φn) ∈
C∞(T2

n) such that up to an extraction, for any j ≥ 1, ‖ρεn−ρn‖Hj +‖∇φεn−∇φn‖Hj−1 →ε→0 0,
(ρn, φn) is a solution of the minimization problem

inf

{
Ẽn(ρ, φ) =

ˆ
T2
n

1

2
(χ(ρ)|∇φ|2 +K(χ(ρ))|∇ρ|2) + G̃(ρ)dx,

Pn(ρ, φ) =

ˆ
T2
n

(ρ− 1)∂1φdx = p0

}
.

Moreover, (ρn, φn) is a solution of

∀x ∈ T2
n

 −cn∂1ρn + div(χ(ρn)∇φn) = 0,

−cn∂1φn +
χ′|∇φn|2

2
−K∆ρn −

K ′|∇ρn|2

2
+ g̃(ρn) = 0.

(4.2)

for some 0 ≤ cn ≤M , M the constant from lemma 4.2 independent of p.

Proof. We fix p ≤ p1, (ρεn(p), ϕεn(p)) a minimizer. Using the a priori bounds, Rellich’s com-
pactness theorem and diagonal extraction we can extract a sequence εk → 0 with

cεn →ε cn ∈ [0,M ], ∀ j ≥ 1, (ρεkn (p)− 1,∇φεkn (p))→ (ρn − 1,∇φn) (Hj ×Hj−1).

Therefore we can pass to the limit in (4.1): since (ρεn,∇φεn) remains uniformly bounded in
H4 × H3, the terms ε∆2ϕεn, ε∆

2ρεn vanish, and (ρn,∇φn) is a solution of (1.12). Similarly,
Ẽ(ρn, φn) = lim

ε
Ẽmin(p), P (ρn, φn) = p.

To check the minimization property, we prove now lim
ε→0

(Ẽεn)min(p) = (Ẽn)min(p). Clearly, it

suffices to prove ≤. Let δ > 0, (ρ, φ) ∈ H such that Pn(ρn, φn) = p, Ẽn(ρ, φ) ≤ (Ẽn)min(p) + δ.
By density of smooth functions, there exists ρk, φk ∈ C∞(T2

n) such that ‖ρ− ρk‖H1 + ‖∇φ−
∇φk‖2 →k 0. In particular Pn(ρk, φk) = pk → p and (for k large enough so that pk 6=
0) ‖∇φ − p

pk
∇φk‖2 →k 0. Using Lebesgue’s dominated convergence theorem and up to an

extraction
Ẽn(ρk,

p

pk
φk)→ Ẽn(ρ, φ), Pn(ρk,

p

pk
φk) = p.
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Let us fix k large enough for which Ẽn(ρk, φk) ≤ Ẽn(ρ, φ) + δ. Then for ε(k, δ) small enough
Ẽεn(ρk,

p
pk
φk) ≤ Ẽn(ρk,

p
pk
φk) + δ ≤ Ẽn(ρ, φ) + 2δ ≤ (Ẽn)min(p) + 3δ. Since δ is arbitrary it

ends the argument.

Remark 5. Using the identity cnp =
´
χ(ρn)|∇φn|2, cn is actually positive rather than non-

negative, but this is not useful here.

4.2 Convergence of minimizers as n→∞

We start with the following immediate consequence of lemma 3.1.

Proposition 4.4. For any p ≥ 0, lim
n→∞

(Ẽn)min(p) ≤ Ẽmin(p).

This opens the path to the existence of minimizers on R2. In this section, we consider a
sequence of minimizers (ρn, φn) of momentum p on T2

n. We identify T2
n as Ωn = [−nπ, nπ]2 ⊂

R2. For any function ψn defined on T2
n, K compact, by “ψn → ψ on K” we implicitly identify

ψn with the function defined on Ωn, n large enough so that K ⊂ Ωn.

Proposition 4.5. Let p ≤ p2 = min(p0, p1), with (p0, p1) from proposition 3.3 and lemma 4.2,
let (ρn(p), φn(p)) be a minimizer of Ẽn of momentum p. Assume

∃ δ > 0 : ∀n ≥ 0, |ρn(0)− 1| ≥ δ, (4.3)

then up to an extraction there exists (ρ,∇φ) ∈ (∩jHj)2 such that

1. for any j ≥ 1, any compact K ⊂ R2, ‖ρn−ρ‖Hj(K) +‖∇φn−∇φ‖Hj−1 → 0, in particular
|ρ(0)− 1| ≥ δ.

2. (ρ, φ) is a solution of (1.12) for some c = lim cn ∈]0,M ], M independent of p.

3. P (ρ, φ) > 0.

Proof. Items 1. and 2. follow from the same argument as for proposition 4.3. As for n large
enough 0 ≤ cn ≤ M , we have 0 ≤ c ≤ M . However, because the convergence is only local we
can not pass to the limit in Ẽ(ρn, φn) and P (ρn, φn).
For item 3. we note that the assumption |ρn(0)−1| ≥ δ implies ρ(0) 6= 1, and since ρ is smooth´
R2 G̃(ρ)dx > 0. Since (ρ,∇φ) is a solution of (1.12), it satisfies the identity (5.3) which reads

cP (ρ, φ) = 2

ˆ
G̃(ρ)dx.

The right hand side is positive, and c ≥ 0, therefore c > 0 and P (ρ, φ) > 0.
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Proposition 4.6. In proposition 4.5, up to a translation assumption (4.3) is true and

P (ρ, φ) = lim
n
Pn(ρn, φn) = p, (4.4)

lim
n

(Ẽn)min(p) = lim
n
Ẽn(ρn,∇φn) = Ẽ(ρ,∇φ). (4.5)

In view of proposition 4.4, this proposition implies the existence of a solution to (1.12)
which is a constrained minimizer to Ẽ. The key is to forbid the following behaviours of the
sequence (ρn, φn):

• dichotomy: the minimizing sequence (ρn, φn) splits in (at least) two profiles whose sup-
ports are more and more distant.

• spreading: the total energy “far from the profiles” does not converge to 0, although
ρn, φn → (1, 0) uniformly.

Profile decomposition and proof of proposition 4.6 We note d(·, ·) the distance on
the torus T2

n, the energy density ẽ(ρ, φ) = 1
2

(
χ(ρ)|∇φ|2 + K ◦ χ(ρ)|∇ρ|2 + (ρ − 1)2

)
and the

momentum density p(ρn, φn) = (ρn − 1)∂1φn. For x ∈ T2
n, the set B(x, r) is the ball in T2

n.
The key lemma is a modification of proposition 4.2 and lemma 5.2 in [10]. For the convenience
of the reader we include a proof in the appendix.

Lemma 4.7. Let (ρn, φn) be a sequence of minimizers of Ẽn of momentum p. Up to an
extraction, cn −→ c ∈]0,M ], M independent of p.
For δ . p2, we set Aδn = {x : |ρn(x) − 1| ≥ δ}. Up to an other extraction there exists a
sequence of radiuses (Rkn)n≥k≥1, l ∈ N∗, (xin)1≤i≤l ∈ (T2

n)l, Mk →∞ such that :

• ∀n ≥ 1, 1 ≤ i ≤ l, |ρn(xin)− 1| ≥ δ.

• For any n ≥ k, infi 6=j d(xin, x
j
n) ≥ 10Rkn and Aδn ⊂

⊔l
i=1B(xin, R

k
n).

• There exists C independent of δ, n, k such that for any n ≥ k, 1 ≤ i ≤ l∣∣∣∣ˆ
(∪B(xin,R

k
n))c

ẽ(ρn, φn)− cnp(ρn, φn)dx

∣∣∣∣ ≤ C(δ ˆ
(∪B(xin,R

k
n))c

ẽ(ρn, φn)dx+
Ẽn(ρn, φn)

Mk

)
.

(4.6)

• ∀ k ≥ 1, Rkn −→n R
k <∞, Rk −→k ∞.

Moreover, if c < 1, for δ small enough we can replace (4.6) by∣∣∣∣ˆ
(∪B(xin,R

k
n))c

ẽ(ρn, φn)dx

∣∣∣∣ ≤ C Ẽn(ρn, φn)

(1− c)Mk

)
. (4.7)
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Remark 6. Basically, the lemma states that there are two areas: several balls far from each
other on which non trivial profiles persist as n → ∞, and a rest where there may be some
“spreading” contribution to the total energy, but which is alsmot equal to the spreading part
of the momentum. If c < 1 there is no spreading.
Note also that l ∈ N∗ means that “pure spreading” does not occur.

The better estimate available if c < 1 makes this case quite simpler. Actually a consequence
of (1.15) is that c ≥ 1 does not occur, unfortunately, the existence of minimizers is a prerequisite
to this estimate.
An interesting alternative approach would have been to prove directly that there exists no
solution to (1.12) if c ≥ 1, as was done in [21] for the Gross-Pitaevskii case.

The case c ≥ 1

The dichotomy scenario In this paragraph, we show that the sequence of minimizers
can not split in several profiles.

Proposition 4.8. In lemma 4.7, we have for δ small enough l = 1.

Proof. First we note that l as a function of δ is nonincreasing, as the existence of l points such
that d(xin, x

j
n)→∞ and |ρ(xin)−1| ≥ ε prevents from covering Aδn for δ < ε by less than l balls

of radius bounded in n. We assume by contradiction that there exists ε > 0, such that l(ε) ≥ 2.
This implies the existence of (y1

n, y
2
n) ∈ T2

n such that |ρ(yin) − 1| ≥ ε, d(y1
n, y

2
n) −→n ∞. For

0 < δ ≤ ε, we can assume up to a reindexation

∀n ≥ k, y1
n ∈ B(x1

n, R
k
n), y2

n ∈ B(x2
n, R

k
n). (4.8)

Since ‖∇ρn‖∞ is bounded uniformly in n, we also remark

∃q > 0 independent of δ, ∀n ≥ k ≥ 1, ∀ i = 1, 2,

ˆ
B(xin,R

k
n)
G̃(ρn) ≥ q. (4.9)

We apply proposition 4.5 to (ρn, φn)(· − xin) : up to an extraction there exists (ρi,∇φi) ∈
∩j≥0H

j(R2), solutions of (1.12) with speed c and

∀K compact, ∀ j ≥ 1, ‖ρn(· − xin)− ρi‖Hj(K) + ‖∇φn(· − xin)−∇φi‖Hj−1(K) → 0.

We can assume that Ẽn(ρn, φn) converges and thus

∀ k ≥ 1, ∃ (µk, νk) ∈ R+ × R :



lim
n

ˆ
T2
n

ẽ(ρn, φn)dx =

l∑
i=1

ˆ
B(0,Rk)

ẽ(ρi, φi)dx+ µk,

lim
n

ˆ
T2
n

p(ρn, φn)dx =
l∑

i=1

ˆ
B(0,Rk)

p(ρi, φi)dx+ νk,

|µk − cνk| ≤ C
(
δµk +

limn Ẽn(ρn, φn)

Mk

)
,

(4.10)
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where B(0, Rk) is now the usual ball of R2. Letting k −→∞ implies

lim
n
Ẽn(ρn, φn) =

l∑
i=1

Ẽ(ρi, φi) + µ, lim
n
Pn(ρn, φn) =

l∑
i=1

P (ρi, φi) + ν, |µ− cν| ≤ Cδµ.

Since C is an absolute constant, we can assume Cδ < 1, thus ν ≥ 0. Let us set pi := P (ρi, φi).
Since (ρi,∇φi) is a solution of (1.12), identity (5.3) is true, namely

cpi = 2

ˆ
R2

G̃(ρi)dx > 0,

thus pi > 0 and from (4.9) p1 ≥ 2q/M, p2 ≥ 2q/M . On the other hand, we know that
∀n, Pn(ρn, φn) = p, so that by subadditivity and proposition 4.4

l∑
i=1

Ẽ(ρi, φi) + µ = lim
n
Ẽn(ρn, φn) ≤ Ẽmin(p) = Ẽmin

( l∑
i=1

pi + ν

)

⇒ Ẽ(ρ1, φ1) + Ẽ(ρ2, φ2) +
l∑

i=3

Ẽmin(pi) ≤ Ẽmin

( l∑
i=1

pi

)
+ Ẽmin(ν)− µ

Next we use proposition 3.3: Ẽmin(ν) ≤ ν ≤ cν , subadditivity and |µ− cν| ≤ Cδµ

Ẽmin(p1) + Ẽmin(p2) ≤ Ẽ(ρ1, φ1) + Ẽ(ρ2, φ2) ≤ Ẽmin

(
p1 + p2

)
+ Cδµ

But from proposition 3.4, Ẽmin(p1) + Ẽmin(p2)− Ẽmin

(
p1 +p2

)
≥ D(2q/M, 2q/M) > 0, while

letting δ → 0 we find
D(2q/M, 2q/M) ≤ 0, (4.11)

which is a contradiction.

The spreading scenario Ruling out this scenario follows the same scheme, but simpler.
Since l = 1, from the same computations as in the previous paragraph for any δ > 0 there
exists (ρ, φ), µ ≥ 0, p1 > 0 such that P (ρ, φ) = p1 and

lim
n

(Ẽn)min(ρn, φn) = Ẽ(ρ, φ) + µ, lim
n
Pn(ρn, φn) = p1 + ν, |cν − µ| ≤ Cδµ.

We use Ẽmin(ν) ≤ ν ≤ cν ≤ µ+ Cδµ so that

Emin(p1) + Emin(ν) ≤ Emin(p1) + µ+ Cδµ = lim
n
En(ρn, φn) + Cδµ ≤ Emin(p1 + ν) + Cδµ.

proposition 3.4 with q = min(ν, p1) implies 0 ≤ −D(q, q) + Cδµ, letting δ → 0 we get q = 0,
thus µ = ν = 0.
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Conclusion We have obtained that there exists (ρ,∇φ) ∈ (∩j≥0H
j)2 such that

∀K compact, ‖ρn − ρ‖Hj(K) + ‖∇φn −∇φ‖Hj(K) −→n 0,

lim
n
Ẽn(ρn, φn) = E(ρ, φ), p = lim

n
Pn(ρn, φn) = P (ρ, φ).

this ends the proof of 4.6 in the case c ≥ 1.

The case c < 1 With the same notations as in the case c ≥ 1 we have the existence of
(ρi,∇φi)1≤i≤l such that ‖ρn(· − xin) − ρi‖Hj(K) −→ 0, ‖∇φin(· − xin) −∇φi‖Hj(K) −→ 0. Let
us fix δ small enough so that inequality (4.7) is true. Thanks to the pointwise inequality
|(ρ− 1)∂1φ| . Cẽ(ρ, φ) we get the following identities

lim
n

ˆ
Ẽn(ρn, φn) = lim

k

l∑
i=1

ˆ
B(0,Rk)

ẽ(ρi, φi)dx+O(1/Mk) =

l∑
i=1

Ẽ(ρi, φi),

p = lim
n

ˆ
Pn(ρn, φn)dx =

l∑
i=1

P (ρi, φi).

For 1 ≤ i ≤ l, set pi = P (ρi, φi). If for some δ > 0, l ≥ 2, then we have as for the case c ≥ 1

Ẽmin(p1) + Ẽmin(p2) +

l∑
i=3

Ẽmin(pi) ≤ Ẽmin(p1 + p2) +

3∑
i=1

Ẽmin(pi),

which leads to the absurd inequality 0 ≤ −D(p1, p2). Thus l = 1, the conclusion is the same
as for c ≥ 1.

5 Pohozaev type identities and applications

In this section we complete the proof of theorem 1.1 with the sharp estimates on the energy
near p = 0.
The first proposition does not rely on the fact that the dimension d is 2, therefore we state it
in general settings. Since the solutions to (1.12) that we constructed in the previous section
are smooth we state our identities for smooth functions, but they are true under much weaker
assumptions.
For conciseness we write K for K(χ(ρ)), K ′ = d(K ◦ χ)/dρ.

Proposition 5.1. Let (ρ, φ) be a smooth finite energy solution of (1.12). If (ρ−1, φ) ∈ (H2)2,
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then it satisfies the Pohozaev identities

Ẽ(ρ, φ) =

ˆ
Rd
χ|∂1φ|2 +K|∂1ρ|2dx, (5.1)

∀ 2 ≤ j ≤ d, Ẽ(ρ, φ) =

ˆ
Rd
χ|∂jφ|2 +K|∂jρ|2dx+ cP (ρ, φ), (5.2)

d− 2

2

ˆ
Rd
χ|∇φ|2 +K|∇ρ|2dx = −d

ˆ
Rd
G̃(ρ)dx+ (d− 1)cP (ρ, φ). (5.3)

Moreover we have

cP (ρ, φ) =

ˆ
Rd
χ|∇φ|2dx (5.4)

Proof. Multiply the first equation of (1.12) by x1∂1φ and integrate (note that the integrals are
not clearly convergent, for a rigorous argument see e.g. proposition 5 in [21]):

ˆ
Rd
−cx1∂1ρ∂1φ− χ∇φ · ∇(x1∂1φ)dx =

ˆ
Rd
−cx1∂1ρ∂1φ− χ|∂1φ|2 − χx1∂1

|∇φ|2

2
dx

=

ˆ
Rd
−cx1∂1ρ∂1φ− χ|∂1φ|2 +

χ|∇φ|2

2

+
x1∂1χ|∇φ|2

2
dx (5.5)

= 0

Now the multiplication of the second equation of (1.12) by x1∂1ρ and integration gives

0 =

ˆ
Rd
−cx1∂1φ∂1ρ+

x1χ
′∂1ρ|∇φ|2

2
−

(
K∆ρ+

1

2
K ′|∇ρ|2

)
x1∂1ρ+ g̃(ρ)x1∂1ρ dx,

with

ˆ
Rd
−K∆ρx1∂1ρ dx =

ˆ
Rd
K|∂1ρ|2 + x1K

′|∇ρ|2∂1ρ+ x1K∂1

(
|∇ρ|2

2

)
dx

=

ˆ
Rd
K|∂1ρ|2 +

x1K
′|∇ρ|2∂1ρ

2
− K|∇ρ|2

2
dx,

and

ˆ
Rd
x1g̃(ρ)∂1ρ =

ˆ
Rd
−G̃(ρ)dx,

so that

0 =

ˆ
Rd
−cx1∂1φ∂1ρ+

x1χ
′∂1ρ|∇φ|2

2
+K|∂1ρ|2 −

K|∇ρ|2

2
− G̃(ρ)dx. (5.6)

Finally, if we add (5.6) to (5.5) we obtain (5.1)

0 =

ˆ
Rd
χ
|∇φ|2

2
+K

|∇ρ|2

2
+ G̃(ρ)− χ|∂1φ|2 −K|∂1ρ|2.
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The same computations with multipliers xj∂jρ and xj∂jφ, j ≥ 2 lead to

0 =

ˆ
χ|∇φ|2 +K|∇ρ|2

2
+ G̃(ρ)− χ|∂jφ|2 −K|∂jρ|2 − c

(
∂1ρxj∂jφ− c∂jρxj∂1φ

)
dx.

This gives (5.2), indeed an integration by part shows

ˆ
∂1ρxj∂jφ− c∂jρxj∂1φ

)
dx =

ˆ
−xj(ρ− 1)∂1∂jφ+ xj(ρ− 1)∂1∂jφ+ (ρ− 1)∂1φdx

= P (ρ, φ).

The third identity is obtained by summing the previous ones. The last identity is obtained by
multiplying the first equation in (1.12) by φ and integration.

Proposition 5.2. Let p0 > 0 given by prop 3.3 p0, α, β positive such that for any (smooth)
minimizer of speed c and momentum p ≤ p0,

αp2 ≤ 1− c ≤ βp2.

Proof. For p ≤ p0, let (ρ, φ) be such a minimiser. From (5.3), (5.4) and proposition 3.3

cp =
1

2

ˆ
2G̃+ χ|∇φ|2dx ≤ Ẽmin(p) ≤ p− αp3

which gives 1 − c ≥ αp2. The other inequality follows an idea from [10]: applying ∂1 to the
first equation in (1.12) gives

−c∂2
1ρ+ ∂1∆φ+ ∂1div((χ− 1)∇φ) = 0.

Next, multiply the momentum equation by K(1)/K and apply ∆ :

−c∆∂1φ−K(1)∆2ρ+∆ρ+∆

(
c

(
1−K(1)

K

)
∂1φ+

K(1)g

K
−ρ+

K(1)χ′

2K
|∇φ|2−K(1)K ′

2K
|∇ρ|2

)
= 0.

if we add these equalities we obtain

(K(1)∆2 −∆ + c∂2
1)ρ = ∆

(
c

(
K(1)

K
− 1

)
∂1φ+

K(1)g

K
− ρ+

K(1)χ′

2K
|∇φ|2

−K(1)K ′

2K
|∇ρ|2

)
+ c∂1div((χ− 1)∇φ)

:= ∆A+ c∂1divB.

As χ(ρ) is bounded, g̃′(1) = 1 and K(χ(1)) = K(1), it is easy to see

‖A‖L1 + ‖B‖L1 . Ẽ(ρ, φ) = Ẽmin(p).
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Since the Fourier transform maps continuously L1 to L∞, we deduce

‖ρ− 1‖2 = 2π‖ρ̂− 1‖2 ≤ C(‖A‖L1 + ‖B‖L1)

∥∥∥∥ |ξ|2 + |ξ1||ξ|
K(1)|ξ|4 + |ξ|2 − c|ξ1|2

∥∥∥∥
2

≤ CẼmin(p)

∥∥∥∥ |ξ|2 + |ξ1||ξ|
K(1)|ξ|4 + |ξ|2 − c|ξ1|2

∥∥∥∥
2

.

As c ≤ 1 − αp2 < 1 the L2 norm on the right hand side is finite, and an elementary explicit
computation (see [10] claim 2.59) gives

‖ρ− 1‖22 .
Ẽ2

min√
1− c

.

On the other hand we have from proposition 5.1 the (1.9)
´

(ρ − 1)2dx ∼ 2
´
G̃(ρ)dx = cp =´

χ(∂1φ)2dx, we deduce

p =

ˆ
R2

(ρ− 1)∂1φ .
ˆ
R2

G̃(ρ) +
χ∂1φ

2

2
dx = cp,

so that c & 1. Next
´

(ρ− 1)2dx ∼ cp ≥ cẼmin(p) & Ẽmin(p) and we can conclude

√
1− c ≤ C

√
2Ẽmin(p) ≤ C

√
2p⇒ c− 1 & −p2.

Corollary 5.3. There exists p0 > 0, such that for p ≤ p0, if there exists a minimiser of
momentum p,

p− βp3 ≤ Ẽmin(p) ≤ p− αp3. (5.7)

with the same α, β as in proposition 5.2.

Proof. The inequality Ẽmin(p) ≤ p− αp3 is proposition 3.3. Conversely thanks to propositions
5.1 and 5.2

Ẽ(ρ, φ) ≥
ˆ
χ|∇φ|2

2
+ G̃(ρ)dx = cp ≥ p− βp3.

Remark 7. Corollary 5.3 is rather natural with the following heuristic : consider the formal

relation δẼ = cδP ⇒ dEmin

dp
= c. If this was true corollary 5.3 would merely be a consequence

of the integration in p of the estimates on c.
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A Proof of the existence of the profile decomposition

This section is devoted to the proof of lemma 4.7. First, we recall that cn is bounded, up to
an extraction we assume cn → c > 0 (for the sign of c, see prop 4.5).
According to proposition 4.4 and proposition 3.3, lim(Ẽn)min(p) ≤ Ẽmin(p) ≤ 1− αp2. There-
fore for n large enough, Ẽn)min(p) ≤ 1− αp2/2, and a straightforward modification of propo-
sition 3.3 implies ‖ρn − 1‖L∞(T2

n) & p2 This ensures that Aδn = {|ρn − 1| ≥ δ} is not empty at

least for δ . p2 and n large enough. Next for any n ≥ 0, the set Aδn is compact, thus there

exists a finite covering ∪l(n)
i=1B(xin, 1/3) ⊃ Aδn such that |ρ(xin)− 1| ≥ δ. Using Vitali’s lemma,

there is a subset Jn ⊂ {1, · · · , l} such that for i, j ∈ Jn, B(xin, 1/3) ∩ B(xjn, 1/3) = ∅ and⋃
i∈Jn

B((xin, 1) ⊃ Aδn. From lemma 4.2 ‖ρn − 1‖W 1,∞ is bounded uniformly in n, then

|Jn|δ2

‖ρn − 1‖W 1,∞
.
∑ ˆ

B(xin,1/3)
(ρn − 1)2dx . Ẽn(ρn, φn),

so |Jn| must be bounded uniformly too. Up to an extraction, we can assume that |Jn| is a
constant l.
There are two key lemmas. The first one is a kind of improved Vitali’s lemma, stating that
the ball can be chosen very far away from each other.

Lemma A.1. Given a collection

l⋃
i=1

B(xi, R) ⊂ T2
n, for any M ≥ 2, there exists a subset

J ⊂ {1, · · · , l} and R ≤ R′ ≤ (2M)lR such that tj∈JB(xj , R
′) ⊃ ∪li=1B(xi, R) and for any

(j, k) ∈ J2, d(xj , xk) ≥MR′.

For the proof, we refer to [10] lemma 4.12.
The second lemma looks a lot like proposition 4.2 from [10]. We include a proof since there
is a few non trivial differences. Let us first fix some notations : for fixed n, R ≥ 1, M >>
1, we apply lemma A.1 to ∪B(xin, R). Up to reindexing, there exists ln ≤ l, (xin)1≤i≤ln
tlni=1B(xin, R

′
n) ⊃ ∪li=1B(xin, R) ⊃ Aδn, d(xin, x

j
n) ≥ R′M .

Lemma A.2. If ∪lni=1B(xin, R
′) ⊃ Aδn is as in lemma A.1, and k ∈ N∗ such that 2k < M/2,

there exists 1 ≤ m ≤ k, C an absolute constant such that setting

Skn := (∪lni=1B(xin, 2
mR′))c,

then ∣∣∣∣ˆ
Skn
cnp(ρn, φn)− ẽ(ρn, φn)dx

∣∣∣∣ ≤ C(δ ˆ
Skn
ẽ(ρn, φn)dx+

Ẽn(ρn, φn)

k

)
. (A.1)
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Proof. We first remark that since the balls B(xin, 2
kR′) are disjoint,

ˆ
∪lni=1B(xin,2

kR′)\B(xin,R
′)
ẽ dx =

k∑
p=1

ˆ
∪lni=1B(xin,2

pR′)\B(xin,2
p−1R′)

ẽ dx

In particular, there exists 1 ≤ m ≤ k such that

ˆ
∪lni=1B(xin,2

mR′)\B(xin,2
m−1R′)

ẽ dx ≤

´
∪lni=1B(xin,2

kR′)\B(xin,R
′)
ẽ dx

k
≤ Ẽn(ρn, φn)

k
. (A.2)

Now let ψ ∈ C∞c (R+) such that ψ|[0,1] = 1, supp(ψ) ⊂ [0, 2], we define φ̌n by

φ̌n = φn, x ∈ (∪B(xin, 2
mR′))c,

φ̌n = ψ

(
|x− xin|
2m−1R′

)  
B(xin,2

mR′)\B(xin,2
m−1R′)

φndx+ (1− ψ)φn, x ∈ B(xin, 2
mR′).

We recall the Poincaré-Wirtinger inequality
ˆ
B(0,2)\B(0,1)

|f −
 
f |2dx ≤ C‖∇f‖2L2(B(0,2)\B(0,1)),

so that from a scaling argument
ˆ
B(xin,2

mR′)\B(xin,2
m−1R′)

|∇φ̌n|2dx . ‖∇φn‖2L2(B(xin,2
mR′)\B(xin,2

m−1R′). (A.3)

If we multiply the first equation of (4.2) by φ̌n and integrate over T2
n we obtain

ˆ
Skn
cnp(ρn, φn)dx− χ(ρn)|∇φn|2dx+

l(n)∑
i=1

ˆ
B(xin,2

mR′)\B(xin,2
m−1R′)

cn(ρn − 1)∂1φ̌n

−χ(ρn)∇φn∇φ̌ndx = 0.

Using Cauchy-Schwarz’s inequality, (A.2) and (A.3) we can bound the second term

∣∣ l(n)∑
i=1

ˆ
B(xin,2

mR′)\B(xin,2
m−1R′)

cn(ρn − 1)∂1φ̌n − χ∇φn∇φ̌ndx
∣∣ . ˆ

∪B(xin,2
mR′)\B(xin,2

m−1R′)
ẽ(ρn, φn)dx

≤ Ẽn(ρn, φn)

k
.

We have obtained ∣∣∣∣ ˆ
Skn
cnp(ρn, φn)− ρn|∇φn|2dx

∣∣∣∣ ≤ C Ẽn(ρn, φn)

k
. (A.4)
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We turn to symmetric computations on the second equation of (4.2). We set

ρ̌n =


ρn, x ∈ (∪B(xin, 2

mR′))c,

ρ̌n = ψ

(
|x− xin|
2m−1R′

)
+ (1− ψ)ρn, x ∈ B(xin, 2

mR′).

In this case, since (ρn− 1)2 . ẽn(ρn, φn) and |ρ̌n− 1| ≤ |ρn− 1| we will not need the Poincaré-
Wirtinger inequality. As in the previous section, we denote K for (K ◦χ)(ρn), K ′ = dK ◦χ/dρ.
Multiplying the second equation of (4.2) by ρ̌n − 1 and integrating on T2

n gives
ˆ
T2
n

−cn(ρ̌n − 1)∂1φn +
(ρ̌n − 1)|∇φn|2

2
+K∇ρn∇ρ̌n +

1

2
K ′|∇ρn|2(ρ̌n − 1)

+g̃(ρn)(ρ̌n − 1)dx = 0

We point out that ρ̌n − 1 = 0 on ∪B(xin, 2
m−1R′), thus

ˆ
∪B(xin,2

mR′)\B(xin,2
m−1R′)

−cn(ρ̌n − 1)∂1φn +
(ρ̌n − 1)|∇φn|2

2
+K∇ρn∇ρ̌n

+
1

2
K ′|∇ρn|2(ρ̌n − 1) + g̃(ρn)(ρ̌n − 1)dx

= −
ˆ
Skn
−cnp(ρn, φn) +K|∇ρn|2 + g̃(ρn)(ρn − 1)

+
(ρn − 1)|∇φn|2

2
+

1

2
K ′|∇ρn|2(ρn − 1)dx (A.5)

To estimate the left hand side, we observe that on (∪iB(xin, R
′))c, |ρ̌n − 1| ≤ min(|ρn − 1|, δ),

thereforeˆ
∪iB(xin,2

mR′)\B(xin,2
m−1R′)

−cn(ρ̌n − 1)∂1φn +
(ρ̌n − 1)|∇φn|2

2

+
1

2
K ′|∇ρn|2(ρ̌n − 1) + g(ρn)(ρ̌n − 1)dx .

Ẽn(ρn, φn)

k
,

Moreover |∇ρ̌n| . |∇ρn|+ |ρn − 1|, thereforeˆ
B(xin,2

pR′)\B(xin,2
p−1R′)

|∇ρ̌n|2dx .
ˆ
B(xin,2

pR′)\B(xin,2
p−1R′)

ẽ(ρn, φn)dx,

so that the left hand side in (A.5) is bounded by En/k. This estimate, combined with |ρn −
1||∇ρn|2 ≤ δ|∇ρn|2 on Skn implies∣∣∣∣ ˆ

Skn
−cn(ρn − 1)∂1φn +K(ρn)|∇ρn|2 + g(ρn)(ρn − 1) dx

∣∣∣∣
≤ C

(
δ

ˆ
Skn
ẽndx+

ˆ
∪B(xin,2

pR′)\B(xin,2
p−1R′)

ẽndx

)
.
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To conclude, we remark that near ρ = 1, g̃(ρ) ∼ ρ− 1, G̃(ρ) ∼ (ρ− 1)2/2, so that |g̃(ρn)(ρn −
1)− 2G̃(ρn)| . δG̃(ρn) ≤ δẽ. As a consequence∣∣∣∣ ˆ

Skn
−cnp(ρn, φn) +K|∇ρn|2 + 2G̃(ρn) dx

∣∣∣∣ ≤ C(δ ˆ
Skn
ẽndx+

Ẽn(ρn, φn)

k

)
(A.6)

Putting together (A.4) and (A.6), we find the expected result∣∣∣∣ˆ
Skn
−cnp(ρn, φn) +

K(ρn)|∇ρn|2 + χ(ρn)|∇φn|2

2
+ G̃(ρn) dx

∣∣∣∣ ≤ C(δ ˆ
Skn
ẽndx+

Ẽn
k

)
.

Now we combine these two lemmas to construct the sequence Rkn through a diagonal extraction.

A.1 The case c ≥ 1

Construction of R1
n We recall that for any n ≥ 0, Aδn ⊂ ∪li=1B(xin, 1). We apply lemma

A.1 with M = 10, this gives for any n a subset J1
n ⊂ {1, · · · , l} and 1 ≤ R1

n ≤ (20)l such that

tj∈J1
n
B(xjn, R

1
n) ⊃ ∪li=1B(xin, 1), and for any (i, j) ∈ J1

n, d(xjn, x
i
n) ≥ 10R1

n.

We apply lemma A.2 with k = 15, then (A.1) is true on S1
n = (tJ1

n
B(xjn, 2R1

n)
)c

. Since (2R1
n)n

and |J1
n| are bounded, there is an extraction ψ1(n) such that 2R1

ψ1(n) converges to some R1 ≥ 2

and J1
ψ1(n) = J1 does not depend of n.

Construction of R2
n We apply once more lemma A.1 to ∪li=1B(xiψ1(n), 2) with M = 3 · 10.

For any n there is a subset J2
ψ1(n) ⊂ {1, · · · , l}, 2 ≤ R2

ψ1(n) ≤ 2(60)l such that

ti∈J2
ψ1(n)

B(xiψ1(n), R
2
ψ1(n)) ⊃ ∪

l
i=1B(xiψ1(n), 1),

and for any (i, j) ∈ J1
ψ1(n), d(xjψ1(n), x

i
ψ1(n)) ≥ 30R2

ψ1(n).

From lemma A.2 with k = 2, for any n there exists 1 ≤ m2
ψ1(n) ≤ 2 such that (A.1) is true on

S2
ψ1(n) =

(
tJ2

ψ1(n)
B(xjψ1(n), 2

m2
ψ1(n)R2

ψ1(n))
)c

. Since (2
m2
ψ1(n)R2

ψ1(n))n and |J2
ψ1(n)| are bounded,

there is a sub-extraction ψ2(n) such that 2
m2
ψ2(n)R2

ψ2(n) −→n R2 ≥ 4 and J2
ψ2(n) = J2.

The generic argument at step k to construct of Rkn is the following :

5In this case obviously p = 1, but this will not be the case in the rest of the induction argument.
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Construction of Rkn At step k, we have an extraction ψk−1(n), we apply lemma A.2 to
∪li=1B(xiψk−1(n), 2

k) with M = 10 · 3k−1, which gives again 2k ≤ Rkψk−1(n) ≤ 2k(20 · 3k−1)l,

Jkψk−1(n) ⊂ {1, · · · , l} as before, then lemma A.2 provides 1 ≤ mk
ψk−1(n) ≤ 2k such that (A.1) is

true on Skψk−1(n) =
(
tJk

ψk−1(n)
B(xjψk−1(n), 2

mk
ψk−1(n)Rkψk−1(n))

)c
. The union is disjoint since

d(xjψk−1(n), x
i
ψk−1(n)) ≥ 10 · 3k−1Rψk−1(n) ≥ 5 · (3/2)k−1(2

mk
ψk−1(n)Rkψk(n)).

Since (2
mk
ψk−1(n)Rkψk−1(n))n, (|Jkψk−1(n)|)n are bounded in n, there is an extraction ψk such that

2
mk
ψk(n)Rkψk(n) −→n Rk ≥ 2k+1, Jkψk(n) = Jk.

Conclusion Since 2 ≤ |Jk| ≤ l, there exists an extraction σ such that Jσ(k) = J does not
depend on k and |J | ≥ 2. We consider the diagonal extraction ψσ(n)(σ(n)) = Ψ(n) and set for

n ≥ k, Rkn := 2
m
σ(k)
Ψ(n)R

σ(k)
ψ(n), (Xj

n)j∈J := (xjΨ(n))j∈J . By construction,

d(Xi
n, X

j
n) ≥ 5 · (3/2)k−1Rkn, Rkn −→n Rk ≥ 2σ(k) −→k +∞,

and for any n ≥ k, according to lemma A.2∣∣∣∣ˆ
(tJB(Xj

n,Rkn))c

(
cΨ(n)p− ẽ

)
(ρΨ(n), φΨ(n))dx

∣∣∣∣ ≤ C(δ ˆ
(tJB(Xj

n,Rkn))c
ẽdx+

ẼΨ(n)

σ(k)

)
.

A.2 The case c < 1

In this case, for an arbitrary subset Ω we use the simple estimate :

∀x ∈ Ω, |p| ≤ (ρ− 1)2 + χ|∂1φ|2

2 infΩ
√
χ

Combining this with G(ρ) = (1− ρ)2/2 +O((1− ρ)3), this implies for δ small

∃C > 0 : ∀x ∈ Aδn, |p(ρn(x), φn(x))| ≤ ẽ(ρn(x), φn(x))

1− Cδ
.

For any set S ⊂ Aδn, provided n is large enough, δ small enough, we get∣∣∣∣ ˆ
S
ẽ− cnpdx

∣∣∣∣ ≥ (1− cn
1− Cδ

)ˆ
S
ẽdx ≥ 1− c

2

ˆ
S
ẽdx.
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Now lemma A.2 with k ≥ 1, R = 1, M = 10 · 3k−1 provides Skn ⊂ Aδn on which equation (A.1)
combined with the inequality above implies for δ small enough

1− c
2

ˆ
Skn
ẽdx ≤ C

(
Ẽn
k

+ δ

ˆ
Skn
ẽdx

)
⇒

ˆ
Skn
ẽ .

Ẽn
k
.

Therefore, arguing as for c ≥ 1 we obtain extractions Ψ, σ such that for n ≥ k

d(Xi
n, X

j
n) ≥ 5 · (3/2)k−1Rkn,

ˆ
tB(Xj

n,Rkn)
ẽ(ρΨ(n), φΨ(n))dx,≤ C

Ẽn
σ(k)

with limnRkn = Rk ≥ 2σ(k).

B Remarks on the one dimensional case

The existence and stability of solitary waves for nonlinear Schrödinger type equations

i∂tψ + ∂2
xψ = g(|ψ|2)ψ, with g(ρ0) = 0,

is now quite well understood. Existence follows from basic ODE technics since the cor-
responding equation is integrable, stability is a more delicate issue, but can nevertheless
be tackled in several ways. The first approach is to consider the minimization problem
inf{ENLS(ψ), PNLS(ψ) = p}. Due to better Sobolev embeddings in dimension 1 it can be
directly solved, the stability of minimizers then follows by the classical Cazenave-Lions [15]
argument. This program has been carried at least in the Gross-Pitaevskii case g(ρ) = ρ− 1 in
[8]. More recently D. Chiron studied extensively in [18] the stability and instability of traveling
waves for very general g(ρ). Among the variety of technics developed was an approach à la
Grillakis-Shatah-Strauss which is very efficient in our case too. In this section, we want to
underline that traveling waves of (1.1) and NLS share remarkable common features :

1. their speed is bounded by the sound speed cs =
√
ρ0g′(ρ0) for (1.1),

√
2ρ0g′(ρ0) for NLS,

2. if there exists a traveling wave of speed c0 < cs, there exists a local branch of traveling
waves parametrized by their speed as ψc or (ρc, φc),

3. the stability criterion is dPNLS(ψc)/dc < 0, resp. dP (ρc, φc) < 0.

The existence and conditional stability of solitary waves for (1.1) in dimension one was al-
ready obtained in [5] with a stability criterion that can be easily proved as equivalent to
dP/dc < 0 (see remark 8). Nonlinear instability was left open, but using methods developed
for Schrödinger type equations in [26], we will prove that dP/dc > 0 implies nonlinear insta-
bility. This is the only new result of this section, which is structured as follows : we rewrite
the equations in a more convenient form, and show the existence of traveling waves that can
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be parametrized by their speed (proposition B.1). Next we recall the stability criterion of [22]
and show that its assumptions are satisfied. Finally, we prove in theorem B.4 that the failure
of the stability criterion implies nonlinear instability.

Let us now turn to the equations under study. We take ρ∞ > 0 and assume g(ρ∞) = 0,
g′(ρ∞) > 0, we will study traveling waves with lim±∞ ρ = ρ∞. As in the rest of the article,
we assume that g and K are smooth on ]0,+∞[ in order to avoid technical issues. G is the
primitive of g that cancels at ρ∞. In order to avoid the peculiar space Ḣ1, we will use a slight
modification of the hamiltonian and momentum. Instead of

E(ρ, φ) =

ˆ
R

ρ|∇φ|2 +K|∇ρ2|
2

+G(ρ)dx,

defined for (ρ, φ) ∈ H1 × Ḣ1, we consider

E(ρ, u) =

ˆ
R

ρ|u|2 +K|∇ρ2|
2

+G(ρ)dx, P (ρ, u) =

ˆ
R

(ρ− ρ∞)udx.

defined for (ρ, u) ∈ (ρ∞ + H1) × L2 with ρ > 0. For the variables (ρ, u), the Euler-Korteweg
system has the following hamiltonian structure

∂t

(
ρ
u

)
=

(
0 −∂x
−∂x 0

)( δE
δρ
δE
δu

)
= JδE. (B.1)

Traveling waves of speed c can be seen as critical points of E − cP : if ρ(x − ct), u(x − ct)
solves (B.1) with lim±∞ ρ = ρ∞, lim±∞ u = 0, then{

−c(ρ− ρ∞) + ρu = 0
−cu+ u2/2 + g(ρ) = Kρ′′ + 1

2K
′(ρ′)2 ⇔ c

( δP
δρ
δP
δu

)
=

( δE
δρ
δE
δu

)
Obviously if (ρ, u) is a traveling wave of speed c, (ρ,−u) is a traveling wave of speed −c,
therefore we focus on the case c > 0 (we choose not to consider the degenerate case c = 0).
This ODE system can be elementarily integrated: from the first equation, u = c(ρ − ρ∞)/ρ,
injecting this in the second equation, and multiplying it by ρ′, we obtain after integration

−c2

2ρ
(ρ− ρ∞)2 +G(ρ) =

1

2
K(ρ′)2, (B.2)

Letting x→∞, we find

0 ≤ 1

2
K(ρ′)2 =

(ρ− ρ∞)2

2ρ∞
(ρ∞g

′(ρ∞)− c2) +O(ρ− ρ∞)3.

We deduce the so-called subsonic condition

|c| ≤
√
ρ∞g′(ρ∞) := cs.
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Conversely, if 0 < c <
√
ρ∞g′(ρ∞) consider the application

F (ρ) =
−c2

2ρ
(ρ− ρ∞)2 +G(ρ).

On a neighbourhood of ρ∞, F > 0, and since lim0+ Fc(ρ) = −∞ we can define ρm = sup{ρ <
ρ∞ : F (ρ) = 0} > 0. The set {(ρ, ρ′) : ρ′ = ±

√
F (ρ), ρ ∈ [ρm, ρ∞]} forms a homoclinic

orbit of the differential equation (B.2) under the (generically true) condition F ′(ρm) > 0. If
F ′(ρc) = 0 the set corresponds to two heteroclinic profiles (of infinite energy). Symmetrically,
if ρM = inf{ρ > ρ∞ : F (ρ) = 0} is finite, the set {(ρ, ρ′) : ρ′ = ±

√
F (ρ), ρ ∈ [ρ∞, ρM ]} forms

a homoclinic orbit if F ′(ρM ) < 0. We also point out the identity

P (ρc, uc) = c

ˆ
R

(ρc − ρ∞)2

ρc
dx, (B.3)

so that for any traveling wave with non zero speed, P (ρc, uc) 6= 0.
Finally, consider F as a function of (ρ, c). Given 0 < c0 < cs, the condition F (ρm, c0) =
0, ∂ρF (ρm, c0) 6= 0 implies from the implicit function theorem there exists ρI(c) smooth,
defined on a neighbourhood of c0 and a neighbourhood of (ρm, c) such that F (ρ, c) = 0 iff
ρ = ρI(c). Up to shrinking the neighbourhood of c, ρI(c) = sup{ρ < ρm : F (ρ, c) = 0},
by continuity ∂ρF (ρI(c), c) 6= 0, and in particular this gives a small branch of solitary waves
parametrized by c, that have for minimal value ρI(c). These observations can be summarized
with the following proposition.

Proposition B.1. There exists no nontrivial traveling wave for c > cs. For 0 < c < cs, there
exists a nontrivial traveling wave if and only if at least one of the two cases is true

• There exists ρm < ρ∞ such that F > 0 on (ρm, ρ∞), F (ρm) = 0, F ′(ρm) > 0. In this
case, up to translation ρ is the solution of the Cauchy problem

1

2
K ′(ρ′)2 +Kρ′′ =

−c2(ρ2 − ρ∞)2

ρ2
,

ρ(0) = ρm, ρ
′(0) = 0.

It is even, decreasing on ]−∞, 0].

• There exists ρM > ρ∞ such that F > 0 on ]ρ∞, ρM [, F (ρM ) = 0, F ′(ρM ) < 0. In this
case, up to translation ρ is the solution of the Cauchy problem

1

2
K ′(ρ′)2 +Kρ′′ =

−c2(ρ2 − ρ∞)2

ρ2
,

ρ(0) = ρM , ρ
′(0) = 0.

It is symmetric, increasing on ]−∞, 0].
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In both cases, P (ρ, u) > 0. Moreover, near any traveling wave of speed c0 < cs there exists a
branch of traveling waves that can be parametrized by c ∈ (c0 − ε, c0 + ε) for ε small enough.

Given a branch of traveling waves defined on some interval of speeds I, we abusively denote
E(c), P (c) the energy and momentum of the traveling wave of speed c in this branch, E′, P ′

their derivative with respect to c. Regarding stability, following the famous result of Grillakis-
Shatah-Strauss [22], the moment of instability was defined in [6] as

m(c) = E(c)− cP (c).

Let us shortly summarize the framework from [22]: the Euler-Korteweg equations are seen as
the hamiltonian system (B.1), it is invariant by translation, the conservation law associated to
the translation invariance is the momentum P (ρ, u). Since a traveling wave satisfies δE−cδP =
0, it is a critical point of E − cP .
We say that a traveling wave is conditionally orbitally stable if for any ε > 0, there exists δ > 0
such that if ‖(ρ0, u0)− (ρc, uc)‖H1×L2 < δ and the solution exists on [0, T ) then

sup
t∈[0,T )

inf
y∈R
‖(ρ(t, ·+ y), u(t, ·+ y))− (ρc, uc)‖H1×L2 < ε.

Theorem B.2 ([22]). Under the following assumptions:

• δ2E − cδ2P has only one negative simple eigenvalue

• its kernel is spanned by ∂x(ρc, uc), the rest of its spectrum is positive bounded away from
0

• J is onto

then the traveling wave of speed c is conditionally orbitally stable if and only if m′′(c) > 0. If
J is not onto the “if” part remains true, but the “only if” part may fail.

Remark 8. An alternative version of m′′(c) > 0 can be stated as follows: since any traveling
wave of speed c is a critical point of the functional (ρ, u) 7→ E − cP , we have for any c ∈ I,
E′(c)− cP ′(c) = 0 , differentiating twice E(c)− cP (c), we find

m′′(c) = −P ′(c),

so that m′′ > 0 is equivalent to P ′ < 0. In this case the application c → P (c) is locally
invertible and we may parametrize E by P . Since dE/dP = E′/P ′ = c, we have

d2E

dP 2
=

dc

dP
< 0,

so that the stability condition implies the strict concavity of E(P ). We point out that in
dimension 2 the curve Ẽmin(P ) is concave (proposition 3.2). This is an indication in favour of
the stability of the traveling waves that we constructed.
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Notations: (ρc, uc) is a branch of traveling waves locally parametrized by their speed c. We
denote 〈·, ·〉 for both the L2 and (L2)2 scalar product. We use the variable r = ρ − ρ∞, set
rc := ρc − ρ∞ and set with an abusive notation P (r, u) := P (ρ, u), then

P (r, u) =

ˆ
ru dx, δP (r, u) =

(
u
r

)
=

(
0 1
1 0

)(
r
u

)
.

We denote L = δ2E − cδ2P , Uc = (rc, uc).
For any function depending on the speed fc (and possibly on the x variable), we denote
f ′c := dfc/dc. To avoid confusion we denote ∂x the spatial derivative.

Spectral assumptions for L := δ2E − cδ2P They were obtained in [5] for the lagrangian
formulation of the equations. The argument in the eulerian variable is slightly more involved,
we include it for completeness:

L(ρc, uc) =

(
M uc − c

uc − c ρc

)
, Mr =

(
G′′ − K ′′(∂xρc)

2

2
−K ′∂2

xρc

)
r − ∂x(K∂xr). (B.4)

Due to the invariance by translation, we have (δE−cδP )(ρc, uc)(·+x) = 0, by differentiation in
x we get L(ρc, uc)∂x(ρc, uc) = 0. Conversely if U = (U1, U2) ∈ Ker(L), we have U2 = c−uc

ρc
U1,

and U1 ∈ Ker(M− (uc − c)2/ρc). As M− (uc − c)2/ρc is a Sturm-Liouville type operator, its
kernel is of dimension one and since ∂xρc ∈ Ker(M− (uc − c)2/ρc), there exists λ ∈ R such
that U1 = λ∂xρc. Next using uc = c(1− ρ∞/ρc)

U2 = λ
c− uc
ρc

∂xρc =
λcρ∞
ρ2
c

∂xρc = λ∂xuc,

so ∂x(ρc, uc) spans Ker(δ2E − cδ2P ).
Furthermore as ∂xρc has exactly one zero, from Sturm Liouville’s theory the operator M−
(uc−c)2

ρc
has exactly one negative eigenvalue. In particular, if r− is an eigenvector associated to

the negative eigenvalue and U− = (r−,−(uc − c)r−/ρc), then

〈LU−, U−〉 = 〈(M− (uc − c)2/ρc)r−, r−〉 < 0, (B.5)

so that δ2E − cδ2P has at least one negative eigenvalue. Conversely, if λ < 0 is an eigenvalue
of δ2E − cδ2P with eigenvector (U1, U2), from basic computations(

M− (uc − c)2

ρc
− λ(uc − c)2

ρc(λ− ρc)

)
U1 = λU1,

so that λ is an eigenvalue of δ2E − cδ2P if and only if it is an eigenvalue of

Mλ =M− (uc − c)2

ρc
− λ(uc − c)2

ρc(λ− ρc)
.
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As the application λ ∈ R− → λ/(λ − ρc) is decreasing, the family Mλ is decreasing too
(in the sense of the scalar product). Let λ− < 0 be the minimal eigenvalue of δ2E − cδ2P .
Since M0 =M− (uc − c)2/ρc, it has only one negative eigenvalue, and thus so does Mλ for
λ− ≤ λ ≤ 0. If δ2E − cδ2P had an other negative eigenvalue λ− < λ′ < 0, then λ′ would be
the only negative eigenvalue of Mλ′ . By monotony λ′ < λ− which is absurd.
For the last condition, we have characterized the negative eigenvalue and the kernel. It suffices
then to observe that thanks to the subsonic condition

lim
x→∞

G′′(ρc)−
K ′′(ρc)(∂xρc)

2

2
−K ′(ρc)∂2

xρc −
(uc − c)2

ρc
=
ρ∞g

′(ρ∞)− c2

ρ∞
> 0,

thus the essential spectrum of M− (uc−c)2

ρc
is positive bounded away from zero.

Theorem B.2 can now be applied :

Corollary B.3 (orbitaly stability, [5]). If −P ′(c) = m′′(c) > 0, then (ρc, uc) is conditionally
orbitally stable.

Remark 9. Unfortunately, the well-posedness theory from [7] only provides local existence for
(ρ(t = 0), u(t = 0)) ∈ (ρ0 +Hs+1)×Hs, s > 3/2, therefore it is not clear if a smooth solution
starting near a traveling wave exists for all times. At least in the case K = 1/ρ, one can
combine the existence of global solutions to NLS that remain bounded away from 0 and use
the Madelung transform to convert them into solutions of (1.1).

Remark 10. The condition P ′(c) < 0 seems a bit easier to check than m′′ > 0. For example
for ρm < ρ∞ from (B.2)

P (ρc, uc) =

ˆ
R

(ρc − ρ∞)uc dx = 2

ˆ ρ∞

ρm

c(ρ− ρ∞)2

ρ

√
K

2(G− c2

2ρ(ρ− ρ∞)2
))dρ,

with ρm the first zero of G− c2

2ρ(ρ− ρ∞)2 below ρ∞.

Nonlinear instability is not a direct application of theorem B.2, indeed

(
0 −∂x
−∂x 0

)
is not

onto so the only if part can not be used. Of course there is no gain in adopting the formulation

with (ρ, φ) ∈ H1×Ḣ1 : in this case J =

(
0 −1
1 0

)
, but Ḣ1 is not a Hilbert space. Nevertheless

this obstruction was overcome in various settings, in particular we shall follow the approach of
Lin [26] (see also [12]) to prove the following result:

Theorem B.4. Let (ρc, uc) be a traveling wave of speed c > 0. If dP
dc > 0, then the traveling

wave is unstable, i.e., there exists ε > 0 such that for any δ > 0, there exists (ρ0, u0) ∈ H3×H2

such that ‖ρ0 − ρc‖H1 + ‖u0 − uc‖L2 < δ and either the corresponding solution (ρ, u) blows up
in finite time, or

sup
t∈R+

inf
y∈R
‖ρ(t, ·+ y)− ρc‖H1 + ‖u(t, ·+ y)− uc‖L2 ≥ ε.
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We recall the notation Uc = (rc, uc) = (ρc − 1, uc). The proof in the framework of [22] relies
on the existence of a smooth curve ψ(s) : (−η, η) −→ H1 × L2 for some η > 0, with

ψ(0) = (rc, uc), P (ψ(s)) = P (rc, uc), 〈(δ2E − cδ2P )ψ′(0), ψ′(0)〉 < 0.

It provides an “unstable direction” y = dψ/ds|s=0 such that

〈δ2(E − cP )y, y〉 < 0, 〈δP (Uc), y〉 = 0, (B.6)

and a Lyapunov function A(U) = 〈−J−1y, U(·+xmin(U))〉, where xmin(U) minimizes ‖(rc, uc)−
U(·+x)‖H1×L2 (see lemma B.5 below). For 0 < s << 1, it is proved that the solution (r(t), u(t))
with Cauchy data (r(0), u(0)) = ψ(s) is unstable due to some growth of A(r(t), u(t)). This
approach raises two issues:

• J−1y does not exist a priori. The method in [26] is to construct y1 ∈ range(J) close to
y, which still satisfies (B.6), and carry on the proof.

• All constructions are performed in the natural functional settings (r, u) ∈ H1 × L2, but
the best local well-posedness result requires (r(0), u(0)) ∈ Hs+1 ×Hs, s > 3/2 (see [7]).
We use a density argument to replace the unstable initial data ψ(s) ∈ H1 × L2 by a
regularized version.

This program requires a collection of lemmas that we prove only when there is a significant
difference with [22].

Lemma B.5 (lemma 3.2 [22].). Let

Vε = {(r, u) ∈ H1 × L2 : inf
x

(‖r(·+ x)− rc‖H1 + ‖u(·+ x)− uc‖L2) < ε.

For ε small enough, there exists a smooth map xmin : Vε → R which realises the inf, namely :

‖U(·+ xmin(U))− Uc‖H1×L2 = inf
x
‖U(·+ x)− Uc‖H1×L2 .

Moreover xmin(U(·+ r)) = xmin(U)− r.

The following lemma is the only one where the lack of surjectivity of J requires some
corrections.

Lemma B.6 (theorem 4.1 [22]). There exists y ∈ Im(J) ∩ (H1)2 such that

〈δP (Uc), y〉 = 0, 〈Ly, y〉 < 0,

and a smooth curve ψ : (−η, η)→ {(U ∈ H1 × L2 : P (U) = P (Uc)} with

dψ

ds
(0) = y,

d2ψ

ds2
(0) < 0.

In particular, s = 0 is a local maximum of E(ψ(s)).
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Proof. Let U− as in (B.5), y0 = αU ′c + U−, α = −〈δP (Uc), U−〉/〈δP (Uc), U
′
c〉. We have

〈δP (Uc), y0〉 = 0, moreover δE(Uc) − cδP (Uc) = 0, by differentiation in c, LU ′c = δP (Uc).
This implies

〈Ly0, y0〉 = α〈LU ′c, y0〉+ 〈LU−, y0〉 = α〈δP (Uc), y0〉+ 〈LU−, y0〉
= 〈LU−, U−〉+ α〈δP (Uc), U−〉

= 〈LU−, U−〉 −
(
〈δP (Uc), U−〉

)2
〈δP (Uc), U ′c〉

From (B.5), 〈LU−, U−〉 < 0, 〈δP (Uc), U
′
c〉 = P ′(c) > 0, thus 〈Ly0, y0〉 < 0.

We construct then y ∈ Im(J) close to y0. From classical ODE arguments Uc(x) and U−(x)
converge exponentially fast to 0 at infinity, in particular (1+ |x|)y0(x) ∈ L1. According to [26],
lemma 5.2, for any µ > 0 there exists d = (d1, d2) ∈ (H1)2, ‖d‖H1 < µ, such that

(1 + |x|)d ∈ L1,

ˆ
R
y0 + d dx = 0,

ˆ
R
d1uc dx =

ˆ
R
d2rc dx = 0.

In particular 〈δP (Uc), d〉 =
´
d1uc + d2rc dx = 0. Let us set y = y0 + d. Then by construction

〈δP (Uc), y〉 = 0. For µ small enough

〈Ly, y〉 < 0, moreover

ˆ x

−∞
y(s)ds = O(1/(1 + |x|)),

so that J−1y is well defined and belongs to (H2)2. Now since δP (Uc) 6= 0, E := {U :
〈δP (Uc), U〉 = 0} is a closed hyperplane of H1 × L2 with y ∈ E. By the implicit function
theorem there exists a neighbourhood U ⊂ E and an application F : U → H1 × L2 such that
for e ∈ U , P (Uc+F (e)) = P (Uc), δF (0) = Id. In particular, if we set for s small enough ψ(s) =

Uc +F (sy) we obtain P (ψ(s)) = P (Uc),
dψ

ds

∣∣∣∣
0

= y. Using E(ψ(s)) = (E− cP )(ψ(s)) + cP (Uc)

we have

dE(ψ(s))

ds
|s=0 = 〈(δE − cδP )(Uc), y〉 = 0,

d2E(ψ(s))

ds2
|s=0 = 〈Ly, y〉 < 0.

The next lemmas correspond to [22] from lemma 4.2 to lemma 4.6. Let y = (y1, y2) from
lemma B.6 and define Y := −

´ x
−∞(y2, y1) ∈ (H2)2 so that JY = y.

Lemma B.7. The map A : U ∈ Vε → A(U) = 〈−Y,U(·+ xmin(U))〉 is C1 and satisfies

∀U ∈ Vε, JδA(U) ∈ H1 × L2, JδA(Uc) = −y, 〈δP (U), JδA(U)〉 = 0.
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Lemma B.8. The differential equation U ′(λ) = −JδA(U(λ)), U(0) = U0 ∈ Vε defines a local
flow in Vε, denoted R(λ,U0). It satisfies

R(λ,U0)(·+ s) = R(λ,U0(·+ s)), (B.7)

d

dλ
P (R(λ,U0)) = 〈δP

(
R(λ,U0)

)
, −JδA

(
R(λ,U0)

)
〉 = 0, (B.8)

dR(λ,Uc)

dλ

∣∣∣∣
0

= −JδA(Uc) = y. (B.9)

Lemma B.9. Let M(U) := U(· + xmin(U)), U−1 an eigenvector associated to the negative
eigenvalue of δ2E − cδ2P . The solutions of 〈M(R(λ,U)) − Uc, U−1〉 = 0 can be parametrized
as (Λ(U), U), where Λ is a functional in C1(Vε,R). For U ∈ Vε such that P (U) = P (Uc),

E(Uc) < E(U) + Λ(U)Q(U), Q = 〈δE,−JδA〉. (B.10)

Lemma B.10. For ψ : (−η, η)→ Vε given in lemma B.6, Q(ψ(s)) changes sign at 0.

End of proof of theorem B.4 Since Q changes sign, there exists s such that Q(ψ(s)) >
0. Since lim0 ψ(s) = Uc, ψ(s) can be chosen arbitrarily close to Uc. From lemma B.6 E(ψ(s)) <
E(Uc) and for s small enough using (B.3) we have P (ψ(s)) > 0. For (ϕn)n≥0 a standard
sequence of mollifiers,

‖ϕn ∗ ψ(s)− ψ(s)‖H1×L2 → 0, ϕn ∗ ψ(s) ∈ H3 ×H2.

For n large we can assume P (ϕn ∗ ψ(s)) 6= 0, E(ϕn ∗ ψ(s)) < E(Uc) and we define

Un =

√
P (ψ(s))

P (ϕn ∗ ψ(s))
ϕn ∗ ψ(s),

As P (ψ(s))/P (ϕn ∗ ψ(s)) −→n 1, for n large enough E(Un) < E(Uc) and by construction
P (Un) = P (Uc). Let U = (r, u)(t) the solution of (B.1) with initial data Un. By conservation
of E and P (see [7]), and (B.10), as long as U(t) remains in Vε

E(U(t)) = E(Un) < E(Uc), E(Uc) < E(U(t)) + Λ(U(t))Q(U(t)).

This implies Λ > 0 and up to diminishing ε we can assume Λ ≤ 1, so that Q(U(t)) ≥
E(Uc)− E(Un) > 0. Then if U(t) ∈ Vε,

A(U(t)) ≤ ‖Y ‖2(‖Uc‖2 + ε),
d

dt
A(U(t)) = 〈JδE, δA〉 = Q(U(t)) ≥ E(Uc)− E(Un),

which can only remain true for a finite time. Thus U(t) must exit Vε or blows up before.
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