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Small energy traveling waves for the Euler-Korteweg system

We investigate the existence and properties of traveling waves for the Euler-Korteweg system with general capillarity and pressure. Our main result is the existence in dimension two of waves with arbitrarily small energy. They are obtained as minimizers of a modified energy with fixed momentum. The proof builds upon various ideas developed for the Gross-Pitaevskii equation (and more generally nonlinear Schrödinger equations with non zero limit at infinity). Even in the Schrödinger case, the fact that we work with the hydrodynamical variables and a general pressure law both brings new difficulties and some simplifications. Independently, in dimension one we prove that the criterion for the linear instability of traveling waves from [6] actually implies nonlinear instability.

Résumé

On étudie les ondes progressives des équations d'Euler-Korteweg pour des lois de capillarité et pression générales. Le principal résultat est l'existence en dimension 2 d'ondes d'énergie arbitrairemet petite. Elles sont obtenues comme minimiseurs d'une énergie modifiée à moment fixé. La preuve suit plusieurs idées développées pour les équations de Schrödinger non linéaires avec limite non nulle à l'infini. Même dans ces cas, le fait de travailler en variables hydrodynamiques apporte de nouvelles difficultés, mais aussi quelques simplifications. Indépendamment, on montre en dimension un que le critère d'instabilité linéaire des ondes progressives de [6] implique en fait l'instabilité non linéaire.
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Introduction

The Euler-Korteweg system is a modification of the usual Euler equations for compressible fluids that includes capillary effects. Mathematically it reads in dimension d as the following system of d + 1 equations combining the conservation of mass and momentum

   ∂ t ρ + div(ρu) = 0, ∂ t u + u • ∇u + ∇g(ρ) = ∇ K(ρ)∆ρ + 1 2 K (ρ)|∇ρ| 2 , x ∈ R d . (1.1) 
The variables ρ and u are the density and speed of the fluid, the right hand side of the second line is the so called capillary tensor. The functions K, g are defined on R + * and are supposed to be smooth and positive. For the equations to make sense, it is necessary that ρ > 0 a.e . The Korteweg tensor was first derived in the work of Dunn and Serrin [START_REF] Dunn | On the thermomechanics of interstitial working[END_REF] for models of phase transition, however the equations can appear in very various settings, from water waves (see [START_REF] Bresch | On some compressible fluid models: Korteweg, lubrication, and shallow water systems[END_REF]) to quantum hydrodynamics. When u is potential (the irrotational case) (1.1) has a hamiltonian structure : indeed if we write u = ∇φ, the second line of (1.1) rewrites

∂ t φ + |∇φ| 2 2 + g(ρ) = K∆ρ + 1 2 K (ρ)|∇ρ| 2 ,
For G a primitive of g, we define the energy

E(ρ, φ) = ˆK(ρ)|∇ρ| 2 + ρ|∇φ| 2 2 + G(ρ)dx, (1.2) 
then (1.1) reads

     ∂ t ρ - δE δφ = 0, ∂ t φ + δE δρ = 0.
(1.3)
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In particular, for (ρ, φ) a solution with enough integrability and smoothness, E(ρ, φ)(t) is conserved. One can also check formally the conservation of momentum: if lim Concerning the analysis of well-posedness, it was observed in [START_REF] Benzoni-Gavage | Well-posedness of one-dimensional Korteweg models[END_REF] that for smooth solutions without vacuum (1.1) is equivalent to a quasi-linear degenerate Schrödinger equation. Due to this very nonlinear structure, the analysis of the Cauchy problem is quite involved. If ρ, u is a reference smooth solution, local well-posedness for (ρ 0 , u 0 ) ∈ (ρ(0) + H s+1 ) × (u + H s ), s > d/2 + 1 was obtained in [START_REF] Benzoni-Gavage | On the well-posedness for the eulerkorteweg model in several space dimensions[END_REF]. The energy of the system allows to control at best (ρ -ρ, u -u) in H 1 × L 2 , so in any dimension global well-posedness has remained mostly an open problem.

In the special case K = κ/ρ, with κ a positive constant and u = ∇φ is irrotational, up to some rescaling there exists a formal correspondance with the nonlinear Schrödinger equation

i∂ t ψ + ∆ψ = g(|ψ| 2 )ψ, (1.5) 
through the Madelung transform (ρ, ∇φ) → ψ := √ ρe iφ , introduced in [START_REF] Madelung | Quantentheorie in hydrodynamischer form[END_REF] (for more details see the review article [START_REF] Carles | Madelung, Gross-Pitaevskii and Korteweg[END_REF]). We will not dwell upon it but only mention that the nonlinearity g in (1.5) becomes the pressure term, and if ρ vanishes the transform becomes singular. Antonelli and Marcati [START_REF] Antonelli | On the finite energy weak solutions to a system in quantum fluid dynamics[END_REF] managed to exploit this correspondance in order to pass from global solutions of NLS (whose existence is standard, see the reference book [START_REF] Thierry | Semilinear Schrödinger equations[END_REF]) to global weak solutions of (1.1). In general such solutions admit vacuum and one can not hope to deduce uniqueness from such arguments. In the special case g(ρ) = ρ -1, (1.1) corresponds to the Gross-Pitaevskii equation which has received a lot of attention over the last fifteen years. In particular, global dispersive solutions of (1.5) were constructed in [START_REF] Gustafson | Scattering theory for the Gross-Pitaevskii equation in three dimensions[END_REF]. Such results were used to construct global unique solutions of (1.1) for small irrotational data by the author and B.Haspot in [START_REF] Audiard | From Gross-Pitaevskii equation to Euler-Korteweg system, existence of global strong solutions with small irrotational initial data[END_REF].

The result was later extended by the same authors in [START_REF] Audiard | Global well-posedness of the Euler-Korteweg system for small irrotational data[END_REF] for general K, g and d ≥ 3: for initial data near the constant state (ρ 0 , 0) with the stability condition g (ρ 0 ) > 0, the solution is global and converges to a solution of the linearized equation near (ρ 0 , 0) (in other words it scatters). The price to pay for this generalization is the necessity to work with much smoother functions, basically: ρ -ρ 0 ∈ H 50 . The idea behind this result is that the Euler-Korteweg equations (1.1) and the Gross-Pitaevskii equation share the same linearized system (near (ρ, u) = (ρ 0 , 0), resp. ψ = 1) so that the same small data technics from the field of dispersive equations can be used. A natural question is then wether such an analogy is still true for nonlinear phenomena and in particular the existence for traveling waves which is known for a large class of nonlinear Schrödinger equations. This article gives a partial positive answer: our main result (theorem 1.1) is the existence of small traveling waves in dimension 2. Before turning to a precise statement, let us give some background about this issue. The existence of planar traveling waves, that is solutions of the form (ρ(x 1 -ct), u(x 1 -ct)) is a simpler problem as in this case (1.1) can be reduced to a system of two ODEs. Due to the hamiltonian nature of the equations these ODEs are integrable by quadrature. If g is not monotone (for example with a Van der Waals pressure law) all three types of interesting solutions exist (homoclinic, heteroclinic and periodic). In dimension one, the stability/unstability of such solutions is related to the notion of moment of instability from the seminal paper [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF] of Grillakis-Shatah-Strauss. In the absence of global well-posedness result, only conditional stability was derived for the corresponding traveling waves. On this topic, we offer a small contribution with theorem B.4 which states that failure of the stability criterion from [START_REF] Benzoni-Gavage | Structure of Korteweg models and stability of diffuse interfaces[END_REF] implies nonlinear instability. For more details on planar traveling waves we refer to the rich review article [START_REF] Benzoni-Gavage | Planar traveling waves in capillary fluids[END_REF].

The existence of localized solitary waves In dimension larger than 1 the existence of localized traveling waves that depend on x -ct, with c the direction and speed of propagation, has been so far an open problem. Our main result is the existence of small energy traveling waves (see theorem 1.1). The interest is twofold: besides giving global solutions to (1.1), the existence of arbitrarily small solitary waves in dimension 2 is in strong contrast with the scattering of small solutions in dimension ≥ 3. Note that while our results apply to general K, g, in the special case K(ρ) = κ/ρ, g(ρ) = ρ -1, the existence of solitary waves to (1.1) might be deduced thanks to the Madelung transform from the existence of non-vanishing solitary waves to (1.5). However if K is not proportional to 1/ρ (even K ≡ constant), new difficulties appear due to the quasilinear nature of (1.1). Concerning the expected range of speeds, the linearization of the Euler equations (without capillary terms) near ρ = ρ 0 , u = 0 is

∂ t ρ + ρ 0 divu = 0, ∂ t u + g (ρ 0 )∇ρ = 0.
If g (ρ 0 ) > 0, ρ satisfies the wave equation ∂ 2 t ρ -ρ 0 g (ρ 0 )∆ρ = 0, with the so-called sound speed c s (ρ 0 ) = ρ 0 g (ρ 0 ). By analogy with the Gross-Pitaevskii case, we expect that traveling waves with limit at infinity (ρ 0 , 0) can only exist for subsonic speeds | c| ≤ c s . Obviously, the direction of the speed does not matter, thus from now on we restrict ourselves to c = c e 1 . Some results on (1.5) with nonzero condition at infinity If g(1) = 0, a natural problem is the construction of solitary waves such that lim |x|→∞ |ψ| = 1. The case of the Gross-Pitaevskii equation g(ρ) = ρ -1 has attracted a lot of attention since the series of papers of Roberts and al [START_REF] Jones | Motions in a bose condensate. iv. axisymmetric solitary waves[END_REF] [START_REF] Jones | Motions in a bose condensate. v. stability of solitary wave solutions of non-linear schrodinger equations in two and three dimensions[END_REF]. Their formal and numerical computations brought a number of conjectures on the existence of branches of solitary waves with speeds c covering the subsonic range (0, √ 2) (the number √ 2 is related to 1 • g (1) = 1 after some rescaling), their stability and limit in the transonic regime. In dimension 2 traveling waves were constructed for any |c| small enough by Béthuel and Saut ([11], 98) with a moutain pass argument. More recently they used with P. Gravejat in [START_REF] Béthuel | Travelling waves for the Gross-Pitaevskii equation[END_REF] a constrained minimization method, that we will also follow.

To shortly describe it, let us introduce the momentum and energy (momentum

) ( P N LS (ψ) = 1 2 Re ˆRd i∇ψ(ψ -1)dx. (energy) E N LS (ψ) = 1 2 ˆRd |∇ψ| 2 + G(|ψ| 2 )dx
where G is a primitive of g. In the Gross-Pitaevskii case, we simply have G = (|ψ| 2 -1) 2 /2. These two quantities are formally conserved by the flow, also it is not hard to check formally

cδP N LS,1 (ψ) = δE N LS (ψ) ⇔ -ic∂ 1 ψ + ∆ψ = (|ψ| 2 -1)ψ.
It is thus tempting to construct solitary waves as minimizers of the energy with P N LS,1 (ψ) = p fixed. However, it is a bit tedious to give a functional framework where both E N LS and P N LS make sense, and the existence of a lifting of ψ on subsets of R d , while extremely useful, raises significant topological difficulties. Finally, in this approach the speed c is only obtained as a Lagrangian multiplier, which precludes to reach the whole range c ∈ (0, √ 2). Nevertheless in [START_REF] Béthuel | Travelling waves for the Gross-Pitaevskii equation[END_REF] the authors proved the existence of a branch of solutions parametrized by the momentum p ∈ (p 0 , ∞) in dimension 2 and 3 (p 0 = 0 in dimension 2, > 0 in dimension 3). With an alternative approach, Maris [START_REF] Mariş | Traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity[END_REF] obtained the existence of traveling waves for the full range c ∈ (0, √ 2) in dimension ≥ 3 for a class of equations more general than Gross-Pitaevskii. The proof relied on the minimization of energy with a more subtle constraint based on a Pohozaev type identity. Finally, the construction of solitary waves by minimization with fixed momentum was recently improved by Maris and Chiron [START_REF] Chiron | Travelling waves for nonlinear schrödinger equations with nonzero conditions at infinity[END_REF], giving the precompactness of minimising sequences (which is a classical ingredient for orbital stability). Remark 1. Note that in the case K = 1/ρ, energy and momentum conservation for ψ exactly correspond to energy and momentum conservation in (1.2),(1.4) with ψ = √ ρe iφ/2 . Indeed

E N LS (ψ) = 1 2 ˆRd 1 4ρ |∇ρ| 2 + ρ 4 |∇φ| 2 + G(ρ)dx, P N LS = 1 4 ˆρ∇φ = 1 4 ˆ(ρ -1)∇φ dx.
Rescaling, modified energy and main result We construct solutions of (1.1) of the form (ρ(x 1 -ct, x 2 ), u(x 1 -ct, x 2 )), the system of partial differential equations to solve is

   -c∂ 1 ρ + div(ρ∇φ) = 0, -c∂ 1 φ + |∇φ| 2 2 -K∆ρ - K |∇ρ| 2 2 + g(ρ) = 0. (1.6)
We will focus on the existence of localized traveling waves near the constant state (ρ 0 , 0) with g(ρ 0 ) = 0, g (ρ 0 ) > 0. We use the following rescaling :

(ρ, φ) = ρ 0 ρ r g (ρ 0 ) ρ 0 ) x , φ r g (ρ 0 ) ρ 0 ) x , K r (ρ r ) = K(ρ 0 ρ r ) ρ 0 , g r (ρ r ) = g(ρ 0 ρ r ) g (ρ 0 )ρ 0 , c r = c ρ 0 g (ρ 0 ) . Then (1.6) is equivalent to    -c r ∂ 1 ρ r + div(ρ r ∇φ r ) = 0, -c r ∂ 1 φ r + |∇φ r | 2 2 -K r ∆ρ r - K r |∇ρ r | 2 2 + g r (ρ) = 0. (1.7)
Of course, the point of this rescaling is that the constant state is now 1, g r (1) = 1 and the sound speed is 1g r (1) = 1. From now on we drop the r index and work on the rescaled system.

If we define the scalar momentum P as

P (ρ, φ) = ˆRd (ρ -1)∂ 1 φdx,
our starting point is that similarly to NLS, (1.7) can be recast as *

cδP (ρ, φ) = δE(ρ, φ).
The scalar momentum P is well-defined on1 H := {(ρ, φ) ∈ (1+H 1 )× Ḣ1 }. On the other hand, the energy has two flaws: depending on G it may not make sense for general (ρ, u) ∈ H, and even in the simple case G = (ρ -1)2 /2 it satisfies no coercive inequality E(ρ, φ) (ρ, φ) 2 H . Since we are interested in the regime |ρ -1| << 1, the remedy is to work with a modified energy that we define now. We fix χ ∈ C ∞ (R + ) nondecreasing such that

χ(ρ) = ρ if |ρ -1| < 1/3, χ| ]-∞,1/2] = 1/2, χ [2,∞[ = 2, (1.8) 
and define G as follows: since G (1) = g (1) = 1, G (1) = g(1) = 0, we have G(ρ) ≥ (ρ -1) 2 /3 on some interval (1 -δ, 1 + δ), according to Borel's lemma there exists a smooth extension g of g on [1 + δ,

1 + 2δ], [1 -2δ, 1 -δ] such that for any k ∈ N, g (k) (1 ± 2δ) = d k (ρ-1) dρ k (1 ± 2δ), and G > 0, then we set g = ρ -1 on (1 -2δ, 1 + 2δ) c , G = ´ρ 1 g(r)dr. The function G satisfies G ∈ C ∞ (R), G| (1-δ,1+δ) = G, G (ρ -1) 2 , | G | |ρ -1|.
(1.9)

Now let us set E(ρ, φ) = ˆRd 1 2 (χ(ρ)|∇φ| 2 + K(χ(ρ))|∇ρ| 2 ) + G(ρ)dx. (1.10) Obviously, if ρ -1 ∞ is small enough then E(ρ, φ) = E(ρ, φ
), and from (1.8),(1.9)

∀ (ρ, φ) ∈ H, E(ρ, φ) ρ -1 2 H 1 + ∇φ 2 2 .
If (ρ, φ) is a solution of the minimization problem inf{ E(ρ, φ), (ρ, φ) ∈ H : P (ρ, φ) = p}, (1.11) it should satisfy the following Euler-Lagrange equations where g := G ∃ c :

   -c∂ 1 ρ + div(χ(ρ)∇φ) = 0, -c∂ 1 φ + χ (ρ) |∇φ| 2 2 -K(χ(ρ))∆ρ - (K • χ) |∇ρ| 2 2 + g(ρ) = 0. (1.12)
Since a solution of (1.12) such that ρ -1 ∞ << 1 is a solution of (1.7), our approach will be to prove that for p small enough, there exists existence of a solution to (1.11), the minimizer is smooth and satisfies ρ -1 ∞ << 1. We can now give a precise statement of our result, that we chose to state for the non-rescaled variables in order to underline the role of the physical variables.

Theorem 1.1. Let ρ 0 ∈ R + * such that g (ρ 0 ) > 0, for p > 0 we set

E min (p) := inf (ρ,φ)∈(ρ 0 +H 1 )× Ḣ1 ,P (ρ,φ)=p E(ρ, φ). (1.13)
Under the assumption Γ := 3 + ρ 0 g (ρ 0 ) g (ρ 0 ) = 0, there exists p 0 > 0 such that for any 0 ≤ p ≤ p 0 , the infimum is attained at a minimizer (ρ p , φ p ) ∈ ∩ j≥0 (ρ 0 + H j ) × Ḣj , such that (ρ p , φ p ) is a solution of (1.6) for some c p > 0. Moreover let c s = ρ 0 g (ρ 0 ), then

∃ α, β > 0 : ∀ 0 ≤ p ≤ p 0 , c s p -βp 3 ≤ E min (p) = E(ρ p , φ p ) ≤ c s p -αp 3 , (1.14) 
c s -βp 2 ≤ c p ≤ c s -αp 2 . (1.15)
Remark 2. It is not clear if (ρ p , φ p ) is a constrained minimizer of E.

Remark 3. The assumption Γ = 0 is not technical. In the case of NLS it appears in the recent paper [START_REF] Chiron | Travelling waves for nonlinear schrödinger equations with nonzero conditions at infinity[END_REF] as necessary and sufficient for the strict concavity of E N LS,min near 0, a condition which is important, if not unavoidable, for the construction of minimizers. If Γ = 0 scattering of solutions of (1.1) for small data seems expectable but remains so far open, even for NLS.

Idea of proof

We first point out that (contrary to the NLS case), it is not easy to get elliptic regularity from equations (1.7), indeed they basically look like ∆f = |∇f | 2 , and the

argument f ∈ H 1 ⇒ |∇f | 2 ∈ L 1 ⇒ f ∈ W 2,1 → H 1 does
not allow to bootstrap trivially regularity. But since the failure is somewhat "critical", working with (ρ, φ) H << 1 allows to overcome this issue (this is done in proposition 2.3).

The major issue is of course the defect of compactness in R 2 . In the spirit of [START_REF] Béthuel | Travelling waves for the Gross-Pitaevskii equation[END_REF], this is overcome by first solving the minimization problem on large tori T 2 n = (R/2πnZ) 2 , on which thanks to the compact embedding H 1 → L 2 the existence of a minimizer is easy. In order to handle smoothness issues, we follow a regularization procedure: we use a "mollified energy"

E n ε (ρ, φ) = E + ε 2 ˆT2 n |∆φ| 2 + |∆ρ| 2 dx
and prove that minimizers of small energy satisfy elliptic estimates independent of ε (smallness is essential for this step). Letting ε → 0, this provides a solution (ρ n , φ n ) of the minimization problem on T2 n . Next we let n → ∞, and prove the convergence of (ρ n , φ n ) to (ρ, φ), solution of the constrained minimization problem (1.11). The main tool to get some compactness of the sequence (ρ n , φ n ) is the strict concavity 2 of the minimal energy E min (p) which is obtained by mixing general abstract arguments and ad hoc computations. To get a feeling of how concavity is used, consider the following simplified version of dichotomy in Lions's concentration compactness principle: assume that instead of converging to a minimizer, (ρ n , φ n ) splits in two parts, namely there exists functions (ρ 1 , φ 1 ), (ρ 2 , φ 2 ) such that

E n min (ρ n , φ n ) -→ E(ρ 1 , φ 1 ) + E(ρ 2 , φ 2 ), P (ρ n , φ n ) -→ P (ρ 1 , φ 1 ) + P (ρ 2 , φ 2
). Then passing to the limit in n we have

P (ρ 1 , φ 1 ) + P (ρ 2 , φ 2 ) = p 1 + p 2 = p, E min (p 1 + p 2 ) = E(ρ 1 , φ 1 ) + E(ρ 2 , φ 2 ) ≥ E min (p 1 ) + E min (p 2 ).
On the other hand, by strict subadditivity E min (p 1 + p 2 ) < E min (p 1 ) + E min (p 2 ), which is a contradiction. For a remarkably clear and general discussion on this strategy, we refer to the seminal paper of P.L. Lions [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The locally compact case[END_REF].

Plan of the paper The rest of the article is organized as follows: in section 2, we prove a key elliptic estimate for solutions of (1.12) in a simple case, in section 3 we establish the concavity of E min and the upper bound Emin ≤ p -αp 3 from which we deduce its strict subadditivity. Theses sections are preliminaries to section 4 where we prove the existence of solutions to the minimization problem (1.11): we first study the minimization problem on T 2 n for fixed n. We obtain the existence of constrained minimizers for the mollified energy E n ε , from which we deduce the existence of smooth minimizers for the nonregularized problem. Letting n → ∞, we obtain the convergence of minimizers on T 2 n to a minimizer on R 2 with a concentration compactness argument. Finally we complete the a priori estimates of E min and c thanks to Pohozaev type identities in section 5. The concentration compactness argument relies on a kind of profile decomposition essentially similar to the one in [START_REF] Béthuel | Travelling waves for the Gross-Pitaevskii equation[END_REF], for completeness we prove its existence in the appendix A. In appendix B we discuss the one-dimensional case, where explicit computations allow to observe very strong similarities with one-dimensional NLS, and prove a new nonlinear instability property of some solitary waves.

Notations If a ≤ Cb, a, b, C > 0, C a constant independent of the parameters, we write a b. If C 1 a ≤ b ≤ C 2 a with C 1 , C 2 positive
constants, we write a ∼ b if there is no ambiguity with the usual meaning of ∼. We denote the Fourier transform of an application φ as φ. As mentioned in the introduction, H = {(ρ, φ) ∈ (1 + H 1 ) × Ḣ1 }.

An elliptic estimate

We first clarify our functional framework.

Definition 2.1. The space Ḣ1 is the set of φ ∈ L 2 loc such that ∇φ ∈ L 2 in the distributional sense. We define L 2 curl := ∇ Ḣ1 with norm ∇φ L 2 . We shall need the following standard density result. Proposition 2.2. L 2 curl coincides with {u ∈ L 2 : curl(u) = 0}, and thus is a Hilbert space, in which ∇C ∞ c (R 2 ) is dense. Proof. For the first part see e.g. [START_REF] Simon | Démonstration constructive d'un théorème de G. de Rham[END_REF] or [START_REF] Tartar | Topics in nonlinear analysis[END_REF]. For the second part it suffices to check

(∇C ∞ c ) ⊥ = {0}. If ∇φ ∈ (∇C ∞ c ) ⊥ then ∆φ = 0 (D )
, and ∇φ ∈ L 2 thus ∆φ = 0 (S ). Thus |ξ| 2 ϕ = 0. This implies that ϕ is a linear combination the Dirac distribution at 0 and its first order derivatives, equivalently ϕ is a first order polynomial. The condition ∇φ ∈ L 2 then implies that ϕ is a constant, so that u = 0. Proposition 2.3. Let M > 0, (ρ, φ) a solution of (1.12) with |c| ≤ M . There exists ε, C > 0 depending only on M 3 such that

(ρ, ∇φ) ∈ 1 + H 2 × H 1 and E(ρ, φ) < ε ⇒ ρ -1 ∞ < C E(ρ, φ).
In particular for E(ρ, φ) small enough, a (smooth) solution of (1.12) is a traveling wave of the Euler-Korteweg system.

Proof. Setting u = ∇φ and denoting χ for χ(ρ) we have from the first equation

∆φ + ∇χ • u χ -c ∂ 1 ρ χ = 0 ⇒ ∆u + ∇ ∇ ln(χ) • u -c∇ ∂ 1 ρ χ = 0
Taking the gradient of the equation, the scalar product with u and integrating, we get

ˆ|∇u| 2 + ∇ ln χ • u -c ∂ 1 ρ χ divu dx = 0 so that from Cauchy-Schwarz's inequality 1 2 ∇u 2 2 ≤ 2 ∇ ln χ • u 2 2 + 2c ∂ 1 ρ/χ 2 2 ≤ 2 ∇ ln χ 2 4 u 2 4 + 2c ∂ 1 ρ/χ 2 2 . If d = 2, we use u 4 u Ḣ1/2 u 1/2 2 ∇u 1/2 2 so that u 2 4 ≤ C u 2 ∇u 2 ≤ √ 2C u 2 ( ∇ ln χ 4 u 4 + +c ∂ 1 ρ/χ 2 ), ⇒ u 2 4 ≤ C √ 2 u 2 2 ∇ ln χ 2 4 + M C √ 2 u 2 ∂ 1 ρ/χ 2 u 2 2 ∇ρ 2 4 + u 2 ∂ 1 ρ 2 ,
3 of course it depends also on K • χ and G but it does not matter for the analysis.

where we used χ ∇ρ 2 ∇ρ 2 . Next we rewrite the momentum equation as

∆ρ = -c∂ 1 ρ K • χ + χ 2K • χ |∇φ| 2 - (K • χ) 2K • χ |∇ρ| 2 + g K • χ .
Since K is smooth, positive on ]0, ∞[, (K • χ) and 1/K • χ are uniformly bounded, and from (1.9) taking the L 2 norm gives

∆ρ 2 ∂ 1 ρ 2 + ∇φ 2 4 + ∇ρ 2 4 + ρ -1 2 ∂ 1 ρ 2 + ∂ 1 ρ 2 u 2 + ∇ρ 2 4 + u 2 2 ∇ρ 2 4 + ρ -1 2 .
Next we use again Sobolev's embedding ∇ρ 2 4 ∇ρ 2 ∆ρ 2 which gives

∆ρ 2 ≤ C ∂ 1 ρ 2 + ∂ 1 ρ 2 u 2 + ρ -1 2 + (1 + u 2 2 ) ∇ρ 2 ∆ρ 2 .
We recall that E(ρ, φ) ρ -

1 2 H 1 + ∇φ 2 2 , so that if E(ρ, φ)is small enough, C(1 + u 2 
2 ) ∇ρ 2 < 1/2 and we deduce

∆ρ 2 ≤ C ∂ 1 ρ 2 + ∂ 1 ρ 2 u 2 + ρ -1 2 ) E(ρ, φ). From Sobolev's embedding we conclude ρ -1 ∞ ρ -1 H 2 E(ρ, φ). In particular if the energy is small enough χ(ρ) = ρ, G(ρ) = G(ρ)
and ρ is a solution of (1.7).

Properties of the energy

We recall E min (p) = inf P (ρ,φ)=p E(ρ, φ). We start with some properties that are true in generic minimization settings (continuity, concavity of E min ) before tackling the strict subadditivity of E min , where we use the structure of E and P .

Lemma 3.1. For any p ≥ 0, there exists a minimising sequence

(ρ n , ∇φ n ) ∈ (1 + C ∞ c (R 2 )) × C ∞ c (R 2
). Proof. The case p = 0 is obvious. For p > 0 it suffices to prove that for any (ρ -1, ∇φ) ∈

H 1 × L 2 , there exists (ρ n -1, φ n ) ∈ (C ∞ c (R 2 )) 2 such that P (ρ n , φ n ) = p, E(ρ n , φ n ) → E(ρ, φ). By density (prop. 2.2), there exists (r n -1, ∇ψ n ) ∈ C ∞ c (R 2 ) such that r n -ρ H 1 + ∇ψ n -∇φ L 2 → n 0, r n → ρ a.e. . Clearly P (r n , ψ n ) → p, ´R2 G(r n ) → ´R2 G(ρ)dx
, and up to an extraction such that r n → ρ a.e. we have by dominated convergence

ˆR2 χ(r n )|∇ψ n | 2 -χ(ρ)|∇φ| 2 dx = ˆR2 (χ(r n ) -χ(ρ))|∇φ| 2 + χ(r n )(|∇φ| 2 -|∇ψ n | 2 )dx, -→ n 0, ˆR2 K(χ(r n ))|∇r n | 2 -K(χ(ρ))|∇ρ| 2 dx -→ n 0, from which we deduce E(r n , ψ n ) -E(ρ, φ) → 0. Let ε n = p -P (r n , ψ n ), we construct a slight modification (ρ n , φ n ) of (r n , ψ n ) such that P (ρ n , φ n ) = p : let ϕ ∈ C ∞ c (R 2 ), A := ∂ 1 ϕ with ∂ 1 ϕ 2 = 1.
Up to a translation (that depends on n), we can assume supp(ϕ) ∩ (supp(1 -r n ) ∪ supp(ψ n )) = ∅, and define

ρ n = r n + sign(ε n ) |ε n |A, φ n = ψ n + |ε n |ϕ.
We conclude

P (ρ n , φ n ) = P (r n , ψ n ) + ε n = p, E(ρ n , φ n ) = E(r n , ψ n ) + 1 2 ε n ˆR2 K(χ(ρ n )|∇A| 2 +χ(ρ n )|∇ϕ| 2 + O(A 2 ) dx = E(r n , ψ n ) + O(ε n ) -→ n E(ρ, φ). Proposition 3.2. The application p ∈ R + → E min (p) is 1-Lipschitz, concave, non decreasing.
Proof. We split the proof in three steps:

E min is Lipschitz Let p < q, δ > 0 to be fixed, according to lemma 3.1, there exists

(ρ-1, φ) ∈ (C ∞ c ) 2 such that P (ρ, φ) = p, E(ρ, φ) ≤ E min (p)+δ. Combining proposition 3.3 and lemma 3.1 there exists (ρ 0 -1, φ 0 ) ∈ (C ∞ c (R 2 
)) 2 such that P (ρ 0 , φ 0 ) = q -p, E(ρ 0 , φ 0 ) ≤ q -p. Up to a translation, we can assume (ρ 0 -1, φ 0 ) have disjoint support with (ρ -1, φ), so that

P (ρ + ρ 0 -1, φ + φ 0 ) = p + q -p = q, E(ρ + ρ 0 -1, φ + φ 0 ) ≤ E min (p) + δ + q -p.
Since δ is arbitrary, E min (q) -E min (p) ≤ q -p. The reverse inequality can be obtained with a similar argument (using -φ 0 instead of φ 0 ).

E min is concave Since E min is continuous, it suffices to prove that for any p 1 < p 2 ∈ [0, p 0 ], E min ((p 1 + p 2 )/2) ≥ E min (p 1 )+ E min (p 2 ) 2
. This relies on a classical reflection argument. For f defined on R 2 , we define T + a (f ) (resp T - a f ) as the function symmetric with respect to the line x 2 = a and that coincides with f on x 2 > a (resp. x 2 < a). The maps T + a , T - a are linear continuous H 1 → H 1 , and from Lebesgue's dominated convergence theorem

T + a → +∞ 0, T - a → -∞ 0, a → T ± a is continuous. This also implies T + a f L 2 → -∞ 2 f L 2 , ∇T + a f L 2 → -∞ 2 ∇f L 2 ,
and the symmetric property for T - a . We also note that for any function F , as soon as the integrals make sense

ˆR2 F (T + a f ) + F (T - a f )dx = 2 ˆR2 F (f )dx. (3.1)
Now let δ > 0, (ρ, φ) be such that

P (ρ, φ) = p 1 +p 2 2 , E(ρ, φ) ≤ E min p 1 +p 2 2 + δ. Since lim +∞ P (T + a (ρ, φ)) 2 = 0 < p 1 , there exists a 1 such that P (T + a 1 (ρ, φ)) = p 1 , and from (3.1), P (T - a 1 (ρ, φ)) = p 2 .
Then using again (3.1)

E min (p 1 ) + E min (p 2 ) ≤ E T + a 1 (ρ, φ) + E T - a 1 (ρ, φ) ≤ 2 E min p 1 + p 2 2 + 2δ.
Since δ is arbitrary, we get E min ((p

1 + p 2 )/2) ≥ E min (p 1 )+ E min (p 2 )
2 .

E min (p) is non decreasing Obvious since it is concave and nonnegative.

The next proposition gives a sharp upper bound for E min .

Proposition 3.3. There exists p 0 > 0, α > 0 such that

∀ 0 < p < p 0 , ∃ (ρ p , φ p ) ∈ H : P (ρ p , φ p ) = p, E(ρ p , φ p ) ≤ p -αp 3 .
In particular E min (p) ≤ p -αp 3 . Moreover, up to taking a smaller

p 0 if (ρ, φ) is a minimiser, then ρ -1 ∞ p 2 .
Proof. The idea is to construct an approximate minimizer by using the following formal asymptotic (rigorously justified for the Gross-Pitaevskii equation [START_REF] Béthuel | On the KP I transonic limit of two-dimensional Gross-Pitaevskii travelling waves[END_REF])

: set ρ = 1 + ε 2 A ε (z 1 , z 2 ), φ = εϕ ε (z 1 , z 2 ), z 1 = εx 1 , z 2 = ε 2 x 2 . If (ρ, φ) is a solution of (1.7) with speed c = √ 1 -ε 2 , the mass conservation reads -c∂ 1 A ε + ∂ 2 1 ϕ ε + ε 2 (∂ 2 2 ϕ ε + A ε ∂ 2 1 ϕ ε + ∂ 1 A ε ∂ 1 ϕ ε ) = O(ε 4 ). Next using Taylor's expansion g = ε 2 A ε + g (1)ε 4 A 2 ε 2 + O(ε 4
), the momentum equation gives

-c∂ 1 ϕ ε + A ε + ε 2 g (1)A 2 ε + (∂ 1 ϕ ε ) 2 2 -K(1)∂ 2 1 A ε = O(ε 4 ).
At first order, we have

∂ 1 φ ε = A ε + O(ε 2
), next if we multiply the mass equation by c, apply ∂ 1 to the momentum equation and add them, we get

∂ 1 A ε + ∂ 2 2 ∂ -1 1 A ε + (3 + g (1))A ε ∂ 1 A ε -K(1)∂ 3 1 A ε = O(ε 2 ), (3.2) 
Note that γ := 3 + g (1) is the rescaled version of Γ = 3 + ρ 0 g (ρ 0 )/g (ρ 0 ) thus by assumption γ = 0. (3.2) is a KP1 type equation, the normalized KP1 equation is

∂ 1 w + w∂ 1 w + ∂ 2 2 ∂ -1 1 w -∂ 3 1 w = 0 (3.3)
One can pass from a solution of (3.3) to a solution of (3.2) by setting

A = 1 γ w(x 1 / K(1), x 2 / K(1)). (3.4) 
In [START_REF] De | Solitary waves of generalized Kadomtsev-Petviashvili equations[END_REF], solutions of the KP equation are constructed, any such solution satisfy

E KP (w) := 1 2 ˆR2 |∂ 2 ∂ -1 1 w| 2 + w 3 /3 + |∂ 1 w| 2 dx < ∞, (3.5) 
Moreover, such solutions are smooth, belong to L q for any 1 < q ≤ ∞ as well as their gradients, there exists a smooth v ∈ L p for any 2 < p ≤ ∞ such that ∂ 1 v = w, ∇v ∈ L q , and E KP (w) = -´R2 w 2 /6 < 0 (see [START_REF] De | Solitary waves of generalized Kadomtsev-Petviashvili equations[END_REF] or [START_REF] Béthuel | Travelling waves for the Gross-Pitaevskii equation[END_REF] p.41). Let w be such a solution 4 , we define A by (3.4), and

set ρ = 1 + ε 2 A(εx 1 , ε 2 x 2 ), φ = ε∂ -1 1 A(εx 1 , ε 2 x 2 ). Since A is bounded, |ρ -1| = O(ε 2
) so that E and E coincide for ε small enough. We have E KP (A) = K (1) γ 2 E KP (w) < 0, and basic computations give

P (ρ, φ) = ε 4 ˆA2 (εx 1 , ε 2 x 2 )dx = ε A 2 2 , E(ρ, φ) = 1 2 ˆR2 (1 + ε 2 A) ε 4 A 2 + ε 6 (∂ 2 ∂ -1 1 A) 2 + K(1 + ε 2 A) ε 6 (∂ 1 A) 2 + ε 8 (∂ 2 A) 2 +ε 4 A 2 (εx 1 , ε 2 x 2 ) + (2G(1 + ε 2 A) -ε 4 A 2 )dx ≤ ε A 2 2 + ε 3 2 ˆR2 (∂ 2 ∂ -1 1 A) 2 + A 3 + K(1)(∂ 1 A) 2 (z 1 , z 2 ) + (max G )A 3 3 dz + R where R = ε 5 2 ˆA(∂ 2 ∂ -1 1 A) 2 + K(1 + ε 2 A) -1 ε 2 (∂ 1 A) 2 + K(1 + ε 2 A)(∂ 2 A) 2 dx = O(ε 5 ). As a consequence by definition of E min (p) E min (ε A 2 2 ) ≤ E(ρ ε , φ ε ) ≤ ε A 2 2 + ε 3 E KP (A) + Cε 5 , taking ε ≤ -E KP /(2C) completes the first part of the proof. Now if (ρ, φ) is a minimiser, from ´R2 G(ρ) = 1 + O( ρ -1) ∞ ) ´R2 (ρ-1) 2 2 dx we have p = ˆR2 (ρ -1)∂ 1 φ ≤ 1 inf R 2 χ(ρ) ˆR2 (ρ -1) 2 + χ|∇φ| 2 2 dx ≤ 1 + O( ρ -1) ∞ ) E min (p) inf √ χ ≤ 1 + O( ρ -1) ∞ ) (p -αp 3 ) inf √ χ .
There are two possibilities:

• if inf √ χ ≤ 1 -αp 2 /2, then inf √ ρ ≤ 1 -αp 2 • else 1 + O( ρ -1 ∞ ) ≥ inf √ χ/(1 -αp 2 ) ≥ 1 + αp 2 /2 + O(p 4 ), then ρ -1 ∞ p 2 .
As pointed out in the introduction, rather than concavity we will use subadditivity:

Proposition 3.4. The application E min : R + → R + satisfies the following properties:

1. it is differentiable at p = 0 and E min (0) = 1.

2. it is strictly subadditive :

∀ 0 < p 1 , p 2 , E min (p 1 + p 2 ) < E min (p 1 ) + E min (p 2 ).

the application

(p 1 , p 2 ) ∈ (R + ) 2 → D(p 1 , p 2 ) := E min (p 1 ) + E min (p 2 ) -E min (p 1 + p 2 )
is nonnegative and nondecreasing in both p 1 and p 2 . Moreover

p 1 , p 2 > 0 ⇒ D(p 1 , p 2 ) > 0. (3.6) 
Proof. 1. From proposition 3.3 we have lim 0

E min (p) p ≤ 1.
Conversely, consider a sequence p n → 0, and pick approximate minimizers (ρ n , φ n ) such that

∀ n ≥ 1, P (ρ n , φ n ) = p n , E(ρ n , φ n ) ≤ E min (p n )(1 + 1/n). Then ρ n -1 2 H 1 + ∇φ n 2 L 2 ∼ E(ρ n , φ
) -→ n 0 and from Young's inequality 

p n = P (ρ n , φ n ) ≤ ˆR2 (ρ n -1) 2 2χ(ρ n ) + χ|∇φ n | 2 2 dx Since G (1) = 1, G (1) = G(1) = 0 and G = O(ρ -1) 2 , from Taylor's expansion we have G(ρ) -(ρ-1) 2 2χ = O(ρ -1) 3 . Combining it with Sobolev's embedding H 1 → L 3 p n ≤ ˆR2 G(ρ n ) + χ|∇φ n | 2 2 + O(ρ n -1) 3 dx ≤ E(ρ n , φ n ) + O( E(ρ n , φ n )) 3/2 ≤ E min (p n )(1 + O( E min (p n )) 1/2 )(1 + 1/n)
(0) = 0 E min (p 1 ) p 1 ≥ E min (p 2 ) -E min (p 1 ) p 2 -p 1 ≥ E min (p 1 + p 2 ) -E min (p 2 ) p 1 + p 2 -p 2 = E min (p 1 ) p 1 . Therefore for any p ∈ [p 1 , p 1 + p 2 ], E min (p)-E min (p 1 ) p-p 1 = E min (p 1 p 1 ⇔ E min (p) = E min (p 1 ) p 1 p. Also ∀ p ∈ [0, p 1 ], E min (p 1 ) p 1 = E min (p 1 + p 2 ) -E min (p 1 ) p 1 + p 2 -p 1 ≤ E min (p 1 ) -E min (p) p 1 -p ≤ E min (p 1 ) p 1 ⇒ E min (p 1 ) p 1 (p) = E min (p 1 ) p 1 p,
Hence, E min is linear on [0, p 1 + p 2 ], this is a contradiction.

3. Direct consequence of the subadditivity, and the fact that for any concave function f ,

x → f (x+p 2 )-f (x) p 2
is decreasing.

Remark 4. The better lower bound E min (p) ≥ p -βp 3 is based on some Pohozaev's identities, that in turn require the existence of minimizers, therefore their proof is postponed to section 5.

Existence of minimizers

The existence is obtained by following the procedure in [START_REF] Béthuel | Travelling waves for the Gross-Pitaevskii equation[END_REF], which is the following 2 , the existence of a minimiser to (1.11) for any p is easy thanks to elliptic estimates and compact embeddings.

• If one replaces R 2 by the torus T 2 n = R 2 /(2nπZ)
• Any minimiser (ρ p n , u p n ) satisfies ρ p n -1 ≥ Cp 2 , with C independent of n (torus version of proposition 3.3).

• Letting n → ∞, up to translation and extraction (ρ p n , φ p n ) converges to (ρ p , φ p ), which is a non trivial solution of equation (1.12) with E(ρ p , φ p ) ≤ E min (p).

• The sequence (ρ p n , φ p n ) actually converges globally so that P (ρ p , φ p ) = lim n P n (ρ p n , φ p n ) = p. This is the most difficult point, which requires a careful analysis of the difference between the energy density K|∇ρ

p n | 2 + χ(ρ p n )|∇φ n | 2 + G(ρ n
) and the momentum density (ρ n -1)∂ 1 φ n on the "vanishing set" |ρ n -1| << 1.

We point out that one of the reasons why F. Bethuel, P. Gravejat and J.C. Saut used the preliminary minimization on the torus was the difficulty to define P (ρ, φ). This is not an issue here, however working on the torus is essential to get strong a priori estimates and start a compactness procedure. In order to use the (torus version of) elliptic estimate in proposition 2.3, we first use the smoothened energy

E ε n (ρ, φ) := 1 2 ˆT2 n ρ|∇φ| 2 + K(χ(ρ))|∇ρ| 2 + 2G(ρ) + ε (∆φ) 2 + (∆ρ) 2 dx,
and the notation (

E ε n ) min (p) := inf Pn(ρ,φ)=p E ε n (ρ, φ).
We provide a collection of lemmas that mimick the situation on R 2 , without the regularizing terms.

Minimizers on large tori

The first step is a very rough version of proposition 3.3.

Lemma 4.1.

There exists M > 0 such that for any

0 ≤ p ≤ 1, n ≥ 5/p 2 , 0 ≤ ε ≤ 1, ( E ε n ) min (p) ≤ M p.
Proof. We start with an ansatz similar to proposition 3.

3: let θ ∈ C ∞ c (R 2 ) such that supp(θ) ⊂ B(0, 5), ∂ 1 θ 2 = 1, ∂ 1 θ ∞ ≤ 1/2, set A = ∂ 1 θ and ρ = 1+p 2 A(px 1 , p 2 x 2 ), φ = pθ(px 1 , p 2 x 2 ).
Since supp(ρ) ∪ supp(φ) ⊂ B(0, 5/p 2 ), there is an obvious way to define them as functions

(ρ n , φ n ) ∈ C ∞ (T 2
n ) for any n ≥ 5/p 2 . Next using p ≤ 1, χ(ρ) = ρ, basic computations give

P n (θ, ϕ) = p, E ε n (ρ n , φ n ) = ˆR2 1 + p 2 A(z 1 , z 2 ) 2 (p(∂ 1 θ) 2 + p 3 (∂ 2 θ) 2 ) + K(ρ) 2 p 3 (∂ 1 A) 2 + p 5 (∂ 2 A) 2 + G + ε 2 p 3 ∂ 2 1 θ + p 2 ∂ 2 2 θ 2 + p 5 ∂ 2 1 A + ∂ 2 2 A 2 dz ≤ p 3 4 (1 + ∂ 2 θ 2 2 ) + max [1/2,3/2] K ∂ 1 A 2 2 + ∂ 2 A 2 2 2 + max G 2 + ∂ 2 1 θ 2 2 + ∂ 2 2 θ 2 2 + ∂ 2 1 A 2 2 + + ∂ 2 2 A 2 2
The constant in factor of p is clearly independent of p, n, ε.

Lemma 4.2. For any p > 0, n ≥ 1, ε > 0 the minimization problem inf E ε n (ρ, φ) with (ρ -1, ∇φ) ∈ H 2 × H 1 , P n (ρ, φ) = ˆT2 n (ρ -1)∂ 1 φ dx = p . admits a minimizer (ρ ε n (p) -1, φ ε n (p)) ∈ H 2 × H 2 , solution of    -c n,ε ∂ 1 ρ ε n + div(χ(ρ ε n )∇φ ε n ) -ε∆ 2 φ ε n = 0, -c n,ε ∂ 1 φ ε n + χ (ρ ε n ) |∇φ ε n | 2 2 -K(χ(ρ ε n ))∆ρ ε n - (K • χ) |∇ρ ε n | 2 2 + g(ρ ε n ) + ε∆ 2 ρ ε n = 0, (4.1) Moreover, there exists p 1 , M such that for p ≤ p 1 , n ≥ 5/p 2 , ε ≤ 1, c n,ε ≤ M, ρ ε n (p) -1 H 2 + ∇φ ε n (p) H 1 ≤ M p.
Furthermore for any j ≥ 2, there exists F j (p) → 0 0 such that

(ρ ε n -1, ∇φ ε n ) H j ×H j-1 ≤ F j (p).
Proof. We follow the scheme of proof of proposition 2.3 with a few technical additions. For simplicity of notations, we drop the ε, n indices. If ρ k , ϕ k is a minimizing sequence, by weak compactness and proposition 2.2 we can assume ρ k -1 ρ -1 (H 2 ), ∇ϕ k ∇φ (H 1 ), and from Rellich's compact embedding we have

lim k ˆT2 n ρ k |∇φ k | 2 + K(χ(ρ k ))|∇ρ k | 2 + G(ρ k )dx = ˆT2 n ρ|∇φ| 2 + K(χ(ρ))|∇ρ| 2 + G(ρ)dx, p = lim ˆT2 n (ρ k -1)∂ 1 φ k dx = ˆT2 n (ρ -1)∂ 1 φ dx.
We combine it with lower semi-continuity to obtain lim k E ε n (ρ k , ϕ k ) ≥ E ε n (ρ, φ), so that (ρ, φ) is a minimiser and solves (4.1) for some c(n, p, ε). By standard elliptic regularity, (ρ, u) is smooth (with norms a priori depending on ε). Multiplying the first equation by φ and integrating by parts, we find

c ˆT2 n (ρ -1)∂ 1 φdx = ˆχ(ρ)|∇φ| 2 + ε|∆φ| 2 dx ≤ 2( E ε n ) min (p) ⇔ 0 < c ≤ 2( E ε n ) min (p) p
We deduce n ≥ 5/p 2 ⇒ c < 2M with M the constant of lemma 4.1. With this bound on c(n, p, ε) we can now obtain uniform elliptic estimates. The same computations as for proposition 2.3 lead to ˆT2

n χ|∆φ| 2 + ε|∇∆φ| 2 dx ≤ 2c ∂ 1 ρ 2 2 + 2 ∇χ(ρ) 2 4 ∇φ 2 4 , ˆT2 n K(χ(ρ))(∆ρ) 2 + ε|∇∆ρ| 2 dx ≤ c ∂ 1 φ 2 + (K • χ) ∞ ∇ρ 2 4 + ρ -1 2 ∆ρ 2
As in proposition 2.3 we use ∇ψ 2 4 ∇ψ 2 ∆ψ 2 to get for some

C > 0 independent of M, ε, n ≥ 5/p 2 ∆ρ 2 2 + ∆φ 2 2 ∂ 1 φ 2 2 + ∂ 1 ρ 2 2 + ∆ρ 2 ρ -1 2 + ∇φ 4 4 + ∇ρ 4 ⇒ ∆ρ 2 2 + ∆φ 2 2 (1 -C( ∇ρ 2 2 + ∇φ 2 2 )) ∂ 1 φ 2 2 + ∂ 1 ρ 2 2 ) + ρ -1 2 2 E ε n (ρ, φ)
. 

Using E ε n ≤ M p
(ρ n , φ n ) ∈ C ∞ (T 2 n ) such that up to an extraction, for any j ≥ 1, ρ ε n -ρ n H j + ∇φ ε n -∇φ n H j-1 → ε→0 0, (ρ n , φ n ) is a solution of the minimization problem inf E n (ρ, φ) = ˆT2 n 1 2 (χ(ρ)|∇φ| 2 + K(χ(ρ))|∇ρ| 2 ) + G(ρ)dx, P n (ρ, φ) = ˆT2 n (ρ -1)∂ 1 φ dx = p 0 . Moreover, (ρ n , φ n ) is a solution of ∀ x ∈ T 2 n    -c n ∂ 1 ρ n + div(χ(ρ n )∇φ n ) = 0, -c n ∂ 1 φ n + χ |∇φ n | 2 2 -K∆ρ n - K |∇ρ n | 2 2 + g(ρ n ) = 0. (4.2) 
for some 0 ≤ c n ≤ M , M the constant from lemma 4.2 independent of p.

Proof. We fix p ≤ p 1 , (ρ ε n (p), ϕ ε n (p)) a minimizer. Using the a priori bounds, Rellich's compactness theorem and diagonal extraction we can extract a sequence ε k → 0 with

c ε n → ε c n ∈ [0, M ], ∀ j ≥ 1, (ρ ε k n (p) -1, ∇φ ε k n (p)) → (ρ n -1, ∇φ n ) (H j × H j-1 ).
Therefore we can pass to the limit in (4.1): since (ρ ε n , ∇φ ε n ) remains uniformly bounded in H 4 × H 3 , the terms ε∆ 2 ϕ ε n , ε∆ 2 ρ ε n vanish, and (ρ n , ∇φ n ) is a solution of (1.12). Similarly,

E(ρ n , φ n ) = lim ε E min (p), P (ρ n , φ n ) = p.
To check the minimization property, we prove now lim

ε→0 ( E ε n ) min (p) = ( E n ) min (p). Clearly, it suffices to prove ≤. Let δ > 0, (ρ, φ) ∈ H such that P n (ρ n , φ n ) = p, E n (ρ, φ) ≤ ( E n ) min (p) + δ.
By density of smooth functions, there exists

ρ k , φ k ∈ C ∞ (T 2 n ) such that ρ -ρ k H 1 + ∇φ - ∇φ k 2 → k 0. In particular P n (ρ k , φ k ) = p k → p
and (for k large enough so that p k = 0) ∇φ -p p k ∇φ k 2 → k 0. Using Lebesgue's dominated convergence theorem and up to an extraction

E n (ρ k , p p k φ k ) → E n (ρ, φ), P n (ρ k , p p k φ k ) = p.
Let us fix k large enough for which

E n (ρ k , φ k ) ≤ E n (ρ, φ) + δ. Then for ε(k, δ) small enough E ε n (ρ k , p p k φ k ) ≤ E n (ρ k , p p k φ k ) + δ ≤ E n (ρ, φ) + 2δ ≤ ( E n ) min (p) + 3δ.
Since δ is arbitrary it ends the argument.

Remark 5. Using the identity c n p = ´χ(ρ n )|∇φ n | 2 , c n is actually positive rather than nonnegative, but this is not useful here.

Convergence of minimizers as n → ∞

We start with the following immediate consequence of lemma 3.1.

Proposition 4.4. For any p ≥ 0, lim

n→∞ ( E n ) min (p) ≤ E min (p).
This opens the path to the existence of minimizers on R 2 . In this section, we consider a sequence of minimizers (ρ n , φ n ) of momentum p on T 2 n . We identify T 2 n as Ω n = [-nπ, nπ] 2 ⊂ R 2 . For any function ψ n defined on T 2 n , K compact, by "ψ n → ψ on K" we implicitly identify ψ n with the function defined on Ω n , n large enough so that K ⊂ Ω n . Proposition 4.5. Let p ≤ p 2 = min(p 0 , p 1 ), with (p 0 , p 1 ) from proposition 3.3 and lemma 4.2, let (ρ n (p), φ n (p)) be a minimizer of E n of momentum p. Assume

∃ δ > 0 : ∀ n ≥ 0, |ρ n (0) -1| ≥ δ, (4.3) 
then up to an extraction there exists (ρ, ∇φ) ∈ (∩ j H j ) 2 such that 1. for any j ≥ 1, any compact K ⊂ R 2 , ρ n -ρ H j (K) + ∇φ n -∇φ H j-1 → 0, in particular |ρ(0) -1| ≥ δ.

(ρ, φ

) is a solution of (1.12) for some c = lim c n ∈]0, M ], M independent of p.

3. P (ρ, φ) > 0.

Proof. Items 1. and 2. follow from the same argument as for proposition 4.3. As for n large enough 0 ≤ c n ≤ M , we have 0 ≤ c ≤ M . However, because the convergence is only local we can not pass to the limit in E(ρ n , φ n ) and P (ρ n , φ n ). For item 3. we note that the assumption |ρ n (0) -1| ≥ δ implies ρ(0) = 1, and since ρ is smooth ´R2 G(ρ)dx > 0. Since (ρ, ∇φ) is a solution of (1.12), it satisfies the identity (5.3) which reads

cP (ρ, φ) = 2 ˆ G(ρ)dx.
The right hand side is positive, and c ≥ 0, therefore c > 0 and P (ρ, φ) > 0.

Proposition 4.6. In proposition 4.5, up to a translation assumption (4.3) is true and

P (ρ, φ) = lim n P n (ρ n , φ n ) = p, (4.4) lim n ( E n ) min (p) = lim n E n (ρ n , ∇φ n ) = E(ρ, ∇φ). (4.5) 
In view of proposition 4.4, this proposition implies the existence of a solution to (1.12) which is a constrained minimizer to E. The key is to forbid the following behaviours of the sequence (ρ n , φ n ):

• dichotomy: the minimizing sequence (ρ n , φ n ) splits in (at least) two profiles whose supports are more and more distant.

• spreading: the total energy "far from the profiles" does not converge to 0, although ρ n , φ n → (1, 0) uniformly.

Profile decomposition and proof of proposition 4.6 We note d(•, •) the distance on the torus T 2 n , the energy density e(ρ, φ)

= 1 2 χ(ρ)|∇φ| 2 + K • χ(ρ)|∇ρ| 2 + (ρ -1) 2 and the momentum density p(ρ n , φ n ) = (ρ n -1)∂ 1 φ n . For x ∈ T 2 n , the set B(x, r) is the ball in T 2 n .
The key lemma is a modification of proposition 4.2 and lemma 5.2 in [START_REF] Béthuel | Travelling waves for the Gross-Pitaevskii equation[END_REF]. For the convenience of the reader we include a proof in the appendix. 

(R k n ) n≥k≥1 , l ∈ N * , (x i n ) 1≤i≤l ∈ (T 2 n ) l , M k → ∞ such that : • ∀ n ≥ 1, 1 ≤ i ≤ l, |ρ n (x i n ) -1| ≥ δ. • For any n ≥ k, inf i =j d(x i n , x j n ) ≥ 10R k n and A δ n ⊂ l i=1 B(x i n , R k n ).
• There exists C independent of δ, n, k such that for any n ≥ k,

1 ≤ i ≤ l ˆ(∪B(x i n ,R k n )) c e(ρ n , φ n ) -c n p(ρ n , φ n )dx ≤ C δ ˆ(∪B(x i n ,R k n )) c e(ρ n , φ n )dx + E n (ρ n , φ n ) M k . (4.6) • ∀ k ≥ 1, R k n -→ n R k < ∞, R k -→ k ∞.
Moreover, if c < 1, for δ small enough we can replace (4.6) by

ˆ(∪B(x i n ,R k n )) c e(ρ n , φ n )dx ≤ C E n (ρ n , φ n ) (1 -c)M k . (4.7)
Remark 6. Basically, the lemma states that there are two areas: several balls far from each other on which non trivial profiles persist as n → ∞, and a rest where there may be some "spreading" contribution to the total energy, but which is alsmot equal to the spreading part of the momentum. If c < 1 there is no spreading. Note also that l ∈ N * means that "pure spreading" does not occur.

The better estimate available if c < 1 makes this case quite simpler. Actually a consequence of (1.15) is that c ≥ 1 does not occur, unfortunately, the existence of minimizers is a prerequisite to this estimate. An interesting alternative approach would have been to prove directly that there exists no solution to (1.12) if c ≥ 1, as was done in [START_REF] Gravejat | A non-existence result for supersonic travelling waves in the Gross-Pitaevskii equation[END_REF] for the Gross-Pitaevskii case.

The case c ≥ 1

The dichotomy scenario In this paragraph, we show that the sequence of minimizers can not split in several profiles. Proposition 4.8. In lemma 4.7, we have for δ small enough l = 1.

Proof. First we note that l as a function of δ is nonincreasing, as the existence of l points such that d(x i n , x j n ) → ∞ and |ρ(x i n ) -1| ≥ ε prevents from covering A δ n for δ < ε by less than l balls of radius bounded in n. We assume by contradiction that there exists ε > 0, such that l(ε) ≥ 2. This implies the existence of (y

1 n , y 2 n ) ∈ T 2 n such that |ρ(y i n ) -1| ≥ ε, d(y 1 n , y 2 n ) -→ n ∞. For 0 < δ ≤ ε, we can assume up to a reindexation ∀ n ≥ k, y 1 n ∈ B(x 1 n , R k n ), y 2 n ∈ B(x 2 n , R k n ). (4.8)
Since ∇ρ n ∞ is bounded uniformly in n, we also remark

∃q > 0 independent of δ, ∀ n ≥ k ≥ 1, ∀ i = 1, 2, ˆB(x i n ,R k n ) G(ρ n ) ≥ q. (4.9)
We apply proposition 4.5 to (ρ n , φ n )(• -x i n ) : up to an extraction there exists (ρ i , ∇φ i ) ∈ ∩ j≥0 H j (R 2 ), solutions of (1.12) with speed c and

∀ K compact, ∀ j ≥ 1, ρ n (• -x i n ) -ρ i H j (K) + ∇φ n (• -x i n ) -∇φ i H j-1 (K) → 0.
We can assume that E n (ρ n , φ n ) converges and thus

∀ k ≥ 1, ∃ (µ k , ν k ) ∈ R + × R :                      lim n ˆT2 n e(ρ n , φ n )dx = l i=1 ˆB(0,R k ) e(ρ i , φ i )dx + µ k , lim n ˆT2 n p(ρ n , φ n )dx = l i=1 ˆB(0,R k ) p(ρ i , φ i )dx + ν k , |µ k -cν k | ≤ C δµ k + lim n E n (ρ n , φ n ) M k , (4.10) 
where

B(0, R k ) is now the usual ball of R 2 . Letting k -→ ∞ implies lim n E n (ρ n , φ n ) = l i=1 E(ρ i , φ i ) + µ, lim n P n (ρ n , φ n ) = l i=1 P (ρ i , φ i ) + ν, |µ -cν| ≤ Cδµ.
Since C is an absolute constant, we can assume Cδ < 1, thus ν ≥ 0. Let us set p i := P (ρ i , φ i ). Since (ρ i , ∇φ i ) is a solution of (1.12), identity (5.3) is true, namely

cp i = 2 ˆR2 G(ρ i )dx > 0,
thus p i > 0 and from (4.9) p 1 ≥ 2q/M, p 2 ≥ 2q/M . On the other hand, we know that ∀ n, P n (ρ n , φ n ) = p, so that by subadditivity and proposition 4.4 which is a contradiction.

l i=1 E(ρ i , φ i ) + µ = lim n E n (ρ n , φ n ) ≤ E min (p) = E min l i=1 p i + ν ⇒ E(ρ 1 , φ 1 ) + E(ρ 2 , φ 2 ) + l i=3 E min (p i ) ≤ E min l i=1 p i + E min (ν) -µ Next we use proposition 3.3: E min (ν) ≤ ν ≤ cν , subadditivity and |µ -cν| ≤ Cδµ E min (p 1 ) + E min (p 2 ) ≤ E(ρ 1 , φ 1 ) + E(ρ 2 , φ 2 ) ≤ E min p 1 + p 2 + Cδµ
The spreading scenario Ruling out this scenario follows the same scheme, but simpler. Since l = 1, from the same computations as in the previous paragraph for any δ > 0 there exists (ρ, φ), µ ≥ 0, p 1 > 0 such that P (ρ, φ) = p 1 and lim

n ( E n ) min (ρ n , φ n ) = E(ρ, φ) + µ, lim n P n (ρ n , φ n ) = p 1 + ν, |cν -µ| ≤ Cδµ. We use E min (ν) ≤ ν ≤ cν ≤ µ + Cδµ so that E min (p 1 ) + E min (ν) ≤ E min (p 1 ) + µ + Cδµ = lim n E n (ρ n , φ n ) + Cδµ ≤ E min (p 1 + ν) + Cδµ.
proposition 3.4 with q = min(ν, p 1 ) implies 0 ≤ -D(q, q) + Cδµ, letting δ → 0 we get q = 0, thus µ = ν = 0.

Conclusion

We have obtained that there exists (ρ, ∇φ) ∈ (∩ j≥0 H j ) 2 such that

∀ K compact, ρ n -ρ H j (K) + ∇φ n -∇φ H j (K) -→ n 0, lim n E n (ρ n , φ n ) = E(ρ, φ), p = lim n P n (ρ n , φ n ) = P (ρ, φ).
this ends the proof of 4.6 in the case c ≥ 1.

The case c < 1 With the same notations as in the case c ≥ 1 we have the existence of

(ρ i , ∇φ i ) 1≤i≤l such that ρ n (• -x i n ) -ρ i H j (K) -→ 0, ∇φ i n (• -x i n ) -∇φ i H j (K) -→ 0.
Let us fix δ small enough so that inequality (4.7) is true. Thanks to the pointwise inequality |(ρ -1)∂ 1 φ| C e(ρ, φ) we get the following identities

lim n ˆ E n (ρ n , φ n ) = lim k l i=1 ˆB(0,R k ) e(ρ i , φ i )dx + O(1/M k ) = l i=1 E(ρ i , φ i ), p = lim n ˆPn (ρ n , φ n )dx = l i=1 P (ρ i , φ i ).
For 1 ≤ i ≤ l, set p i = P (ρ i , φ i ). If for some δ > 0, l ≥ 2, then we have as for the case c ≥ 1

E min (p 1 ) + E min (p 2 ) + l i=3 E min (p i ) ≤ E min (p 1 + p 2 ) + 3 i=1 E min (p i ),
which leads to the absurd inequality 0 ≤ -D(p 1 , p 2 ). Thus l = 1, the conclusion is the same as for c ≥ 1.

Pohozaev type identities and applications

In this section we complete the proof of theorem 1.1 with the sharp estimates on the energy near p = 0. The first proposition does not rely on the fact that the dimension d is 2, therefore we state it in general settings. Since the solutions to (1.12) that we constructed in the previous section are smooth we state our identities for smooth functions, but they are true under much weaker assumptions.

For conciseness we write

K for K(χ(ρ)), K = d(K • χ)/dρ.
Proposition 5.1. Let (ρ, φ) be a smooth finite energy solution of (1.12).

If (ρ -1, φ) ∈ (H 2 ) 2 ,
then it satisfies the Pohozaev identities

E(ρ, φ) = ˆRd χ|∂ 1 φ| 2 + K|∂ 1 ρ| 2 dx, (5.1) 
∀ 2 ≤ j ≤ d, E(ρ, φ) = ˆRd χ|∂ j φ| 2 + K|∂ j ρ| 2 dx + cP (ρ, φ), (5.2) d -2 2 ˆRd χ|∇φ| 2 + K|∇ρ| 2 dx = -d ˆRd G(ρ)dx + (d -1)cP (ρ, φ).
(5.3)

Moreover we have cP (ρ, φ) = ˆRd χ|∇φ| 2 dx (5.4)
Proof. Multiply the first equation of (1.12) by x 1 ∂ 1 φ and integrate (note that the integrals are not clearly convergent, for a rigorous argument see e.g. proposition 5 in [START_REF] Gravejat | A non-existence result for supersonic travelling waves in the Gross-Pitaevskii equation[END_REF]):

ˆRd -cx 1 ∂ 1 ρ∂ 1 φ -χ∇φ • ∇(x 1 ∂ 1 φ)dx = ˆRd -cx 1 ∂ 1 ρ∂ 1 φ -χ|∂ 1 φ| 2 -χx 1 ∂ 1 |∇φ| 2 2 dx = ˆRd -cx 1 ∂ 1 ρ∂ 1 φ -χ|∂ 1 φ| 2 + χ|∇φ| 2 2 + x 1 ∂ 1 χ|∇φ| 2 2 dx (5.5) = 0
Now the multiplication of the second equation of (1.12) by x 1 ∂ 1 ρ and integration gives 0

= ˆRd -cx 1 ∂ 1 φ∂ 1 ρ + x 1 χ ∂ 1 ρ|∇φ| 2 2 - K∆ρ + 1 2 K |∇ρ| 2 x 1 ∂ 1 ρ + g(ρ)x 1 ∂ 1 ρ dx, with ˆRd -K∆ρx 1 ∂ 1 ρ dx = ˆRd K|∂ 1 ρ| 2 + x 1 K |∇ρ| 2 ∂ 1 ρ + x 1 K∂ 1 |∇ρ| 2 2 dx = ˆRd K|∂ 1 ρ| 2 + x 1 K |∇ρ| 2 ∂ 1 ρ 2 - K|∇ρ| 2 2 dx,
and

ˆRd x 1 g(ρ)∂ 1 ρ = ˆRd -G(ρ)dx, so that 0 = ˆRd -cx 1 ∂ 1 φ∂ 1 ρ + x 1 χ ∂ 1 ρ|∇φ| 2 2 + K|∂ 1 ρ| 2 - K|∇ρ| 2 2 -G(ρ)dx. (5.6) 
Finally, if we add (5.6) to (5.5) we obtain (5.1)

0 = ˆRd χ |∇φ| 2 2 + K |∇ρ| 2 2 + G(ρ) -χ|∂ 1 φ| 2 -K|∂ 1 ρ| 2 .
The same computations with multipliers x j ∂ j ρ and x j ∂ j φ, j ≥ 2 lead to

0 = ˆχ|∇φ| 2 + K|∇ρ| 2 2 + G(ρ) -χ|∂ j φ| 2 -K|∂ j ρ| 2 -c ∂ 1 ρx j ∂ j φ -c∂ j ρx j ∂ 1 φ dx.
This gives (5.2), indeed an integration by part shows

ˆ∂1 ρx j ∂ j φ -c∂ j ρx j ∂ 1 φ dx = ˆ-x j (ρ -1)∂ 1 ∂ j φ + x j (ρ -1)∂ 1 ∂ j φ + (ρ -1)∂ 1 φdx = P (ρ, φ).
The third identity is obtained by summing the previous ones. The last identity is obtained by multiplying the first equation in (1.12) by φ and integration.

Proposition 5.2. Let p 0 > 0 given by prop 3.3 p 0 , α, β positive such that for any (smooth) minimizer of speed c and momentum p ≤ p 0 ,

αp 2 ≤ 1 -c ≤ βp 2 .
Proof. For p ≤ p 0 , let (ρ, φ) be such a minimiser. From (5.3), (5.4) and proposition 3.

3 cp = 1 2 ˆ2 G + χ|∇φ| 2 dx ≤ E min (p) ≤ p -αp 3
which gives 1 -c ≥ αp 2 . The other inequality follows an idea from [START_REF] Béthuel | Travelling waves for the Gross-Pitaevskii equation[END_REF]: applying ∂ 1 to the first equation in (1.12) gives

-c∂ 2 1 ρ + ∂ 1 ∆φ + ∂ 1 div((χ -1)∇φ) = 0.
Next, multiply the momentum equation by K(1)/K and apply ∆ :

-c∆∂ 1 φ-K(1)∆ 2 ρ+∆ρ+∆ c 1- K(1) K ∂ 1 φ+ K(1)g K -ρ+ K(1)χ 2K |∇φ| 2 - K(1)K 2K |∇ρ| 2 = 0.
if we add these equalities we obtain

(K(1)∆ 2 -∆ + c∂ 2 1 )ρ = ∆ c K(1) K -1 ∂ 1 φ + K(1)g K -ρ + K(1)χ 2K |∇φ| 2 - K(1)K 2K |∇ρ| 2 + c∂ 1 div((χ -1)∇φ) := ∆A + c∂ 1 divB.
As χ(ρ) is bounded, g (1) = 1 and K(χ(1)) = K(1), it is easy to see

A L 1 + B L 1 E(ρ, φ) = E min (p).
Since the Fourier transform maps continuously L 1 to L ∞ , we deduce

ρ -1 2 = 2π ρ -1 2 ≤ C( A L 1 + B L 1 ) |ξ| 2 + |ξ 1 ||ξ| K(1)|ξ| 4 + |ξ| 2 -c|ξ 1 | 2 2 ≤ C E min (p) |ξ| 2 + |ξ 1 ||ξ| K(1)|ξ| 4 + |ξ| 2 -c|ξ 1 | 2 2 .
As c ≤ 1 -αp 2 < 1 the L 2 norm on the right hand side is finite, and an elementary explicit computation (see [START_REF] Béthuel | Travelling waves for the Gross-Pitaevskii equation[END_REF] 

claim 2.59) gives ρ -1 2 2 E 2 min √ 1 -c .
On the other hand we have from proposition 5.1 the (1.9)

´(ρ -1) 2 dx ∼ 2 ´ G(ρ)dx = cp = ´χ(∂ 1 φ) 2 dx, we deduce p = ˆR2 (ρ -1)∂ 1 φ ˆR2 G(ρ) + χ∂ 1 φ 2 2 dx = cp, so that c 1. Next ´(ρ -1) 2 dx ∼ cp ≥ c E min (p) E min (p) and we can conclude √ 1 -c ≤ C √ 2 E min (p) ≤ C √ 2p ⇒ c -1 -p 2 .
Corollary 5.3. There exists p 0 > 0, such that for p ≤ p 0 , if there exists a minimiser of momentum p, p -βp 3 ≤ E min (p) ≤ p -αp 3 .

(5.7)

with the same α, β as in proposition 5.2.

Proof. The inequality E min(p) ≤ p -αp 3 is proposition 3.3. Conversely thanks to propositions 5.1 and 5.2

E(ρ, φ) ≥ ˆχ|∇φ| 2 2 + G(ρ)dx = cp ≥ p -βp 3 .
Remark 7. Corollary 5.3 is rather natural with the following heuristic : consider the formal

relation δ E = cδP ⇒ dE min dp = c.
If this was true corollary 5.3 would merely be a consequence of the integration in p of the estimates on c.

A Proof of the existence of the profile decomposition

This section is devoted to the proof of lemma 4.7. First, we recall that c n is bounded, up to an extraction we assume c n → c > 0 (for the sign of c, see prop 4.5).

According to proposition 4.4 and proposition 3.3, lim( E n ) min (p) ≤ E min (p) ≤ 1 -αp 2 . Therefore for n large enough, E n ) min (p) ≤ 1 -αp 2 /2, and a straightforward modification of proposition 3.

3 implies ρ n -1 L ∞ (T 2 n )
p 2 This ensures that A δ n = {|ρ n -1| ≥ δ} is not empty at least for δ p 2 and n large enough. Next for any n ≥ 0, the set A δ n is compact, thus there exists a finite covering ∪

l(n) i=1 B(x i n , 1/3) ⊃ A δ n such that |ρ(x i n ) -1| ≥ δ. Using Vitali's lemma, there is a subset J n ⊂ {1, • • • , l} such that for i, j ∈ J n , B(x i n , 1/3) ∩ B(x j n , 1/3) = ∅ and i∈Jn B((x i n , 1) ⊃ A δ n . From lemma 4.2 ρ n -1 W 1,∞ is bounded uniformly in n, then |J n |δ 2 ρ n -1 W 1,∞ ˆB(x i n ,1/3) (ρ n -1) 2 dx E n (ρ n , φ n ),
so |J n | must be bounded uniformly too. Up to an extraction, we can assume that |J n | is a constant l.

There are two key lemmas. The first one is a kind of improved Vitali's lemma, stating that the ball can be chosen very far away from each other.

Lemma A.1. Given a collection l i=1 B(x i , R) ⊂ T 2 n
, for any M ≥ 2, there exists a subset

J ⊂ {1, • • • , l} and R ≤ R ≤ (2M ) l R such that j∈J B(x j , R ) ⊃ ∪ l i=1 B(x i , R) and for any (j, k) ∈ J 2 , d(x j , x k ) ≥ M R .
For the proof, we refer to [START_REF] Béthuel | Travelling waves for the Gross-Pitaevskii equation[END_REF] lemma 4.12. The second lemma looks a lot like proposition 4.2 from [START_REF] Béthuel | Travelling waves for the Gross-Pitaevskii equation[END_REF]. We include a proof since there is a few non trivial differences. Let us first fix some notations : for fixed n, R ≥ 1, M >> 1, we apply lemma A.1 to ∪B(x i n , R). Up to reindexing, there exists

l n ≤ l, (x i n ) 1≤i≤ln ln i=1 B(x i n , R n ) ⊃ ∪ l i=1 B(x i n , R) ⊃ A δ n , d(x i n , x j n ) ≥ R M . Lemma A.2. If ∪ ln i=1 B(x i n , R ) ⊃ A δ n is as in lemma A.1, and k ∈ N * such that 2 k < M/2, there exists 1 ≤ m ≤ k, C an absolute constant such that setting S k n := (∪ ln i=1 B(x i n , 2 m R )) c , then ˆSk n c n p(ρ n , φ n ) -e(ρ n , φ n )dx ≤ C δ ˆSk n e(ρ n , φ n )dx + E n (ρ n , φ n ) k . (A.1)
Proof. We first remark that since the balls B(

x i n , 2 k R ) are disjoint, ˆ∪ln i=1 B(x i n ,2 k R )\B(x i n ,R ) e dx = k p=1 ˆ∪ln i=1 B(x i n ,2 p R )\B(x i n ,2 p-1 R ) e dx
In particular, there exists 1 ≤ m ≤ k such that

ˆ∪ln i=1 B(x i n ,2 m R )\B(x i n ,2 m-1 R ) e dx ≤ ´∪ln i=1 B(x i n ,2 k R )\B(x i n ,R ) e dx k ≤ E n (ρ n , φ n ) k . (A.2) Now let ψ ∈ C ∞ c (R + ) such that ψ| [0,1] = 1, supp(ψ) ⊂ [0, 2], we define φn by φn = φ n , x ∈ (∪B(x i n , 2 m R )) c , φn = ψ |x -x i n | 2 m-1 R B(x i n ,2 m R )\B(x i n ,2 m-1 R ) φ n dx + (1 -ψ)φ n , x ∈ B(x i n , 2 m R ).
We recall the Poincaré-Wirtinger inequality ˆB(0,2)\B(0,1)

|f -f | 2 dx ≤ C ∇f 2 L 2 (B(0,2)\B(0,1)) ,
so that from a scaling argument

ˆB(x i n ,2 m R )\B(x i n ,2 m-1 R ) |∇ φn | 2 dx ∇φ n 2 L 2 (B(x i n ,2 m R )\B(x i n ,2 m-1 R ) . (A.3)
If we multiply the first equation of (4.2) by φn and integrate over T 2 n we obtain ˆSk

n c n p(ρ n , φ n )dx -χ(ρ n )|∇φ n | 2 dx + l(n) i=1 ˆB(x i n ,2 m R )\B(x i n ,2 m-1 R ) c n (ρ n -1)∂ 1 φn -χ(ρ n )∇φ n ∇ φn dx = 0.
Using Cauchy-Schwarz's inequality, (A.2) and (A.3) we can bound the second term

l(n) i=1 ˆB(x i n ,2 m R )\B(x i n ,2 m-1 R ) c n (ρ n -1)∂ 1 φn -χ∇φ n ∇ φn dx ˆ∪B(x i n ,2 m R )\B(x i n ,2 m-1 R ) e(ρ n , φ n )dx ≤ E n (ρ n , φ n ) k .
We have obtained ˆSk

n c n p(ρ n , φ n ) -ρ n |∇φ n | 2 dx ≤ C E n (ρ n , φ n ) k . (A.4)
To conclude, we remark that near ρ = 1, g(ρ

) ∼ ρ -1, G(ρ) ∼ (ρ -1) 2 /2, so that | g(ρ n )(ρ n - 1) -2 G(ρ n )| δ G(ρ n ) ≤ δ e. As a consequence ˆSk n -c n p(ρ n , φ n ) + K|∇ρ n | 2 + 2 G(ρ n ) dx ≤ C δ ˆSk n e n dx + E n (ρ n , φ n ) k (A.6)
Putting together (A.4) and (A.6), we find the expected result

ˆSk n -c n p(ρ n , φ n ) + K(ρ n )|∇ρ n | 2 + χ(ρ n )|∇φ n | 2 2 + G(ρ n ) dx ≤ C δ ˆSk n e n dx + E n k .
Now we combine these two lemmas to construct the sequence R k n through a diagonal extraction.

A.1 The case c ≥ 1

Construction of R 1 n We recall that for any n ≥ 0, A δ n ⊂ ∪ l i=1 B(x i n , 1). We apply lemma A.1 with M = 10, this gives for any n a subset

J 1 n ⊂ {1, • • • , l} and 1 ≤ R 1 n ≤ (20) l such that j∈J 1 n B(x j n , R 1 n ) ⊃ ∪ l i=1 B(x i n , 1 
), and for any (i, j)

∈ J 1 n , d(x j n , x i n ) ≥ 10R 1 n .
We apply lemma A.2 with k = 1 5 , then (A.1) is true on

S 1 n = ( J 1 n B(x j n , 2R 1 n ) c . Since (2R 1 n ) n and |J 1
n | are bounded, there is an extraction ψ 1 (n) such that 2R 1 ψ 1 (n) converges to some R 1 ≥ 2 and J 1 ψ 1 (n) = J 1 does not depend of n.

Construction of R 2 n We apply once more lemma A.1 to ∪ l i=1 B(x i ψ 1 (n) , 2) with M = 3 • 10. For any n there is a subset

J 2 ψ 1 (n) ⊂ {1, • • • , l}, 2 ≤ R 2 ψ 1 (n) ≤ 2(60) l such that i∈J 2 ψ 1 (n) B(x i ψ 1 (n) , R 2 ψ 1 (n) ) ⊃ ∪ l i=1 B(x i ψ 1 (n) , 1),
and for any (i, j)

∈ J 1 ψ 1 (n) , d(x j ψ 1 (n) , x i ψ 1 (n) ) ≥ 30R 2 ψ 1 (n) .
From lemma A.2 with k = 2, for any n there exists 1

≤ m 2 ψ 1 (n) ≤ 2 such that (A.1) is true on S 2 ψ 1 (n) = J 2 ψ 1 (n) B(x j ψ 1 (n) , 2 m 2 ψ 1 (n) R 2 ψ 1 (n) ) c . Since (2 m 2 ψ 1 (n) R 2 ψ 1 (n) ) n and |J 2 ψ 1 (n) | are bounded, there is a sub-extraction ψ 2 (n) such that 2 m 2 ψ 2 (n) R 2 ψ 2 (n) -→ n R 2 ≥ 4 and J 2 ψ 2 (n) = J 2 .
The generic argument at step k to construct of R k n is the following : 5 In this case obviously p = 1, but this will not be the case in the rest of the induction argument.

Construction of R k n At step k, we have an extraction ψ k-1 (n), we apply lemma A.2 to

∪ l i=1 B(x i ψ k-1 (n) , 2 k ) with M = 10 • 3 k-1 , which gives again 2 k ≤ R k ψ k-1 (n) ≤ 2 k (20 • 3 k-1 ) l , J k ψ k-1 (n) ⊂ {1, • • • , l} as before, then lemma A.2 provides 1 ≤ m k ψ k-1 (n) ≤ 2 k such that (A.1) is true on S k ψ k-1 (n) = J k ψ k-1 (n) B(x j ψ k-1 (n) , 2 m k ψ k-1 (n) R k ψ k-1 (n) ) c . The union is disjoint since d(x j ψ k-1 (n) , x i ψ k-1 (n) ) ≥ 10 • 3 k-1 R ψ k-1 (n) ≥ 5 • (3/2) k-1 (2 m k ψ k-1 (n) R k ψ k (n) ).
Since (2

m k ψ k-1 (n) R k ψ k-1 (n) ) n , (|J k ψ k-1 (n) |) n are bounded in n, there is an extraction ψ k such that 2 m k ψ k (n) R k ψ k (n) -→ n R k ≥ 2 k+1 , J k ψ k (n) = J k . Conclusion Since 2 ≤ |J k | ≤ l,
there exists an extraction σ such that J σ(k) = J does not depend on k and |J| ≥ 2. We consider the diagonal extraction ψ σ(n) (σ(n)) = Ψ(n) and set for

n ≥ k, R k n := 2 m σ(k) Ψ(n) R σ(k) ψ(n) , (X j n ) j∈J := (x j Ψ(n) ) j∈J . By construction, d(X i n , X j n ) ≥ 5 • (3/2) k-1 R k n , R k n -→ n R k ≥ 2 σ(k) -→ k +∞,
and for any n ≥ k, according to lemma A.2

ˆ( J B(X j n ,R k n )) c c Ψ(n) p -e (ρ Ψ(n) , φ Ψ(n) )dx ≤ C δ ˆ( J B(X j n ,R k n )) c edx + E Ψ(n) σ(k) .
A.2 The case c < 1

In this case, for an arbitrary subset Ω we use the simple estimate :

∀ x ∈ Ω, |p| ≤ (ρ -1) 2 + χ|∂ 1 φ| 2 2 inf Ω √ χ Combining this with G(ρ) = (1 -ρ) 2 /2 + O((1 -ρ) 3 ), this implies for δ small ∃ C > 0 : ∀ x ∈ A δ n , |p(ρ n (x), φ n (x))| ≤ e(ρ n (x), φ n (x)) 1 -Cδ .
For any set S ⊂ A δ n , provided n is large enough, δ small enough, we get

ˆS e -c n pdx ≥ 1 - c n 1 -Cδ ˆS edx ≥ 1 -c 2 ˆS edx. Now lemma A.2 with k ≥ 1, R = 1, M = 10 • 3 k-1 provides S k n ⊂ A δ
n on which equation (A.1) combined with the inequality above implies for δ small enough

1 -c 2 ˆSk n edx ≤ C E n k + δ ˆSk n edx ⇒ ˆSk n e E n k .
Therefore, arguing as for c ≥ 1 we obtain extractions Ψ, σ such that for n

≥ k d(X i n , X j n ) ≥ 5 • (3/2) k-1 R k n , ˆ B(X j n ,R k n ) e(ρ Ψ(n) , φ Ψ(n) )dx, ≤ C E n σ(k) with lim n R k n = R k ≥ 2 σ(k) .

B Remarks on the one dimensional case

The existence and stability of solitary waves for nonlinear Schrödinger type equations

i∂ t ψ + ∂ 2 x ψ = g(|ψ| 2
)ψ, with g(ρ 0 ) = 0, is now quite well understood. Existence follows from basic ODE technics since the corresponding equation is integrable, stability is a more delicate issue, but can nevertheless be tackled in several ways. The first approach is to consider the minimization problem inf{E N LS (ψ), P N LS (ψ) = p}. Due to better Sobolev embeddings in dimension 1 it can be directly solved, the stability of minimizers then follows by the classical Cazenave-Lions [START_REF] Cazenave | Orbital stability of standing waves for some nonlinear Schrödinger equations[END_REF] argument. This program has been carried at least in the Gross-Pitaevskii case g(ρ) = ρ -1 in [START_REF] Béthuel | Existence and properties of travelling waves for the Gross-Pitaevskii equation[END_REF]. More recently D. Chiron studied extensively in [START_REF] Chiron | Stability and instability for subsonic traveling waves of the nonlinear Schrödinger equation in dimension one[END_REF] the stability and instability of traveling waves for very general g(ρ). Among the variety of technics developed was an approach à la Grillakis-Shatah-Strauss which is very efficient in our case too. In this section, we want to underline that traveling waves of (1.1) and NLS share remarkable common features :

1. their speed is bounded by the sound speed c s = ρ 0 g (ρ 0 ) for (1.1), 2ρ 0 g (ρ 0 ) for NLS, 2. if there exists a traveling wave of speed c 0 < c s , there exists a local branch of traveling waves parametrized by their speed as ψ c or (ρ c , φ c ), 3. the stability criterion is dP N LS (ψ c )/dc < 0, resp. dP (ρ c , φ c ) < 0.

The existence and conditional stability of solitary waves for (1.1) in dimension one was already obtained in [START_REF] Benzoni-Gavage | Structure of Korteweg models and stability of diffuse interfaces[END_REF] with a stability criterion that can be easily proved as equivalent to dP/dc < 0 (see remark 8). Nonlinear instability was left open, but using methods developed for Schrödinger type equations in [START_REF] Lin | Stability and instability of traveling solitonic bubbles[END_REF], we will prove that dP/dc > 0 implies nonlinear instability. This is the only new result of this section, which is structured as follows : we rewrite the equations in a more convenient form, and show the existence of traveling waves that can be parametrized by their speed (proposition B.1). Next we recall the stability criterion of [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF] and show that its assumptions are satisfied. Finally, we prove in theorem B.4 that the failure of the stability criterion implies nonlinear instability.

Let us now turn to the equations under study. We take ρ ∞ > 0 and assume g(ρ ∞ ) = 0, g (ρ ∞ ) > 0, we will study traveling waves with lim ±∞ ρ = ρ ∞ . As in the rest of the article, we assume that g and K are smooth on ]0, +∞[ in order to avoid technical issues. G is the primitive of g that cancels at ρ ∞ . In order to avoid the peculiar space Ḣ1 , we will use a slight modification of the hamiltonian and momentum. Instead of

E(ρ, φ) = ˆR ρ|∇φ| 2 + K|∇ρ 2 | 2 + G(ρ)dx, defined for (ρ, φ) ∈ H 1 × Ḣ1 , we consider E(ρ, u) = ˆR ρ|u| 2 + K|∇ρ 2 | 2 + G(ρ)dx, P (ρ, u) = ˆR(ρ -ρ ∞ )udx. defined for (ρ, u) ∈ (ρ ∞ + H 1 ) × L 2 with ρ > 0.
For the variables (ρ, u), the Euler-Korteweg system has the following hamiltonian structure

∂ t ρ u = 0 -∂ x -∂ x 0 δE δρ δE δu = JδE. (B.1)
Traveling waves of speed c can be seen as critical points of

E -cP : if ρ(x -ct), u(x -ct) solves (B.1) with lim ±∞ ρ = ρ ∞ , lim ±∞ u = 0, then -c(ρ -ρ ∞ ) + ρu = 0 -cu + u 2 /2 + g(ρ) = Kρ + 1 2 K (ρ ) 2 ⇔ c δP δρ δP δu = δE δρ δE δu
Obviously if (ρ, u) is a traveling wave of speed c, (ρ, -u) is a traveling wave of speed -c, therefore we focus on the case c > 0 (we choose not to consider the degenerate case c = 0). This ODE system can be elementarily integrated: from the first equation, u = c(ρ -ρ ∞ )/ρ, injecting this in the second equation, and multiplying it by ρ , we obtain after integration

-c 2 2ρ (ρ -ρ ∞ ) 2 + G(ρ) = 1 2 K(ρ ) 2 , (B.2) Letting x → ∞, we find 0 ≤ 1 2 K(ρ ) 2 = (ρ -ρ ∞ ) 2 2ρ ∞ (ρ ∞ g (ρ ∞ ) -c 2 ) + O(ρ -ρ ∞ ) 3 .
We deduce the so-called subsonic condition

|c| ≤ ρ ∞ g (ρ ∞ ) := c s .
In both cases, P (ρ, u) > 0. Moreover, near any traveling wave of speed c 0 < c s there exists a branch of traveling waves that can be parametrized by c ∈ (c 0 -ε, c 0 + ε) for ε small enough.

Given a branch of traveling waves defined on some interval of speeds I, we abusively denote E(c), P (c) the energy and momentum of the traveling wave of speed c in this branch, E , P their derivative with respect to c. Regarding stability, following the famous result of Grillakis-Shatah-Strauss [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF], the moment of instability was defined in [START_REF] Benzoni-Gavage | Planar traveling waves in capillary fluids[END_REF] as

m(c) = E(c) -cP (c).
Let us shortly summarize the framework from [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF]: the Euler-Korteweg equations are seen as the hamiltonian system (B.1), it is invariant by translation, the conservation law associated to the translation invariance is the momentum P (ρ, u). Since a traveling wave satisfies δE -cδP = 0, it is a critical point of E -cP . We say that a traveling wave is conditionally orbitally stable if for any ε > 0, there exists δ > 0 such that if (ρ 0 , u 0 ) -(ρ c , u c ) H 1 ×L 2 < δ and the solution exists on [0, T ) then [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF]). Under the following assumptions:

sup t∈[0,T ) inf y∈R (ρ(t, • + y), u(t, • + y)) -(ρ c , u c ) H 1 ×L 2 < ε. Theorem B.2 ([
• δ 2 E -cδ 2 P has only one negative simple eigenvalue

• its kernel is spanned by ∂ x (ρ c , u c ), the rest of its spectrum is positive bounded away from 0

• J is onto then the traveling wave of speed c is conditionally orbitally stable if and only if m (c) > 0. If J is not onto the "if " part remains true, but the "only if " part may fail.

Remark 8. An alternative version of m (c) > 0 can be stated as follows: since any traveling wave of speed c is a critical point of the functional (ρ, u) → E -cP , we have for any c ∈ I, E (c) -cP (c) = 0 , differentiating twice E(c) -cP (c), we find m (c) = -P (c), so that m > 0 is equivalent to P < 0. In this case the application c → P (c) is locally invertible and we may parametrize E by P . Since dE/dP = E /P = c, we have

d 2 E dP 2 = dc dP < 0,
so that the stability condition implies the strict concavity of E(P ). We point out that in dimension 2 the curve E min (P ) is concave (proposition 3.2). This is an indication in favour of the stability of the traveling waves that we constructed.

Notations: (ρ c , u c ) is a branch of traveling waves locally parametrized by their speed c. We denote •, • for both the L 2 and (L 2 ) 2 scalar product. We use the variable r = ρ -ρ ∞ , set r c := ρ c -ρ ∞ and set with an abusive notation P (r, u) := P (ρ, u), then

P (r, u) = ˆru dx, δP (r, u) = u r = 0 1 1 0 r u . We denote L = δ 2 E -cδ 2 P , U c = (r c , u c ).
For any function depending on the speed f c (and possibly on the x variable), we denote f c := df c /dc. To avoid confusion we denote ∂ x the spatial derivative.

Spectral assumptions for L := δ 2 E -cδ P They were obtained in [START_REF] Benzoni-Gavage | Structure of Korteweg models and stability of diffuse interfaces[END_REF] for the lagrangian formulation of the equations. The argument in the eulerian variable is slightly more involved, we include it for completeness: has exactly one negative eigenvalue. In particular, if r -is an eigenvector associated to the negative eigenvalue and U -= (r -, -(u c -c)r -/ρ c ), then LU -, U -= (M -(u c -c) 2 /ρ c )r -, r -< 0, (B.5) so that δ 2 E -cδ 2 P has at least one negative eigenvalue. Conversely, if λ < 0 is an eigenvalue of δ 2 E -cδ 2 P with eigenvector (U 1 , U 2 ), from basic computations

L(ρ c , u c ) = M u c -c u c -c ρ c , Mr = G - K (∂ x ρ c ) 2 2 -K ∂ 2 x ρ c
M - (u c -c) 2 ρ c - λ(u c -c) 2 ρ c (λ -ρ c ) U 1 = λU 1 ,
so that λ is an eigenvalue of δ 2 E -cδ 2 P if and only if it is an eigenvalue of

M λ = M - (u c -c) 2 ρ c - λ(u c -c) 2 ρ c (λ -ρ c ) .
As the application λ ∈ R -→ λ/(λ -ρ c ) is decreasing, the family M λ is decreasing too (in the sense of the scalar product). Let λ -< 0 be the minimal eigenvalue of δ 2 E -cδ 2 P . Since M 0 = M -(u c -c) 2 /ρ c , it has only one negative eigenvalue, and thus so does M λ for λ -≤ λ ≤ 0. If δ 2 E -cδ 2 P had an other negative eigenvalue λ -< λ < 0, then λ would be the only negative eigenvalue of M λ . By monotony λ < λ -which is absurd.

For the last condition, we have characterized the negative eigenvalue and the kernel. It suffices then to observe that thanks to the subsonic condition

lim x→∞ G (ρ c ) - K (ρ c )(∂ x ρ c ) 2 2 -K (ρ c )∂ 2 x ρ c - (u c -c) 2 ρ c = ρ ∞ g (ρ ∞ ) -c 2 ρ ∞ > 0,
thus the essential spectrum of M -(uc-c) 2 ρc is positive bounded away from zero.

Theorem B.2 can now be applied :

Corollary B.3 (orbitaly stability, [START_REF] Benzoni-Gavage | Structure of Korteweg models and stability of diffuse interfaces[END_REF]). If -P (c) = m (c) > 0, then (ρ c , u c ) is conditionally orbitally stable.

Remark 9. Unfortunately, the well-posedness theory from [START_REF] Benzoni-Gavage | Well-posedness of one-dimensional Korteweg models[END_REF] only provides local existence for (ρ(t = 0), u(t = 0)) ∈ (ρ 0 + H s+1 ) × H s , s > 3/2, therefore it is not clear if a smooth solution starting near a traveling wave exists for all times. At least in the case K = 1/ρ, one can combine the existence of global solutions to NLS that remain bounded away from 0 and use the Madelung transform to convert them into solutions of (1.1).

Remark 10. The condition P (c) < 0 seems a bit easier to check than m > 0. For example for ρ m < ρ ∞ from (B.2)

P (ρ c , u c ) = ˆR(ρ c -ρ ∞ )u c dx = 2 ˆρ∞ ρm c(ρ -ρ ∞ ) 2 ρ K 2(G -c 2 2ρ (ρ -ρ ∞ ) 2 
))dρ, with ρ m the first zero of G -c 2 2ρ (ρ -ρ ∞ ) 2 below ρ ∞ .

Nonlinear instability is not a direct application of theorem B.2, indeed 0 -∂ x -∂ x 0 is not onto so the only if part can not be used. Of course there is no gain in adopting the formulation with (ρ, φ) ∈ H 1 × Ḣ1 : in this case J = 0 -1 1 0 , but Ḣ1 is not a Hilbert space. Nevertheless this obstruction was overcome in various settings, in particular we shall follow the approach of Lin [START_REF] Lin | Stability and instability of traveling solitonic bubbles[END_REF] (see also [START_REF] Bona | Stability and instability of solitary waves of Korteweg-de Vries type[END_REF]) to prove the following result:

Theorem B.4. Let (ρ c , u c ) be a traveling wave of speed c > 0. If dP dc > 0, then the traveling wave is unstable, i.e., there exists ε > 0 such that for any δ > 0, there exists (ρ 0 , u 0 ) ∈ H 3 ×H 2 such that ρ 0 -ρ c H 1 + u 0 -u c L 2 < δ and either the corresponding solution (ρ, u) blows up in finite time, or

sup t∈R + inf y∈R ρ(t, • + y) -ρ c H 1 + u(t, • + y) -u c L 2 ≥ ε.
We recall the notation U c = (r c , u c ) = (ρ c -1, u c ). The proof in the framework of [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF] relies on the existence of a smooth curve ψ(s) : (-η, η) -→ H 1 × L 2 for some η > 0, with ψ(0) = (r c , u c ), P (ψ(s)) = P (r c , u c ), (δ 2 E -cδ 2 P )ψ (0), ψ (0) < 0.

It provides an "unstable direction" y = dψ/ds| s=0 such that δ 2 (E -cP )y, y < 0, δP (U c ), y = 0, (B.6) and a Lyapunov function A(U ) = -J -1 y, U (•+x min (U )) , where x min (U ) minimizes (r c , u c )-U (•+x) H 1 ×L 2 (see lemma B.5 below). For 0 < s << 1, it is proved that the solution (r(t), u(t)) with Cauchy data (r(0), u(0)) = ψ(s) is unstable due to some growth of A(r(t), u(t)). This approach raises two issues:

• J -1 y does not exist a priori. The method in [START_REF] Lin | Stability and instability of traveling solitonic bubbles[END_REF] is to construct y 1 ∈ range(J) close to y, which still satisfies (B.6), and carry on the proof.

• All constructions are performed in the natural functional settings (r, u) ∈ H 1 × L 2 , but the best local well-posedness result requires (r(0), u(0)) ∈ H s+1 × H s , s > 3/2 (see [START_REF] Benzoni-Gavage | Well-posedness of one-dimensional Korteweg models[END_REF]).

We use a density argument to replace the unstable initial data ψ(s) ∈ H 1 × L 2 by a regularized version.

This program requires a collection of lemmas that we prove only when there is a significant difference with [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF]. For ε small enough, there exists a smooth map x min : V ε → R which realises the inf, namely :

U (• + x min (U )) -U c H 1 ×L 2 = inf x U (• + x) -U c H 1 ×L 2 .
Moreover x min (U (• + r)) = x min (U ) -r.

The following lemma is the only one where the lack of surjectivity of J requires some corrections.

Lemma B.6 (theorem 4.1 [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF]). There exists y ∈ Im(J) ∩ (H 1 ) 2 such that δP (U c ), y = 0, Ly, y < 0, and a smooth curve ψ : (-η, η) → {(U ∈ H 1 × L 2 : P (U ) = P (U c )} with dψ ds (0) = y, d 2 ψ ds 2 (0) < 0.

In particular, s = 0 is a local maximum of E(ψ(s)).

Lemma 4 . 7 .

 47 Let (ρ n , φ n ) be a sequence of minimizers of E n of momentum p. Up to an extraction, c n -→ c ∈]0, M ], M independent of p. For δ p 2 , we set A δ n = {x : |ρ n (x) -1| ≥ δ}. Up to an other extraction there exists a sequence of radiuses

But from proposition 3 . 4 ,

 34 E min (p 1 ) + E min (p 2 ) -E min p 1 + p 2 ≥ D(2q/M, 2q/M ) > 0, while letting δ → 0 we find D(2q/M, 2q/M ) ≤ 0, (4.11)

U 2 = λ c -u c ρ c ∂ x ρ c = λcρ ∞ ρ 2 c∂

 22 r -∂ x (K∂ x r). (B.4) Due to the invariance by translation, we have (δE -cδP)(ρ c , u c )(•+x) = 0, by differentiation in x we get L(ρ c , u c )∂ x (ρ c , u c ) = 0. Conversely if U = (U 1 , U 2 ) ∈ Ker(L), we have U 2 = c-uc ρc U 1 , and U 1 ∈ Ker(M -(u c -c) 2 /ρ c ). As M -(u c -c) 2 /ρ c is a Sturm-Liouville type operator, its kernel is of dimension one and since ∂ x ρ c ∈ Ker(M -(u c -c) 2 /ρ c ), there exists λ ∈ R such that U 1 = λ∂ x ρ c . Next using u c = c(1 -ρ ∞ /ρ c ) x ρ c = λ∂ x u c , so ∂ x (ρ c , u c )spans Ker(δ 2 E -cδ 2 P ). Furthermore as ∂ x ρ c has exactly one zero, from Sturm Liouville's theory the operator M -(uc-c) 2 ρc

Lemma B. 5 (

 5 lemma 3.2[START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF].). LetV ε = {(r, u) ∈ H 1 × L 2 : inf x ( r(• + x) -r c H 1 + u(• + x) -u c L 2 ) < ε.

  This is a basic concavity argument. First we remark that E min is not linear on any interval [0, p], since E min (0) = 1 and E min (p) < p. Assume there exists p 1 ≤ p 2 such that E min (p 1 +p 2 ) = E min (p 1 ) + E min (p 2 ). For a unified treatment, if p 1 = p 2 we write E min (p 2 ) -E min (p 1 ) p 2 -p 1 for the right derivative of E min . By concavity and using E min

	This readily implies lim n	E min (pn) pn	≥ 1, and 1) is thus true.
	2.		

  from lemma 4.1, we obtain for p << 1/CThe estimate for j = 2 follows since the energy controls ρ -1 H 1 + ∇φ L 2 , the case j > 2 is a standard bootstrap argument. Proposition 4.3. Let p 1 as in lemma 4.2. For any p ≤ p 1 , n ≥ 5/p 2 , there exists

	∆ρ 2 2 + ∆φ 2 2 ≤ M p, M indepent of p, ε, n ≥ 5/p 2 .

In dimension

the space Ḣ1 requires a bit of cautiousness, see definition 2.1

Actually the key is not concavity, but a consequence: strict subadditivity.

some optimization can be done by choosing a so-called ground state, but it is not really useful here.
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We turn to symmetric computations on the second equation of (4.2). We set

In this case, since (ρ n -1) 2 e n (ρ n , φ n ) and |ρ n -1| ≤ |ρ n -1| we will not need the Poincaré-Wirtinger inequality. As in the previous section, we denote K for (K

Multiplying the second equation of (4.2) by ρn -1 and integrating on

We point out that ρn -1 = 0 on ∪B(

To estimate the left hand side, we observe that on

so that the left hand side in (A.5) is bounded by E n /k. This estimate, combined with |ρ n -

Conversely, if 0 < c < ρ ∞ g (ρ ∞ ) consider the application

On a neighbourhood of ρ ∞ , F > 0, and since lim 0

We also point out the identity

so that for any traveling wave with non zero speed, P (ρ c , u c ) = 0. Finally, consider F as a function of (ρ, c). Given 0 < c 0 < c s , the condition F (ρ m , c 0 ) = 0, ∂ ρ F (ρ m , c 0 ) = 0 implies from the implicit function theorem there exists ρ I (c) smooth, defined on a neighbourhood of c 0 and a neighbourhood of (ρ m , c) such that F (ρ, c) = 0 iff ρ = ρ I (c). Up to shrinking the neighbourhood of c, ρ

, and in particular this gives a small branch of solitary waves parametrized by c, that have for minimal value ρ I (c). These observations can be summarized with the following proposition.

Proposition B.1. There exists no nontrivial traveling wave for c > c s . For 0 < c < c s , there exists a nontrivial traveling wave if and only if at least one of the two cases is true

In this case, up to translation ρ is the solution of the Cauchy problem

It is even, decreasing on ] -∞, 0].

In this case, up to translation ρ is the solution of the Cauchy problem

It is symmetric, increasing on ] -∞, 0].

Proof. Let U -as in (B.5), y 0 = αU c + U -, α = -δP (U c ), U -/ δP (U c ), U c . We have δP (U c ), y 0 = 0, moreover δE(U c ) -cδP (U c ) = 0, by differentiation in c, LU c = δP (U c ). This implies

From (B.5), LU -, U -< 0, δP (U c ), U c = P (c) > 0, thus Ly 0 , y 0 < 0. We construct then y ∈ Im(J) close to y 0 . From classical ODE arguments U c (x) and U -(x) converge exponentially fast to 0 at infinity, in particular (1 + |x|)y 0 (x) ∈ L 1 . According to [START_REF] Lin | Stability and instability of traveling solitonic bubbles[END_REF], lemma 5.2, for any µ > 0 there exists

In 

The next lemmas correspond to [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF] from lemma 4.2 to lemma 4.6. Let y = (y 1 , y 2 ) from lemma B.6 and define

Lemma B.9. Let M (U ) := U (• + x min (U )), U -1 an eigenvector associated to the negative eigenvalue of δ 2 E -cδ 2 P . The solutions of M (R(λ, U )) -U c , U -1 = 0 can be parametrized as (Λ(U ), U ), where Λ is a functional in C 1 (V ε , R). For U ∈ V ε such that P (U ) = P (U c ),

End of proof of theorem B.4 Since Q changes sign, there exists s such that Q(ψ(s)) > 0. Since lim 0 ψ(s) = U c , ψ(s) can be chosen arbitrarily close to U c . From lemma B.6 E(ψ(s)) < E(U c ) and for s small enough using (B.3) we have P (ψ(s)) > 0. For (ϕ n ) n≥0 a standard sequence of mollifiers,

For n large we can assume P (ϕ n * ψ(s)) = 0, E(ϕ n * ψ(s)) < E(U c ) and we define

ϕ n * ψ(s),

As P (ψ(s))/P (ϕ n * ψ(s)) -→ n 1, for n large enough E(U n ) < E(U c ) and by construction P (U n ) = P (U c ). Let U = (r, u)(t) the solution of (B.1) with initial data U n . By conservation of E and P (see [START_REF] Benzoni-Gavage | Well-posedness of one-dimensional Korteweg models[END_REF]), and (B.10), as long as

This implies Λ > 0 and up to diminishing ε we can assume Λ ≤ 1, so that

which can only remain true for a finite time. Thus U (t) must exit V ε or blows up before.