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Backward Stochastic Differential Equations with

no driving martingale, Markov processes and

associated Pseudo Partial Differential Equations.

Adrien BARRASSO ∗ Francesco RUSSO†

January 2017

Abstract. We investigate existence and uniqueness for a new class of Back-
ward Stochastic Differential Equations (BSDEs) with no driving martingale.
When the randomness of the driver depends on a general Markov process X
those BSDEs are denominated forward BSDEs and can be associated to a deter-
ministic problem, called Pseudo-PDE which constitute the natural generaliza-
tion of a parabolic semilinear PDE which naturally appears when the underlying
filtration is Brownian. We consider two types of solutions for the Pseudo-PDEs:
classical and of martingale type.

MSC 2010 Classification. 60H30; 60H10; 35S05; 60J35; 60J60; 60J75.
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1 Introduction

This paper focuses on a new concept of Backward Stochastic Differential Equa-
tion (in short BSDE) with no driving martingale of the form

Yt = ξ +

∫ T

t

f̂

(

r, ·, Yr,
√

d〈M〉
dV

(r)

)

dVr − (MT −Mt), (1.1)

defined on a fixed stochastic basis fulfilling the usual conditions. V is a given
non-decreasing continuous adapted process, ξ (resp. f̂) is a prescribed terminal
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condition (resp. driver). The unknown will be a couple of cadlag adapted
processes (Y,M) where M is a martingale. A particular case of such BSDEs are
the forward BSDEs (in short FBSDEs) of the form

Y s,xt = g(XT )+

∫ T

t

f

(

r,Xr, Y
s,x
r ,

√

d〈M s,x〉
dV

(r)

)

dVr− (M s,x
T −M s,x

t ), (1.2)

defined in a canonical space
(

Ω,Fs,x, (Xt)t∈[0,T ], (Fs,x
t )t∈[0,T ],Ps,x) where

(Ps,x)(s,x)∈[0,T ]×E corresponds to the laws (for different starting times s and
starting points x) of an underlying forward Markov process with time index
[0, T ], taking values in a Polish state space E, and which is characterized as
the solution of a martingale problem related to a certain operator a. (1.2) will
be naturally associated with a deterministic problem involving a, which will be
called Pseudo-PDE. The forward BSDE (1.2) seems to be appropriated in the
case when the forward underlying process X is a general Markov process which
does not rely to a fixed reference process or random field as a Brownian motion
or a Poisson measure.

The classical notion of Brownian BSDE was introduced in 1990 by E. Par-
doux and S. Peng in [30], after an early work of J.M. Bismut in 1973 in [8]. It is a
stochastic differential equation with prescribed terminal condition ξ and driver
f̂ ; the unknown is a couple (Y, Z) of adapted processes. Of particular interest
is the case when the randomness of the driver is expressed through a forward
diffusion process X and the terminal condition only depends on XT . The solu-
tion, when it exists, is usually indexed by the starting time s and starting point
x of the forward diffusion X = Xs,x, and it is expressed by
{

Xs,x
t = x+

∫ t

s
µ(r,Xs,x

r )dr +
∫ t

s
σ(r,Xs,x

r )dBr

Y s,xt = g(Xs,x
T ) +

∫ T

t
f (r,Xs,x

r , Y s,xr , Zs,xr ) dr −
∫ T

t
Zs,xr dBr,

(1.3)

where B is a Brownian motion. Existence and uniqueness of (1.3) (that we
still indicate with FBSDE) above was established first supposing essentially
Lipschitz conditions on f with respect to the third and fourth variable. µ and
σ were also supposed to be Lipschitz (with respect to x). In the sequel those
conditions were considerably relaxed, see [32] and references therein.
In [33] and in [31] previous FBSDE was linked to the semilinear PDE

{

∂tu+ 1
2

∑

i,j≤d

(σσ⊺)i,j∂
2
xixj

u+
∑

i≤d

µi∂xi
u+ f((·, ·), u, σ∇u) = 0 on [0, T [×Rd

u(T, ·) = g.
(1.4)

In particular, if (1.4) has a classical smooth solution u then (Y s,x, Zs,x) :=
(u(·, Xs,x

· ), σ∇u(·, Xs,x
· )) solves the second line of (1.3). Conversely, only un-

der the Lipschitz type conditions mentioned after (1.3), the solution of the
FBSDE can be expressed as a function of the forward process (Y s,x, Zs,x) =
(u(·, Xs,x

· ), v(·, Xs,x
· )), see [18]. When f and g are continuous, u is a viscosity
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solution of (1.4). Excepted in the case when u has some minimal differentiabil-
ity properties, see e.g. [22], it is difficult to say something more on v.

Since the pioneering work of [31], in the Brownian case, the relations between
more general BSDEs and associated deterministic problems have been studied
extensively, and innovations have been made in several directions.
In [4] the authors introduced a new kind of FBSDE including a term with jumps
generated by a Poisson measure, where an underlying forward process X solves
a jump diffusion equation with Lipschitz type conditions. They associated with
it an Integral-Partial Differential Equation (in short IPDE) in which some non-
local operators are added to the classical partial differential maps, and proved
that, under some continuity conditions on the coefficients, the BSDE provides
a viscosity solution of the IPDE. In chapter 13 of [5], under some specific con-
ditions on the coefficients of a Brownian BSDE, one produces a solution in the
sense of distributions of the parabolic PDE. Later, the notion of mild solution
of the PDE was used in [2] where the authors tackled diffusion operators gener-
ating symmetric Dirichlet forms and associated Markov processes thanks to the
theory of Fukushima Dirichlet forms, see e.g. [23]. Infinite dimensional setups
were considered for example in [22] where an infinite dimensional BSDE could
produce the mild solution of a PDE on a Hilbert space. Concerning the study
of BSDEs driven by more general martingales than Brownian motion, we have
already mentioned BSDEs driven by Poisson measures. In this respect, more
recently, BSDEs driven by marked point processes were introduced in [11], see
also [3]; in that case the underlying process does not contain any diffusion term.
Brownian BSDEs involving a supplementary orthogonal term were studied in
[18]. We can also mention the study of BSDEs driven by a general martin-
gale in [9]. BSDEs of the same type, but with partial information have been
investigated in [10]. A first approach to face deterministic problems for those
equations appears in [27]; that paper also contains an application to financial
hedging in incomplete market.

The main motivation of this paper was to generalize in some aspects the
links between (1.3) and (1.4). Our BSDEs (1.2) are associated to a completely
general Markov process supposed to solve a martingale problem with respect
to a given deterministic operator a. This Markov process will only be defined
by its laws for every starting time and starting point (Ps,x)(s,x)∈[0,T ]×E. Our
associated deterministic problem, comparable to (1.4) will be the Pseudo-PDE
{

a(u)(t, x) + f
(

t, x, u(t, x),
√

Γ(u, u)(t, x)
)

= 0 on [0, T ]× E

u(T, ·) = g,
(1.5)

where Γ(u, u) = a(u2)− 2ua(u) is a potential theory operator called the square
field operator. When X is a diffusion as in the first line of (1.3) that operator
is of the form Γ(u, u) =

∑

i,j≤d

(σσ⊺)i,j∂xi
u∂xj

u. For the Pseudo-PDE, we study

solutions of two natures: classical solutions, which generalize the C1,2 solutions
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of (1.4) and solutions in the martingale sense.

The main contributions of the paper are essentially the following. In Section
3 we introduce the notion of BSDE with no driving martingale (1.1). Theorem
3.34 states existence and uniqueness of a solution for that BSDE, when the final
condition ξ is square integrable and the driver f̂ verifies some integrability and
Lipschitz conditions. In Section 4.1, we consider an operator and its domain
(a,D(a)); V will be a continuous non-decreasing function. That section is de-
voted to the formulation of the martingale problem concerning our underlying
process X . For each initial time s and initial point x the solution will be a
probability Ps,x under which for any φ ∈ D(a),

φ(·, X·)− φ(s, x) −
∫ ·

s

a(φ)(r,Xr)dVr

is a local martingale starting in zero at time s. We will then assume that
this martingale problem is well-posed and that its solution (Ps,x)(s,x)∈[0,T ]×E

defines a Markov process. In Proposition 4.14, we prove that, under one of
these probabilities, the angular bracket of every square integrable martingale
is absolutely continuous with respect to dV . In Section 4.2 we suitably define
some extended domains for the operators a and Γ, using some locally convex
topology. In Section 5 we introduce the Pseudo-PDE (1.5) to which we associate
the FBSDE (1.2), considered under every Ps,x. We also introduce the notions
of classical solution in Definition 5.1, and of solution in the martingale sense in
Definition 5.20, which is fully probabilistic. Classical solutions typically belong
to the domain D(a). In Theorem 5.16, we show that, without any assumptions of
regularity, there exist Borel functions u and v such that for any (s, x) ∈ [0, T ]×E,
the solution of (1.2) verifies

{ ∀t ≥ s : Y s,xt = u(t,Xt) Ps,x a.s.
d〈Ms,x〉
dV

(t) = v2(t,Xt) dV ⊗ dPs,x a.e.

Theorems 5.22 and 5.25 state that the function u is the unique solution in the
martingale sense of (1.5). Corollary 5.24 asserts that, given a classical solution
u ∈ D(a), then for any (s, x) the processes Y s,x = u(·, X·) and
M s,x = u(·, X·)−u(s, x)−

∫ ·

s
f((·, ·, u,

√

Γ(u, u))(r,Xr)dVr solve (1.2) under the
probability Ps,x. Conversely if the function u defined via the BSDEs belongs to
D(a), then, in Theorem 5.26, u is shown to be a classical solution of (1.5), up to
a so called zero potential set, see Definition 4.18. In the companion paper [6],
we will also discuss other types of (analytical) solutions, i.e. mild and viscosity
ones. The couple (u, v) will always be a mild solution of (1.5), whereas several
assumptions will have to be strengthened in order for u to be a viscosity solution
of (1.5). For that reason, the notion of mild solution will appear to be the most
natural one at the analytical level. In Section 6 we list some examples which will
be developed in [6]. These include Markov processes defined as weak solutions
of Stochastic Differential Equations (in short SDEs) including possible jump
terms, α-stable Lévy processes associated to fractional Laplace operators, and
solutions of SDEs with distributional drift.
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2 Preliminaries

In the whole paper we will use the following notions, notations and vocabulary.

A topological space E will always be considered as a measurable space with
its Borel σ-field which shall be denoted B(E) and if (F, dF ) is a metric space,
C(E,F ) (respectively Cb(E,F ), B(E,F ), Bb(E,F )) will denote the set of func-
tions fromE to F which are continuous (respectively bounded continuous, Borel,
bounded Borel).

Let (Ω,F), (E, E) be two measurable spaces. A measurable mapping from
(Ω,F) to (E, E) shall often be called a random variable (with values in E), or
in short r.v. If T is some set, an indexed set of r.v. with values in E, (Xt)t∈T
will be called a random field (indexed by T with values in E). In particular,
if T is an interval included in R+, (Xt)t∈T will be called a stochastic process
(indexed by T with values in E). Given a stochastic process, if the mapping

(t, ω) 7−→ Xt(ω)
(T× Ω,B(T)⊗F) −→ (E, E)

is measurable, then the process (Xt)t∈T will be called a measurable process
(indexed by T with values in E).

On a fixed probability space (Ω,F ,P) , for any p ∈ N∗, Lp will denote the set
of random variables with finite p-th moment. Two random fields (or stochastic
processes) (Xt)t∈T, (Yt)t∈T indexed by the same set and with values in the
same space will be said to be modifications (or versions) of each other if
for every t ∈ T, P(Xt = Yt) = 1.

A measurable space equipped with a right-continuous filtration (Ω,F , (Ft)t∈T)
(where T is equal to R+ or to [0, T ] for some T ∈ R∗

+) will be called a filtered
space.
A probability space equipped with a right-continuous filtration (Ω,F , (Ft)t∈T,P)
will be called called a stochastic basis and will be said to fulfill the usual
conditions if the probability space is complete and if F0 contains all the P-
negligible sets.

Concerning spaces of stochastic processes, in a fixed stochastic basis (Ω,F , (Ft)t∈T,P) ,
we will use the following notations and vocabulary, most of them being taken
or adapted from [25] or [26]. We will denote V (resp V+) the set of adapted,
bounded variation (resp non-decreasing) processes starting at 0; Vp (resp Vp,+)
the elements of V (resp V+) which are predictable, and Vc (resp Vc,+) the el-
ements of V (resp V+) which are continuous; M will be the space of cadlag
martingales.
For any p ∈ [1,∞] Hp will denote the subset of M of elements M such that
sup
t∈T |Mt| ∈ Lp and in this set we identify indistinguishable elements. It is a
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Banach space for the norm ‖M‖Hp = E[|sup
t∈TMt|p]

1
p , and Hp

0 will denote the

Banach subspace of Hp containing the elements starting at zero.
If T = [0, T ] for some T ∈ R∗

+, a stopping time will be defined as a random vari-
able with values in [0, T ]∪{+∞} such that for any t ∈ [0, T ], {τ ≤ t} ∈ Ft. We
define a localizing sequence of stopping times as an increasing sequence of
stopping times (τn)n≥0 such that there exists N ∈ N for which τN = +∞. Let
Y be a process and τ a stopping time, we denote Y τ the process t 7→ Yt∧τ which
we call stopped process. If C is a set of processes, we define its localized
class Cloc as the set of processes Y such that there exist a localizing sequence
(τn)n≥0 such that for every n, the stopped process Y τn belongs to C.
For any M ∈ Mloc, we denote [M ] its quadratic variation and if moreover
M ∈ H2

loc, 〈M〉 will denote its (predictable) angular bracket. H2
0 will be

equipped with scalar product defined by (M,N)H2 = E[MTNT ] = E[〈M,N〉T ]
which makes it a Hilbert space. Two local martingales M,N will be said to be
strongly orthogonal if MN is a local martingale starting in 0 at time 0. In
H2

0,loc this notion is equivalent to 〈M,N〉 = 0.
If M ∈ Mloc, and p ∈ [1,∞]. We denote Lp(M) the set of predictable processes

H such that E [(∫ T0 H2
r d[M ]r

)
p

2

]

<∞. This implies that
∫ ·

0 HrMr belongs to

Hp.

3 BSDEs without driving martingale

In the whole present section we are given T ∈ R∗
+, and a stochastic basis

(

Ω,F , (Ft)t∈[0,T ],P) fulfilling the usual conditions. Some proofs and interme-
diary results of the first part of this section are postponed to Appendix C.

Definition 3.1. Let A and B be in V+. We will say that dB dominates dA in
the sense of stochastic measures (written dA ≪ dB) if for almost all ω,
dA(ω) ≪ dB(ω) as Borel measures on [0, T ].

We will say that dB and dA are mutually singular in the sense of stochastic
measures (written dA⊥dB) if for almost all ω, the Borel measures dA(ω) and
dB(ω) are mutually singular.

Let B ∈ V+. dB ⊗ dP will denote the positive measure on
(Ω× [0, T ],F ⊗ B([0, T ])) defined for any F ∈ F ⊗ B([0, T ]) by

dB ⊗ dP(F ) = E[∫ T

0

1F (r, ω)dBr(ω)

]

.

A property which holds true everywhere except on a null set for this measure
will be said to be true dB ⊗ dP almost everywhere (a.e).

Proposition below admits a straightforward proof.
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Proposition 3.2. Let φ, ψ be two measurable mappings from
(Ω× [0, T ],F ⊗B([0, T ])) to (R,B(R)), then if φ = ψ dB⊗ dP a.e, we have forP almost all ω that (φ(ω) = ψ(ω) dB(ω) a.e.)

The proof of Proposition below is in Appendix C.

Proposition 3.3. For any A and B in Vp,+, there exists a (non-negative
dB ⊗ dP a.e.) predictable process dA

dB
and a process in Vp,+ A⊥B such that

dA⊥B⊥ dB and A = AB +A⊥B a.s.

where AB =
∫ ·

0
dA
dB

(r)dBr . The process A⊥B is unique and the process dA
dB

is
unique dB ⊗ dP a.e.
Moreover, there exists a predictable process K with values in [0, 1] (for every
(ω, t)), such that AB =

∫ ·

0
1{Kr<1}dAr and A⊥B =

∫ ·

0
1{Kr=1}dAr.

Definition 3.4. The predictable process dA
dB

appearing in the statement of Propo-
sition 3.3 will be called the Radon-Nikodym derivative of A by B.

Remark 3.5. Since for any s < t

At −As =

∫ t

s

dA

dB
(r)dBr +A⊥B

t −A⊥B
s a.s.

where A⊥B is increasing, it is clear that for any s < t.

∫ t

s

dA

dB
(r)dBr ≤ At −As a.s.

Therefore that for any positive measurable process φ we have

∫ T

0

φr
dA

dB
(r)dBr ≤

∫ T

0

φrdAr a.s.

Notation 3.6. Let A be in V, we will denote A+ and A− the positive variation
and negative variation parts of A, meaning the unique pair of elements V+ such
that A = A+ −A−, see Proposition I.3.3 in [26] for their existence.

Definition 3.7. Let A be in Vp, and B ∈ Vp,+. We set dA
dB

:= dA+

dB
− dA−

dB
and

A⊥B := (A+)⊥B − (A−)⊥B.

The proof of the proposition below is also in Appendix C.

Proposition 3.8. Let A1 and A2 be in Vp, and B ∈ Vp,+. Then,
d(A1+A2)

dB
= dA1

dB
+ dA2

dB
dV ⊗ dP a.e. and (A1 +A2)

⊥B = A⊥B
1 +A⊥B

2 .

Proposition 3.9. Let M ∈ H2
0, and let V ∈ Vp,+. There exists a pair

(MV ,M⊥V ) in H2
0 such that

1. M =MV +M⊥V ;
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2. d〈MV 〉 ≪ dV ;

3. d〈M⊥V 〉⊥dV ;

4. 〈MV ,M⊥V 〉 = 0.

Moreover, we have 〈MV 〉 = 〈M〉V =
∫ ·

0
d〈M〉
dV

(r)dVr and 〈M⊥V 〉 = 〈M〉⊥V
and there exists a predictable process K with values in [0, 1] such that
MV =

∫ ·

0
1{Kr<1}dMr and M⊥V =

∫ ·

0
1{Kr=1}dMr.

Remark 3.10. With those definitions, for M ∈ H2
0 it is clear that

〈MV ,M〉 = 〈MV ,MV 〉 =
∫ ·

0

d〈M〉
dV

(r)dVr .

Definition 3.11. Let V ∈ Vp,+. We introduce two significant spaces related to
V .

1. H2,V := {M ∈ H2
0|d〈M〉 ≪ dV };

2. H2,⊥V := {M ∈ H2
0|d〈M〉 ⊥ dV }.

The proof of the proposition below is in Appendix C.

Proposition 3.12. H2,V and H2,⊥V are orthogonal sub-Hilbert spaces of H2
0

and H2
0 = H2,V ⊕⊥H2,⊥V . Moreover, any element of H2,V is strongly orthogonal

to any element of H2,⊥V .

Remark 3.13. All previous results extend when the filtration is indexed by R+.

We are going to introduce here a new type of Backward Stochastic Dif-
ferential Equation (BSDE) for which there is no need for having a particular
martingale of reference.

We will denote Pro the σ-field generated by progressively measurable processes
defined on [0, T ]× Ω.

We consider the following:

1. a bounded process of reference V ∈ Vc,+,

2. an FT -measurable random variable ξ called the final condition,

3. a driver f̂ : ([0, T ]× Ω) × R × R −→ R, measurable with respect to
Pro⊗ B(R)⊗ B(R).

Definition 3.14. We will indicate by L0(dV ⊗ dP) the set of progressively

measurable processes φ such that
∫ T

0 |φr|dVr is finite a.s. and L0(dV ⊗ dP) the
quotient space of L0(dV ⊗ dP) with respect to the subspace of processes equal to
zero dV ⊗ dP a.e. The application which to a process associate its class will be
denoted

(

φ 7−→ φ̇
L0(dV ⊗ dP) −→ L0(dV ⊗ dP) ) .

8



We also define L2(dV ⊗dP) the set of progressively measurable processes φ such

that E[∫ T
0
φ2rdVr ] <∞, and the quotient space L2(dV ⊗ dP) defined as

L0(dV ⊗dP). More formally, L2(dV ⊗dP) corresponds to the classical L2 space
L2([0, T ]× Ω,Pro, dV ⊗ dP) and is therefore complete for its usual norm.

We will assume that (ξ, f̂) verify the following hypothesis.

Hypothesis 3.15.

1. ξ ∈ L2;

2. f̂(·, ·, 0, 0) ∈ L2(dV ⊗ dP);
3. There exist positive constants KY ,KZ such that, P a.s.

(a) ∀t, y, y′, z we have |f̂(t, ·, y, z)− f̂(t, ·, y′, z)| ≤ KY |y − y′|;
(b) ∀t, y, z, z′ we have |f̂(t, ·, y, z)− f̂(t, ·, y, z′)| ≤ KZ |z − z′|.

We start with a lemma.

Lemma 3.16. Let U1 and U2 be in L0(dV ⊗ dP) and such that U̇1 = U̇2.
Let F : [0, T ] × Ω × R −→ R be such that F ((·, ·), U1) and F (·, ·, U2) are in
L0(dV ⊗ dP), then the processes

∫ ·

0 F (r, ω, U
1
r )dVr and

∫ ·

0 F (r, ω, U
2
r )dVr are

indistinguishable.

Proof. By Proposition 3.2, there exists a P-null set N such that for any ω ∈ N c,
U1(ω) = U2(ω) dV (ω) a.e. So for any ω ∈ N c, F (·, ω, U1(ω)) = F (·, ω, U2(ω))
dV (ω) a.e. This implies that for any ω ∈ N c and u ∈ [0, T ],
∫ u

0
F (r, ω, U1

r (ω))dVr(ω) =
∫ u

0
F (r, ω, U2

r (ω))dVr(ω). So
∫ ·

0
F (r, ω, U1

r )dVr and
∫ ·

0 F (r, ω, U
2
r )dVr are indistinguishable processes.

Remark 3.17. In some of the following proofs, we will have to work with classes
of processes. According to Lemma 3.16, if U̇ is an element of
L2(dV ⊗ dP) then we could define the integral process

∫ ·

0 F (r, ω, U̇r)dVr as
∫ ·

0
F (r, ω, Ur)dVr, where U is a representative U̇ . Nevertheless we will rarely

use the dot notation in the integral.

We will start with a first formulation of our BSDE.

Definition 3.18. We say that a couple (Ẏ ,M) ∈ L2(dV ⊗dP)×H2
0 is a solution

of BSDE(ξ, f̂ , V ) if there exists a cadlag representative Y of Ẏ which verifies

Y = ξ +

∫ T

·

f̂

(

r, ·, Yr,
√

d〈M〉
dV

(r)

)

dVr − (MT −M·) (3.1)

in the sense of indistinguishability.
A couple (Y,M) ∈ L2(dV ⊗dP)×H2

0 verifying (3.1) will be said to be a solution

of BSDE(ξ, f̂ , V ).
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Proposition 3.19. BSDE(ξ, f̂ , V ) has a solution iff BSDE(ξ, f̂ , V ) has a

solution. Moreover, BSDE(ξ, f̂ , V ) has a unique solution iff BSDE(ξ, f̂ , V )
has a unique solution.

Proof. It is clear that if a couple (Y,M) solves BSDE(ξ, f̂ , V ) then (Ẏ ,M)

solves BSDE(ξ, f̂ , V ), and that if a couple (Ẏ ,M) solves BSDE(ξ, f̂ , V ) via
the cadlag representative Y , then (Y,M) solves BSDE(ξ, f̂ , V ). Therefore
BSDE(ξ, f̂ , V ) has a solution iff BSDE(ξ, f̂ , V ) has a solution.

Now let us suppose that BSDE(ξ, f̂ , V ) has a unique solution. If (Y,M) and
(Y ′,M ′) are two solutions of BSDE(ξ, f̂ , V ) then (Ẏ ,M) = (Ẏ ′,M ′) since they
both solve BSDE(ξ, f̂ , V ). Moreover, thanks to Lemma 3.16,
∫ ·

0
f̂

(

r, ·, Yr,
√

d〈M〉
dV

(r)

)

dVr and
∫ ·

0
f̂

(

r, ·, Y ′
r ,
√

d〈M〉
dV

(r)

)

dVr are indistinguish-

able, so by (3.1), Y and Y ′ are indistinguishable. So the solution ofBSDE(ξ, f̂ , V )
is unique.

Conversely, if BSDE(ξ, f̂ , V ) has a unique solution and if (Ẏ ,M) and (Ẏ ′,M ′)

both solve BSDE(ξ, f̂ , V ) via the cadlag representative Y and Y ′. By defini-
tion, (Y,M) and (Y ′,M ′) both solve if BSDE(ξ, f̂ , V ) and are therefore equal.
In particular Ẏ = Ẏ ′ implying that the solution of BSDE(ξ, f̂ , V ) is unique.

Proposition 3.20. If (Y,M) solves BSDE(ξ, f̂ , V ), and if we denote

f̂

(

r, ·, Yr,
√

d〈M〉
dV

(r)

)

by f̂r, then for any t ∈ [0, T ] we have







Yt = E [ξ + ∫ T
t
f̂rdVr

∣

∣

∣
Ft
]

Mt = E [ξ + ∫ T0 f̂rdVr

∣

∣

∣Ft
]

− E [ξ + ∫ T0 f̂rdVr

∣

∣

∣F0

]

,

a.s.

Proof. Since Yt = ξ+
∫ T

t
f̂rdVr−(MT−Mt) a.s. and Y being an adapted process

and M a martingale, taking the expectation in (3.1) at time t, we directly get

Yt = E [ξ + ∫ T
t
f̂rdVr

∣

∣

∣Ft
]

and in particular that Y0 = E [ξ + ∫ T
0
f̂rdVr

∣

∣

∣F0

]

.

Since M0 = 0, looking at the BSDE at time 0 we get

MT = ξ +
∫ T

0
f̂rdVr − Y0

= ξ +
∫ T

0
f̂rdVr − E [ξ + ∫ T0 f̂rdVr

∣

∣

∣
F0

]

.

Now evaluating again the the solution of the BSDE at time t we get the a.s.
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equalities

Mt = Yt −
(

ξ +
∫ T

t
f̂rdVr

)

+MT

= E [ξ + ∫ T
t
f̂rdVr

∣

∣

∣
Ft
]

−
(

ξ +
∫ T

t
f̂rdVr

)

+
(

ξ +
∫ T

0 f̂rdVr − E [ξ + ∫ T0 f̂rdVr

∣

∣

∣F0

])

= E [ξ + ∫ T
t
f̂rdVr

∣

∣

∣
Ft
]

+
∫ t

0
f̂rdVr − E [ξ + ∫ T0 f̂rdVr

∣

∣

∣
F0

]

= E [ξ + ∫ T0 f̂rdVr

∣

∣

∣Ft
]

− E [ξ + ∫ T0 f̂rdVr

∣

∣

∣F0

]

.

We will proceed showing that BSDE(ξ, f̂ , V ) has a unique solution, which,
by Proposition 3.19, implies well-posedness for BSDE(ξ, f̂ , V ). At this point
we introduce a significant map Φ which will map L2(dV ⊗ dP)×H2

0 into itself.
From now on, until Notation 3.27, we fix a couple (U̇ , N) ∈ L2(dV ⊗ dP)×H2

0

to which we will associate (Ẏ ,M) which, as we will show, will also belong to
L2(dV ⊗ dP) × H2

0. We will show that (U̇ , N) 7→ (Ẏ ,M) is a contraction for
a certain norm. In all the proofs below, U̇ will only appear in integrals driven
by dV , so as we have said in Remark 3.17, we can consider that we are working
with any element U of the class U̇ . This will however not be the case for Ẏ for
which we will have to pick a specific representative. Our strategy consists in
starting by defining through Definition 3.22 a cadlag process Y , which will be
said to be the cadlag reference process, associated with (U̇ , N). Then we define
Ẏ .

Proposition 3.21. For any t ∈ [0, T ],
∫ T

t
f̂2

(

r, ·, Ur,
√

d〈N〉
dV

(r)

)

dVr is in L1

and

(

ξ +
∫ T

t
f̂

(

r, ·, Ur,
√

d〈N〉
dV

(r)

)

dVr

)

is in L2.

Proof. By Jensen’s inequality and thanks to the Lipschitz conditions on f in
Hypothesis 3.15 and the fact that V is bounded, there exist positive constants
C,C′ such that, for any t ∈ [0, T ], we have

(

∫ T

t
f̂

(

r, ·, Ur,
√

d〈N〉
dV

(r)

)

dVr

)2

≤ C
∫ T

t
f̂2

(

r, ·, Ur,
√

d〈N〉
dV

(r)

)

dVr

≤ C′
(

∫ T

t
f̂2 (r, ·, 0, 0)dVr +

∫ T

t
U2
r dVr +

∫ T

t

d〈N〉
dV

(r)dVr

)

.

(3.2)

Then by Remark 3.5
∫ T

t

d〈N〉
dV

(r)dVr ≤ (〈N〉T −〈N〉t) which belongs to L1 since
N is taken in H2. By Hypothesis 3.15, f(·, ·, 0, 0) is in L2(dV ⊗ dP) and ξ is
square integrable. U̇ was also taken in L2(dV ⊗ dP) so all the three terms in

(3.2) are integrable and therefore

(

ξ +
∫ T

t
f̂

(

r, ·, Ur,
√

d〈N〉
dV

(r)

)

dVr

)

is in L2,

and
∫ T

t
f̂2

(

r, ·, Ur,
√

d〈N〉
dV

(r)

)

dVr in L1.

11



We can therefore state the following definition.

Definition 3.22. Setting f̂r = f̂

(

r, ·, Ur,
√

d〈N〉
dV

(r)

)

. Let M be the cadlag

version of the martingale

t 7→ E[ξ + ∫ T

0

f̂rdVr

∣

∣

∣

∣

∣

Ft
]

− E[ξ + ∫ T

0

f̂rdVr

∣

∣

∣

∣

∣

F0

]

.

M is square integrable by Proposition 3.21. It admits a cadlag version taking
into account Theorem 4 in Chapter IV of [13], since the filtration is complete
and right-continuous. We denote by Y the cadlag process defined by

Yt = ξ +

∫ T

t

f̂

(

r, ·, Ur,
√

d〈N〉
dV

(r)

)

dVr − (MT −Mt).

This will be called the cadlag reference process and we will often omit its
dependence to (U̇ , N).

According to previous definition, it is not clear whether Y is adapted, how-
ever, we have the almost sure equalities

Yt = ξ +
∫ T

t
f̂rdVr − (MT −Mt)

= ξ +
∫ T

t
f̂rdVr −

(

ξ +
∫ T

0
f̂rdVr − E [ξ + ∫ T0 f̂rdVr

∣

∣

∣Ft
])

= E [ξ + ∫ T0 f̂rdVr

∣

∣

∣Ft
]

−
∫ t

0 f̂rdVr

= E [ξ + ∫ T
t
f̂rdVr

∣

∣

∣Ft
]

.

(3.3)

Moreover, Y is cadlag, so by Theorem 15 Chapter IV of [12], being adapted and
cadlag, it is progressively measurable.

Proposition 3.23. Y and M are square integrable processes.

Proof. We already know that M is a square integrable martingale. As we have

seen in Proposition 3.21,

(

ξ +
∫ T

t
f̂

(

r, ·, Ur,
√

d〈N〉
dV

(r)

)

dVr

)

belongs to L2 for

any t ∈ [0, T ]. So by (3.3) and the Jensen’s inequality for conditional expectation
we haveE [Y 2

t

]

= E[E [ξ + ∫ T
t
f̂

(

r, ·, Ur,
√

d〈N〉
dV

(r)

)

dVr

∣

∣

∣

∣

Ft
]2
]

≤ E[E[(ξ + ∫ T
t
f̂

(

r, ·, Ur,
√

d〈N〉
dV

(r)

)

dVr

)2
∣

∣

∣

∣

∣

Ft
]]

= E[(ξ + ∫ T
t
f̂

(

r, ·, Ur,
√

d〈N〉
dV

(r)

)

dVr

)2
]

,

which is finite.
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Lemma 3.24. Let Y be a cadlag adapted process satisfying E[ sup
t∈[0,T ]

Y 2
t

]

<∞

and M be a square integrable martingale, then there exists a constant C > 0
such that for any ǫ > 0 we haveE[ sup

t∈[0,T ]

∣

∣

∣

∣

∫ t

0

Yr−dMr

∣

∣

∣

∣

]

≤ C

(

ǫ

2
E[ sup

t∈[0,T ]

Y 2
t

]

+
1

2ǫ
E [[M ]T ]

)

.

In particular,
∫ ·

0
Yr−dMr is a uniformly integrable martingale.

Proof. By Burkholder-Davis-Gundy (shortened by BDG) and Cauchy-Schwarz
(shortened by CS) inequalities, there exists C > 0 such thatE[ sup

t∈[0,T ]

∣

∣

∣

∫ t

0
Yr−dMr

∣

∣

∣

]

≤ CE [√∫ T
0
Y 2
r−
d[M ]r

]

≤ CE[√ sup
t∈[0,T ]

Y 2
t [M ]T

]

≤ C

√

√

√

√E[ sup
t∈[0,T ]

Y 2
t

]E[[M ]]T

≤ C

(

ǫ
2E[ sup

t∈[0,T ]

Y 2
t

]

+ 1
2ǫE [[M ]T ]

)

< +∞.

So
∫ ·

0
Yr−dMr is a uniformly integrable local martingale, and therefore a mar-

tingale.

Lemma 3.25. Let Y be a cadlag adapted process and M ∈ H2. Assume the
existence of a constant C > 0 and an L1 random variable Z such that for any
t ∈ [0, T ]

Y 2
t ≤ C

(

Z +

∣

∣

∣

∣

∫ t

0

Yr−dMr

∣

∣

∣

∣

)

.

Then sup
t∈[0,T ]

|Yt| ∈ L2.

Proof. For any stopping time τ we have

sup
t∈[0,τ ]

Y 2
t ≤ C

(

Z + sup
t∈[0,τ ]

∣

∣

∣

∣

∫ t

0

Yr−dMr

∣

∣

∣

∣

)

. (3.4)

Since Yt− is caglad and therefore locally bounded, (see Definition p164 in
[34]) we define τn = inf {t > 0 : Yt− ≥ n}. It yields

∫ ·∧τn
0

Yr−dMr is in H2 since

its angular bracket is equal to
∫ ·∧τn
0

Y 2
r−
d〈M〉r which is inferior to n2〈M〉T ∈ L1.
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By Doob’s inequality we know that sup
t∈[0,τn]

∣

∣

∣

∫ t

0
Yr−dMr

∣

∣

∣
is L2 and using (3.4),

we get that sup
t∈[0,τn]

Y 2
t is L1. By (3.4) applied with τn and taking expectation,

we get E[ sup
t∈[0,τn]

Y 2
t

]

≤ C′

(

1 + E[ sup
t∈[0,τn]

∣

∣

∣

∣

∫ t

0

Yr−dMr

∣

∣

∣

∣

])

, (3.5)

for some C′ which does not depend on n. By Lemma 3.24 applied to (Y τn ,M)
there exists C′′ > 0 such that for any n ∈ N∗ and ǫ > 0,E[ sup

t∈[0,τn]

Y 2
t

]

≤ C′′

(

1 + ǫ
2E[ sup

t∈[0,τn]

Y 2
t

]

+ 1
2ǫE [[M ]T ]

)

.

Choosing ǫ = 1
C′′

, it follows that there exists C3 > 0 such that for any n > 0,

1

2
E[ sup

t∈[0,τn]

Y 2
t

]

≤ C3 (1 + E [[M ]T ]) <∞.

By Fatou’s lemma, taking the limit in n we get the result.

We come back to the process Y defined in Definition 3.22.

Proposition 3.26. sup
t∈[0,T ]

|Yt| ∈ L2.

Proof. We will write f̂r instead of f̂

(

r, ·, Ur,
√

d〈N〉
dV

(r)

)

. Since

dYr = −f̂rdVr + dMr, by integration by parts formula we get

d(Y 2
r e

−Vr ) = −2e−VrYr f̂rdVr + 2e−VrYr−dMr + e−Vrd[M ]r − e−VrY 2
r dVr .

So integrating from 0 to some t ∈ [0, T ], we get

Y 2
t e

−Vt = Y 2
0 − 2

∫ t

0 e
−VrYr f̂rdVr + 2

∫ t

0 e
−VrYr−dMr

+
∫ t

0 e
−Vrd[M ]r −

∫ t

0 e
−VrY 2

r dVr
≤ Y 2

0 +
∫ t

0 e
−VrY 2

r dVr +
∫ t

0 e
−Vr f̂2

r dVr

+2
∣

∣

∣

∫ t

0
e−VrYr−dMr

∣

∣

∣+
∫ t

0
e−Vrd[M ]r −

∫ t

0
e−VrY 2

r dVr

= Y 2
0 +

∫ t

0 e
−Vr f̂2

r dVr +
∫ t

0 e
−Vrd[M ]r + 2

∣

∣

∣

∫ t

0 e
−VrYr−dMr

∣

∣

∣ .

Setting Z = Y 2
0 +

∫ T

0 e−Vr f̂2
r dVr +

∫ T

0 e−Vrd[M ]r we therefore have, for any
t ∈ [0, T ]

(Yte
−Vt)2 ≤ Y 2

t e
−Vt ≤ Z + 2

∣

∣

∣

∣

∫ t

0

e−VrYr−dMr

∣

∣

∣

∣

.

Thanks to Propositions 3.21 and 3.23, Z is integrable, so we can conclude by
Lemma 3.25 applied to the process Y e−V , and the fact that V is bounded.
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Since Y is progressively measurable, sup
t∈[0,T ]

|Yt| ∈ L2 and since V is bounded,

it is clear that Y ∈ L2(dV ⊗ dP) and the corresponding class Ẏ belongs to
L2(dV ⊗ dP). We recall that M ∈ H2

0 thanks to Proposition 3.23.

Notation 3.27. We denote by Φ the operator which associates to a couple
(U̇ , N) the couple (Ẏ ,M).

Φ :
L2(dV ⊗ dP)×H2

0 −→ L2(dV ⊗ dP)×H2
0

(U̇ , N) 7−→ (Ẏ ,M).

Proposition 3.28. (Ẏ ,M) ∈ L2(dV ⊗dP)×H2
0 is a solution of BSDE(ξ, f̂ , V )

iff it is a fixed point of Φ.

Proof. Let (Ẏ ,M) = Φ(U̇ , N) for a certain pair (U̇ , N), and let us suppose that
(Ẏ ,M) = (U̇ , N). The reference cadlag representative Y of Ẏ in the sense of
Definition 3.22 verifies

Y = ξ +
∫ T

·
f̂

(

r, ·, Ur,
√

d〈N〉
dV

(r)

)

dVr − (MT − M·) in the sense of indistin-

guishability. Since M = N and Ẏ = U̇ , by Remark 3.16,

Y = ξ+
∫ T

·
f̂

(

r, ·, Yr,
√

d〈M〉
dV

(r)

)

dVr−(MT−M·) and (Ẏ ,M) solvesBSDE(ξ, f̂ , V ).

Reciprocally, let (U̇ , N) ∈ L2(dV ⊗dP)×H2
0 be a solution of BSDE(ξ, f̂ , V ) and

let (Ẏ ,M) = Φ(U̇ , N). By definition of BSDE(ξ, f̂ , V ), there exists a cadlag
representative U of U̇ verifying

U = ξ +

∫ T

·

f̂

(

r, ·, Ur,
√

d〈N〉
dV

(r)

)

dVr − (NT −N·).

Thanks to Proposition 3.20, N is the cadlag version of

t 7→ E [ξ + ∫ T0 f̂

(

r, ·, Ur,
√

d〈N〉
dV

(r)

)

dVr

∣

∣

∣

∣

Ft
]

−E [ξ + ∫ T0 f̂

(

r, ·, Ur,
√

d〈N〉
dV

(r)

)

dVr

∣

∣

∣

∣

F0

]

,

but by Definition 3.22, so is M . Therefore M = N . Again by Definition 3.22,

Y = ξ +
∫ T

· f̂

(

r, ·, Ur,
√

d〈N〉
dV

(r)

)

dVr − (MT −M·)

= ξ +
∫ T

·
f̂

(

r, ·, Ur,
√

d〈N〉
dV

(r)

)

dVr − (NT −N·)

= U

in the sense of indistinguishability, and in particular, U̇ = Ẏ , so
(U̇ , N) = (Ẏ ,M) = Φ(U̇ , N) is a fixed point of Φ.

Remark 3.29. From now on, if (Ẏ ,M) is the image by Φ of a couple
(U̇ , N) ∈ L2(dV ⊗ dP) × H2

0, by default, we will always refer to the cadlag
representative Y of Ẏ defined in Definition 3.22.
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Proposition 3.30. Let λ ∈ R, let (U̇ , N), (U̇ ′, N ′) be in
L2(dV ⊗ dP) × H2

0, let (Ẏ ,M), (Ẏ ′,M ′) be their images by Φ and let Y, Y ′

be the cadlag representatives of Ẏ , Ẏ ′ introduced in Definition 3.22. Then
∫ ·

0 e
λVrYr−dMr,

∫ ·

0 e
λVrY ′

r−
dM ′

r,
∫ ·

0 e
λVrYr−dM

′
r and

∫ ·

0 e
λVrY ′

r−
dMr are mar-

tingales.

Proof. V is bounded and thanks to Proposition 3.26 we know that sup
t∈[0,T ]

|Yt|

and sup
t∈[0,T ]

|Y ′
t | are L2. Moreover since M and M ′ are square integrable, the

statement yields therefore as a consequence of previous Lemma 3.24.

We will now show that Φ is a contraction for a certain norm. This will imply
that BSDE(ξ, f̂ , V ) has a unique solution in L2(dV ⊗dP)×H2

0 since this space
is complete.

Definition 3.31. For any λ > 0, we define the following norm on
L2(dV ⊗ dP)×H2

0:

‖(Ẏ ,M)‖2λ := E[∫ T

0

eλVrY 2
r dVr

]

+ E[∫ T

0

eλVrd〈M〉r
]

.

Since V is bounded, these norms are all equivalent to the usual norm of this
space, which corresponds to λ = 0.

Proposition 3.32. There exists λ > 0 such that for any

(U̇ , N) ∈ L2(dV ⊗ dP)×H2
0,
∥

∥

∥Φ(U̇ , N)
∥

∥

∥

2

λ
≤ 1

2

∥

∥

∥(U̇ , N)
∥

∥

∥

2

λ
. In particular, Φ is a

contraction in L2(dV ⊗ dP)×H2
0 for the norm ‖ · ‖λ.

Proof. Let (U̇ , N) and (U̇ ′, N ′) be two couples of L2(dV ⊗dP)×H2
0, let (Ẏ ,M)

and (Ẏ ′,M ′) be their images via Φ and let Y, Y ′ be the cadlag representatives
of Ẏ , Ẏ ′ introduced in Definition 3.22. We will write Ȳ for Y −Y ′ and we adopt
a similar notation for other processes. We will also write

f̄t := f̂

(

t, ·, Ut,
√

d〈N〉
dV

(t)

)

− f̂

(

t, ·, U ′
t ,
√

d〈N ′〉
dV

(t)

)

.

By additivity, we have dȲt = −f̄tdVt + dM̄t. Since ȲT = ξ − ξ = 0, apply-
ing the integration by parts formula to Ȳ 2

t e
λVt between 0 and T we get

Ȳ 2
0 −2

∫ T

0

eλVr Ȳr f̄rdVr+2

∫ T

0

eλVr Ȳr−dM̄r+

∫ T

0

eλVrd[M̄ ]r+λ

∫ T

0

eλVr Ȳ 2
r dVr = 0.

Since, by Proposition 3.30, the stochastic integral with respect to M̄ is a
real martingale, by taking the expectations we getE [Ȳ 2

0

]

−2E[∫ T

0

eλVr Ȳr f̄rdVr

]

+E[∫ T

0

eλVrd〈M̄〉r
]

+λE[∫ T

0

eλVr Ȳ 2
r dVr

]

= 0.
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So by re-arranging and by using the Lipschitz condition on f stated in Hypoth-
esis 3.15, we get

λE [∫ T
0
eλVr Ȳ 2

r dVr

]

+ E [∫ T
0
eλVrd〈M̄〉r

]

≤ 2E [∫ T0 eλVr |Ȳr||f̄r|dVr
]

≤ 2KYE [∫ T
0
eλVr |Ȳr||Ūr|dVr

]

+2KZE [∫ T0 eλVr |Ȳr|
∣

∣

∣

∣

√

d〈N〉
dV

(r) −
√

d〈N ′〉
dV

(r)

∣

∣

∣

∣

dVr

]

≤ (KY α+KZβ)E [∫ T
0
eλVr |Ȳr|2dVr

]

+ KY

α
E [∫ T

0
eλVr |Ūr|2dVr

]

+ KZ

β
E[∫ T

0
eλVr

∣

∣

∣

∣

√

d〈N〉
dV

(r) −
√

d〈N ′〉
dV

(r)

∣

∣

∣

∣

2

dVr

]

,

for any positive α and β. Then we pick α = 2KY and β = 2KZ, which gives us

λE [∫ T
0
eλVr Ȳ 2

r dVr

]

+ E [∫ T
0
eλVrd〈M̄ 〉r

]

≤ 2((KY )2 + (KZ)2)E [∫ T0 eλVr |Ȳr|2dVr
]

+ 1
2E [∫ T0 eλVr |Ūr|2dVr

]

+ 1
2E [∫ T0 eλVr

∣

∣

∣

∣

√

d〈N〉
dV

(r) −
√

d〈N ′〉
dV

(r)

∣

∣

∣

∣

2dVr

]

.

We choose now λ = 1 + 2((KY )2 + (KZ)2) we getE [∫ T
0
eλVr Ȳ 2

r dVr

]

+ E [∫ T
0
eλVrd〈M̄〉r

]

≤ 1
2E [∫ T0 eλVr |Ūr|2dVr

]

+ 1
2E[∫ T0 eλVr

∣

∣

∣

∣

√

d〈N〉
dV

(r) −
√

d〈N ′〉
dV

(r)

∣

∣

∣

∣

2

dVr

]

.

(3.6)

On the other hand, since by Proposition C.1 we know that d〈N〉
dV

d〈N ′〉
dV

−
(

d〈N,N ′〉
dV

)2

is a positive process, we have
∣

∣

∣

∣

√

d〈N〉
dV

−
√

d〈N ′〉
dV

∣

∣

∣

∣

2

= d〈N〉
dV

− 2
√

d〈N〉
dV

√

d〈N ′〉
dV

+ d〈N ′〉
dV

≤ d〈N〉
dV

− 2 d〈N,N
′〉

dV
+ d〈N ′〉

dV

= d〈N̄〉
dV

dV ⊗ dP a.e.

(3.7)

Therefore, since by Remark 3.5 we have
∫ ·

0
eλVr d〈N̄〉

dV
(r)dVr ≤

∫ ·

0
eλVrd〈N̄〉r, then

expression (3.6) impliesE [∫ T
0
eλVr Ȳ 2

r dVr

]

+ E [∫ T
0
eλVrd〈M̄〉r

]

≤ 1
2

(E [∫ T0 eλVr |Ūr|2dVr
]

+ E [∫ T0 eλVrd〈N̄〉r
])

,

which proves the contraction for the norm ‖ · ‖λ.
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Corollary 3.33. If (ξ, f̂) verifies Hypothesis 3.15 then BSDE(ξ, f̂ , V ) has a
unique solution.

Proof. The space L2(dV ⊗dP)×H2
0 is complete and Φ defines on it a contraction

for the norm ‖(·, ·)‖λ for some λ > 0, so Φ has a unique fixed point in
L2(dV ⊗ dP) × H2

0. Then by Proposition 3.28, BSDE(ξ, f̂ , V ) has a unique
solution.

Theorem 3.34. If (ξ, f̂) verifies Hypothesis 3.15 then BSDE(ξ, f̂ , V ) has a
unique solution.

Proof. The proof follows directly from Corollary 3.33 and Proposition 3.19.

Remark 3.35. Let (Y,M) be the solution of BSDE(ξ, f̂ , V ) and Ẏ the class
of Y in L2(dV ⊗ dP). Thanks to Proposition 3.28, we know that
(Ẏ ,M) = Φ(Ẏ ,M) and therefore by Propositions 3.26 and 3.30 that sup

t∈[0,T ]

|Yt|

is L2 and that
∫ ·

0
Yr−dMr is a real martingale.

Remark 3.36. Let (ξ, f̂ , V ) satisfying Hypothesis 3.15. Until now we have con-
sidered the related BSDE on the interval [0, T ]. Without restriction of generality
we can consider a BSDE on a restricted interval [s, T ] for some s ∈ [0, T [. The
whole previous discussion and all the results expressed above trivially extend to
this case. In particular there exists a unique couple of processes (Y s,M s), in-

dexed by [s, T ] such that Y s is adapted, cadlag and verifies E[∫ T
s
(Y sr )

2dVr] <∞,
such that M s is a martingale starting at 0 in s and such that

Y s· = ξ +

∫

·

f̂

(

r, ·, Y sr ,
√

d〈M〉
dV

(r)

)

dVr − (M s
T −M s

· ),

in the sense of indistinguishability on [s, T ].

Moreover, if (Y,M) denotes the solution of BSDE(ξ, f̂ , V ) then (Y,M· −Ms)
and (Y s,M s) coincide on [s, T ]. This follows by the uniqueness argument for
the restricted BSDE to [s, T ].

The lemma below shows that, in order to verify that a couple (Y,M) is the
solution of BSDE(ξ, f̂ , V ), it is not necessary to verify the square integrability
of Y since it will be automatically fulfilled.

Lemma 3.37. Let (ξ, f̂ , V ) verify Hypothesis 3.15 and consider BSDE(ξ, f̂ , V )
defined in Definition 3.18. Assume that there exists a cadlag adapted process Y
with Y0 ∈ L2 , and M ∈ H2

0 such that

Y = ξ −
∫ T

·

f̂

(

r, ·, Yr,
√

d〈M〉
dV

(r)

)

dVr − (MT −M·), (3.8)

in the sense of indistinguishability. Then sup
t∈[0,T ]

|Yt| is L2. In particular,

Y ∈ L2(dV ⊗ dP) and (Y,M) is the unique solution of BSDE(ξ, f̂ , V ) .
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Similarly if (Y,M) verifies (3.8) on [s, T ] with s < T , if Ys ∈ L2, Ms = 0

and if we denote (U,N) the unique solution of BSDE(ξ, f̂ , V ), then (Y,M) and
(U,N· −Ns) are intistinguishable on [s, T ].

Proof. Let λ > 0 and t ∈ [0, T ]. By integration by parts formula applied to
Y 2e−λV between 0 and t we get

Y 2
t e

−λVt − Y 2
0 = −2

∫ t

0 e
−λVrYr f̂

(

r, ·, Yr,
√

d〈M〉
dV

(r)

)

dVr + 2
∫ t

0 e
−λVrYr−dMr

+
∫ t

0 e
−λVrd[M ]r − λ

∫ t

0 e
−λVrY 2

r dMr.

By re-arranging the terms and using the Lipschitz conditions in Hypothesis
3.15, we get

Y 2
t e

−λVt + λ
∫ t

0
e−λVrY 2

r dVr

≤ Y 2
0 + 2

∫ t

0
e−λVr |Yr||f̂ |

(

r, ·, Yr,
√

d〈M〉
dV

(r)

)

dVr + 2
∣

∣

∣

∫ t

0
e−λVrYr−dMr

∣

∣

∣

+
∫ t

0
e−λVrd[M ]r

≤ Y 2
0 + 2

∫ t

0
e−λVr |Yr||f̂ |(r, ·, 0, 0)dVr + 2KY

∫ t

0
e−λVr |Yr|2dVr

+2KZ
∫ t

0 e
−λVr |Yr|

√

d〈M〉
dV

(r)dVr + 2
∣

∣

∣

∫ t

0 e
−λVrYr−dMr

∣

∣

∣+
∫ t

0 e
−λVrd[M ]r

≤ Y 2
0 +

∫ t

0 e
−λVr |f̂ |2(r, ·, 0, 0)dVr + (2KY + 1 +KZ)

∫ t

0 e
−λVr |Yr|2dVr

+2
∣

∣

∣

∫ t

0
e−λVrYr−dMr

∣

∣

∣+
∫ t

0
e−λVrd[M ]r.

Picking λ = 2KY + 1 +KZ this gives

Y 2
t e

−λVt ≤ Y 2
0 +

∫ t

0
e−λVr |f̂ |2(r, ·, 0, 0)dVr +KZ

∫ t

0
e−λVr d〈M〉

dV
(r)dVr

+2
∣

∣

∣

∫ t

0 e
−λVrYr−dMr

∣

∣

∣+
∫ t

0 e
−λVrd[M ]r.

Since V is bounded, there is a constant C > 0, such that for any t ∈ [0, T ]

Y 2
t ≤ C

(

Y 2
0 +

∫ T

0

|f̂ |2(r, ·, 0, 0)dVr +
∫ T

0

d〈M〉
dV

(r)dVr + [M ]T +

∣

∣

∣

∣

∫ t

0

Yr−dMr

∣

∣

∣

∣

)

.

By Hypothesis 3.15 and since we assumed Y0 ∈ L2 and M ∈ H2, the first four
terms on the right hand side are integrable and we can conclude by Lemma 3.25.

An analogous proof also holds on the interval [s, T ] taking into account Re-
mark 3.36.

If the underlying filtration is Brownian and Vt = t, we can identify the
solution of the BSDE with no driving martingale to the solution of a Brownian
BSDE.

Let B be a 1-dimensional Brownian motion defined on a complete probability
space (Ω,F ,P). Let T ∈ R∗

+ and for any t ∈ [0, T ], let FB
t denote the σ-field
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σ(Br|r ∈ [0, t]) augmented with the P-negligible sets.
In the stochastic basis (Ω,F ,FB,P), let Vt = t and (ξ, f̂) satisfy Hypothesis
3.15. Let (Y,M) be the unique solution of BSDE(ξ, f̂ , V ), see Theorem 3.34.

Proposition 3.38. We have Y = U , M =
∫ ·

0
ZrdBr, where (U,Z) is the unique

solution of the Brownian BSDE

U = ξ +

∫ T

·

f̂ (r, ·, Ur, |Zr|) dr −
∫ T

·

ZrdBr, (3.9)

in L2(dt⊗ dP)× L2(dt⊗ dP),
Proof. By Theorem 1.2 in [29], (3.9) admits a unique solution (U,Z) of pro-
gressively measurable processes such that Z ∈ L2(dt ⊗ dP). It is known that
sup
t∈[0,T ]

|Ut| ∈ L2 and therefore that U ∈ L2(dt ⊗ dP), see Proposition 1.1 in

[29] for instance. We define N =
∫ ·

0 ZrdBr. The couple (U,N) belongs to

L2(dt ⊗ dP) ×H2
0. N verifies d〈N〉r

dr
= Z2

r dt⊗ dP a.e. So by (3.9), the couple
(U,N) verifies

U = ξ +

∫ T

·

f̂

(

r, ·, Ur,
√

d〈N〉r
dr

)

dr − (NT −N·),

in the sense of indistinguishability. It therefore solves BSDE(ξ, f̂ , V ) and the
assertion yields by uniqueness of the solution.

4 The Markov Process and associated Martin-

gale Problem

4.1 Martingale problems

In this section, we introduce the Markov process which will later be the for-
ward process with which we will define some particular Forward BSDEs with
no driving martingales. For details about the exact mathematical background
that we use to define our Markov process, one can consult the Section A of
the Appendix. We also introduce the martingale problem which this Markov
process will be assumed to solve.

Let E be a Polish space and T ∈ R∗
+ be a fixed horizon. From now on,

(

Ω,F , (Xt)t∈[0,T ], (Ft)t∈[0,T ]

)

denotes the canonical space defined in Definition
A.1. We consider a canonical Markov class (Ps,x)(s,x)∈[0,T ]×E associated to a
transition function measurable in time as defined in Definitions A.6 and A.4, and
for any (s, x) ∈ [0, T ]×E,

(

Ω,Fs,x, (Fs,x
t )t∈[0,T ],Ps,x) will denote the stochastic

basis introduced in Definition A.14 and which fulfills the usual conditions.

Remark 4.1. All notions and results of this section extend to a time index
equal to R+.
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We start by introducing a general notion of Martingale Problem as defined
in Chapter XI of [25].

Definition 4.2. Let χ be a family of stochastic processes defined on a filtered
space (Ω̃, F̃ , (F̃t)t∈T). We say that a probability measure P defined on (Ω̃, F̃)
solves the martingale problem associated to χ if under P all elements of χ
are in Mloc.
We denote MP(χ) the set of probability measures solving this martingale prob-
lem and MPe(χ) its set of extremal points meaning that if P belongs to MPe(χ),
there can not exist distinct probability measures Q,Q′ in MP(χ) and α ∈]0, 1[
such that P = αQ+ (1− α)Q′.

We now want to introduce a Martingale problem associated to an operator.
Our formalism will be very close to the one introduced by D.W. Stroock and
S.R.S Varadhan in [39]. We will see in Remark 4.4 that both Definitions 4.2
and 4.3 are closely related.

Definition 4.3. Let us consider

1. a domain D(a) ⊂ B([0, T ]× E,R) which is a linear algebra;

2. a linear operator a : D(a) −→ B([0, T ]× E,R);
3. a non-decreasing continuous function V : [0, T ] → R+ starting at 0.

We say that a set of probability measures (Ps,x)(s,x)∈[0,T ]×E defined on (Ω,F)
solves the martingale problem associated to (D(a), a, V ) if, for any
(s, x) ∈ [0, T ]× E, Ps,x verifies

(a) Ps,x(∀t ∈ [0, s], Xt = x) = 1;

(b) for every φ ∈ D(a), the process

(

t 7−→ φ(t,Xt)− φ(s, x) −
∫ t

s

a(φ)(r,Xr)dVr

)

, t ∈ [s, T ],

is a cadlag (Ps,x, (Ft)t∈[s,T ])-local martingale.

We say that the Martingale Problem is well-posed if for any (s, x) ∈ [0, T ]×E,Ps,x is the only probability measure satisfying these two properties.

Remark 4.4. In other words, (Ps,x)(s,x)∈[0,T ]×E solves the martingale problem
associated to (D(a), a, V ) if and only if, for any (s, x) ∈ [0, T ] × E, Ps,x ∈
MP(χs,x) (see Definition 4.2), where χs,x is the reunion of all processes

{

t 7→ 1[s,T ](t)

(

φ(t,Xt)− φ(s, x) −
∫ t

s

a(φ)(r,Xr)dVr

)∣

∣

∣

∣

φ ∈ D(a)

}

,

and processes
{

t 7→ 1{r}(t)(Xt − x)
∣

∣r ∈ [0, s]
}

.
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Indeed for some r ∈ [0, s], t 7→ 1{r}(t)(Xt − x) is a cadlag local martingale iff
Xr = x a.s. so requiring that processes t 7→ 1{r}(t)(Xt − x) are cadlag local
martingales for every r ∈ [0, s] is equivalent to requiring that Xr = x a.s. for
every r ∈ [0, s], and therefore since X and x are cadlag, it is equivalent to re-
quiring item a) in Definition 4.3.
(Ps,x)(s,x)∈[0,T ]×E solves the well-posed martingale problem associated to (D(a), a, V )
if and only if, for any (s, x) ∈ [0, T ]× E, Ps,x, MP(χs,x) = {Ps,x}.
Notation 4.5. For every (s, x) ∈ [0, T ]× E and φ ∈ D(a), the process

t 7→ 1[s,T ](t)
(

φ(t,Xt)− φ(s, x) −
∫ t

s
a(φ)(r,Xr)dVr

)

will be denoted M [φ]s,x.

M [φ]s,x is a cadlag (Ps,x, (Ft)t∈[0,T ])-local martingale equal to 0 on [0, s],
and by Proposition A.16, it is also a (Ps,x, (Fs,x

t )t∈[0,T ])-local martingale.
In the sequel of the paper we will regularly assume the following.

Hypothesis 4.6. The Markov class (Ps,x)(s,x)∈[0,T ]×E solves a well-posed Mar-
tingale Problem associated to a triplet (D(a), a, V ) in the sense of Definition 4.3.

The bilinear operator below was introduced (in the case of time-homogeneous
operators) by J.P. Roth in potential analysis (see Chapter III in [35]), and
popularized by P.A. Meyer in the study of homogeneous Markov processes, see
for example Exposé II: L’opérateur carré du champs in [28].

Definition 4.7. We set

Γ :
D(a)×D(a) → B([0, T ]× E)

(φ, ψ) 7→ a(φψ)− φa(ψ) − ψa(φ).
(4.1)

The operator Γ is called the square field operator.

This operator will appear in the expression of the angular bracket of the
local martingales that we have defined.

Proposition 4.8. For any φ ∈ D(a) and (s, x) ∈ [0, T ]×E, M [φ]s,x belongs to
H2

0,loc. Moreover, for any (φ, ψ) ∈ D(a)×D(a) and (s, x) ∈ [0, T ]×E, we have

〈M [φ]s,x,M [ψ]s,x〉 =
∫ ·

s

Γ(φ, ψ)(r,Xr)dVr ,

on the interval [s, T ], in the stochastic basis (Ω,Fs,x, (Fs,x
t )t∈[0,T ],Ps,x).

Proof. We fix some (s, x) ∈ [0, T ]× E and the associated probability Ps,x. For
any φ, ψ in D(a), by integration by parts on [s, T ] we have

M [φ]s,xM [ψ]s,x

=
∫ ·

s
M [φ]s,x

r−
dM [ψ]s,xr +

∫ ·

s
M [ψ]s,x

r−
dM [φ]s,xr + [M [φ]s,x,M [ψ]s,x]

=
∫ ·

s
M [φ]s,x

r−
dM [ψ]s,xr +

∫ ·

s
M [ψ]s,x

r−
dM [φ]s,xr + [φ(·, X·), ψ(·, X·)]

=
∫ ·

s
M [φ]s,x

r−
dM [ψ]s,xr +

∫ ·

s
M [ψ]s,x

r−
dM [φ]s,xr + φψ(·, X·)

−φψ(s, x)−
∫ ·

s
φ(r−, Xr−)dψ(r,Xr)−

∫ ·

s
ψ(r−, Xr−)dφ(r,Xr).
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Since φψ belongs to D(a), we can use the decomposition of φψ(·, X·) given
by (b) in Definition 4.3 and

M [φ]s,xM [ψ]s,x

=
∫ ·

s
M [φ]s,x

r−
dM [ψ]s,xr +

∫ ·

s
M [ψ]s,x

r−
dM [φ]s,xr +

∫ ·

s
a(φψ)(r,Xr)dVr

+M s,x[φψ]−
∫ ·

s
φa(ψ)(r,Xr)dVr −

∫ ·

s
ψa(φ)(r,Xr)dVr

−
∫ ·

s
φ(r−, Xr−)dM

s,x[ψ]r −
∫ ·

s
ψ(r−, Xr−)dM

s,x[φ]r
=

∫ ·

s
Γ(φ, ψ)(r,Xr)dVr +

∫ ·

s
M [φ]s,x

r−
dM [ψ]s,xr +

∫ ·

s
M [ψ]s,x

r−
dM [φ]s,xr

+M s,x[φψ]−
∫ ·

s
φ(r−, Xr−)dM

s,x[ψ]r −
∫ ·

s
ψ(r−, Xr−)dM

s,x[φ]r.
(4.2)

Since V is continuous, this implies thatM [φ]s,xM [ψ]s,x is a special semi-martingale
with bounded variation predictable part

∫ ·

s
Γ(φ, ψ)(r,Xr)dVr . In particular tak-

ing φ = ψ, we have on [s, T ]

(M [φ]s,x)2 =

∫ ·

s

Γ(φ, φ)(r,Xr)dVr +Ns,x,

where Ns,x is some local martingale. Since every continuous process is locally
bounded, and a local martingale is locally integrable, then (M [φ]s,x)

2 is locally
integrable, meaning that M [φ]s,x is in H2

0,loc.

Now coming back to any φ, ψ in D(a), since we know that M [φ]s,x, M [ψ]s,x

belong to H2
0,loc we can consider 〈M [φ]s,x,M [ψ]s,x〉 which, by definition, is the

unique predictable process with bounded variation such that
M [φ]s,xM [ψ]s,x−〈M [φ]s,x,M [ψ]s,x〉 is a local martingale. So necessarily, taking
(4.2) into account, 〈M [φ]s,x,M [ψ]s,x〉 =

∫ ·

s
Γ(φ, ψ)(r,Xr)dVr.

Taking φ = ψ in Proposition 4.8, yields the following.

Corollary 4.9. For any (s, x) ∈ [0, T ]× E and φ ∈ D(a), M [φ]s,x ∈ H2,V
loc .

Remark 4.10. By Proposition 3.12, it is clear that any element of H2,⊥V is
strongly orthogonal to any element of H2,V

loc .

We conclude this section showing that in our setup, H2
0 is always equal to

H2,V . We need for this a theorem proven by J. Jacod and M. Yor which states
(see e.g. Theorem 11.2 in [25]) the following.

Theorem 4.11. Let χ be a set of processes defined on some fixed filtered space
(Ω̃, F̃ , (F̃t)t∈T). If P ∈ MP(χ) then the following assertions are equivalent.

1. P ∈ MPe(χ);

2. any N ∈ H∞
0,loc(P) strongly orthogonal to all elements of χ is equal to

zero, and F̃0 is P-trivial.

Proposition 4.12. Let (s, x) ∈ [0, T ]× E and Ps,x be fixed. If N ∈ H∞
0,loc is

strongly orthogonal to M [φ]s,x for every φ ∈ D(a) then it is necessarily equal to
0.
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Proof. In Hypothesis 4.6, for any (s, x) ∈ [0, T ]×E we have assumed that Ps,x
was the unique element of MP(χs,x), where χs,x was introduced in Remark 4.4.
Therefore Ps,x is extremal in MP(χs,x). So thanks to Theorem 4.11, we know
that if an element N of H∞

0,loc is strongly orthogonal to all the M [φ]s,x then it
is equal to zero.

Remark 4.13. As announced before, the next step consists in proving
H2

0 = H2,V . If Proposition 4.12 would hold replacing H∞
0,loc with H2

0, one could

easily conclude. Indeed, let N ∈ H2
0. According to Proposition 3.9 we get the

decomposition N = NV + N⊥V . It remains to show that N⊥V = 0. Taking
into account Definition 3.11, by Remark 4.9 that process is strongly orthogonal
to every element of H2,V

loc . By Corollary 4.9, for every φ, M [φ]s,x is in H2,V
loc ,

so N⊥V is orthogonal to all of them. If our conjecture concerning the possible
extension of Proposition 4.12 would hold then the conclusion would follow.

Unfortunately the overmentioned conjecture about the extension of the valid-
ity of Proposition 4.12 is wrong in general. Indeed, according to Theorem 11.3
of [25], Theorem 4.11 would be wrong replacing its second item with N ∈ H2

0,loc

instead of N ∈ H∞
0,loc.

In our situation, the special structure of H2,V and H2,⊥V permits to perform
the announced step. This will be the object of Proposition 4.14.

Proposition 4.14. If Hypothesis 4.6 is verified then for any (s, x) ∈ [0, T ]×E,
in the stochastic basis

(

Ω,Fs,x, (Fs,x
t )t∈[0,T ],Ps,x) , we have H2

0 = H2,V .

Proof. We fix (s, x) ∈ [0, T ]×E. It is enough to show the inclusion H2
0 ⊂ H2,V .

We start considering a bounded martingale N ∈ H∞
0 and showing that it is in

H2,V . Since N belongs to H2
0, we can consider the corresponding NV , N⊥V in

H2
0, appearing in the statement of Proposition 3.9. We show below that NV

and N⊥V are locally bounded, which will permit us to use Jacod-Yor theorem
on N⊥V .

Indeed, by Proposition 3.9 there exists a predictable process K such that
NV =

∫ ·

s
1{Kr<1}dNr and N⊥V =

∫ ·

s
1{Kr=1}dNr. So if N is bounded then

it has bounded jumps; by previous way of characterizing NV and N⊥V , their
jumps can be expressed (∆NV )t = 1{Kt<1}∆Nt and (∆N⊥V )t = 1{Kt=1}∆Nt
(see Theorem 8 Chapter IV.3 in [34]), so they also have bounded jumps which
implies that they are locally bounded.

So N⊥V is in H∞
0,loc and by construction belongs to H2,⊥V , see Definition 3.11.

Since by Corollary 4.9, all the M [φ]s,x belong to H2,V
loc , then, by Remark 4.10,

N⊥V is strongly orthogonal to all the M [φ]s,x. Consequently, by Proposition
4.12, N⊥V is equal to zero. This shows that N = NV which by construction
belongs to H2,V , and consequently that H∞

0 ⊂ H2,V , which concludes the proof
when N is a bounded martingale.

We can conclude by density arguments as follows. Let M ∈ H2
0. For any

integer n ∈ N∗, we denote by Mn the martingale in H∞
0 defined as the cadlag
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version of t 7→ Es,x[((−n)∨MT ∧n)|Ft]. Now (Mn
T −MT )

2 −→
n→∞

0 a.s. and this

sequence is bounded by 4M2
T which is an integrable r.v. So by the dominated

convergence theoremEs,x [(Mn
T −MT )

2
]

−→
n→∞

0. Then by Doob’s inequality, sup
t∈[0,T ]

(Mn
t −Mt)

L2

−→
n→∞

0

meaning that Mn H2

−→
n→∞

M . Since H∞
0 ⊂ H2,V , then Mn belongs to H2,V for

any n ≥ 0. Moreover H2,V is closed in H2, since by Proposition 3.12, it is a
sub-Hilbert space. Finally we have shown that M ∈ H2,V .

Remark 4.15. Since V is continuous, it follows that every
(Ps,x, (Fs,x

t )t∈[0,T ])-square integrable martingale has a continuous angular bracket.
By localization, the same assertion holds for local square integrable martingales.

4.2 Extended operators and zero-potential sets

In this section, we work still on the canonical space
(

Ω,F , (Xt)t∈[0,T ], (Ft)t∈[0,T ]

)

(see Definition A.1) for some T ∈ R∗
+ and some Polish space E. We assume that

we are given a canonical Markov class (Ps,x)(s,x)∈[0,T ]×E associated to some
transition function measurable in time (see Definitions A.6 and A.4), which
solves a well-posed martingale problem associated to a triplet (D(a), a, V ), see
Definition 4.3.

We start with a small lemma which will be used several times in the next
sections.

Lemma 4.16. Let (s, x) ∈ [0, T ] × E be fixed and let φ, ψ be two measurable
processes. If φ and ψ are Ps,x-modifications of each other, then they are equal
dV ⊗ dPs,x a.e.

Proof. By Fubini’s theorem we can writeEs,x [∫ T

0

1φt 6=ψt
dVt

]

=

∫ T

0

Ps,x(φt 6= ψt)dVt = 0,

since for any t ∈ [0, T ], φt = ψt Ps,x a.s.

Definition 4.17. For any (s, x) ∈ [0, T ] × E we define the positive bounded
potential measures U(s, x, ·) on ([0, T ]× E,B([0, T ])⊗ B(E)) by

U(s, x, ·) :
B([0, T ])⊗ B(E) −→ [0, VT ]

A 7−→ Es,x [∫ T
s
1{(t,Xt)∈A}dVt

]

.

Definition 4.18. A Borel set A ⊂ [0, T ]×E will be said to be of zero potential
if, for any (s, x) ∈ [0, T ]× E we have U(s, x,A) = 0.

Notation 4.19. Let p ∈ N∗. We define

Lps,x := Lp(U(s, x, ·)) =
{

f ∈ B([0, T ]× E,R) : Es,x [∫ T
s
|f |p(r,Xr)dVr

]

<∞
}

.
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That classical Lp-space is equipped with the seminorm

‖ · ‖p,s,x : f 7→
(Es,x [∫ T

s
|f(r,Xr)|pdVr

])
1
p

. We also define

L0
s,x :=

{

f ∈ B([0, T ]× E,R) : ∫ T
s
|f |(r,Xr)dVr <∞ Ps,x a.s.

}

.

We then define the intersection of those spaces:

1. LpX = {f ∈ B([0, T ]× E,R) : ∀(s, x), ‖f‖p,s,x <∞} if p ≥ 1;

2. L0
X =

{

f ∈ B([0, T ]× E,R) : ∀(s, x), ∫ T
s
|f |(t,Xt)dVt <∞ Ps,x a.s.

}

.

N will denote the sub-space of B([0, T ]× E,R) containing all functions which
are equal to 0, U(s, x, ·) a.e. for every (s, x).
For any p ∈ N, we define the quotient space

LpX = LpX/N .

If p ≥ 1, LpX can be equipped with the topology generated by the family of semi-
norms (‖ · ‖p,s,x)(s,x)∈[0,T ]×E which makes it a separate locally convex topological

vector space, see Theorem 5.76 in [1].

Proposition 4.20. Let f and g be in L0
s,x. Then the following assertions are

equivalent.

1. For any (s, x) ∈ [0, T ]×E, the processes
∫ ·

s
f(r,Xr)dVr and

∫ ·

s
g(r,Xr)dVr

are indistinguishable under Ps,x;
2. f and g are equal up to a set of zero potential.

Of course in this case f and g correspond to the same element of L0
X.

Proof. Let Ps,x be fixed. Evaluating the total variation of
∫ ·

s
(f − g)(r,Xr)dVr

yields that
∫ ·

s
f(r,Xr)dVr and

∫ ·

s
g(r,Xr)dVr are indistinguishable if and only if

∫ T

s
|f − g|(r,Xr)dVr = 0 a.s. Since that r.v. is non-negative, this is true if and

only ifEs,x [∫ T
s
|f − g|(r,Xr)dVr

]

= 0 and therefore if and only if U(s, x,N) = 0,

where N is the Borel subset of [0, T ]× E, defined by {(t, y) : f(t, y) 6= g(t, y)}.
This concludes the proof of Proposition 4.20.

We can now define our notion of extended generator.

Definition 4.21. We first define the extended domain D(a) as the set func-
tions φ ∈ B([0, T ]× E,R) for which there exists
ψ ∈ B([0, T ]× E,R) such that under any Ps,x the process

(

φ(s ∨ ·, X·)− φ(s, x) −
∫ s∨·

s

ψ(r,Xr)dVr

)

(4.3)

(which is not necessarily cadlag) has a cadlag modification in H2
0.
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Proposition 4.22. Let φ be in D(a). Then the function ψ satisfying the above
condition is unique up to zero potential sets.

Proof. Let ψ1 and ψ2 be two functions verifying the condition imposed by Def-
inition 4.21. We fix (s, x) and the related probability Ps,x.
Then

(

φ(s ∨ ·, X·)− φ(s, x) −
∫ s∨·

s
ψ1(r,Xr)dVr

)

and
(

φ(s ∨ ·, X·)− φ(s, x)−
∫ s∨·

s
ψ2(r,Xr)dVr

)

, have both M1,M2 as cadlag mod-

ifications, which are in H2
0. So φ(s ∨ ·, X·) has two cadlag modifications which

are indistinguishable, and by uniqueness of the decomposition of special semi-
martingales,

∫ s∨·

s
ψ1(r,Xr)dVr and

∫ s∨·

s
ψ2(r,Xr)dVr are indistinguishable. Since

this is true under any Ps,x, the two functions are equal up to a zero-potential
set because of Proposition 4.20.

Definition 4.23. Let φ be in D(a) as in Definition 4.21. We denote again by
M [φ]s,x, the unique cadlag version of the process (4.3) in H2

0. This will not
create any ambiguity with respect to Notation 4.5. We can also define without
ambiguity the operator

a :
D(a) −→ L0

X

φ 7−→ ψ.

At this point we can say that a extends a in the following sense. If φ is in
D(a) and such that M [φ]s,x is square integrable for all (s, x) ∈ [0, T ]× E, then
comparing Definitions 4.3 and 4.21, we see that φ belongs to D(a) and that a(φ)
belongs to the class a(φ).

We now want to extend the square field operator Γ(·, ·) to D(a)×D(a).

Proposition 4.24. Let φ and ψ be in D(a), there exists a (unique up to zero-
potential sets) function in B([0, T ]× E,R) which we will denote G(φ, ψ) such
that under any Ps,x, 〈M [φ]s,x,M [ψ]s,x〉 =

∫ ·

s
G(φ, ψ)(r,Xr)dVr on [s, T ], up to

indistinguishability.

Proof. Let φ and ψ be in D(a), introduced in Definition 4.23. By Remark B.3,
there are square integrable MAFs M [φ] and M [ψ] defined by
M [φ]tu = φ(u,Xu)− φ(t,Xt)−

∫ u

t
a(φ)(r,Xr)dVr and

M [ψ]tu = ψ(u,Xu)− ψ(t,Xt)−
∫ u

t
a(ψ)(r,Xr)dVr , which admit, for any

(s, x) ∈ [0, T ]×E, M [φ]s,x, respectively M [ψ]s,x as cadlag versions under Ps,x.
The notion of square integrable MAF is introduced in Section B of the Appendix.
The existence of G(φ, ψ) therefore derives from Corollary B.13. By Proposition
4.20 that function is determined up to a zero-potential set.

Remark 4.25. G therefore defines a bilinear operator from D(a) × D(a) to
L0
X which extends Γ in the following sense. If φ, ψ are in D(a) and such that

M [φ]s,x, M [ψ]s,x are square integrable for all (s, x) ∈ [0, T ]×E, then φ, ψ belong
to D(a). Since, by Proposition 4.8, under Ps,x, on [s, T ], we have
〈M [φ]s,x,M [ψ]s,x〉 =

∫ ·

s
Γ(φ, ψ)(r,Xr)dVr, then it is clear that Γ(φ, ψ) is in the

class G(φ, ψ).

Definition 4.26. We will call G the extended square field operator.
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5 Pseudo-PDEs and associated Forward BSDEs

with no driving martingale

In this section, we still consider T ∈ R∗
+, a Polish space E and the associ-

ated canonical space
(

Ω,F , (Xt)t∈[0,T ], (Ft)t∈[0,T ]

)

, see Definition A.1. We also
consider a canonical Markov class (Ps,x)(s,x)∈[0,T ]×E associated to a transition
function measurable in time (see Definitions A.6 and A.4) which solves a well-
posed martingale problem associated to a triplet (D(a), a, V ), see Definition 4.3
and Hypothesis 4.6.

We will investigate here a specific type of BSDE with no driving martingale
BSDE(ξ, f̂ , V ) which we will call of forward type, or forward BSDE, in the
following sense.

1. The process V will be the (deterministic) function V introduced in Defi-
nition 4.3;

2. the final condition ξ will only depend on the final value of the canonical
process XT ;

3. the randomness of the driver f̂ at time t will only appear via the value
at time t of the forward process X . Given a function
f : [0, T ]× E × R× R → R, we will set f̂(t, ω, y, z) = f(t,Xt(ω), y, z) for
t ∈ [0, T ], ω ∈ Ω, y, z ∈ R.

That BSDE will be connected with the deterministic problem below.

Definition 5.1. Let us consider the following data.

1. A measurable final condition g ∈ B(E,R);
2. a measurable nonlinear function f ∈ B([0, T ]× E × R× R,R).

We will call Pseudo-Partial Differential Equation (in short Pseudo-PDE)
the following equation with final condition.

{

a(u)(t, x) + f
(

t, x, u(t, x),
√

Γ(u, u)(t, x)
)

= 0 on [0, T ]× E

u(T, ·) = g.
(5.1)

We will say that u is a classical solution of the Pseudo-PDE if it belongs to
D(a) and verifies (5.1).

Notation 5.2. Equation (5.1) will be denoted Pseudo− PDE(f, g).

To be able to perform the connection between forward BSDEs and
Pseudo− PDE(f, g), we will assume some generalized moments conditions on
X , and some growth conditions on the functions (f, g). Those will be related
to two functions ζ, η ∈ B(E,R+).

Hypothesis 5.3. The Markov class will be said to verify Hmom(ζ, η) if
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1. for any (s, x) ∈ [0, T ]× E, Es,x[ζ2(XT )] is finite;

2. for any (s, x) ∈ [0, T ]× E, Es,x [∫ T0 η2(Xr)dVr

]

is finite.

If (E, ‖ · ‖) is a separable Banach space, it is often useful to choose
ζ : x 7→ ‖x‖p, η : x 7→ ‖x‖q for some p, q ∈ R+, see [6]. In that context we will
write Hmom(p, q) instead of Hmom(ζ, η).

Hypothesis 5.4. A couple of functions
f ∈ B([0, T ]×E ×R×R,R) and g ∈ B(E,R) will be said to verify H(ζ, η) if
there exist positive constants KY ,KZ , C, C′ such that

1. ∀x : |g(x)| ≤ C(1 + ζ(x));

2. ∀(t, x, y, y′, z) : |f(t, x, y, z)− f(t, x, y′, z)| ≤ KY |y − y′|;

3. ∀(t, x, y, z, z′) : |f(t, x, y, z)− f(t, x, y, z′)| ≤ KZ |z − z′|;

4. ∀(t, x) : |f(t, x, 0, 0)| ≤ C′(1 + η(x)).

If (E, ‖ · ‖) is a separable Banach space and ζ : x 7→ ‖x‖p, η : x 7→ ‖x‖q for
some p, q ∈ R+, we will write H(p, q) instead of H(ζ, η).

To the equation Pseudo−PDE(f, g), we will associate the family of BSDEs
with no driving martingale indexed by (s, x) ∈ [0, T ] × E and defined on the
interval [0, T ] and in the stochastic basis

(

Ω,Fs,x, (Fs,x
t )t∈[0,T ],Ps,x) , given by

Y s,xt = g(XT )+

∫ T

t

f

(

r,Xr, Y
s,x
r ,

√

d〈M s,x〉
dV

(r)

)

dVr− (M s,x
T −M s,x

t ). (5.2)

Notation 5.5. Equation (5.2) will be denoted FBSDEs,x(f, g).

Remark 5.6. .

1. If there exist ζ, η ∈ B(E,R+) such that the Markov class verifies Hmom(ζ, η)
and such that (f, g) verifies H(ζ, η), then Hypothesis 3.15 is verified for
(5.2). By Theorem 3.34, for any (s, x), FBSDEs,x(f, g) has a unique
solution, in the sense of Definition 3.18.

2. Even if the underlying process X admits no generalized moments, given
a couple (f, g) such that f(·, ·, 0, 0) and g are bounded, the considera-
tions of this section still apply. In particular the connection between the
FBSDEs,x(f, g) and the corresponding Pseudo− PDE(f, g) still exists.

For the rest of this section, the positive functions ζ, η and the functions (f, g)
appearing in Pseudo − PDE(f, g) will be fixed, and we will assume that the
Markov class verifies Hmom(ζ, η) and that (f, g) verify H(ζ, η).

Notation 5.7. From now on, (Y s,x,M s,x) will always denote the (unique) so-
lution of FBSDEs,x(f, g).
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Remark 5.8. Let (s, x) ∈ [0, T ]×E be fixed. We know (see Proposition A.29)
that if t < s, Ft is Ps,x-trivial. So since Y s,x and M s,x are adapted, they are
deterministic on [0, s[. Moreover since M s,x belongs to H2

0, then it is equal to
zero on [0, s[.
We will not be interested in the value of Y s,x before s. However, we will later
show that Y s,xs is also deterministic. However, already at this stage, it is inter-
esting to realize that on [0, s], Y s,x is almost surely equal to the solution of the
deterministic integral equation

Y s,xt = Y s,xs +

∫ t

s

f(r, x, Y s,xr , 0)dVr, t ∈ [0, s].

So, on [0, s], Y s,x is almost surely to a deterministic function absolutely contin-
uous with respect to V and solving the ODE (parametrized by x)

dY s,x

dV
(t) = −f(t, x, Y s,xt , 0)dVt.

The goal of our work is to understand if and how the solutions of equations
FBSDEs,x(f, g) produce a solution of Pseudo− PDE(f, g) and reciprocally.

We will start by showing that if Pseudo − PDE(f, g) has a classical solution,
then this one provides solutions to the associated FBSDEs,x(f, g).

Proposition 5.9. We assume that there exists u ∈ D(a) such that
{

a(u)(s, x) + f(s, x, u(s, x),
√

Γ(u, u)(s, x)) = 0 on [0, T ]× E
u(T, ·) = g,

(5.3)

and we also assume the existence of a positive C > 0 such that for every
(s, x) ∈ [0, T ]× E,

√

Γ(u, u)(s, x) ≤ C(1 + η(x)).
Then, for any (s, x) ∈ [0, T ]×E, if M [u]s,x is as in Notation 4.5 and (Y s,x,M s,x)
is the unique solution of FBSDEs,x(f, g), then (u(·, X·),M [u]s,x· −M [u]s,xs ) and
(Y s,x,M s,x) are P

s,x-indistinguishable on [s, T ].

Proof. Let (s, x) be fixed. Since u ∈ D(a), the martingale problem in the sense
of Definition 4.3 and (5.3) imply that, on [s, T ], under Ps,x

u(·, X·)

= u(T,XT )−
∫ T

· a(u)(r,Xr)dVr − (M [u]s,xT −M [u]s,x· )

= g(XT ) +
∫ T

·
f
(

r,Xr, u(r,Xr),
√

Γ(u, u)(r,Xr)
)

− (M [u]s,xT −M [u]s,x· )

= g(XT ) +
∫ T

· f

(

r,Xr, Yr,
√

d〈M [u]s,x〉
dV

(r)

)

dVr − (M [u]s,xT −M [u]s,x· ),

where the latter equality comes from Proposition 4.8. Combining the growth
assumption on Γ(u, u) and Hmom(ζ, η) it follows thatEs,x [〈M [u]s,x〉T ] = Es,x [∫ T

s

Γ(u, u)(r,Xr)dVr

]

<∞.
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This means that M [u]s,x ∈ H2
0, so by Lemma 3.37, we have that

(u(·, X·),M [u]s,x· −M [u]s,xs ) and (Y s,x,M s,x) are indistinguishable on [s, T ].

We now want to adopt the converse point of view, and see what can be done
starting with the solutions of the equations FBSDEs,x(f, g).
At this point we aim at showing that there exist Borel functions u and v ≥ 0
such that for any (s, x) ∈ [0, T ] × E we have for all t ∈ [s, T ], Y s,xt = u(t,Xt)Ps,x-a.s., and d〈Ms,x〉

dV
= v2(·, X·) dV ⊗ dPs,x a.e. on [s, T ].

The next significant result is Theorem 5.16. An analogous result exists in
the Brownian framework, see e.g. Theorem 4.1 in [18]. We start with a lemma.

Lemma 5.10. Let f̃ ∈ B([0, T ]× E,R) be such that for any
(s, x) ∈ [0, T ]× E, f̃(·, X·)1[s,T ] belongs to L2(dV ⊗ dPs,x). Let, for any

(s, x) ∈ [0, T ] × E, (Ỹ s,x, M̃ s,x) be the (unique by Theorem 3.34 and Remark
3.36) solution of

Ỹ s,xt = g(XT ) +

∫ T

t

f̃ (r,Xr) dVr − (M̃ s,x
T − M̃ s,x

t ), t ∈ [s, T ],

in
(

Ω,Fs,x, (Fs,x
t )t∈[0,T ],Ps,x) . Then there exist two functions u and v ≥ 0 in

B([0, T ]× E,R) such that for any (s, x) ∈ [0, T ]× E

{

∀t ∈ [s, T ] : Ỹ s,xt = u(t,Xt) Ps,xa.s.
d〈M̃s,x〉
dV

= v2(·, X·) dV ⊗ dPs,x a.e. on [s, T ].

Proof. We set

u(s, x) = Es,x [g(XT ) +

∫ T

s

f̃ (r,Xr) dVr

]

,

which is Borel by Proposition A.8 and Lemma A.9. Therefore by (A.5) in
Remark A.26, for a fixed t ∈ [s, T ] we have P

s,x- a.s.

u(t,Xt) = Et,Xt

[

g(XT ) +
∫ T

t
f̃ (r,Xr) dVr

]

= Es,x [g(XT ) +
∫ T

t
f̃ (r,Xr) dVr

∣

∣

∣Ft
]

= Es,x [Ỹ s,xt + (M̃ s,x
T − M̃ s,x

t )|Ft
]

= Ỹ s,xt ,

since M̃ s,x is a martingale and Ỹ s,x is adapted. Then the square integrable
MAF (see Section B) defined by

M t
t′ := u(t′, Xt′) − u(t,Xt) +

∫ t′

t
f̃(r,Xr)dVr has M̃ s,x as cadlag version underPs,x, which guarantees the existence of the function v thanks to Corollary B.13

setting v =
√
k.
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We now define the Picard iterations associated to the contraction defining
the solution of a BSDE, see Notation 3.27.

Notation 5.11. For a fixed (s, x) ∈ [0, T ] × E, Φs,x will denote the con-
traction on L2(dV ⊗ dPs,x) × H2

0 whose fixed point defines the solution of
FBSDEs,x(f, g), see Definition 3.27. In the sequel we will not distinguish be-
tween a couple (Ẏ ,M) in L2(dV ⊗ dPs,x) × H2

0 and (Y,M), where Y is the
reference cadlag process of Ẏ , according to Definition 3.22.

We then convene the following.

1. (Y 0,s,x,M0,s,x) := (0, 0);

2. ∀k ∈ N∗ : (Y k,s,x,Mk,s,x) := Φs,x(Y k−1,s,x,Mk−1,s,x),

meaning that for k ∈ N∗, (Y k,s,x,Mk,s,x) is the solution of the BSDE

Y k,s,x = g(XT )+

∫ T

·

f

(

r,Xr, Y
k−1,s,x,

√

d〈Mk−1,s,x〉
dV

(r)

)

dVr−(Mk,s,x
T −Mk,s,x

· ).

(5.4)

Definition 5.12. The processes (Y k,s,x,Mk,s,x) will be called the Picard it-

erations of FBSDEs,x(f, g)

Proposition 5.13. For each k ∈ N, there exist functions uk and vk ≥ 0 in
B([0, T ]× E,R) such that for every (s, x) ∈ [0, T ]× E

{

∀t ∈ [s, T ] : Y k,s,xt = uk(t,Xt) Ps,xa.s.
d〈Mk,s,x〉

dV
= v2k(·, X·) dV ⊗ dPs,x a.e. on [s, T ].

(5.5)

Proof. We proceed by induction on k. It is clear that (u0, v0) = (0, 0) verifies
the assertion for k = 0.
Now let us assume that functions uk−1, vk−1 exist, for some integer k ≥ 1,
verifying (5.5) for k replaced with k − 1.

By Lemma 4.16, for every (s, x) ∈ [0, T ]×E, (Y k−1,s,x, Zk−1,s,x) = (uk−1, vk−1)(·, X·)
dV ⊗ Ps,x a.e. on [s,T]. Therefore by (5.4), on [s, T ]

Y k,s,x = g(XT )+

∫ T

·

f (r,Xr, uk−1(r,Xr), vk−1(r,Xr)) dVr−(Mk,s,x
T −Mk,s,x

· ).

For some fixed (s, x), since Φs,x maps L2(dV ⊗ dPs,x)×H2
0 into itself (see Def-

inition 3.27), obviously all the Picard iterations belong to

L2(dV ⊗ dPs,x)×H2
0. In particular, Y k−1,s,x and

√

d〈Mk−1,s,x〉
dV

are in

L2(dV ⊗ dPs,x). So, by recurrence assumption on uk−1 and vk−1 , it follows
that uk−1(·, X·)1[s,T ] and vk−1(·, X·)1[s,T ] belong to L2(dV ⊗ dPs,x). Com-
bining Hmom(ζ, η) and the growth condition of f in H(ζ, η), f(·, X·, 0, 0) also
belongs to L2(dV ⊗ dPs,x). Therefore thanks to the Lipschitz conditions on f
assumed in H(ζ, η), f (·, X·, uk−1(·, X·), vk−1(·, X·))1[s,T ] is in L2(dV ⊗ dPs,x).
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The existence of uk and vk now comes from Lemma 5.10 applied to
f̃ := f(·, ·, uk−1, vk−1). This establishes the induction step for a general k and
allows to conclude the proof.

Remark 5.14. For any k ∈ N∗ we have

1. uk ∈ D(a);

2. v2k = G(uk, uk);

3. a(uk) = −f(·, ·, uk−1, vk−1).

Indeed for any (s, x) ∈ [0, T ]× E, under Ps,x for t ∈ [s, T ], we have

uk(t,Xt)− uk(s, x) = −
∫ t

s
f(·, ·, uk−1, vk−1)(r,Xr)dVr + (Mk,s,x

t −Mk,s,x
s ) a.s.

and we have d〈Mk,s,x〉
dV

= v2k(·, X·) dV ⊗ dPs,x a.e. on [s, T ].
So from Definition 4.23 uk ∈ D(a) and a(uk) = −f(·, ·, uk−1, vk−1) and by Def-
inition 4.26, v2k = G(uk, uk), which shows the statement.

Remark 5.14 shows a first link between the BSDE, the martingale problem
introduced in Hypothesis 4.3 and the Pseudo-PDE with extended operators.

Now we intend to pass to the limit in k. For any (s, x) ∈ [0, T ]×E, we have
seen in Proposition 3.32 that Φs,x is a contraction in

(

L2(dV ⊗ dPs,x)×H2
0, ‖ · ‖λ

)

for some λ > 0, so we know that the sequence (Y k,s,x,Mk,s,x) converges to
(Y s,x,M s,x) in this topology.

The proposition below also shows an a.e. corresponding convergence, adapt-
ing the techniques of Corollary 2.1 in [18].

Proposition 5.15. For any (s, x) ∈ [0, T ]× E, Y k,s,x −→
k→∞

Y s,x dV ⊗ dPs,x
a.e. and

√

d〈Mk,s,x〉
dV

−→
k→∞

√

d〈Ms,x〉
dV

dV ⊗ dPs,x a.e.

Proof. We fix (s, x) and the associated probability. In this proof, all s, x super-

scripts are dropped. We set Zk =

√

d〈Mk〉
dV

and Z =
√

d〈M 〉
dV

. By Proposition
3.32, there exists λ > 0 such that for any k ∈ N∗E [∫ T

0
e−λVr |Y k+1

r − Y kr |2dVr +
∫ T

0
e−λVrd〈Mk+1 −Mk〉r

]

≤ 1
2E [∫ T0 e−λVr |Y kr − Y k−1

r |2dVr +
∫ T

0 e−λVrd〈Mk −Mk−1〉r
]

,

therefore

∑

k≥0

E [∫ T0 e−λVr |Y k+1
r − Y kr |2dVr

]

+ E [∫ T0 e−λVrd〈Mk+1 −Mk〉r
]

≤ ∑

k≥0

1
2k

(E [∫ T
0
e−λVr |Y 1

r |2dVr
]

+ E [∫ T
0
e−λVrd〈M1〉r

])

< ∞.
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We also have thanks to (3.7) that

∑

k≥0

(E[∫ T

0

e−λVr |Y k+1
r − Y kr |2dVr

]

+ E[∫ T

0

e−λVr |Zk+1
r − Zkr |2dVr

])

<∞.

So by Fubini’s theorem we haveE∫ T

0

e−λVr





∑

k≥0

(|Y k+1
r − Y kr |2 + |Zk+1

r − Zkr |2)



 dVr



 <∞.

Consequently the sum
∑

k≥0

(

|Y k+1
r (ω)− Y kr (ω)|2 + |Zk+1

r (ω)− Zkr (ω)|2
)

is finite on a set of full dV ⊗ dP measure. So on this set of full measure, the
sequence (Y k+1

t (ω), Zk+1
t (ω)) converges, and the limit is necessarily equal to

(Yt(ω), Zt(ω)) dV ⊗ dP a.e. because of the L2(dV ⊗ dP) convergence that we
have already established.

Theorem 5.16. There exist two functions u and v ≥ 0 in
B([0, T ]× E,R) such that for every (s, x) ∈ [0, T ]× E,

{ ∀t ∈ [s, T ] : Y s,xt = u(t,Xt) Ps,x a.s.
d〈Ms,x〉
dV

= v2(·, X·) dV ⊗ dPs,x a.e. on [s, T ].
(5.6)

Proof. We set ū := limsup
k∈N uk in the sense that for any (s, x) ∈ [0, T ]× E,

ū(s, x) = limsup
k∈N uk(s, x) and v := limsup

k∈N vk. ū and v are Borel functions. We

know by Propositions 5.13, 5.15 and Lemma 4.16 that for every (s, x) ∈ [0, T ]×E
{

uk(·, X·) −→
k→∞

Y s,x dV ⊗ dPs,x a.e. on [s, T ]

vk(·, X·) −→
k→∞

Zs,x dV ⊗ dPs,x a.e. on [s, T ],

where Zs,x :=
√

d〈Ms,x〉
dV

. Therefore, for some fixed (s, x) ∈ [0, T ] × E and on
the set of full dV ⊗ dPs,x measure on which these convergences hold we have






ū(t,Xt(ω)) = limsup
k∈N uk(t,Xt(ω)) = lim

k∈Nuk(t,Xt(ω)) = Y s,xt (ω)

v(t,Xt(ω)) = limsup
k∈N vk(t,Xt(ω)) = lim

k∈Nvk(t,Xt(ω)) = Zs,xt (ω).
(5.7)

This shows in particular the existence of v and the validity of the second line of
(5.6).
It remains to show the existence of u so that the first line of (5.6) holds. Thanks
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to the dV ⊗dPs,x equalities concerning v and ū stated in (5.7), under every Ps,x
we actually have

Y s,x = g(XT ) +

∫ T

·

f (r,Xr, ū(r,Xr), v(r,Xr)) dVr − (M s,x
T −M s,x

· ). (5.8)

Now (5.8) can be considered as a BSDE where the driver does not depend on
y and z. For any (s, x) ∈ [0, T ]× E, Y s,x and Zs,x belong to L2(dV ⊗ dPs,x),
then by (5.7), so do ū(·, X·)1[s,T ] and v(·, X·)1[s,T ]. Combining Hmom(ζ, η) and
the Lipschitz condition on f assumed in H(ζ, η), f(·, X·, ū(·, X·), v(·, X·))1[s,T ]

also belongs to L2(dV ⊗ dPs,x). We can therefore apply Lemma 5.10 to
f̃ = f(·, ·, ū, v), and conclude on the existence of a Borel function u such that
for every (s, x) ∈ [0, T ]× E, Y s,x is on [s, T ] a Ps,x-version of u(·, X·).

Remark 5.17. In particular, Y s,xs = u(s, x) is deterministic and
M s,x
s = Y s,xs − Y s,x0 +

∫ s

0 f (r,Xr, Y
s,x
r , 0) dVr is also deterministic and it is

therefore equal to 0 since M s,x ∈ H2
0, by Remark 5.8.

Remark 5.18. For any (s, x) ∈ [0, T ]× E, the stochastic convergence

(Y k,s,x,Mk,s,x)
L2(dV⊗dPs,x)×H2

−−−−−−−−−−−−→
k→∞

(Y s,x,M s,x) now has the functional counter-

part










uk
‖·‖2,s,x−−−−−→
k→∞

u

vk
‖·‖2,s,x−−−−−→
k→∞

v,

which yields










uk
L2

X−−→
k→∞

u

vk
L2

X−−→
k→∞

v,

where we recall that the locally convex topological space L2
X was introduced in

Notation 4.19.

Corollary 5.19. For any (s, x) ∈ [0, T ]× E and for any t ∈ [s, T ], the couple
of functions (u, v) obtained in Theorem 5.16 verifies Ps,x a.s.

u(t,Xt) = g(XT ) +

∫ T

t

f (r,Xr, u(r,Xr), v(r,Xr)) dVr − (M s,x
T −M s,x

t ),

where M s,x denotes the martingale part of the unique solution of FBSDEs,x(f, g).

Proof. The corollary follows from Theorem 5.16 and Lemma 4.16.

We now introduce now a probabilistic notion of solution for Pseudo−PDE(f, g).
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Definition 5.20. u ∈ D(a) will be said to solve Pseudo − PDE(f, g) in the
martingale sense if

{

a(u) = −f(·, ·, u,
√

G(u, u))
u(T, ·) = g.

(5.9)

Remark 5.21. The first equation of (5.9) holds in L0
X, hence up to a zero

potential set. The second one is a pointwise equality.

Theorem 5.22. Let (Ps,x)(s,x)∈[0,T ]×E be a Markov class associated to a tran-
sition function measurable in time (see Definitions A.6 and A.4) which fulfills
Hypothesis 4.6, i.e. it is a solution of a well-posed martingale problem associated
with the triplet (D(a), a, V ). Moreover we suppose Hypothesis Hmom(ζ, η) for
some positive ζ, η. Let a, G be the extended operators defined in Definitions 4.23
and 4.26. Let (f, g) be a couple verifying H(ζ, η). Let (u, v) be the functions
defined in Theorem 5.16.

Then u ∈ D(a), v2 = G(u, u) and u solves Pseudo − PDE(f, g) in the
martingale sense.

Proof. For any (s, x) ∈ [0, T ]× E, by Corollary 5.19, for t ∈ [s, T ], we have

u(t,Xt)−u(s, x) = −
∫ t

s

f(r,Xr, u(r,Xr), v(r,Xr))dVr+(M s,x
t −M s,x

s ) Ps,x a.s.

so by Definition 4.23, u ∈ D(a), a(u) = −f(·, ·, u, v) and
M [u]s,x =M s,x

· −M s,x
s .

Moreover by Theorem 5.16 we have d〈Ms,x〉
dV

= v2(·, X·) dV ⊗dPs,x a.e. on [s, T ],
so by Proposition 4.24 it follows v2 = G(u, u) and therefore, the L2

X equality
a(u) = −f(·, ·, u,

√

G(u, u)), which establishes the first line of (5.9).
Concerning the second line, we have for any x ∈ E,
u(T, x) = u(T,XT ) = g(XT ) = g(x) PT,x a.s. so u(T, ·) = g (in the determinis-
tic pointwise sense).

Remark 5.23. The equality a(u) = −f(·, ·, u,
√

G(u, u)) takes place in L2
X.

So in the most general setup, the function u constructed by the FBSDEs,x(f, g)
solves Pseudo− PDE(f, g) in the martingale sense. However, a priori, the ex-
tended operators have no analytical meaning.

In the companion paper [6] we will show that the couple (u, v) also solves
Pseudo − PDE(f, g) in more specific analytical way. However, the notion of
Pseudo-PDE related to extended operators stated above has two interesting
features. First, any classical solution (see Corollary 5.24 below) of
Pseudo − PDE(f, g) is also a solution in the martingale sense, secondly the
solution of (5.9) is unique, see Theorem 5.25 below.

Corollary 5.24. We assume that there exists u′ ∈ D(a) such that

{

a(u′)(s, x) + f(s, x, u′(s, x),
√

Γ(u′, u′)(s, x)) = 0 on [0, T ]× E
u′(T, ·) = g.
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We also suppose the existence of a positive C > 0 such that for every
(s, x) ∈ [0, T ]×E,

√

Γ(u′, u′)(s, x) ≤ C(1+η(x)). Then u′ ∈ D(a) and u′ solves
Pseudo− PDE(f, g) in the martingale sense.

Proof. We recall that for a given (s, x), (Y s,x,M s,x) denotes the (unique) solu-
tion of FBSDEs,x(f, g). By Proposition 5.9 we know that for any
(s, x) ∈ [0, T ] × E, (u′(·, X·),M [u′]s,x· − M [u′]s,xs ) and (Y s,x,M s,x) are Ps,x-
indistinguishable on [s, T ], so by Corollary 5.19 and Definition 4.21, it is clear
that u′ ∈ D(a) with a(u′) = −f(·, ·, u, v), where u, v are the functions built in
Theorem 5.16. We know by definition of u that for any (s, x) ∈ [0, T ]×E, Y s,x

is also a Ps,x-version of u(·, X·) on [s, T ]. So u′(·, X·) and u(·, X·) are Ps,x-
modifications on [s, T ]; by Lemma 4.16 and Proposition 4.20, u = u′ up to a
zero potential set. Moreover by Proposition 4.8, under any Ps,x,

∫ ·

s

Γ(u′, u′)(r,Xr)dVr = 〈M [u′]s,x〉 = 〈M s,x〉 =
∫ ·

s

v2(r,Xr)dVr ,

so v2 = Γ(u′, u′) up to a zero potential set, and u′ solves Pseudo− PDE(f, g)
in the martingale sense.

Theorem 5.25. The problem (5.9) admits a unique solution.

Proof. Existence has been the object of Theorem 5.22.
Let u and u′ be two elements of D(a) solving (5.9) and let

(s, x) ∈ [0, T ] × E be fixed. By Definition 4.21 and Remark 3.36, the process
u(·, X·) (respectively u′(·, X·)) under Ps,x admits a cadlag modification Us,x

(respectively U ′s,x) on [s, T ], which is a special semi-martingale with decompo-
sition

Us,x = u(s, x) +
∫ ·

s
a(u)(r,Xr)dVr +M [u]s,x

= u(s, x)−
∫ ·

s
f
(

r,Xr, u(r,Xr),
√

G(u, u)(r,Xr)
)

dVr +M [u]s,x

= u(s, x)−
∫ ·

s
f
(

r,Xr, U
s,x,
√

G(u, u)(r,Xr)
)

dVr +M [u]s,x,

(5.10)
where the third equality of (5.10) comes from Lemma 4.16. Of course we have

similarly U ′s,x = u′(s, x)−
∫ ·

s
f
(

r,Xr, U
′s,x,

√

G(u′, u′)(r,Xr)
)

dVr+M [u′]s,x).

M [u]s,x and M [u′]s,x were introduced at Definition 4.23: they belong to H2
0,

and by Proposition 4.24, 〈M [u]s,x〉 =
∫ ·

s
G(u, u)(r,Xr)dVr (respectively

〈M [u′]s,x〉 =
∫ ·

s
G(u′, u′)(r,Xr)dVr). Moreover since

u(T, ·) = u′(T, ·) = g, then u(T,XT ) = u′(T,XT ) = g(XT ) a.s. then the couples
(Us,x,M [u]s,x) and (U ′s,x,M [u′]s,x) both verify the equation

Y· = g(XT ) +

∫ T

·

f

(

r,Xr, Yr,

√

d〈M〉
dV

(r)

)

dVr − (MT −M·) (5.11)

on [s, T ].
Even though we do not have a priori information on the square integrability of
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Us,x and U ′s,x, we know that M [u]s,x and M [u′]s,x are in H2 and equal to zero
at time s, and that Us,xs and U ′s,x

s are deterministic so L2. By Lemma 3.37 and
the fact that (Us,x,M [u]s,x) and (U ′s,x,M [u′]s,x) solve the BSDE in the weaker
sense (5.11), it is sufficient to conclude that both solve FBSDEs,x(f, g) on [s, T ].
By Theorem 3.34 and Remark 3.36 the two couples are P

s,x-indistinguishable.
This implies that u(·, X·) and u′(·, X·) are modifications one of the other on
[s, T ], and by Lemma 4.16 that
∫ ·

s
u(r,Xr)dVr =

∫ ·

s
u′(r,Xr)dVr in the sense of indistinguishability. Since this

is true under any Ps,x, then by Proposition 4.20, u and u′ are equal up to a
zero-potential set. So they correspond to the same element of D(a).

We now conclude this section by showing that if the function u built with the
BSDEs is in the initial domain D(a) then it is a classical solution of Pseudo−
PDE(f, g), up to a zero-potential set. We still assume that for some positive
ζ, η, the Markov class verifiesHmom(ζ, η) and that the functions (f, g) appearing
in (5.1) verify H(ζ, η).

Theorem 5.26. Let (u, v) be the functions built via the solutions of
FBSDEs,x(f, g) by Theorem 5.16. If u ∈ D(a) then u is a classical solution of

{

a(u)(s, x) + f(s, x, u(s, x),
√

Γ(u, u)(s, x)) = 0 on [0, T ]× E
u(T, ·) = g,

up to a zero-potential set, meaning that the first equality holds up to a set of
zero potential. Moreover v =

√

Γ(u, u) up to a zero potential set.

Proof. We fix (s, x) ∈ [0, T ] × E and the corresponding probability Ps,x. We
denote (Y s,x,M s,x) the unique solution of FBSDEs,x(f, g). Corollary 5.19
implies, for any t ∈ [s, T ] the a.s. equality

u(t,Xt) = u(s, x) +

∫ t

s

f(r,Xr, u(r,Xr), v(r,Xr))dVr +M s,x
t .

The martingale problem related to Definition 4.3 gives, on [s, T ],

u(·, X·) = u(s, x) +

∫ ·

s

a(u)(r,Xr)dVr + (M [u]s,x· −M [u]s,xs ).

So on [s, T ], the processes
∫ ·

s
f(r,Xr, u(r,Xr), v(r,Xr))dVr +M s,x and

∫ ·

s
a(u)(r,Xr)dVr + (M [u]s,x· −M [u]s,xs ) are modifications of each other. Since

they are cadlag, they are indistinguishable. By uniqueness of the decomposi-
tion of a special semimartingale, it yields that

∫ t

s
f(r,Xr, u(r,Xr), v(r,Xr))dVr

is indistinguishable from
∫ t

s
a(u)(r,Xr)dVr and M s,x is indistinguishable from

M [u]s,x −M [u]s,xs . Since this holds under any Ps,x, by Proposition 4.20,
a(u) = f(·, ·, u, v) up to a zero-potential set.
Moreover, by evaluating the angular brackets of M s,x and M s,x[u], by Proposi-
tion 4.8 and Theorem 5.16, then, under any Ps,x, ∫ ·

s
v2(r,Xr)dVr and

∫ ·

s
Γ(u, u)(r,Xr)dVr
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are indistinguishable. Therefore by Proposition 4.20, v2 = Γ(u, u) up to a zero-

potential. So a(u) + f
(

·, ·, u,
√

Γ(u, u)
)

= 0 up to a zero-potential set.

We also have under every PT,x that u(T, x) = u(T,XT ) = g(XT ) = g(x) a.s. so
u(T, ·) = g.

6 Upcoming applications

In the companion paper [6], several examples shall be studied. The examples
below fit in the framework of Section 4.1.

6.1 Jump Diffusions

The first class of processes that falls into the abstract set up which we studied are
Markovian jump diffusions, which include continuous diffusions. Such processes
may be defined as solving Martingale problems with operators of type

a(φ) = ∂tφ+ 1
2

∑

i,j≤d

(σσ⊺)i,j∂
2
xixj

φ+
∑

i≤d

µi∂xi
φ

+
∫

(

φ(·, ·+ y)− φ(·, y)− 1
1+‖y‖2

∑

i≤d

yi∂xi
φ

)

K(·, ·, dy).

On the domain D(a) = C1,2
b ([0, T ]×Rd), the set of real continuous bounded func-

tions on [0, T ]× Rd which are differentiable in the first variable with bounded
continuous derivative, and twice differentiable in the second variable with bounded
continuous derivatives.
Here µ is a Borel function with values in Rd and σ is a Borel function with
values in Md(R), the set of matrices of size d. K is a Lévy kernel, meaning that
for every (t, x) ∈ [0, T ]×Rd, K(t, x, ·) is a σ-finite measure on Rd\{0} verifying
∫ ‖y‖2

1+‖y‖2K(t, x, dy) <∞ and for every Borel set A ∈ B(Rd\{0}),
(t, x) 7−→

∫

A

‖y‖2

1+‖y‖2K(t, x, dy) is Borel.

Martingale problems associated to such operators were first studied by D.W.
Stroock in [38]. Its Theorem 4.3 states the following.

Theorem 6.1. If µ is bounded Borel, σ is bounded continuous and takes values
in the set of invertible matrices Gld(R) of size d, and if for any
A ∈ B(Rd\{0}), (t, x) 7−→

∫

A
y

1+‖y‖2K(t, x, dy) is bounded continuous, then

for every (s, x) there exists a unique probability Ps,x on the canonical space
(defined in A.1) such that φ(·, X·)−φ(s, x)−

∫ ·

s
a(φ)(r,Xr)dr is a local martingale

for any φ ∈ D(a) and Ps,x(∀t ∈ [0, s], Xt = x) = 1. Moreover the family
(Ps,x)(s,x)∈[0,T ]×Rd defines a Markov class which is Feller continuous (in the
sense of Definition A.21).

The last point was the object of the first remark after Theorem 4.3 in [38].
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In this context, D(a) is an algebra and for φ, ψ in D(a), the square field
operator is given by

Γ(φ, ψ) =
∑

i,j≤d

(σσ⊺)i,j∂xi
φ∂xj

ψ+

∫

(φ(·, ·+ y)− φ) (ψ(·, ·+ y)− ψ)K(·, ·, dy).

If the underlying process is the d-dimensional Brownian motion (meaning
µ = 0, σ = Id, K = 0) then for any φ ∈ D(a) we have Γ(φ, φ) = ‖∇φ‖2, which
is at the origin of the terminology "square field operator".
We will provide mild solutions (in some cases, viscosity solutions) to Pseudo
PDEs of type

{

∂tu+ Lu+ f
(

·, ·, u,
√

Γ(u, u)
)

= 0 on [0, T ]× Rd
u(T, ·) = g,

where Lu denotes

1

2
Tr[∇2uσσ⊺]+〈µ,∇u〉+

∫ (

u(·, ·+ y)− u(·, y)− 1

1 + ‖y‖2 〈y,∇u〉
)

K(·, ·, dy),

where µ, σ,K verify the conditions of Theorem 6.1 and f, g verify H(ζ, η) for
some ζ, η.

6.2 α-stable Lévy processes

D. Stroock only studied jump diffusions with non degenerate diffusion part,
but one can also be interested in pure-jumps processes. We shall therefore also
study a typical example of pure jump process, the α-stable Lévy process. The
associated operator will involve the fractional Laplace (−∆)

α
2 with α ∈]0, 2[,

see Chapter 3 in [15] for an introduction. Let d ∈ N∗ and C2
b (Rd) denote the set

of twice continuously differentiable functions which are bounded with bounded
derivatives. On C2

b (Rd) this operator can be defined by

(−∆)
α
2 (φ)(x) = cα,dPV

∫Rd

(φ(x + y)− φ(x))

‖y‖d+α dy,

where cα,d is a constant only depending on α and d and PV is a notation for
principal value. On the Schwartz space S(Rd), this operator can also be defined
as a Fourier multiplier

(−∆)
α
2 (f) = F−1(‖ξ‖αF(φ)),

where F denotes the Fourier transform and F−1 the invert Fourier transform,
see Proposition 3.3 in [15].

Theorem 1.2 in [7] states that a certain martingale problem associated to −(−∆)
α
2

is well posed. Its solution defines a Markov process often called the α-stable
(rotationally invariant) Lévy process.
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We shall therefore be interested in the operator a : φ 7−→ ∂tφ − (−∆)
α
2 φ.

The associated square field operator Γα will be given by the formula

Γα(φ, ψ)(t, x) = cα,dPV

∫

(φ(t, x + y)− φ(t, x))(ψ(t, x + y)− ψ(t, x))

‖y‖d+α dy,

and we will provide mild solutions (in some cases, viscosity solutions) to Pseudo
PDEs of type






∂tu− (−∆)
α
2 u+ f

(

·, ·, u,
(

PV
∫ (u(·,·+y)−u)2

‖y‖d+α dy
)

1
2

)

= 0 on [0, T ]× Rd
u(T, ·) = g.

6.3 Diffusions with distributional drift

Finally, our set-up goes beyond Markovian semi-martingales, so we shall study
an example of Markovian process which is a Dirichlet process, and not neces-
sarily a semi-martingale.

Concerning this example, we will use the formalism and results obtained by
[21], see also [36, 20] and references therein for more recent developments.

Let b, σ : R → R be continuous functions such that σ > 0. By a mollifier,
we intent a function in the class of Schwartz Φ ∈ S(R) with

∫

Φ(x)dx = 1. We
denote

Φn(x) = nΦ(nx), σ2
n = σ2 ∗ Φn, bn = b ∗ Φn.

We then define on C2(R) the sequence of operators Lng =
σ2
n

2 g
′′ + b′ng

′.
f ∈ C1(R) is said to be a solution to Lf = l̇ where l̇ ∈ C0, if for any mollifier Φ,
there are sequences (fn) in C2, (l̇n) in C0 such that

Lnfn = (l̇n), fn
C1

−→ f , l̇n
C0

−→ l̇.

Under some conditions on b and σ, there exists a unique solution to

Lf(x) = l̇, f ∈ C1, f(0) = x0, f ′(0) = x1,

for any l̇ ∈ C0, x0, x1 ∈ R. DL is defined as the set of f ∈ C1 such that there
exists some l̇ ∈ C0 with Lf = l̇ and can be shown to be an algebra.

In [21] the authors show that there exists a unique solution to a martingale prob-
lem associated to (DL, L), and that this solution defines a Markovian Dirichlet
process.

We will be interested in some operator a : φ 7−→ ∂tφ + Lφ with associated
square field operator Γ : (φ, ψ) 7−→ σ2∂xφ∂xψ, and we shall provide mild so-
lutions (in some cases, viscosity solutions) to semi-linear parabolic PDEs with
distributional drift of type

{

∂tu+ Lu+ f (·, ·, u, σ|∂xu|) = 0 on [0, T ]× R
u(T, ·) = g.
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We mention some notes about bibliography. In the case of dimension 1 [37]
considered BSDEs with terminal condition in connection with a PDE of elliptic
type. On the other hand in dimension d, the recent preprint [24] considers from
a different point of view a class of BSDEs involving a distributional drift.

Appendices

A Markov classes

We believe that the content of this Appendix is very close to standard mate-
rial in the theory of Markov processes. However, most of the Markov processes
literature concerns time-homogeneous processes, and most of the articles or
books about time-dependent processes do not emphasize the measurability is-
sues which we will extensively use.
So, for the comfort of the reader, we have decided to recall some well-known
definitions and to give the exact mathematical background that we will use
when defining a "non-homogeneous Markov process" and to prove (or possibly
re-prove) some basic properties which are close to those in classical textbooks.
Most of the definitions that we will introduce in this section are inspired from
chapter VI of [17], which considers a more general setting, not necessarily useful
for our purposes.

The first definition refers to the canonical space that one can find in [25],
see paragraph 12.63.

Notation A.1. In the whole section E will be a fixed Polish space (a separable
completely metrizable topological space), and B(E) its Borel σ-field. E will be
called the state space.

We consider T ∈ R∗
+. We denote Ω := D(E) the Skorokhod space of functions

from [0, T ] to E right-continuous with left limits and continuous at time T (e.g.
cadlag). For any t ∈ [0, T ] we denote the coordinate mapping Xt : ω 7→ ω(t),
and we introduce on Ω the σ-field F := σ(Xr|r ∈ [0, T ]).

On the measurable space (Ω,F), we introduce the measurable canonical

process

X :
(t, ω) 7−→ ω(t)

([0, T ]× Ω,B([0, T ])⊗F) −→ (E,B(E)),

and the right-continuous filtration (Ft)t∈[0,T ] where Ft :=
⋂

s∈]t,T ]

σ(Xr|r ≤ s) if

t < T , and FT := σ(Xr|r ∈ [0, T ]) = F .
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(

Ω,F , (Xt)t∈[0,T ], (Ft)t∈[0,T ]

)

will be called the canonical space (associated to
T and E).

We recall that since E is Polish, then D(E) can be equipped with a Sko-
rokhod distance which makes it a Polish metric space (see Theorem 5.6 in chap-
ter 3 of [19], and for which the Borel σ-field is F (see Proposition 7.1 in chapter
3 of [19]). This in particular implies that F is separable, as the Borel σ-field of
a separable metric space.

Remark A.2. Previous definitions and all the results of this Appendix, extend
to a time interval equal to R+.

Definition A.3. The function

p :
(s, x, t, A) 7−→ p(s, x, t, A)

[0, T ]× E × [0, T ]× B(E) −→ [0, 1],

will be called transition function if, for any s, t in [0, T ], x ∈ E, A ∈ B(E),
it verifies

1. x 7→ p(s, x, t, A) is Borel,

2. B 7→ p(s, x, t, B) is a probability measure on (E,B(E)),

3. if t ≤ s then p(s, x, t, A) = 1A(x),

4. if s < t, for any u > t:
∫

E

p(s, x, t, dy)p(t, y, u, A) = p(s, x, u,A).

The latter statement is the well-known Chapman-Kolmogorov equation.

Definition A.4. A transition function p for which the first item is reinforced
supposing that (s, x) 7−→ p(s, x, t, A) is Borel for any t, A, will be said measur-

able in time.

Remark A.5. Let p be a transition function which is measurable in time. By
approximation by step functions, one can easily show that, for any Borel function
φ from E to R then (s, x) 7→

∫

φ(y)p(s, x, t, dy) is Borel, provided previous
integral makes sense. In this paper we will only consider transition functions
which are measurable in time.

Definition A.6. A canonical Markov class associated to a transition func-
tion p is a set of probability measures (Ps,x)(s,x)∈[0,T ]×E defined on the measur-
able space (Ω,F) and verifying for any t ∈ [0, T ] and A ∈ B(E)Ps,x(Xt ∈ A) = p(s, x, t, A), (A.1)

and for any s ≤ t ≤ uPs,x(Xu ∈ A|Ft) = p(t,Xt, u, A) Ps,x a.s. (A.2)

(A.2) will be called the Markov property.
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Remark A.7. By approximation by step functions, it follows that for any Borel
function φ, x ∈ E and 0 ≤ s ≤ t ≤ u ≤ TEs,x[φ(Xt)] = p(s, x, u, φ) :=

∫

E

p(s, x, t, dy)φ(y),

(A.3)Es,x[φ(Xu)|Ft] = p(t,Xt, u, φ) =

∫

E

p(t,Xt, u, dy)φ(y),

provided previous integrals make sense. Moreover, from (A.1) and Definition
A.3 it follows that for any (s, x) ∈ [0, T ]× E and t ≤ sPs,x(Xt = x) = 1. (A.4)

Since X is cadlag, we even have Ps,x(∀t ∈ [0, s], Xt = x) = 1.

Proposition A.8. For any event F ∈ F , (s, x) 7−→ Ps,x(F ) is Borel. For
any random variable Z, if the function (s, x) 7−→ Es,x[Z] is well-defined (with
possible values in [−∞,∞]), then it is Borel.

Proof. We start by assuming that F is of the form
⋂

i≤n

{Xti ∈ Ai}, where

n ∈ N∗, 0 ≤ t1 < · · · < tn ≤ T and A1, · · · , An are Borel sets of E, and we
denote by Π the set of such events.
In this proof we will make use of monotone class arguments. See for instance
Section 4.3 in [1] for the definitions of π-systems and λ-systems and for this
version of the monotone class theorem, also called the Dynkin’s lemma.
We remark that Π is a π-system (see Definition 4.9 in [1]) generating F . For
such events, applying (A.2) and (A.3) successively, we can explicitly computePs,x(F ).
We compute Ps,x(F ), when (s, x) belongs to [ti∗−1 − 1, ti∗ [×E for some
0 < i∗ ≤ n+1, where by convention, t0 = 0. On [tn, T ]×E, the same computa-
tion can be performed. We will show below that those restricted functions are
Borel, the general result will follow by concatenation.
We havePs,x(F )

=
i∗−1

Π
i=1

1Ai
(x)Es,x [ n

Π
j=i∗

1Ai
(Xti)

]

=
i∗−1

Π
i=1

1Ai
(x)Es,x [n−1

Π
j=i∗

1Ai
(Xti)Es,x[1An

(Xtn)|Ftn−1
]

]

=
i∗−1

Π
i=1

1Ai
(x)Es,x [n−1

Π
j=i∗

1Ai
(Xti)p(tn−1, Xtn−1

, tn, An)

]

= · · ·
=

i∗−1

Π
i=1

1Ai
(x)
∫

(

n

Π
j=i∗+1

1Aj
(xj)p(tj−1, xj−1, tj , dxj)

)

1Ai∗
(xi∗)p(s, x, ti∗ , dxi∗),
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which indeed is Borel in (s, x) thank to Definition A.4 and Remark A.5.
We can extend this result to any event F by the monotone class theorem. In-
deed, let Λ be the set of elements F of F such that (s, x) 7→ Ps,x(F ) is Borel.
For any two events F 1, F 2, in Λ with F 1 ⊂ F 2, since for any (s, x),Ps,x(F 2\F 1) = Ps,x(F 2) − Ps,x(F 1), (s, x) 7→ Ps,x(F 2\F 1) is still Borel. For
any increasing sequence (Fn)n≥0 of elements of Λ, Ps,x( ⋃

n∈NFn) = lim
n→∞

Ps,x(Fn)
so (s, x) 7→ Ps,x( ⋃

n∈NFn) is still Borel, therefore Λ is a λ-system containing the

π-system Π which generates F . So by the monotone class theorem, Λ = F .

Concerning the second statement of the proposition, if Z ≥ 0, there exists
an increasing sequence (Zn)n≥0 of simple functions on Ω converging pointwise
to Z, and thank to the first statement of the Proposition, for each of these
functions, (s, x) 7→ Es,x[Zn] is Borel. Therefore since by monotonic convergence,Es,x[Zn] −→

n→∞
Es,x[Z], then (s, x) 7→ Es,x[Z] is Borel as the pointwise limit of

Borel functions. For a general Z one just has to consider its decomposition
Z = Z+ − Z− where Z+ and Z− are positive.

Lemma A.9. Let V be a continuous non-decreasing function on [0, T ] and

f ∈ B([0, T ]×E) be such that for every (s, x), Es,x[∫ T
s
|f(r,Xr)|dVr] <∞, then

(s, x) 7−→ Es,x[∫ T
s
f(r,Xr)dVr ] is Borel.

Proof. We will in fact show that on the set {(s, x, t) ∈ [0, T ]×E× [0, T ] : s ≤ t},
the function (s, x, t) 7→ Es,x[∫ T

t
f(r,Xr)dVr ] (which takes finite values thanks to

the integrability assumed for f) is Borel. The Lemma will follow by composing
with the measurable function (s, x, t) 7→ (s, x, s).
Let t ∈ [0, T ] be fixed, then by Proposition A.8, (s, x) 7→ Es,x[∫ T

t
f(r,Xr)dVr]

is Borel. Let (s, x) ∈ [0, T ]×E be fixed and tn −→
n→∞

t be a converging sequence

in [s, T ]. Since V is continuous,
∫ T

tn
f(r,Xr)dVr −→

n→∞

∫ T

t
f(r,Xr)dVr a.s. And

since this sequence is uniformly bounded by the L1 r.v.
∫ T

s
|f(r,Xr)|dVr , by

dominated convergence theorem, the same convergence holds under the expec-
tation. This implies that t 7→ Es,x[∫ T

t
f(r,Xr)dVr ] is continuous. By Lemma

4.51 in [1], (s, x, t) 7→ Es,x[∫ T
t
f(r,Xr)dVr] is therefore jointly Borel, and by

composition, so is (s, x) 7−→ Es,x[∫ T
s
f(r,Xr)dVr ].

Proposition A.10. Let (Ps,x)(s,x)∈[0,T ]×E be a canonical Markov class asso-
ciated to a transition function measurable in time, let f ∈ B([0, T ]× E,R) be
such that for any (s, x, t), Es,x[|f(t,Xt)|] < ∞ then (s, x, t) 7−→ Es,x[f(t,Xt)]
is Borel.

Proof. We start by showing it for f ∈ Cb([0, T ] × E,R). X is cadlag so
t 7−→ f(t,Xt) also is. So for any fixed (s, x) ∈ [0, T ] × E if we take a con-
verging sequence tn −→

n→∞
t+(resp. t−), an easy application of the Lebesgue

dominated convergence theorem shows that t 7−→ Es,x[f(t,Xt)] is cadlag. On
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the other hand, by Proposition A.8, for a fixed t, (s, x) 7−→ Es,x[f(t,Xt)] is
Borel. Therefore by Theorem 15 Chapter IV of [12], (s, x, t) 7−→ Es,x[f(t,Xt)]
is jointly Borel.

In order to extend the result to any f ∈ Bb([0, T ] × E,R), we consider the
subset I of functions f ∈ Bb([0, T ]× E) such that (s, x, t) 7−→ Es,x[f(t,Xt)] is
Borel. Then I is a linear space stable by uniform convergence and by monotone
convergence and containing Cb([0, T ]×E) which is stable by multiplication and
generates the Borel σ-field B([0, T ]) ⊗ B(E). So by Theorem 21 in Chapter I
of [12], I = Bb([0, T ] × E). This Theorem is sometimes called the functional
monotone class theorem.

Now for any positive Borel function f , we can set fn = f ∧ n which is bounded
Borel. Since by monotonic convergence, Es,x[fn(t,Xt)] tends to Es,x[f(t,Xt)],
then (s, x, t) 7−→ Es,x[f(t,Xt)] is Borel as the pointwise limit of Borel functions.
Finally for a general f it is enough to decompose it into f = f+ − f− where
f+, f− are positive functions.

Definition A.11. Let P be a probability on (Ω,F). A set N ⊂ Ω is said to beP-negligible (or P-null) if it is included in a measurable set N ′ ∈ F such thatP(N ′) = 0. We denote NP the set of P-negligible sets. We call P-completion

of F the σ-field generated by F ∪NP which we denote FP.

Let G be a sub-σ-field of F , we call P-closure of G the σ-field generated by
G ∪ NP which we denote GP.

Remark A.12. Thanks to Remark 32.b) in Chapter II of [12], we have an
equivalent definition of the P-completion of F which can be characterized by the
following property: B ∈ FP if and only if there exist F ∈ F and a P-negligible
set N such that F\N ⊂ B ⊂ F ∪N . Moreover, P can be extended to a proba-
bility on FP by setting P(B) = P(F ).
Similarly, if G is a sub-σ-field of F , the P-closure of G can be defined by the
condition: B ∈ GP if and only if there exist G ∈ G and a P-negligible set N
such that G\N ⊂ B ⊂ G ∪N .

The procedure above for defining completion and closure corresponds to the one
in [17], however we believe that the ones given in Definition A.11 are more
standard nowadays.

Definition A.13. A probability space (Ω̃, F̃ ,P) is said to be complete if anyP-negligible set belongs to F̃ .

For any probability measure P on (Ω,F), if we build the P-completion of F
and extend P to it as explained in Remark A.12, then (Ω,FP,P) is a complete
probability space. Similarly, if we build the P-closure of a sub-σ-field G and
consider the restriction of P to it (after having been extended to FP), then
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(Ω,GP,P) is a complete probability space. We will sometimes just say that GP
is complete.

Definition A.14. For any (s, x) ∈ [0, T ] × E we will consider the (s, x)-
completion

(

Ω,Fs,x, (Fs,x
t )t∈[0,T ],Ps,x) of the stochastic basis

(

Ω,F , (Ft)t∈[0,T ],Ps,x)
by defining Fs,x as the Ps,x-completion of F , by extending Ps,x to Fs,x and
finally by defining Fs,x

t as the Ps,x-closure of Ft for every t ∈ [0, T ].

We remark that, for any (s, x) ∈ [0, T ]×E,
(

Ω,Fs,x, (Fs,x
t )t∈[0,T ],Ps,x) is a

stochastic basis fulfilling the usual conditions.

Proposition A.15. Let G be a sub-σ-field of F , P a probability on (Ω,F) and
GP the P-closure of G. Let ZP be a real GP-measurable random variable. There
exists a G-measurable random variable Z such that Z = ZP P-a.s.

Proof. By Remark A.12, if GP ∈ GP, there exist G ∈ G and a P-negligible set
N such that G\N ⊂ GP ⊂ G ∪N so

{

1G\N ≤ 1GP ≤ 1G∪N P a.s.
1G\N ≤ 1G ≤ 1G∪N P a.s.

but since N is P-negligible then 1G\N = 1G∪N P a.s. so all the previous indi-
cators are P a.s. equal. Setting Z = 1G, the assertion is true for such a r.v.
Taking linear combinations, the assertion still holds if ZP is a simple function.

If ZP is any positive GP-measurable function, there exists a sequence of positive
GP-measurable simple functions

(

ZPn )n≥0
such that ZPn tends to ZP pointwise.

For any n ≥ 0, there exists a G-measurable step function Zn (which can be
taken positive) such that Zn = ZPn P a.s. We set Z = liminf

n≥0
Zn. It is finite

for any ω since Zn ≥ 0 for all n, and Z is G-measurable. There exists a set ofP-full measure on which for any n, ZPn (ω) = Zn(ω) and on which ZPn (ω) tends
to ZP(ω), so on this set of full measure, Z(ω) = ZP(ω).
For a general Z one needs to decompose it into Z = Z+ − Z− where Z+ and
Z− are positive.

Proposition A.16. Let (Ps,x)(s,x)∈[0,T ]×E be a canonical Markov class. Let
(s, x) ∈ [0, T ]× E be fixed, Z be a random variable and t ∈ [s, T ], thenEs,x[Z|Ft] = Es,x[Z|Fs,x

t ] Ps,x a.s.

Proof. Es,x[Z|Ft] is Ft-measurable and therefore Fs,x
t -measurable. Moreover,

let Gs,x ∈ Fs,x
t , by Remark A.12, there exists G ∈ Ft such thatPs,x(G ∪Gs,x) = Ps,x(G\Gs,x) implying 1G = 1Gs,x Ps,x a.s. SoEs,x [1Gs,xEs,x[Z|Ft]] = Es,x [1GEs,x[Z|Ft]]

= Es,x [1GZ]
= Es,x [1Gs,xZ] ,

where the second equality occurs because of the definition of Es,x[Z|Ft].
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So often when considering conditional expectations, we will drop the (s, x)
superscript, except if we want to emphasize some specific measurability condi-
tion.

Remark A.17. In this section we focus on some measurability issues which are
of fundamental importance in the paper.
Let us consider an event F which belongs to

⋂

(s,x)∈[0,T ]×E

Fs,x. In spite of the va-

lidity of Proposition A.8, it is hard to believe that the function (s, x) 7→ P s,x(F )
is is still Borel.

In the literature of (generally homogeneous) Markov processes, one replaces
instead the Borel σ-field by the so called σ-field of universally measurable sets,
see e.g. Property 11 in Chapter XIV.1 of [14]).

We believe that this idea does not adapt very well to the context of time-inhomogeneous
Markov processes, for which the probabilities are also indexed by the starting
time. For that reason we have decided, as much as possible, to reduce the frame-
work to events and r.v. which are measurable with respect to the uncompleted
σ-field F .

Remark A.18. Our setup is a clear restriction of the most general setup de-
scribed in [17] for the following reasons.

1. The time interval [0, T ] is deterministic and the probability measures
p(s, x, t, ·) have unit mass, which means that we consider processes with
no explosion;

2. the state space E does not depend on the time;

3. we impose in our definition that trajectories must be cadlag;

4. we do not consider branching points;

5. the p(·, ·, t, A) are Borel in (s, x) and not just in x which simplifies con-
siderations about measurability that we will have to make.

Remark A.19. Concerning the latter difference, in most of the literature, a
transition function is defined as being only Borel in the space variable. With
such a definition, one can do as in [17] and define the notion of p-measurability
which makes all the functions (s, x) 7−→ p(s, x, t, A) p-measurable. However we
prefer not to work in this setup in order to avoid useless complications since in
all our examples we will indeed have measurability in the time variable.

Notation A.20. On D(E) we denote by J1 the Skorokhod topology, and we
denote P(D(E)) the set of Borel probability measures on D(E) which we equip
with the topology of weak convergence of measures with respect to J1.

Definition A.21. When considering a canonical Markov class, we say that
(Ps,x)(s,x)∈[0,T ]×E is Feller continuous if

(s, x) 7−→ Ps,x
[0, T ]× E −→ P(D(E))
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is continuous.

We will show that when (Ps,x)(s,x)∈[0,T ]×E is Feller continuous then the
transition function is necessarily measurable in time. But first we need the
following Lemma.

Lemma A.22. Let t ∈ [0, T ], ǫ > 0 and f ∈ Cb(E,R) then

F t,ǫ,f :
ω −→ 1

ǫ

∫ t+ǫ

t
f(ω(r))dr

(D, J1) −→ R,
is continuous.

Proof. Let ωn 7−→
n→∞

ω in (D(E), J1) then ωn(s) 7−→
n→∞

ω(s) on all continuity

points of ω, see Proposition 5.2 in chapter 3 of [19]. Since ω only has a countable
number of jumps (see Lemma 5.1 in chapter 3 of [19]) then ωn tends to ω
Lebesgue a.e. So the continuity of f and dominated convergence theorem imply
that

∫ t+ǫ

t
f(ωn(r))dr 7−→

n→∞

∫ t+ǫ

t
f(ω(r))dr.

Proposition A.23. Let (Ps,x)(s,x)∈[0,T ]×E be a canonical Markov class associ-
ated to a transition function p. If (Ps,x)(s,x)∈[0,T ]×E is Feller continuous then
p is measurable in time.

Proof. By Lemma A.22, for any t ∈ [0, T ], ǫ > 0 and f ∈ Cb(E,R), F t,ǫ,f
is a continuous functional and it is clearly bounded so by definition of the

weak convergence of measures, (s, x) 7−→ Es,x [1
ǫ

∫ t+ǫ

t
f(Xr)dr

]

is continuous

and therefore Borel. Then for some fixed (s, x), since f is continuous and
X cadlag, we have 1

ǫ

∫ t+ǫ

t
f(Xr)dr −→

ǫ→0
f(Xt) Ps,x-a.s. Since f is bounded,

by dominated convergence we get Es,x [1
ǫ

∫ t+ǫ

t
f(Xr)dr

]

−→
ǫ→0

Es,x[f(Xt)] and

therefore (s, x) 7−→ Es,x[f(Xt)] is Borel as pointwise limit of Borel functions.
Now this can be extended to any bounded Borel function f by using as in
Proposition A.10 the functional version of the monotone class theorem, i.e.
Theorem 21 in Chapter I of [12]. Since by (A.1) p(s, x, t, A) = Es,x[1A(Xt)] for
any s, x, t, A, we have shown that p is measurable in time.

Notation A.24. For any t ∈ [0, T ] we denote Ft,T := σ(Xr|r ≥ t) and Fs,x
t,T itsPs,x-closure.

For any 0 ≤ t ≤ u < T we will denote Ft,u :=
⋂

n≥0

σ(Xr|r ∈ [t, u + 1
n
]) and

Fs,x
t,u will stand for its Ps,x-closure. The filtration (Ft,u)u∈[t,T ] will sometimes

be denoted Ft,·.

Remark A.25. The above σ-fields fulfill the properties below.

1. For any 0 ≤ t ≤ u < T , Ft,u = Fu ∩ Ft,T ;

2. for any t ≥ 0, Ft ∨ Ft,T = F ;
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3. for any (s, x) ∈ [0, T ]× E, the two first items remain true when consid-
ering the Ps,x-closures of all the σ-fields;

4. for any t ≥ 0, Π := {F = Ft ∩ F tT |(Ft, F tT ) ∈ Ft × Ft,T } is a π-system
generating F .

Remark A.26. Formula 1.7 in Chapter 6 of [17] states that for any A ∈ Ft,T
yields Ps,x(A|Ft) = Pt,Xt(A) = Ps,x(A|Xt) Ps,xa.s. (A.5)

Property (A.5) will also often be called Markov property.

Definition A.27. If (Ω̃, F̃ ,P) is a probability space and G is a sub-σ-field of
F̃ , we say that G is P-trivial if for any element G of G, then P(G) is equal to
0 or 1.

We now show that in our setup, a canonical Markov class verifies the Blu-
menthal 0-1 law in the following sense.

Proposition A.28. Let (s, x) ∈ [0, T ]× E and F ∈ Fs,s then Ps,x(F ) is equal
to 1 or to 0. In other words, Fs,s is Ps,x-trivial.
Proof. Let F ∈ Fs,s as introduced in Notation A.24.
Since by Remark A.25, Fs,s = Fs∩Fs,T , then F belongs to Fs so by conditioning
we get Es,x[1F ] = Es,x[1F1F ]

= Es,x[1FEs,x[1F |Fs]]
= Es,x[1FEs,Xs [1F ]],

where the latter equality comes from (A.5) because F ∈ Fs,T . But by (A.4),
Xs = x Ps,x a.s. so Es,x[1F ] = Es,x[1FEs,x[1F ]]

= Es,x[1F ]2.
Proposition A.29. For any (s, x) ∈]0, T ]×E and t ∈ [0, s[, Ft is Ps,x-trivial.
Proof. Let (s, x) and t be fixed. We recall that, by (A.4), X is almost surely
equal to the constant x on [0, s]. Ft is generated by the π-system Πt composed
of events of type

⋂

i≤n

{Xti ∈ Ai} where n ∈ N, t1, · · · , tn are in [0, t], and

A1, · · · , An are Borel subsets of E. Let Λt be the set of events of Ft of probability
one or zero. Λt is clearly a λ-system and by (A.4) contains Πt. By the monotone
class theorem, it follows Λt = Ft.
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B Non-homogeneous Additive Functionals

In this section, we introduce the notion of non-homogeneous Additive Functional
that we use in the paper. This looks to be a good compromise between the
notion of Additive Functional associated to a stochastic system introduced by
E.B. Dynkin (see for example [16]) and the more popular notion of homogeneous
Additive Functional studied extensively, for instance by C. Dellacherie and P.A.
Meyer in [14] Chapter XV. This section of the Appendix consists in extending
some essential results stated in [14] Chapter XV to our setup.

In this section we will use the notation ∆ := {(t, u) ∈ [0, T ]2|t ≤ u}. As in
Appendix A,

(

Ω,F , (Xt)t∈[0,T ], (Ft)t∈[0,T ]

)

will still denote the canonical space
(associated to T and E).

Definition B.1. On (Ω,F), we define a non-homogeneous Additive Func-

tional (shortened AF) as a random-field indexed by ∆ with values in R
A := (Atu)(t,u)∈∆ verifying the two following conditions.

1. For any (t, u) ∈ ∆, Atu is Ft,u-measurable, see Definition A.24;

2. for any (s, x) ∈ [0, T ]×E, there exists a real cadlag Fs,x-adapted process
As,x (taken equal to zero on [0, s] by convention) such that for any x ∈ E
and s ≤ t ≤ u,

Atu = As,xu −As,xt Ps,x a.s.

We denote by At the (Ft,·-adapted) process u 7→ Atu indexed by [t, T ]. For any
(s, x) ∈ [0, t]× E, As,x· −As,xt is a Ps,x-version of At on [t, T ].
As,x will be called the cadlag version of A under Ps,x.
An AF will be called a non-homogeneous Martingale Additive Functional

(shortened MAF) if under any Ps,x its cadlag version is a martingale.

More generally an AF will be said to verify a certain property (being non-
negative, increasing, of bounded variation, square integrable, having L1 terminal
value) if under any Ps,x its cadlag version verifies it.

Finally, given two increasing AF A and B, A will be said to be absolutely

continuous with respect to B if for any (s, x) ∈ [0, T ]× E, dAs,x ≪ dBs,x

in the sense of stochastic measures.

Remark B.2. The set of AFs (respectively of AFs with bounded variation, of
AFs with L1 terminal value, of MAFs, of square integrable MAFs) is a linear
space.

Remark B.3. Let φ ∈ D(a) and set
M [φ]tu = φ(u,Xu) − φ(t,Xt) −

∫ u

t
a(φ)(r,Xr)dVr. Then (M [φ]tu)(t,u)∈∆ is an

example of square integrable MAF and its cadlag version under Ps,x is M [φ]s,x,
as defined in Definition 4.23.
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In this section for a given MAF (M t
u)(t,u)∈∆ we will be able to exhibit two

AF, denoted respectively by ([M ]tu)(t,u)∈∆ and (〈M〉tu)(t,u)∈∆, which will play
respectively the role of a quadratic variation and an angular bracket of it. More-
over we will show that the Radon-Nikodym derivative of the mentioned angular
bracket of a MAF with respect to our reference function V is a time-dependent
function of the underlying process.

Proposition B.4. Let (M t
u)(t,u)∈∆ be a square integrable MAF, and for any

(s, x) ∈ [0, T ]× E, [M s,x] be the quadratic variation of its cadlag version M s,x

under Ps,x. Then there exists an AF which we will call ([M ]tu)(t,u)∈∆ and which,
for any (s, x) ∈ [0, T ]× E, has [M s,x] as cadlag version under Ps,x.
Proof. We adapt Theorem 16 Chapter XV in [14] to a non homogeneous set-up
but the reader must keep in mind that our definition of Additive Functional is
different from the one related to the homogeneous case.

For the whole proof t < u will be fixed. We consider a sequence of subdivi-
sions of [t, u]: t = tk1 < tk2 < · · · < tkk = u such that min

i<k
(tki+1 − tki ) −→

k→∞
0.

Let (s, x) ∈ [0, t]× E with corresponding probability Ps,x. For any k, we have
∑

i<k

(

M
tki
tk
i+1

)2

=
∑

i<k

(M s,x

tk
i+1

−M s,x

tk
i

)2 Ps,x a.s., so by definition of quadratic vari-

ation we know that

∑

i<k

(

M
tki
tk
i+1

)2 Ps,x

−→
k→∞

[M s,x]u − [M s,x]t. (B.1)

In the sequel we will construct an Ft,u-measurable random variable [M ]tu such
that for any (s, x) ∈ [0, t]× E,
∑

i≤k

(

M
tki
tk
i+1

)2 Ps,x

−→
k→∞

[M ]tu. In that case [M ]tu will then be Ps,x a.s. equal to

[M s,x]u − [M s,x]t.

Let x ∈ E. Since M is a MAF, for any k,
∑

i<k

(

M
tki
tk
i+1

)2

is Ft,u-measurable

and therefore F t,x
t,u -measurable. Since F t,x

t,u is complete, the limit in probabil-

ity of this sequence, [M t,x]u − [M t,x]t, is still F t,x
t,u -measurable. By Proposition

A.15, there is an Ft,u-measurable variable which depends on (t, x), that we call
at(x, ω) such that

at(x, ω) = [M t,x]u − [M t,x]t,P
t,x a.s. (B.2)

We will show below that there is a jointly measurable version of
(x, ω) 7→ at(x, ω).

For any integer n ≥ 0, we set ant (x, ω) := n ∧ at(x, ω) which is in particular

limit in probability of n ∧ ∑
i≤k

(

M
tki
tk
i+1

)2

under Pt,x.
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For any integers k, n and any x ∈ E, we define the finite positive measuresQk,n,x, Qn,x and Qx on (Ω,Ft,u) by

1. Qk,n,x(F ) := Et,x [1F (n ∧ ∑
i<k

(

M
tki
tk
i+1

)2
)]

;

2. Qn,x(F ) := Et,x[1F (ant (x, ω))];

3. Qx(F ) := Et,x[1F (at(x, ω))].

When k and n are fixed, for any fixed F , by Proposition A.8,

x 7−→ Et,x [F (n ∧ ∑
i<k

(

M
tki
tk
i+1

)2
)]

, is Borel.

Then n∧∑
i<k

(

M
tki
tk
i+1

)2 Pt,x

−→
k→∞

ant (x, ω), and this sequence is uniformly bounded

by the constant n, so the convergence takes place in L1, therefore x 7−→ Qn,x(F )
is also Borel as the pointwise limit in k of the functions x 7−→ Qk,n,x(F ). Simi-
larly, ant (x, ω)

a.s.−→
n→∞

at(x, ω) and is non-decreasing, so by monotone convergence

theorem, being a pointwise limit in n of the functions x 7−→ Qn,x(F ), the func-
tion x 7−→ Qx(F ) is Borel.
We recall that F is separable. By Theorem 58 Chapter V in [13], the two
properties above and the fact that, for any x, we also have (by item 3. above)Qx ≪ Pt,x, allows to show the existence of a jointly measurable (for B(E)⊗Ft,u)
version of (x, ω) 7→ at(x, ω), that we recall to be densities of Qx with respect toPt,x. That version will still be denoted by the same symbol.

We can now set [M ]tu(ω) = at(Xt(ω), ω), which is a correctly defined Ft,u-
measurable random variable. For any x, taking into account (A.4), we have the
equalities

[M ]tu = at(x, ω) = [M t,x]u − [M t,x]t Pt,xa.s. (B.3)

We will in fact prove that

[M ]tu = [M s,x]u − [M s,x]t Ps,x a.s., (B.4)

holds for every (s, x) ∈ [0, t] × E, and not just in the case s = t that we have
just established in (B.3).

We proceed proving the validity of (B.4) also for a fixed s < t and x ∈ E.

We show that under any Ps,x, [M ]tu is the limit in probability of
∑

i<k

(

M
tki
tk
i+1

)2

.

Indeed, let ǫ > 0, the event

{∣

∣

∣

∣

∑

i<k

(

M
tki
tk
i+1

)2

− [M ]tu

∣

∣

∣

∣

> ǫ

}

belongs to Ft,T so by
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conditioning and using the Markov property (A.5) we havePs,x (∣∣∣
∣

∑

i<k

(

M
tki
tk
i+1

)2

− [M ]tu

∣

∣

∣

∣

> ǫ

)

= Es,x [Ps,x (∣∣∣
∣

∑

i<k

(

M
tki
tk
i+1

)2

− [M ]tu

∣

∣

∣

∣

> ǫ

∣

∣

∣

∣

Ft
)]

= Es,x [Pt,Xt

(∣

∣

∣

∣

∑

i<k

(

M
tki
tk
i+1

)2

− [M ]tu

∣

∣

∣

∣

> ǫ

)]

.

For any fixed y, by (B.1) and (B.3), Pt,y (∣∣∣
∣

∑

i<k

(

M
tki
tk
i+1

)2

− [M ]tu

∣

∣

∣

∣

> ǫ

)

tends

to zero when k goes to infinity, so a.s. under the probability Ps,x, it yieldsPt,Xt

(∣

∣

∣

∣

∑

i<k

(

M
tki
tk
i+1

)2

− [M ]tu

∣

∣

∣

∣

> ǫ

)

tends to zero when k goes to infinity. Since

this sequence is dominated by the constant 1, that convergence still holds under
the expectation thanks to the dominated convergence theorem.

So we have built an Ft,u-measurable variable [M ]tu such that under any Ps,x
with s ≤ t, [M s,x]u − [M s,x]t = [M ]tu a.s. and this concludes the proof.

We will now extend the result about quadratic variation to the angular
bracket of MAFs. The next result can be seen as an extension of Theorem 15
Chapter XV in [14] to a non-homogeneous context.

Proposition B.5. Let (Btu)(t,u)∈∆ be an increasing AF with L1 terminal value,
for any (s, x) ∈ [0, T ]×E, let Bs,x be its cadlag version under Ps,x and let As,x

be the predictable dual projection of Bs,x in (Ω,Fs,x, (Fs,x
t )t∈[0,T ],Ps,x). Then

there exists an increasing AF with L1 terminal value (Atu)(t,u)∈∆ such that under
any Ps,x, the cadlag version of A is As,x.

Proof. The first half of the demonstration will consist in showing that for any
(s, x) ∈ [0, T ]× E and s ≤ t < u, (As,xu −As,xt ) is Fs,x

t,u -measurable.

We start by recalling a property of the predictable dual projection which we
will have to extend slightly.
Let us fix (s, x) and the corresponding stochastic basis
(Ω,Fs,x, (Fs,x

t )t∈[0,T ],Ps,x). For any F ∈ Fs,x, let Ns,x,F be the cadlag version
of the martingale,
r 7−→ Es,x[1F |Fr]. Then for any 0 ≤ t ≤ u ≤ T , the predictable projection of
the process r 7→ 1F1[t,u[(r) is r 7→ Ns,x,F

r−
1[t,u[(r), see the proof of Theorem 43

Chapter VI in [13]. Therefore by definition of the dual predictable projection
(see Definition 73 Chapter VI in [13]) we haveEs,x [1F (As,xu −As,xt )] = Es,x [∫ u

t

Ns,x,F

r−
dBs,xr

]

, (B.5)

for any F ∈ Fs,x.
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We will now prove four technical lemmas which in a sense extend this prop-
erty, and will permit us to work with a good common version of the random
variable

∫ u

t
Ns,x,F

r−
dBs,xr not depending on (s, x).

For the rest of the proof, 0 ≤ t < u ≤ T are fixed.

Lemma B.6. Let F ∈ Ft,T . There exists an Ft,·-adapted process called NF

indexed on [t, T ] and taking values in [0, 1] for all ω, such that for any (s, x) ∈
[0, t] × E, the cadlag martingale Ns,x,F defined above is a Ps,x-version of NF

on [t, T ].
Moreover if F belongs to F t

u for some u ∈ [t, T ] then NF
r is Ft,u-measurable for

any r ∈ [t, T ].

Proof. We start proving the first assertion of the lemma. We fix r ∈ [t, T ]; it
is enough to show that for any F ∈ Ft,T there exists an Ft,r-measurable ran-
dom variable NF

r taking values in [0, 1] such that for every (s, x) ∈ [0, t] × E,
NF
r = Ns,x,F

r Ps,x a.s.
We denote by Λ the set of elements F ∈ Ft,T for which there exists an Ft,r-
measurable random variable NF

r such that for every (s, x) ∈ [0, t]× E,
NF
r = Ns,x,F

r Ps,x a.s., and by Π the π-system of elements F ∈ Ft,T of type
Ft,r ∩ Fr,T where Ft,r ∈ Ft,r and Fr,T ∈ Fr,T . By Remark A.25, Π generates
Ft,T .

We fix F = Ft,r ∩Fr,T ∈ Π and (s, x) ∈ [0, t]×E. Thanks to (A.5) we have the
a.s. equalities Es,x[1F |Fr] = 1Ft,r

Ps,x(Fr,T |Fr)
= 1Ft,r

Pr,Xr(Fr,T ).

For this F , NF
r := 1Ft,r

Pr,Xr (Fr,T ) does indeed not depend on (s, x), is Ft,r-
measurable and non-negative. This proves that Π ⊂ Λ.
For any F ∈ Λ, passing from NF

r to 0 ∨ NF
r ∧ 1 does not change the Ps,x a.s

equalities since all r.v. Ns,x,F
r belong a.s. to [0, 1], so up to this additional step,

NF
r can always be assumed to take values in [0, 1] for all ω.

We now show that Λ is a λ-system. If F 1, F 2 ∈ Λ with F 1 ⊂ F 2, setting

N
F 1\F 2

r := NF 1

r − NF 2

r , we have F 1\F 2 ∈ Λ. If (Fn)n∈N is an increasing
sequence of elements of Λ, setting N∪Fn

r := liminf
n

NFn

r , which exists since all

terms are positive. F := ∪
n
Fn ∈ Λ: indeed, for every (s, x) the monotone con-

vergence theorem allows to show that NF
r = Ns,x,F

r Ps,x a.s. So Λ is a λ-system
containing the π-system Π which generates F , it is therefore equal to F by the
monotone class theorem. This shows the first part of the lemma.

Concerning the second part, assume that F ∈ F t
u. Either u ≤ r, then F ∈ F t

r,
so F ∈ Π and NF

r = 1F is indeed F t
u-measurable.

In the case r ≤ u, since we have shown that NF
r is Ft,r-measurable, then it

is also F t
u-measurable. In both cases, NF

r is Ft,u.
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Lemma B.7. Let F ∈ Ft,T . There exists an Ft,T -measurable random variable
which we will call

∫ u

t
NF
r−
dBr such that for any (s, x) ∈ [0, t]× E,

∫ u

t
NF
r−
dBr =

∫ u

t
Ns,x,F

r−
dBs,xr Ps,x a.s. If moreover F ∈ Ft,u then

∫ u

t
NF
r−
dBr

is Ft,u-measurable.

Remark B.8. By definition, the process NF in the statement of Lemma B.6
and the r.v.

∫ u

t
NF
r−
dBr will not depend on any (s, x).

Proof. In some sense we wish to integrate r 7→ NF
r−

against Bt for fixed ω.
However first we do not know a priori if the paths r 7→ NF

r and r 7→ Btr are
measurable, second r 7→ NF

r may not have a left limit and Bt may be not of
bounded variation. So it is not clear if

∫ u

t
NF
r−
dBtr makes sense for any ω. More-

over under a certain Ps,x, NF,s,x and Bs,x· −Bs,xt are only versions of NF and
Bt and not indistinguishable to them. Even if we could compute the overmen-
tioned integral, it would not be clear if

∫ u

t
NF
r−
dBtr =

∫ u

t
Ns,x,F

r−
dBs,xr Ps,x a.s.

We start by some considerations about B, setting Wtu := {ω : sup
r∈[t,u]∩QBtr <∞}

which is Ft,u-measurable, and for r ∈ [t, u]

B̄tr(ω) :=







sup
t≤v<r
v∈QBtv(ω) if ω ∈ Wtu

0 otherwise.

B̄t is an increasing, finite (for all ω) process. In general, it is neither a mea-
surable nor an adapted process; however for any r ∈ [t, u], B̄tr is still Ft,u-
measurable. Since it is increasing, it has right and left limits at each point for
every ω, so we can define the process B̃t indexed on [t, u] below:

B̃tr := lim
v↓r
v∈QB̄tv, r ∈ [t, u], (B.6)

when u ∈]t, T [ and B̃tT := BtT if u = T . Therefore B̃t is an increasing, cadlag
process. It is constituted by Ft,u-measurable random variables, and by Theorem
15 Chapter IV of [12], B̃t is a also a measurable process (indexed by [t, u]).

We can show that B̃t is Ps,x-indistinguishable from Bs,x· −Bs,xt for any
(s, x) ∈ [0, t]×E. Indeed, let (s, x) be fixed. Since Bs,x· −Bs,xt is a version of Bt

and Q being countable, there exists a Ps,x-null set N such that for all ω ∈ N c

and r ∈ Q ∩ [t, u], Bs,xr (ω) − Bs,xt (ω) = Btr(ω). Therefore for any ω ∈ N c and
r ∈ [t, u],

B̃tr(ω) = lim
v↓r
v∈Q sup

t≤w<v
w∈QBtw(ω) = lim

v↓r
v∈Q sup

t≤w<v
w∈QBs,x(ω)w−Bs,x(ω)t = Bs,x(ω)r−Bs,x(ω)t,

where the latter equality comes from the fact that Bs,x(ω) is cadlag and in-
creasing. So we have constructed an increasing finite cadlag (for all ω) process
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and so the path r 7→ B̃t(ω) is a Lebesgue integrator on [t, u] for each ω.

We fix now F ∈ Ft,T and we discuss some issues related to NF . Since it
is positive, we can start defining the process N̄ , for index values r ∈ [t, T [ by
N̄F
r := liminf

v↓r
v∈Q NF

v , and setting N̄F
T := NF

T . This process is (by similar ar-

guments as for B̃t defined in (B.6)), Ps,x-indistinguishable to Ns,x,F for all
(s, x) ∈ [0, t] × E. By Lemma B.6, for any r ≥ t, NF

r is Ft,T -measurable (and
even Ft,u-measurable if F ∈ Ft,u), so N̄F

r will also be Ft,T -measurable for any
r ≥ t (also Ft,u-measurable if F ∈ Ft,u). However, N̄F is not necessarily cadlag
for every ω, and also not necessarily a measurable process.

We subsequently define

W ′
tu := {ω ∈ Ω|there exists a cadlag function f such that N̄F (ω) = f on [t, u]∩Q}.

By Theorem 18 b) in Chapter IV of [12], W ′
tu is Ft,u-measurable so we can define

on [t, u] ÑF
r := N̄F

r 1W ′

tu
. ÑF is no longer (Ft)t∈[0,T ]-adapted, however, it is now

cadlag for all ω and therefore a measurable process by Theorem 15 Chapter IV of
[12]. The r.v. ÑF

r are still Ft,T -measurable (even Ft,u-measurable if F ∈ Ft,u),
and ÑF is still Ps,x-indistinguishable to Ns,x,F on [t, u] for any (s, x) ∈ [0, t]×E.

Finally we can define
∫ u

t
NF
r−
dBr :=

∫ u

t
ÑF
r−
dB̃tr which is Ps,x a.s. equal to

∫ u

t
Ns,x,F

r−
dBs,xr for any (s, x) ∈ [0, t]× E.

Moreover, since ÑF and B̃ are both measurable with respect to
B([t, u]) ⊗ Ft,T (even B([t, u]) ⊗ Ft,u if F ∈ Ft,u), then

∫ u

t
NF
r−
dBr is Ft,T -

measurable (even Ft,u-measurable if F ∈ Ft,u).

The lemma below is a conditional version of the property (B.5).

Lemma B.9. For any (s, x) ∈ [0, t]× E and F ∈ Fs,x
t,T we have Ps,x-a.s.Es,x [1F (As,xu −As,xt )|Ft] = Es,x [∫ u

t

NF
r−dBr

∣

∣

∣

∣

Ft
]

.

Proof. Let s, x, F be fixed. By definition of conditional expectation, we need to
show that for any G ∈ Ft we haveEs,x [1G1F (As,xu −As,xt )] = Es,x [1GEs,x [∫ u

t

NF
r−dBr

∣

∣

∣

∣

Ft
]]

a.s.

For r ∈ [t, u] we have Es,x[1F∩G|Fr] = 1GEs,x[1F |Fr] a.s. therefore the cadlag
versions of these processes are indistinguishable on [t, u] and the random vari-
ables

∫ u

t
NG∩F
r−

dBr and 1G

∫ u

t
NF
r−
dBr as defined in Lemma B.7 are a.s. equal.

So by the non conditional property of dual predictable projection (B.5) we haveEs,x [1G1F (As,xu −As,xt )] = Es,x [∫ u
t
NG∩F
r−

dBr
]

= Es,x [1G ∫ ut NF
r−
dBr

]

= Es,x [1GEs,x [∫ ut NF
r−
dBr

∣

∣Ft
]]

,

57



which concludes the proof.

Lemma B.10. For any (s, x) ∈ [0, t]× E and F ∈ Ft,T we have Ps,x-a.s.,Es,x [1F (As,xu −As,xt )|Ft] = Es,x [1F (As,xu −As,xt )|Xt] .

Proof. By Lemma B.9 we haveEs,x [1F (As,xu −As,xt )|Ft] = Es,x [∫ u

t

NF
r−dBr

∣

∣

∣

∣

Ft
]

.

By Lemma B.7,
∫ u

t
NF
r−
dBr is Ft,T measurable so the Markov property (A.5)

implies Es,x [∫ u

t

NF
r−dBr

∣

∣

∣

∣

Ft
]

= Es,x [∫ u

t

NF
r−dBr

∣

∣

∣

∣

Xt

]

,

therefore Es,x [1F (As,xu −As,xt )|Ft] is a.s. equal to a σ(Xt)-measurable r.v and
so is a.s. equal to Es,x [1F (As,xu −As,xt )|Xt] .

We now finally prove the first important issue of the proof of Proposition
B.5, which states that

∀(s, x) ∈ [0, t]× E, (As,xu −As,xt ) is Fs,x
t,u−measurable. (B.7)

By definition, a predictable dual projection is adapted so we already know that
(As,xu − As,xt ) is Fs,x

u -measurable, therefore by Remark A.25, it is enough to
show that it is also Fs,x

t,T -measurable.
So we are going to show that

As,xu −As,xt = Es,x [As,xu −As,xt |Ft,T ] Ps,x a.s. (B.8)

For this we will show thatEs,x [1F (As,xu − As,xt )] = Es,x [1FEs,x [As,xu −As,xt |Ft,T ]] , (B.9)

for any F ∈ F . We will prove (B.9) for F ∈ F event of the form F = Ft ∩ Ft,T
with Ft ∈ Ft and Ft,T ∈ Ft,T .
By Remark A.25, such events form a π-system Π which generates F .

Consequently, by the monotone class theorem, (B.9) will remain true for any
F ∈ F and even in Fs,x since P

s,x-null set will not impact the equality. This
will imply (B.8) so that As,xu −As,xt is Fs,x

t,T -measurable.
At this point, as we have anticipated, we prove (B.9) for a fixed
F = Ft ∩ Ft,T ∈ Π. By Lemma B.10 we haveEs,x [1F (As,xu −As,xt )] = Es,x [1Ft

Es,x [1Ft,T
(As,xu −As,xt )|Ft

]]

= Es,x [1Ft
Es,x [1Ft,T

(As,xu −As,xt )|Xt

]]

= Es,x [1Ft
Es,x [Es,x [1Ft,T

(As,xu −As,xt )|Ft,T
]

|Xt

]]

,

where the latter equality holds since σ(Xt) ⊂ Ft,T .
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Now since Es,x [1Ft,T
(As,xu −As,xt )|Ft,T

]

is Ft,T -measurable, the Markov
property (A.5) allows us to substitute the conditional σ-field σ(Xt) with Ft
and obtainEs,x [1F (As,xu −As,xt )] = Es,x [1Ft

Es,x [Es,x [1Ft,T
(As,xu −As,xt )|Ft,T

]

|Ft
]]

= Es,x [Es,x [1Ft
Es,x [1Ft,T

(As,xu −As,xt )|Ft,T
]

|Ft
]]

= Es,x [1Ft
Es,x [1Ft,T

(As,xu −As,xt )|Ft,T
]]

= Es,x [1Ft
1Ft,T

Es,x [(As,xu −As,xt )|Ft,T ]
]

= Es,x [1FEs,x [(As,xu −As,xt )|Ft,T ]] .

This concludes the proof of (B.9), therefore (B.8) holds so that As,xu − As,xt is
Fs,x
t,u -measurable. This concludes the first part of the proof of Proposition B.5.

We pass to the second part of the proof of Proposition B.5 where we will show
that for given 0 < t < u there is an Ft,u-measurable r.v. Atu such that for every
(s, x) ∈ [0, t]× E, (As,xu −As,xt ) = Atu Ps,x a.s.

Similarly to what we did with the quadratic variation in Proposition B.4, we
start by noticing that for any x ∈ E, since (At,xu − At,xt ) is F t,x

t,u -measurable,
there exists by Proposition A.15 an Ft,u-measurable r.v. a(x, ω) such that

a(x, ω) = At,xu −At,xt Pt,x a.s. (B.10)

As in the proof of Proposition B.4, we will show the existence of a jointly-
measurable version of (x, ω) 7→ a(x, ω).
For every x ∈ E we define on Ft,u the positive measureQx : F 7−→ Et,x [1F (At,xu −At,xt )

]

= Et,x [1Fa(x, ω)] . (B.11)

By Lemma B.7 and (B.5), for every F ∈ Ft,u we haveQx(F ) = Et,x [∫ u

t

NF
r−dBr

]

, (B.12)

and we recall that
∫ u

t
NF
r−
dBr does not depend on x. So by Proposition A.8

x 7−→ Qx(F ) is Borel for any F . Moreover, for any x, Qx ≪ Pt,x. Again by
Theorem 58 Chapter V in [13], there exists a version (x, ω) 7→ a(x, ω) measurable
for B(E)⊗Ft,u of the related Radon-Nikodym densities.

We can now set Atu := a(Xt, ω) which is then an Ft,u-measurable r.v.
Given (A.4) and (B.10), we have

Atu = a(Xt, ω) = a(x, ω) = At,xu −At,xt Pt,x a.s. (B.13)

We now set s < t and x ∈ E and we want to show that we still have
Atu = As,xu − As,xt Ps,x a.s. So, as above, we consider F ∈ Ft,u and, thanks to
(B.5) we compute
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Es,x [1F (As,xu −As,xt )] = Es,x [∫ u
t
NF
r−
dBr

]

= Es,x [Es,x [∫ u
t
NF
r−
dBr|Ft

]]

= Es,x [Et,Xt
[∫ u

t
NF
r−
dBr

]]

= Es,x [Et,Xt [1FA
t
u]
]

= Es,x [Es,x [1FAtu|Ft]]
= Es,x [1FAtu] . (B.14)

Indeed, concerning the fourth equality we recall that, by (B.11), (B.12) and
(B.13), we have Et,x [∫ u

t
NF
r−
dBr

]

= Et,x [1FAtu] for all x, so this equality be-
comes an a.s. equality whatever random variable we plug into x. The third and
fifth equalities come from the Markov property (A.5) since

∫ u

t
NF
r−
dBr and Atu

are Ft,T -measurable.
Then, adding Ps,x-null sets does not change the validity of (B.14), so we have
for any F ∈ Fs,x

t,u that Es,x [1F (As,xu −As,xt )] = Es,x [1FAtu].
Finally, since we had shown in the first half of the proof that As,xu − As,xt is
Fs,x
t,u -measurable, and since Atu also has, by construction, the same measurabil-

ity property, we can conclude that As,xu −As,xt = Atu Ps,x a.s.

Since this holds for any t ≤ u and (s, x) ∈ [0, t] × E, (Atu)(t,u)∈∆ is the de-
sired AF, which ends the proof of Proposition B.5.

Corollary B.11. Let M , M ′ be two square integrable MAFs, let M s,x (respec-
tively M ′s,x) be the cadlag version of M (respectively M ′) under Ps,x. Then
there exists a bounded variation AF with L1 terminal condition denoted 〈M,M ′〉
such that under any Ps,x, the cadlag version of 〈M,M ′〉 is 〈M s,x,M ′s,x〉. If
M =M ′ the AF 〈M,M ′〉 will be denoted 〈M〉 and is increasing.

Proof. IfM =M ′, the corollary comes from the combination of Propositions B.4
and B.5, and the fact that the angular bracket of a square integrable martingale
is the dual predictable projection of its quadratic variation.
Otherwise, it is clear that M +M ′ and M −M ′ are square integrable MAFs, so
we can consider the increasing MAFs 〈M −M ′〉 and 〈M +M ′〉. We introduce
the AF

〈M,M ′〉 = 1

4
(〈M +M ′〉 − 〈M −M ′〉),

which by polarization has cadlag version 〈M s,x,M ′s,x〉 under Ps,x. 〈M,M ′〉 is
therefore a bounded variation AF with L1 terminal condition.

We are now going to study the Radon-Nikodym derivative of an increasing
continuous AF with respect to our reference measure dV . The next result can be
seen as an extension of Theorem 13 Chapter XV in [14] in a non-homogeneous
setup.

Proposition B.12. Let A be a positive, non-decreasing AF absolutely contin-
uous with respect to V , and for any (s, x) ∈ [0, T [×E let As,x be the cadlag
version of A under Ps,x. There exists a Borel function h ∈ B([0, T ] × E,R)
such that for any (s, x) ∈ [0, T ] × E, As,x =

∫ ·

s
h(r,Xr)dVr, in the sense of

indistinguishability.

60



Proof. We set
Ctu = Atu + (Vu − Vt) + (u − t), (B.15)

which is an AF with cadlag versions

Cs,xt = As,xt + Vt + t, (B.16)

and we start by showing the statement for A and C instead of A and V . We in-
troduce the intermediary function C so that for any u > t that As,x

u −As,x
t

C
s,x
u −Cs,x

t

∈ [0, 1];
that property will be used extensively in connections with the application of
dominated convergence theorem.

Since As,x is non-decreasing for any (s, x) ∈ [0, T ] × E, A can be taken pos-
itive (in the sense that Atu(ω) ≥ 0 for any (t, u) ∈ ∆ and ω ∈ Ω) by considering
A+ (defined by (A+)tu(ω) := Atu(ω)

+) instead of A.

On [0, T [ we set

Kt = liminf
n→∞

At
t+ 1

n

At
t+ 1

n

+ 1
n
+ (Vt+ 1

n
− Vt)

= lim
n→∞

inf
p≥n

At
t+ 1

p

At
t+ 1

p

+ 1
p
+ (Vt+ 1

p
− Vt)

(B.17)

= lim
n→∞

lim
m→∞

min
n≤p≤m

At
t+ 1

p

At
t+ 1

p

+ 1
p
+ (Vt+ 1

p
− Vt)

.

By positivity, this liminf always exists and belongs to [0, 1] since the sequence
belongs to [0, 1]. For any (s, x) ∈ [0, T ]× E, since for all t ≥ s and n ≥ 0,

At
t+ 1

n

= As,x
t+ 1

n

−As,xt Ps,x a.s., then Ks,x defined by Ks,x
t := liminf

n→∞

A
s,x

t+ 1
n

−As,x
t

C
s,x

t+ 1
n

−Cs,x
t

is a Ps,x-version of K, for t ∈ [s, T [.
By Lebesgue Differentiation theorem (see Theorem 12 Chapter XV in [14] for a
version of the theorem with a general atomless measure), for any (s, x), for Ps,x-
almost all ω, since dCs,x(ω) is absolutely continuous with respect to dAs,x(ω),
Ks,x(ω) is a density of dAs,x(ω) with respect to dCs,x(ω).

We now show that there exists a Borel function k in B([0, T [×E,R) such that
under any Ps,x, k(t,Xt) is on [s, T [ a version of K (and therefore of Ks,x).
For any t ∈ [0, T [, Kt is measurable with respect to

⋂

n≥0

Ft,t+ 1
n
= Ft,t by con-

struction, taking into account Definition A.24. So for any (t, x) ∈ [0, T ]×E, by
Proposition A.28,

Kt = constant =: k(t, x),Pt,xa.s. (B.18)
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For any integers (n,m), we define kn,m by

(t, x) 7→ Et,x  min
n≤p≤m

At
t+ 1

p

At
t+ 1

p

+ 1
p
+ (Vt+ 1

p
− Vt)



 ,

and kn by

(t, x) 7→ Et,x inf
p≥n

At
t+ 1

p

At
t+ 1

p

+ 1
p
+ (Vt+ 1

p
− Vt)



 ,

We start showing that k̃n,m defined by

(s, x, t) 7−→ Es∧t,x [ min
n≤p≤m

At

t+ 1
p

At

t+ 1
p

+ 1
p
+(V

t+ 1
p
−Vt)

]

,

[0, T ]× E × [0, T [ −→ [0, 1],

(B.19)

is jointly Borel.

If we fix t, then by Proposition A.8 (s, x) 7−→ Es,x [ min
n≤p≤m

At

t+ 1
p

At

t+ 1
p

+ 1
p
+(V

t+ 1
p
−Vt)

]

is a Borel function, so by composing with (s, x) 7→ (s ∧ t, x), then
(s, x) 7→ k̃n,m(s, x, t) is Borel. Moreover, if we fix (s, x) ∈ [0, T [×E we show
below that t 7→ k̃n,m(s, x, t) is continuous, which by Lemma 4.51 in [1] implies
the joint measurability of k̃n,m.

To show that mentioned continuity property, we first remark that k̃n,m(s, x, ·)
is constant on [0, s]; moreover As,x is continuous P

s,x a.s. V is continuous, and
the minimum of a finite number of continuous functions remains continuous. Let

tq −→
q→∞

t be a converging sequence in [s, T [. Then min
n≤p≤m

A
s,x

tq+ 1
p

−As,x
tq

A
s,x

tq+ 1
p

−As,x
tq

+ 1
p
+(V

tq+ 1
p
−Vtq )

tends a.s. to min
n≤p≤m

A
s,x

t+ 1
p

−As,x
t

A
s,x

t+ 1
p

−As,x
t + 1

p
+(V

t+ 1
p
−Vt)

when q tends to infinity. Since for

any s ≤ t ≤ u, Atu = As,xu −As,xt Ps,x a.s., then
A

tq

tq+ 1
p

A
tq

tq+ 1
p

+ 1
p
+(V

tq+ 1
p
−Vtq )

tends a.s.

to
At

t+ 1
p

At

t+ 1
p

+ 1
p
+(V

t+ 1
p
−Vt)

. All those terms being smaller than one, by dominated

convergence theorem, the mentioned convergence also holds under the expecta-
tion, hence the announced continuity related to k̃n,m is established.

Since kn,m(t, y) = k̃n,m(t, t, y), by composition we can deduce that for any n,m,
kn,m is Borel. By the dominated convergence theorem, kn,m tends pointwise to
kn when m goes to infinity so kn are also Borel for every n. Finally, keeping in
mind (B.17) nd (B.18) we have Pt,x a.s.

k(t, x) = Kt = lim
n→∞

inf
p≥n

At
t+ 1

p

At
t+ 1

p

+ 1
p
+ (Vt+ 1

p
− Vt)

.
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Taking the expectation and again by the dominated convergence theorem, kn

(defined in (B.19)) tends pointwise to k when n goes to infinity so k is Borel.

We now show that, for any (s, x) ∈ [0, T ] × E, k(·, X·) is a Ps,x-version of
K on [s, T [.
By (A.4), we know that for any t ∈ [0, T ], x ∈ E, we haveKt = k(t, x) = k(t,Xt)Pt,x-a.s., and we prove below that for any t ∈ [0, T ], (s, x) ∈ [0, t]×E, we have
Kt = k(t,Xt) Ps,x-a.s.

Let t ∈ [0, T ] be fixed. Since A is an AF, for any n,
At

t+ 1
p

At

t+ 1
p

+ 1
n
+(V

t+ 1
n
−Vt)

is

Ft,t+ 1
n
-measurable.

So the event

{

liminf
n→∞

At

t+ 1
p

At

t+ 1
p

+ 1
n
+(V

t+ 1
n
−Vt)

= k(t,Xt)

}

belongs to Ft,T and by

Markov property (A.5), for any (s, x) ∈ [0, t]× E, we getPs,x(Kt = k(t,Xt)) = Es,x[Ps,x (Kt = k(t,Xt)|Ft)]
= Es,x[Pt,Xt (Kt = k(t,Xt))]

= 1.

For any (s, x), the process k(·, X·) is therefore on [s, T [ a Ps,x-modification
of K and therefore of Ks,x.

But it is not yet clear that it provides another density of dAs,x with respect
to dCs,x, which was defined at (B.16).
Considering that (t, u, ω) 7→ Vu − Vt also defines a positive non-decreasing AF
absolutely continuous with respect to C, defined in (B.15), we proceed similarly
as at the beginning of the proof, replacing the AF A with V .

Let the process K ′ be defined by

K ′
t = liminf

n→∞

Vt+ 1
n
− Vt

At
t+ 1

n

+ 1
n
+ (Vt+ 1

n
− Vt)

,

and for any(s, x), let K ′s,x be defined on [s, T [ by

K ′s,x
t = liminf

n→∞

Vt+ 1
n
− Vt

As,x
t+ 1

n

−As,xt + 1
n
+ (Vt+ 1

n
− Vt)

.

Then, for any (s, x), K ′s,x on [s, T [ is a Ps,x-version of K ′, and it constitutes a
density of dV (ω) with respect to dCs,x(ω) on [s, T [, for almost all ω. One shows
then the existence of a Borel function k′ such that for any (s, x), k′(·, X·) is aPs,x-version of K ′ and a modification of K ′s,x on [s, T [.
So for any (s, x), under Ps,x, we can write

{

As,x =
∫ ·

s
Ks,x
r dCs,xr

V· − Vs =
∫ ·

s
K ′s,x
r dCs,xr
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Now since dAs,x ≪ dV , for a fixed ω, the set {r ∈ [s, T ]|K ′s,x
r (ω) = 0} is

negligible with respect to dV so also for dAs,x(ω) and therefore we can write

As,x =
∫ ·

s
Ks,x
r dCs,xr

=
∫ ·

s

Ks,x
r

K
′s,x
r

1{K′s,x
r 6=0}K

′s,x
r dCs,xr

+
∫ ·

s
1{K′s,x

r =0}dA
s,x
r

=
∫ ·

s

Ks,x
r

K
′s,x
r

1{K′s,x
r 6=0}dVr,

where we use the convention that for any two functions φ, ψ then φ
ψ
1ψ 6=0 is

defined by by
φ

ψ
1{ψ 6=0}(x) =

{

φ(x)
ψ(x) if ψ(x) 6= 0

0 if ψ(x) = 0.

We set now h := k
k′
1{k′r 6=0} which is Borel, and clearly for any (s, x), h(t,Xt) is

a Ps,x-version of Hs,x := Ks,x

K′s,x1{K′s,x 6=0} on [s, T [. So by Lemma 4.16,
Hs,x
t = h(t,Xt) dV ⊗dPs,x a.e. and finally we have shown that under any Ps,x,

As,x· − As,xs =
∫ ·

s
h(r,Xr)dVr on [s, T [. Without change of notations we extend

h to [0, T ] × E by zero for t = T . Since As,x is continuous on [s, T ] Ps,x-a.s.
previous equality extends to T .

Corollary B.13. Let M and M ′ be two square integrable MAFs and let M s,x

(respectively M ′s,x) be the cadlag version of M (respectively M ′) under a fixedPs,x. There exists a Borel function k ∈ B([0, T ] × E,R) such that for any
(s, x) ∈ [0, T ]× E,

〈M s,x,M ′s,x〉 =
∫ ·

s

k(r,Xr)dVr .

In particular if M is a square integrable MAF and M s,x its cadlag version under
a fixed Ps,x, there exists a Borel function k ∈ B([0, T ] × E,R) (which can be
taken positive) such that for any (s, x) ∈ [0, T ]× E,

〈M s,x〉 =
∫ ·

s

k(r,Xr)dVr .

Proof. In the case M = M ′, by Corollary B.11 there is an increasing AF 〈M〉
whose cadlag version under a fixed Ps,x is 〈M s,x〉. Since by Proposition 4.14,
under any Ps,x, d〈M s,x〉 ≪ dV , then 〈M〉 is absolutely continuous with respect
to V , in the sense of Definition B.1.
The statement can therefore be deduced from Proposition B.12.
The case M 6=M ′ is obtained by polarization, considering the square integrable
MAFs M +M ′ and M −M ′.

C Technicalities related to Section 3

Proof of Proposition 3.3.
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Since we have dA≪ dA+ dB in the sense of stochastic measures with A,B
predictable, there exists a predictable positive process K such that

A =

∫ ·

0

KsdAs +

∫ ·

0

KsdBs, (C.1)

up to indistinguishability, see Proposition I.3.13 in [26].
Now there exists N such that P(N ) = 0 and such that for any ω ∈ N c we have

0 ≤
∫ ·

0

Ks(ω)dBs(ω) =

∫ ·

0

(1−Ks(ω))dAs(ω),

so K(ω) ≤ 1 dA(ω) a.e. on N c. Therefore if we set E(ω) = {t : Kt(ω) = 1} and
F (ω) = {t : Kt(ω) < 1} then E(ω) and F (ω) are disjoint Borel sets and dA(ω)
has all its mass in E(ω)∪F (ω) so we can decompose dA(ω) within these two sets.

We therefore define the processes

A⊥B =

∫ ·

0

1{Ks=1}dAs;

AB =

∫ ·

0

1{Ks<1}dAs.

A⊥B and AB are both in Vp,+, and A = A⊥B+AB. In particular the (stochastic)
measures dA⊥B(ω) and dAB(ω) fulfill

dA⊥B(ω)(G) = dA(ω)(E(ω) ∩G);
(C.2)

dAB(ω)(G) = dA(ω)(F (ω) ∩G).

We remark dA⊥B⊥dB in the sense of stochastic measures. Indeed, fixing
ω ∈ N c, for t ∈ E(ω), Kt(ω) = 1, so

∫

E(ω) dA(ω) =
∫

E(ω) dA(ω) +
∫

E(ω) dB(ω)

implying that
∫

E(ω) dB(ω) = 0. Since for any ω ∈ N c, dB(ω) (E(ω)) = 0 while

dA⊥B(ω) has all its mass in E(ω), which gives this first result.

Now let us prove dAB ≪ dB in the sense of stochastic measure.
Let ω ∈ N c, and let G ∈ B([0, T ]), such that

∫

G
dB(ω) = 0. Then

∫

G
dAB(ω) =

∫

G∩F (ω)
dA(ω)

=
∫

G∩F (ω)K(ω)dA(ω) +
∫

G∩F (ω)K(ω)dB(ω)

=
∫

G∩F (ω)K(ω)dA(ω).

So
∫

G∩F (ω)(1−K(ω))dA(ω) = 0, but (1−K(ω)) > 0 on F (ω).

So dAB(ω)(G) = 0. Consequently for every ω ∈ N c, dAB(ω) ≪ dB(ω) and so
that dAB ≪ dB.
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Now, since K is positive and K(ω) ≤ 1 dA(ω) a.e. for almost all ω, we can
replace K by K ∧ 1 which is still positive predictable and verifies (C.2); there-
fore we can consider that K ∈ [0, 1] for all (ω, t).

We remark that for P almost all ω the decomposition A⊥B and AB is unique
because of the corresponding uniqueness of the decomposition in the Lebesgue-
Radon-Nikodym theorem for each fixed ω ∈ N c.

Since dAB ≪ dB, again by Proposition I.3.13 in [26], there exists a pre-
dictable positive process that we will call dA

dB
such that AB =

∫ ·

0
dA
dB
dB and

which is only unique up to dB ⊗ dP null sets.

Proof of Proposition 3.8.
If A1 ans A2 belong to Vp,+, by additivity we can write
A1+A2 =

∫ ·

0
(dA1

dB
+ dA2

dB
)dB+(A⊥B

1 +A⊥B
2 ). Since previous integral is dominated

by dB and the second term is singular to dB, the result follows by the uniqueness
property of Proposition 3.3.
For general processes in Vp, the result follows from Definition 3.7. Indeed we
have

A1 +A2 = (A−
1 −A−

1 ) + (A+
2 −A−

2 )
= (A+

1 +A+
2 )− (A−

1 +A−
2 ),

so by Definition 3.7, d(A1+A2)
dB

=
d(A+

1
+A+

2
)

dB
− d(A−

1
+A−

2
)

dB
and by the linearity

of d
dB

which has already been proven at the beginning when A1 and A2 are
increasing processes, we have

d(A1+A2)
dB

=
dA

+

1

dB
+

dA
+

2

dB
− dA

−

1

dB
− dA

−

2

dB

=
(

dA
+

1

dB
− dA

−

1

dB

)

+
(

dA
+

2

dB
− dA

−

2

dB

)

,

which by Definition 3.7 is equal to dA1

dB
+ dA2

dB
.

Proposition C.1. Let M and M ′ be two local martingales in H2
loc and let

V ∈ Vp,+. We have

d〈M〉
dV

d〈M ′〉
dV

−
(

d〈M,M ′〉
dV

)2

≥ 0 dV ⊗ dPa.e.

Proof. The proof is very similar to the Cauchy-Schwarz inequality proof except
that we have to be careful with ”almost everywhere equalities”.
Let q ∈ Q. Since 〈M + qM ′〉 is an increasing process starting at zero, then by

Proposition 3.3, we have d〈M+qM ′〉
dV

≥ 0 dV ⊗ dP a.e.
By the linearity property stated in Proposition 3.8, we have

d〈M + qM ′〉
dV

=
d〈M〉
dV

(ω, t) + 2q
d〈M,M ′〉

dV
+ q2

d〈M ′〉
dV

dV ⊗ dP a.e.

So there exists a set N q such that dV ⊗ dP(N q) = 0 and

∀(ω, t) ∈ (N q)c :
d〈M〉
dV

(ω, t) + 2q
d〈M,M ′〉

dV
(ω, t) + q2

d〈M ′〉
dV

(ω, t) ≥ 0.
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Now if we set N =
⋃

q∈QN q we still have that dV ⊗ dP(N ) = 0 and for all
(ω, t) ∈ (N )c,

x 7−→ d〈M〉
dV

(ω, t) + 2x
d〈M,M ′〉

dV
(ω, t) + x2

d〈M ′〉
dV

(ω, t)

is a polynome which is positive on Q and therefore on R by continuity of
polynomes. So by looking at its discriminant, we deduce that

∀(ω, t) ∈ N c : 4

(

d〈M,M ′〉
dV

(ω, t)

)2

− 4
d〈M〉
dV

(ω, t)
d〈M ′〉
dV

(ω, t) ≤ 0.

Proof of Proposition 3.9.
Since the angular bracket 〈M〉 of a square integrable martingale M always
belongs to Vp,+, by Proposition 3.3, we can consider the processes 〈M〉V and
〈M〉⊥V ; in particular there exists a predictable process K with values in [0, 1]
such that

{

〈M〉V =
∫ ·

0
1{Ks<1}d〈M〉s

〈M〉⊥V =
∫ ·

0
1{Ks=1}d〈M〉s.

We can then set MV =
∫ ·

0 1{Ks<1}dMs and M⊥V =
∫ ·

0 1{Ks=1}dMs which are
well-defined because K is predictable, and therefore 1{Kt<1} and 1{Kt=1} are
also predictable. MV ,M⊥V are in H2

0 because their angular brackets are both
bounded by 〈M〉T ∈ L1.

Since K takes values in [0, 1], we have

1. MV +M⊥V =
∫ ·

0
1{Ks<1}dMs +

∫ ·

0
1{Ks=1}dMs =M ;

2. 〈MV 〉 =
∫ ·

0 1{Ks<1}d〈M〉s = 〈M〉V ;

3. 〈M⊥V 〉 =
∫ ·

0 1{Ks=1}d〈M〉s = 〈M〉⊥V ;

4. 〈MV ,M⊥V 〉 =
∫ ·

0 1{Ks<1}1{Ks=1}d〈M〉s = 0;

those properties imply all the conditions (3.9).

Lemma C.2. Let M1, M2 be in H2
0 and |〈M1,M2〉| denote the total variation

of 〈M1,M2〉. Then
{

d|〈M1,M2〉| ≪ d〈M1〉
d|〈M1,M2〉| ≪ d〈M2〉.

Proof. We will prove here the first relation since the second one holds by symme-
try. By Kunita-Watanabe theorem, we know that for any two square integrable
martingalesM1,M2 there exists a predictable process H ∈ L2(M1) and a square
integrable martingale N strongly orthogonal to M1 such that

M2 =

∫ ·

0

HdM1 +N,
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see for example Corollaries 1 and 2 in Chapter IV.3 of [34].
Therefore 〈M1,M2〉 =

∫ ·

0 Hd〈M1〉 and |〈M1,M2〉| =
∫ ·

0 |H |d〈M1〉 implying that
d|〈M1,M2〉| ≪ d〈M1〉.

Proof of Proposition 3.12.
Let M1 and M2 be in H2,V . By Lemma C.2, d|〈M1,M2〉| ≪ d〈M1〉 ≪ dV . So
since 〈M1 +M2〉 = 〈M1〉 + 2〈M1,M2〉 + 〈M2〉, then d〈M1 +M2〉 ≪ dV which
shows that H2,V is a vector space.

If M1 and M2 are in H2,⊥V , then since d|〈M1,M2〉| ≪ d〈M1〉 we can write
|〈M1,M2〉| =

∫ ·

0
d|〈M1,M2〉|
d〈M1〉

d〈M1〉 which is almost surely singular with respect to

dV since M1 belongs to H2,⊥V . So, by the bilinearity of the angular bracket
H2,⊥V is also a vector space.

Finally if M1 ∈ H2,V and M2 ∈ H2,⊥V then d|〈M1,M2〉| ≪ d〈M1〉 ≪ dV but we
also have seen that if d〈M2〉 is singular to dV then so is d|〈M1,M2〉| ≪ d〈M2〉.
For fixed ω, a measure being simultaneously dominated and singular with re-
spect to to dV (ω) is necessarily the null measure, so d|〈M1,M2〉| = 0 as a
stochastic measure. Therefore M1 and M2 are strongly orthogonal, which im-
plies in particular that M1 and M2 are orthogonal in H2

0.

So we have shown that H2,V and H2,⊥V are orthogonal sublinear-spaces of
H2

0 but we also know that H2
0 = H2,V +H2,⊥V thanks to Proposition 3.9, so

H2
0 = H2,V ⊕⊥ H2,⊥V .

This implies that H2,V = (H2,⊥V )⊥ and H2,⊥V = (H2,V )⊥ and therefore that
these spaces are closed. So they are sub-Hilbert spaces. We also have shown
that they were strongly orthogonal spaces, in the sense that any M1 ∈ H2,V ,
M2 ∈ H2,⊥V are strongly orthogonal.

We recall here a classical notion of martingale theory.

Definition C.3. Let p ∈ [1,∞[, a subset H ⊂ Hp will be called a stable sub-

space if it is a closed sublinear space such that for any M ∈ H, any event
A ∈ F0 and any stopping time τ then 1AM

τ ∈ H.

Proposition C.4. H2,V and H2,⊥V are stable subspaces of H2.

Proof. Since by Proposition 3.12, H2,V and H2,⊥V are closed sub-linear spaces
of H2, then Proposition 4.3 in [25] states that the result will follow if we show
that for any M in H2,V (respectively in H2,⊥V ) and H in L2(M) then

∫ ·

0HdM

is in H2,V (respectively in H2,⊥V ). So let M ∈ H2,V (respectively in H2,⊥V )
and H in L2(M), then 〈

∫ ·

0
HdM〉 =

∫ ·

0
H2d〈M〉 therefore if d〈M〉 is dominated

by dV (respectively singular to dV ), so is d〈
∫ ·

0HdM〉.
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