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SPECTRAL SPACES OF COUNTABLE ABELIAN

LATTICE-ORDERED GROUPS

FRIEDRICH WEHRUNG

Abstract. A compact topological space X is spectral if it is sober and the
compact open subsets of X form a basis of the topology of X, closed under
finite intersections. It is well known that the spectrum of an Abelian ℓ-group
with unit — equivalently, of an MV-algebra — is spectral.

Theorem. A topological space X is isomorphic to the spectrum of some

countable Abelian ℓ-group with unit (resp., MV-algebra) iff X is spectral, has

a countable basis of open sets, and for any points x and y in the closure of a

singleton {z}, either x is in the closure of {y} or y is in the closure of {x}.

We establish this result by proving that a countable distributive lattice D

with zero is isomorphic to the lattice of all principal ideals of an Abelian ℓ-
group (we say that D is ℓ-representable) iff for all a, b ∈ D there are x, y ∈ D

such that a ∨ b = a ∨ y = b ∨ x and x ∧ y = 0. On the other hand, we
construct a non-ℓ-representable bounded distributive lattice, of cardinality ℵ1,
with an ℓ-representable countable elementary sublattice. In particular, there
is no first-order characterization, of ℓ-representable distributive lattices, in
arbitrary cardinality.

1. Introduction

1.1. Statement of the problem. A lattice-ordered group, or ℓ-group for short, is
a group G endowed with a translation-invariant lattice ordering. An ℓ-ideal of G
is a convex, normal ℓ-subgroup I of G. We say that I is prime if x ∧ y ∈ I implies
that either x ∈ I or y ∈ I, for all x, y ∈ G. We define the ℓ-spectrum of G as the
set SpecℓG of all prime ℓ-ideals of G, endowed with the topology whose closed sets
are exactly the sets VX =

def
{P ∈ SpecℓG | X ⊆ P}, for X ⊆ G. Characterizing the

spaces SpecℓG, for Abelian ℓ-groups G, is a long-standing open problem. Although
the work on that problem started more than twenty years ago, the first printed
occurrence of its statement that we are aware of is Mundici [34, Problem 2], where
it is stated in an equivalent form:

“Which topological spaces are homeomorphic to Spec(A) for some

MV-algebra A?”

To explain the connection, the concept of MV-algebra is tailored to describe,
by a finite set of identities, the structure of any interval of the form [0, u] in an

Date: January 10, 2017.
2010 Mathematics Subject Classification. 06D05; 06D20; 06D35; 06D50; 06F20; 46A55; 52A05;

52C35.
Key words and phrases. Lattice-ordered; Abelian; group; MV-algebra; ideal; prime; spectrum;

representable; spectral space; sober; completely normal; root system; specialization order; count-
able; distributive; lattice; join-irreducible; Heyting algebra; closed map; consonence; difference
operation; hyperplane; open; half-space.

1



2 F. WEHRUNG

Abelian ℓ-group G, in terms of the binary operation (x, y) 7→ (x + y) ∧ u and
the unary operation x 7→ u − x. There are natural concepts of ideal, then prime
ideal, and thus also of spectrum (we will say MV-spectrum), in any MV-algebra,
similar to those defined for Abelian ℓ-groups. In [33], Mundici constructs a category
equivalence between the category of all Abelian ℓ-groups with unit, with unit-
preserving ℓ-homomorphisms, and the variety (in the universal algebraic sense) of
all MV-algebras (see also Marra and Mundici [29, 30]). Under that equivalence, the
various concepts of ideal, prime ideal, and spectrum correspond, so the question
about Abelian ℓ-groups with order-unit is equivalent to the one about MV-algebras.

1.2. Completely normal spectral spaces. The constructions, of the spectrum
of an Abelian ℓ-group and the spectrum of an MV-algebra, are both particular
cases of the following one. The spectrum of a distributive lattice D with zero can
be defined in a similar way as the ℓ-spectrum of an Abelian ℓ-group. A lower
subset I, in a distributive lattice D with zero, is an ideal if it is closed under finite
joins (in particular, 0 ∈ I). Further, we say that I is prime if x∧y ∈ I implies that
either x ∈ I or y ∈ I, for all x, y ∈ D. This enables us to define the spectrum of D,
and it is well known, since Stone [39], that spectra of bounded distributive lattices
are exactly the so-called spectral spaces (cf. Definition 4.1). They are also the same
as spectra of commutative, unital rings (cf. Hochster [24]). Moreveor, it turns out
that the ℓ-spectrum of an Abelian ℓ-group G is homeomorphic to the spectrum of
the lattice IdcG of all principal ℓ-ideals of G (see Section 4 for details).

Does every spectral space appear as the ℓ-spectrum of an Abelian ℓ-group? The
answer has been known for a long time to be negative, and can be conveniently
stated in terms of the specialization order. In any topological space X , let x 6 y
hold if y belongs to the closure of x, for all x, y ∈ X . The binary relation 6 is a
preorder on X , called the specialization (pre)order on X . It is antisymmetric iff X
is T0, which holds, in particular, if X is spectral.

A spectral space X is completely normal1 if every principal filter of X is a chain,
for every p ∈ X (cf. Definition 4.3); that is, the specialization order is a root system.
Not every spectral space is completely normal, but the ℓ-spectrum of any Abelian ℓ-
group is completely normal. And then it turns out that completely normal spectral
spaces also appear in the different context of real spectra: The real spectrum of

any commutative, unital ring is a completely normal spectral space (cf. Coste and
Roy [12], Dickmann [16]).

If we let go of the topology for a while, Cignoli and Torrens [11] characterized
all posets (i.e., partially ordered sets) isomorphic to the specialization order on the
MV-spectrum of some MV-algebra. An analogue result is proved in Dickmann,
Gluschankof, and Lucas [17] about real spectra. It is noteworthy that both results
represent the same class of root systems, called spectral root systems.

Is every completely normal spectral space an ℓ-spectrum? Delzell and Madden
[14, Theorem 2] construct a completely normal spectral space, whose specialization
order is a root system, which is not isomorphic to any MV-spectrum. However,
that example is not second countable (i.e., its topology has no countable basis of
open sets). The spectral space from Example 5.5, in the present paper, is similar,
although not homeomorphic.

1In some references, a topological space X is completely normal if every subspace of X is
normal. This definition is (strictly) stronger than ours, see Example 4.5.
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How about the countable case? Trying to represent a second countable, com-
pletely normal spectral space X , a basic idea would be to express X as an in-
verse limit, for a suitable concept of morphism, of finite completely normal spectral
spaces, then lift the arrows between individual building blocks, and then construct
a direct limit (of Abelian ℓ-groups). Finite completely normal spectral spaces arise
from finite root systems, and it has been known for a long time that those can
be lifted by lexicographical powers of, say, the integers (see, for example, Bigard,
Keimel, and Wolfenstein [5, Section 5.4]). However, such a plan would rely on the
hope that our spectral space X be profinite. And Di Nola and Grigolia [15] found
an example showing that this is not always the case; so we need to look elsewhere.

In a different direction, Iberkleid, Mart́ınez, and McGovern proved in [26, Theo-
rem 3.1.1] that Every completely normal distributive lattice D with zero, such that

for all a, b ∈ D there exists a smallest x ∈ D with a ≤ b ∨ x, is ℓ-representable.

1.3. Reduction to a problem about distributive lattices. Any spectral space
is determined, up to homeomorphism, by its (distributive) lattice of compact open
subsets, and every distributive lattice with zero appears that way (Stone [39]; see
Proposition 4.2). It follows that the problem, of characterizing ℓ-spectra of Abelian
ℓ-groups, is equivalent to characterizing the distributive lattices with zero isomor-
phic to IdcG for some Abelian ℓ-group G (cf. Lemma 4.7) — we shall call such
lattices ℓ-representable. It follows that the question, of characterizing second count-

able ℓ-spectra, is equivalent to the following one:

Which countable distributive lattices are ℓ-representable?

Every ℓ-representable distributive lattice D satisfies a lattice-theoretical version
of complete normality, which is equivalent to saying that for all a, b ∈ D there
are x, y ∈ D such that a ∨ b = a ∨ y = x ∨ b and x ∧ y = 0 (Definition 4.3), and
also to saying that the spectrum (of our distributive lattice) is completely normal
(cf. Proposition 4.4). Completely normal lattices are studied in depth (under the
name “relatively normal lattices”) in Snodgrass and Tsinakis [37, 38]. Delzell and
Madden’s aforecited example shows that there are uncountable, non-ℓ-representable
completely normal bounded distributive lattices.

Our main result is the following:

Theorem 11.1. Every countable, completely normal distributive lattice with zero

is ℓ-representable.

As immediate corollaries of Theorem 11.1, we mention the following:

(1) (Corollary 11.2) A second countable spectral space is an ℓ-spectrum iff it is

completely normal ;
(2) (Corollary 11.3) For any countable ℓ-group G, there is a countable Abelian ℓ-

group A such that the lattices of convex ℓ-subgroups of G and A are isomorphic;
(3) (Corollary 11.4) Every second countable real spectrum is homeomorphic to some

ℓ-spectrum.

1.4. Overview of the paper. In Section 2, we review the basic facts required
in the proof of Theorem 11.1, mostly about distributive lattices, Heyting algebras,
and topological vector spaces. In Section 3, we do the same for Abelian ℓ-groups,
in particular recalling the classical description of free Abelian ℓ-groups and their ℓ-
ideals, arising from the Baker-Beynon duality. In Section 4 we present an overview
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of (generalized) spectral spaces. This enables us to reduce our problems, on ℓ-
spectra, to problems on distributive lattices with zero (Lemma 4.7).

Section 5 contains a few non-ℓ-representability results, mainly

(1) (Proposition 5.3) The class of all ℓ-representable distributive lattices is not

closed under infinite products ;
(2) (Example 5.5) There is a non-ℓ-representable bounded distributive lattice Dω1 ,

of cardinality ℵ1, with an ℓ-representable countable elementary sublattice Dω.

Section 6 introduces the crucial lattice-theoretical concepts of consonence, de-
fined as a local version of complete normality, and of a difference operation. The
latter concept, inspired by the dimension monoid construct of Wehrung [40], is de-
signed to approximate the above-mentioned property, not valid in all completely
normal distributive lattices, that for all a, b there is a smallest x such that a ≤ b∨x.

Section 7 introduces the main lattice-theoretical extension results required in
our proof of Theorem 11.1, most notably the rather technical Lemma 7.3. Those
extension results can be roughly described as follows. We are given a finite distribu-
tive lattice E, a bounded sublattice — in fact a Heyting subalgebra — D of E, a
completely normal distributive lattice L with zero, and a 0-lattice homomorphism
f : D → L. We find convenient sufficient conditions for the existence of an exten-
sion of f to a homomorphism from E to L. In Lemma 7.3, those conditions are
stated in terms of consonence of f and the join-irreducible elements of D.

Section 8 introduces the finite distributive lattices coming in replacement for the
missing “completely normal finite building blocks” whose non-existence is proved in
Di Nola and Grigolia [15] (cf. Section 1.2). Our building blocks, typically denoted
by Op(H), are generated by the open half-spaces associated with finitely many
closed hyperplanes in a topological vector space E. They are finite Heyting subal-
gebras of the lattice of all open subsets of E. They are not, in general, completely
normal.

The join-irreducible members of Op(H) are further investigated in Section 9.
An important observation is that Every join-irreducible member P of Op(H) is

convex, and if P∗ denotes the lower cover of P , then P \P∗ is convex. This enables
us to reach, in Lemma 9.4, a specialization, to lattices of the form Op(H), of the
homomorphism extension property established in Lemma 7.3. Further homomor-
phism extension lemmas, on lattices Op(H), are deduced in Section 10.

All those results are put together in Section 11, where we state our main
theorem (Theorem 11.1) and a few corollaries. In Section 12, we discuss a few
related results and open problems.

2. Basic concepts, notation, terminology

2.1. General. We set [n] =
def

{1, 2, . . . , n}, for every natural number n. Also, ω =

{0, 1, 2, . . .} is the first limit ordinal, and ω1 is the first uncountable ordinal.
Throughout the paper, “countable” means “at most countable”.
In any commutative monoid, let x ≤ y hold if there is z such that x+ y = y, and

let x ∝ y hold if x ≤ ny for some positive integer n. We set G+ =
def

{x ∈ G | 0 ≤ x},

for every partially ordered group G (denoted additively).
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2.2. Posets and lattices. A standard reference for lattice theory is Grätzer [22].
For any subsets X and Y in a poset P , we set

X ↓ Y =
def

{x ∈ X | (∃y ∈ Y )(x ≤ y)} ,

X ↑ Y =
def

{x ∈ X | (∃y ∈ Y )(x ≥ y)} ,

and we write X ↓ a, X ↑ a instead of X ↓ {a}, X ↑ {a}, respectively, if there is no
ambiguity on the ambient poset. We also write ↓X and ↑X instead of P ↓X and
P ↑X , respectively, if there is no ambiguity on P . We say that X is

— a lower subset (resp., upper subset) of P if X = ↓X (resp., X = ↑X);
— a coinitial subset of P if P = ↑X .

For posets P and Q, a map f : P → Q is isotone (resp., antitone) if x ≤ y implies
that f(x) ≤ f(y) (resp., f(y) ≤ f(x)), for all x, y ∈ P .

A poset P is a root system if P ↑ p is a chain for every p ∈ P ; that is, for all
p, x, y ∈ P , if p ≤ x and p ≤ y, then either x ≤ y or y ≤ x.

For any maps f and g from a set X to a poset P , we set

[[f ≤ g]] =
def

{x ∈ X | f(x) ≤ g(x)} ,

and we define similarly [[f ≥ g]], [[f = g]], [[f < g]], [[f > g]], [[f 6= g]].
We will often denote by 0 (resp., 1) the smallest (resp., largest) element in a lat-

tice L. For lattices K and L with zero (i.e., least element), a lattice homomorphism
f : K → L is a 0-lattice homomorphism if f(0K) = 0L. We define similarly 1-lattice
homomorphisms and 0, 1-lattice homomorphisms. We denote by JiL (resp., MiL)
the set of all join-irreducible (resp., meet-irreducible) elements in L.

Lemma 2.1 (folklore). Let D be a finite distributive lattice. Then every join-irre-

ducible element p of D is join-prime, that is, it is nonzero and p ≤ x ∨ y implies

that p ≤ x or p ≤ y, for all x, y ∈ D. Moreover, the subset {x ∈ D | p � x} has a

largest element p†. The assignment p 7→ p† defines an order-isomorphism from JiD
onto MiD.

We say that a (necessarily distributive) lattice D is a Heyting algebra (cf. John-
stone [27]) if for all a, b ∈ D, there is a largest x ∈ D such that a ∧ x ≤ b, then
denoted by a → b (or a →D b if D needs to be specified) and called the Heyting

residue of a by b. The operation → is then called the Heyting implication on D.
For a distributive lattice D, we set

a⊖ b =
def

{x ∈ D | a ≤ b ∨ x} , for all a, b ∈ D . (2.1)

Hence, D is a dual Heyting algebra iff a ⊖ b has a smallest element, whenever

a, b ∈ D. We say that D has countably based differences if a ⊖ b has a countable
coinitial subset, whenever a, b ∈ D.

A lattice L is complete if every subset of L has a join (equivalently, every subset
of L has a meet). An element a of L is compact if for every X ⊆ L, if a ≤

∨
X ,

then a ≤
∨
Y for some finite subset Y of X . A complete lattice L is algebraic if

every element of L is a join of compact elements. A lattice is algebraic iff it is
isomorphic to the ideal lattice of its (∨, 0)-semilattice of compact elements.
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2.3. Topological spaces, vector spaces. For a topological space X , we denote
by int(Z) (resp., cl(Z)) the interior (resp., the closure) of any subset Z of X . The
lattice O(X) of all open subsets of X is a complete Heyting algebra (cf. Section 2.2),
with Heyting implication given by

(U → V ) = int
(
(∁U) ∪ V

)
, for all U, V ∈ O(X) .

For any subset X in a real vector space E, we denote by conv(X) the convex hull
of X , and by cone(X) the convex cone generated by X ; so cone(X) = R+ ·conv(X).

The following is a well known consequence of the Hahn-Banach Theorem, usually
known as Farkas’ Lemma (see, for example, De Loera, Hemmecke, and Köppe [13,
Section 1.2]). While this lemma is usually stated in the finite-dimensional case, the
general case can easily be reduced to the finite-dimensional one by working in E/F ,
where F =

def
ker(c) ∩

⋂n

i=1 ker(bi).

Lemma 2.2. Let E be a real vector space, let n be a nonnegative integer, and

let b1, . . . , bn, c be linear functionals on E. Then
⋂n

i=1[[bi ≥ 0]] ⊆ [[c ≥ 0]] iff

c ∈ cone({b1, . . . , bn}).

We also record two elementary lemmas, which will be useful in the sequel.

Lemma 2.3. Let A and F be convex subsets in a real topological vector space E,
with F closed and F ∩ int(A) 6= ∅. Then cl(F ∩ A) = F ∩ cl(A).

Proof. Fix u ∈ F∩int(A), and let p ∈ F∩cl(A). Since F is convex, (1−λ)p+λu ∈ F
for each λ ∈ [0, 1]. Moreover, since u ∈ int(A), p ∈ cl(A), and A is convex,
(1− λ)p+ λu belongs to A, thus to F ∩A, for each λ ∈ (0, 1]. Since (1− λ)p+ λu
converges to p, as λ goes to 0 and λ > 0, it follows that p ∈ cl(F ∩ A). We have
thus proved that F ∩ cl(A) ⊆ cl(F ∩ A). The converse containment is trivial. �

Lemma 2.4. Let F be the union of finitely many closed subspaces in a real topolog-

ical vector space E and let Q be a convex subset of E. Then either Q ⊆ F or Q∩F
is nowhere dense in Q.

Proof. We first deal with the case where F is a closed subspace of E. Suppose
that Q ∩ F is not nowhere dense in Q. Since F is a closed subspace of E, Q ∩ F is
also relatively closed in Q, thus the relative interior U of Q ∩ F in Q is nonempty.
Fix u ∈ U and let q ∈ Q. Since Q is convex, (1− λ)u+ λq ∈ Q for every λ ∈ [0, 1].
Since U is a relative neighborhood of u in Q, it follows that (1− λ)u + λq belongs
to U , thus to F , for some λ ∈ (0, 1]. Since {u, (1− λ)u + λq} ⊆ F with λ > 0, it
follows that q ∈ F , therefore completing the proof that Q ⊆ F .

Now in the general case, F =
⋃n

i=1 Fi, where each Fi is a closed subspace of E. If
Q 6⊆ F , then Q 6⊆ Fi, thus, by the paragraph above, Q ∩ Fi is nowhere dense in Q,
for all i ∈ [n]. Therefore, Q ∩ F =

⋃n
i=1(Q ∩ Fi) is also nowhere dense in Q. �

3. Abelian lattice-ordered groups

In this section we will survey some well known facts about ℓ-groups, the func-
tor Idc, from Abelian ℓ-groups to distributive lattices with zero, and the Baker-
Beynon duality. A key point is that for a ℓ-homomorphism f : A → B of Abelian
ℓ-groups, the map Idc f : IdcA→ IdcB is a special kind of 0-lattice homomorphism,
which we call a closed map (cf. Lemma 3.2).

Our basic reference on ℓ-groups will be Bigard, Keimel, and Wolfenstein [5].
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In any ℓ-groupG, we set x+ =
def

x∨0, x− =
def

(−x)∨0, and |x| =
def

x∨(−x). We de-

note by IdG the lattice of all ℓ-ideals of an Abelian ℓ-group G, and by IdcG the lat-
tice of all finitely generated ℓ-ideals of G. Denoting by 〈a1, . . . , an〉 (or 〈a1, . . . , an〉G
in case G needs to be specified) the ℓ-ideal generated by {a1, . . . , an}, IdcG con-
sists of all the ℓ-ideals of the form 〈a1, . . . , an〉. Setting a =

def

∑n
i=1 |ai|, observe that

〈a1, . . . , an〉 = 〈a〉 = {x ∈ G | |x| ∝ a}. In particular, IdcG = {〈a〉 | a ∈ G+}. Due
to the elementary properties of ℓ-groups, the join and meet operation on IdcG are
given by

〈x〉 ∨ 〈y〉 = 〈x ∨ y〉 = 〈x+ y〉 , 〈x〉 ∩ 〈y〉 = 〈x ∧ y〉 , for all x, y ∈ G+ . (3.1)

In particular, IdcG is a distributive lattice with zero.
The following lemma is well known, see, for example, Bigard, Keimel, and

Wolfenstein [5, Section 2.3].

Lemma 3.1. The following statements hold, for every Abelian ℓ-group G:

(1) For every ℓ-ideal I of G, the set I =
def

{〈x〉 | x ∈ I ∩G+} is an ideal of IdcG.

Furthermore, the assignment 〈x〉I 7→ 〈x〉G defines an isomorphism from Idc I
onto I.

(2) For every ideal I of IdcG, the set I =
def

{x ∈ G | 〈x〉 ∈ I} is an ℓ-ideal of G.

(3) The assignements I 7→ I and I 7→ I, in (1) and (2) above, are mutually inverse.

For an ℓ-homomorphism f : G → H between Abelian ℓ-groups, it follows easily
from (3.1) that the map Idc f : IdcG→ IdcH , 〈x〉 7→ 〈f(x)〉 is well defined, and is
a 0-lattice homomorphism. This defines a functor Idc, from Abelian ℓ-groups with
ℓ-homomorphisms, to distributive 0-lattices with 0-lattice homomorphisms. This
functor preserves direct limits and finite direct products.

A map f separates zero if f−1 {0} = {0}.

Lemma 3.2. Let A and B be Abelian ℓ-groups and let f : A → B be an ℓ-
homomorphism. Then the map f =

def
Idc f has the following properties:

(1) f is a 0-lattice homomorphism.

(2) Let a0,a1 ∈ IdcA and let b ∈ IdcB. If f (a0) ⊆ f (a1) ∨ b, then there exists

a ∈ IdcA such that a0 ⊆ a1 ∨ a and f (a) ⊆ b. We say that the map f is

closed.
(3) f separates zero iff it is one-to-one, iff f is one-to-one.

The terminology closed maps, in Lemma 3.2(2) above, is borrowed from Iberkleid,
Mart́ınez, and McGovern [26].

Proof. Ad (1). This follows immediately from (3.1).
Ad (2). Let a0, a1 ∈ A+ and b ∈ B+ such that each ai = 〈ai〉A and b =

〈b〉B. Then the assumption f(a0) ⊆ f(a1) ∨ b means that there exists a positive
integer n such that f(a0) ≤ n(f(a1) + b), which, since b ≥ 0, is equivalent to
(f(a0)− nf(a1))

+ ≤ nb, that is, since f is an ℓ-homomorphism, f
(
(a0 − na1)

+
)
≤

nb. Therefore, setting a =
def

〈(a0 − na1)
+〉A, we get a0 ⊆ a1 ∨ a and f(a) ⊆ b.

Ad (3). Suppose first that f is one-to-one and let a0,a1 ∈ IdcA such that
f(a0) ⊆ f(a1). Write ai = 〈ai〉A, where ai ∈ A+. There exists a positive integer n
such that f(a0) ≤ nf(a1), that is, f

(
(a0 − na1)

+
)
= 0. Since f is one-to-one, this is
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equivalent to (a0 − na1)
+ = 0, that is, a0 ≤ na1; whence a0 ⊆ a1, thus completing

the proof that f is one-to-one.
It is trivial that if f is one-to-one, then it separates zero.
Suppose, finally, that f separates zero. For every a ∈ A, if f(a) = 0, then

f(〈a〉A) = 〈f(a)〉B = 0, thus, since f separates zero, 〈a〉A = 0, that is, a = 0.
Since f is a group homomorphism, it follows that f is one-to-one. �

This motivates the following definition.

Definition 3.3. A distributive lattice with zero is ℓ-representable if it is isomorphic

to IdcG for some Abelian ℓ-group G. More generally, say that a diagram ~D, of
distributive lattices with zero and 0-lattice homomorphisms, is ℓ-representable, if it

is isomorphic to Idc ~G for a diagram ~G, of Abelian ℓ-groups and ℓ-homomorphisms.

Example 3.4. Using Lemma 3.2(2), it is easy to construct an example of a 0-
sublattice A of a finite distributive lattice B, both ℓ-representable, such that the
inclusion map from A into B is not ℓ-representable: just define B as the square 22,
and A as any of the two 3-element chains in B.

Another example, this time using Lemma 3.2(3), of a non-ℓ-representable 0-
lattice homomorphism between finite ℓ-representable distributive lattices, is the
following: denote by 2 the two-element chain and by 3 the three-element chain.
Then the unique zero-separating map f : 3 ։ 2 is a surjective 0-lattice homomor-
phism. Since f is zero-separating but not one-to-one, it is not ℓ-representable.

Lemma 3.5. Let G be an Abelian ℓ-group, let S be a distributive lattice with zero,

and let ϕ : IdcG ։ S be a closed surjective (∨, 0)-homomorphism. Then I =
def

{x ∈ G | ϕ(〈x〉) = 0} is an ℓ-ideal of G, and there is a unique order-isomorphism

ψ : Idc(G/I) → S such that ψ(〈x/I〉) = ϕ(〈x〉) for every x ∈ G+. In particular, S
is a lattice and ψ is a lattice isomorphism.

Proof. It is straightforward to verify that I is an ℓ-ideal of G and that there is
a unique map ψ : Idc(G/I) → S such that ψ(〈x/I〉) = ϕ(〈x〉) for every x ∈ G+.
Since ϕ is a surjective (∨, 0)-homomorphism, so is ψ. It remains to verify that ψ is
an order-embedding.

Let x, y ∈ G+ such that ψ(〈x/I〉) ≤ ψ(〈y/I〉). This means that ϕ(〈x〉) ≤ ϕ(〈y〉),
thus, since ϕ is a closed map, there exists z ∈ IdcG such that 〈x〉 ⊆ 〈y〉 ∨ z and
ϕ(z) = 0. Writing z = 〈z〉, for z ∈ G+, this means that z ∈ I and x ≤ ny + nz for
some positive integer n. Therefore, x/I ≤ n(y/I), so 〈x/I〉 ⊆ 〈y/I〉. �

It is well known that every free Abelian ℓ-group is a subdirect power of Z, thus,
a fortiori, of R; this result originates in Henriksen and Isbell [23], Weinberg [43].
For a set I, denote by R(I) the set of all families x = (xi | i ∈ I) of real numbers,
such that the support of x, defined as supp(x) =

def
{i ∈ I | xi 6= 0}, is finite.

Proposition 3.6. Let I be a set and denote by Fℓ(I) the ℓ-subgroup of RR
(I)

gener-

ated by the canonical projections pi : R(I) ։ R, for i ∈ I. Then
(
Fℓ(I), (pi | i ∈ I)

)

is the free Abelian ℓ-group on I.

Note. Proposition 3.6 is usually stated with ZI , or RI , instead of R(I). The result
of Proposition 3.6 is not affected by that change.
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The description of free Abelian ℓ-groups, given by Proposition 3.6, yields a con-
venient description of the ℓ-ideals of such ℓ-groups. This description is contained in
the Baker-Beynon duality, see Baker [1], Beynon [3, 4]. The following consequence,
of that duality, involves the description of Fℓ(I) given in Proposition 3.6.

Proposition 3.7. Let I be a set, and denote by Lat(I) the sublattice, of the pow-

erset lattice of R(I), generated by all sets [[f > 0]], where f is a linear combination,

with integer coefficients, of the projections pi : R(I) ։ R. Then there is a unique

isomorphism ι : Idc Fℓ(I) → Lat(I) such that ι(〈f〉) = [[f 6= 0]] whenever f ∈ Fℓ(I).

Note. The empty set ∅ = [[0 > 0]] belongs to Lat(I), which is thus a 0-sublattice
of the powerset lattice of R(I). On the other hand, for every linear combination f
of the projections, the subset [[f > 0]] omits the origin of R(I). It follows that R(I)

does not belong to Lat(I), which is thus not a 1-sublattice of the powerset of R(I).

4. Completely normal spaces, spectral spaces

In this section we shall survey some basic facts and examples about completely
normal spaces and (generalized) spectral spaces. We will also reduce the MV-
spectrum problem to a lattice-theoretical problem (cf. Lemma 4.7). Recall that O(X)
denotes the lattice of all open subsets in a topological space X . Moreover, we shall
denote byK(X) the set of all compact open subsets ofX (i.e., the compact members
of the lattice O(X), see Section 2.2).

Definition 4.1. A topological space X is

— T0 if for any distinct points x, y ∈ X , there is an open subset of X con-
taining one element of {x, y} and not the other;

— sober if every join-irreducible member, of the lattice of all closed subsets
of X , is the closure of a unique singleton;

— generalized spectral if it is sober, K(X) is a basis for the topology of X ,
and the intersection of any two compact open subsets of X is compact;

— spectral if it is both generalized spectral and compact.

The specialization order on a T0 space X is defined by letting x 6 y hold if y
belongs to the closure of {x}, for all x, y ∈ X .

In particular, the uniqueness part, in the definition of sobriety stated above,
ensures that every sober space is T0 (not all references assume this). The statement,
that K(X) is a basis for the topology of X , is equivalent to O(X) be an algebraic
lattice (cf. Section 2.2 for terminology).

All generalized spectral spaces arise from distributive lattices with zero, as fol-
lows (see Johnstone [27, Section II.3] for more details). The spectrum of a dis-
tributive lattice D with zero, denoted by SpecD, is the set of all prime ideals
of D, endowed with the topology whose open sets are exactly the subsets ΩX =

def

{P ∈ SpecD | X 6⊆ P}, for X ⊆ D. Denoting by 〈X〉 the ideal of D generated
by X , it is obvious that ΩX = Ω〈X〉. Moreover, it follows from Stone’s representa-
tion Theorem, for distributive lattices, that every ideal I of D is the intersection
of all prime ideals containing it; whence ΩI characterizes I. The compact open
subsets of SpecD are exactly the Ω{a}, for a ∈ D; and the assignment a 7→ Ω{a}

defines an order-isomorphism. In particular, D ∼= K(SpecD). For prime ideals P
and Q of D, P 6 Q (for the specialization order) iff P ⊆ Q.
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Proposition 4.2. A topological space X is generalized spectral (resp., spectral) iff
it is homeomorphic to the spectrum of a distributive lattice D with zero (resp., a
bounded distributive lattice). In such a case, D ∼= K(X).

The ℓ-spectrum, SpecℓG, of an Abelian ℓ-group G can be defined the same way
as the spectrum of a distributive lattice with zero. Namely, SpecℓG consists of
all prime ℓ-ideals of G, and its closed sets are the VI =

def
{P ∈ SpecℓG | I ⊆ P},

for ℓ-ideals I of G. Hence, by Lemma 3.1, the ℓ-spectrum of the ℓ-group G is
homeomorphic to the spectrum of the distributive lattice IdcG. By Proposition 4.2,
this reduces the description of ℓ-spectra of Abelian ℓ-groups to the one of ℓ-repre-
sentable distributive lattices with zero.

Similarly, MV-spectra of MV-algebras are, via Mundici’s equivalence [33], the
same as ℓ-spectra of Abelian ℓ-groups with unit (cf. Cignoli and Torrens [11,
Corollary 1.3]). If G is an Abelian ℓ-group with unit u, then the ℓ-spectrum of G
is naturally isomorphic to the MV-spectrum of the MV-algebra [0, u].

Definition 4.3.

(1) A distributive lattice D with zero is completely normal if for all a, b ∈ D, there
exist x, y ∈ D such that a ≤ b ∨ x, b ≤ a ∨ y, and x ∧ y = 0.

(2) A generalized spectral space X is completely normal if the specialization order
on X is a root system.

The reader should be warned that the literature contains several non-equivalent
definitions of (complete) normality, as well for lattices as for topological spaces:

— While our choice of terminology in Definition 4.3(1) is consistent with
Johnstone [27], Cignoli [9] would rather call such lattices “dually com-
pletely normal”; and Snodgrass and Tsinakis [37, 38] would call them
“relatively normal”.

— Complete normality, of a topological space X , is sometimes defined by
stating that every subspace of X — or, equivalently, every open subspace
of X — is normal (cf. Munkres [35, Exercise IV.32.6]). Equivalently, the
lattice O(X), of all open subsets of X , is completely normal in the sense of
Definition 4.3(1). By the following Proposition 4.4, this implies complete
normality as stated in Definition 4.3(2). However, as witnessed by the
following Example 4.5, the converse implication does not hold, even for
spectral spaces; that is, the two concepts of complete normality are not
equivalent.

The following result is a restatement of Monteiro [32, Théorème V.3.1], see also
Cignoli [9, Proposition 1.9]. We include a proof for convenience.

Proposition 4.4. A generalized spectral space X is completely normal, in the sense

of Definition 4.3(1), iff its lattice K(X), of all compact open subsets, is completely

normal.

Proof. By Proposition 4.2, it suffices to prove that a distributive lattice D with
zero is completely normal iff SpecD is a completely normal topological space (in
the sense of Definition 4.3). Suppose first that D is completely normal and let P ,
Q, R be prime ideals of D such that P is contained in both Q and R, and Q and R
are incomparable. Pick a ∈ Q\R and b ∈ R\Q. By assumption, there are x, y ∈ D
such that a ≤ b ∨ x, b ≤ a ∨ y, and x ∧ y = 0. Necessarily, x /∈ R and y /∈ Q, thus
x, y /∈ P , in contradiction with x ∧ y = 0 together with the primeness of P .



SPECTRAL SPACES 11

Suppose, conversely, that SpecD is completely normal and let a, b ∈ D. We must
prove that 0 belongs to the filter C =

def
↑ {x ∧ y | (x, y) ∈ (a⊖ b)× (b⊖ a)} (cf. (2.1)

for notation). Suppose otherwise. By a well known theorem of Stone (cf. Grätzer
[22, Theorem 115]), there is a prime ideal P of D such that C ∩ P = ∅. We claim
that ↑a∩(P ∨↓b) = ∅ (where P ∨↓b denotes the join of P and ↓b in the ideal lattice
of D). Otherwise, there is x ∈ P such that a ≤ b∨x; that is, x ∈ a⊖ b, thus x ∈ C,
and thus x /∈ P , a contradiction. This proves our claim. By the above-mentioned
Stone’s Theorem, there is a prime ideal Q such that P ∨ ↓b ⊆ Q and Q ∩ ↑a = ∅;
that is, P ⊆ Q, b ∈ Q, and a /∈ Q. Likewise, there is a prime ideal R such that
P ⊆ R, a ∈ R, and b /∈ R. In particular, Q and R are incomparable, and they both
contain P , which contradicts our assumption. �

Example 4.5. A second countable spectral space X satisfying the following condi-

tions:

(1) The lattice K(X) is a self-dual Heyting algebra.

(2) The lattice K(X) is completely normal.

(3) The lattice O(X) is not completely normal.

Proof. Consider the finite chain 3 =
def

{0, 1, 2}. The set D, of all eventually constant

sequences of elements of 3, is a countable, bounded sublattice of 3ω. Since 3 is a
completely normal, self-dual Heyting algebra, so is D.

We claim that the ideal lattice IdD of D is not completely normal. Write the
elements of D in the form (1 ·X)⊔ (2 · Y ), for disjoint subsets X and Y of ω, each
of them either finite or cofinite. Recalling the usual convention n = {0, . . . , n− 1},
we set

an =
def

2 · n and bn =
def

1 · (ω \ n) , for all n ∈ ω .

Moreover, denote by a the ideal of D generated by {an | n ∈ ω}. Suppose that
there are ideals u, v of D such that ↓b0 ⊆ a∨v, a ⊆ ↓b0∨u, and u∩v = {0}. The
first condition implies that bm ∈ v for some m ∈ ω. The second condition implies
that an ∈ u for all n. In particular, am+1 ∈ u, thus the element 1·{m} = am+1∧bm
belongs to u ∩ v, a contradiction.

By Proposition 4.2, the spectrum X of D is a spectral space with D ∼= K(X);
hence the lattice K(X) is completely normal. On the other hand, O(X) is isomor-
phic to the ideal lattice of K(X), thus to the ideal lattice of D. By the above, this
lattice is not completely normal. �

As already mentioned in Section 1.2, the ℓ-spectrum of any Abelian ℓ-group is
completely normal (see, for example, Bigard, Keimel, and Wolfenstein [5, Propo-
sition 10.1.11]). It is worthwhile to pinpoint the lattice-theoretical content of that
result.

Lemma 4.6. Let G be an Abelian ℓ-group. Then IdcG is completely normal.

Proof. Let a, b ∈ IdcG. There are a, b ∈ G+ such that a = 〈a〉 and b = 〈b〉.
Set x =

def
〈a− (a ∧ b)〉 and y =

def
〈b− (a ∧ b)〉. Then a ⊆ b ∨ x, b ⊆ a ∨ y, and

x ∩ y = {0}. �

Lemma 4.7. A topological space X is homeomorphic to the ℓ-spectrum of an

Abelian ℓ-group iff it is generalized spectral and the lattice K(X) is ℓ-representable.
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Proof. For every Abelian ℓ-group G, the ℓ-spectrum X of G is isomorphic to the
spectrum of the distributive lattice IdcG, thus it is generalized spectral (cf. Propo-
sition 4.2). Moreover, the lattice K(X) ∼= IdcG is ℓ-representable.

Let, conversely, X be a generalized spectral space and let G be an Abelian
ℓ-group such that K(X) ∼= IdcG. Then O(X) is isomorphic to the ideal lattice
of K(X), which is isomorphic to the ideal lattice of IdcG, which is isomorphic to
the ideal lattice of G (cf. Lemma 3.1), which is isomorphic to O(SpecℓG). Since X
and SpecℓG are both sober spaces, it follows (cf. Johnstone [27, Section II.1]) that
X ∼= SpecℓG. �

5. Non-ℓ-representability results

In this section we shall show that the class of ℓ-representable distributive lattices
is neither first-order, nor closed under infinite products. Recall that lattices with
countably based differences are introduced in Section 2.2. The following result is
a restatement, in terms of lattices of principal ℓ-ideals, of Cignoli, Gluschankof,
and Lucas [10, Theorem 2.2]; see also Iberkleid, Mart́ınez, and McGovern [26,
Proposition 4.1.2]. We include a proof for convenience.

Lemma 5.1. Let G be a Abelian ℓ-group. Then the lattice IdcG has countably

based differences.

Proof. Let a, b ∈ IdcG, and pick a, b ∈ G+ such that a = 〈a〉 and b = 〈b〉. Set
cn =

def
〈(a− nb)+〉, for every nonnegative integer n. From a ≤ nb + (a − nb)+ it

follows that a ≤ b ∨ cn. Let x ∈ IdcG such that a ≤ b ∨ x. Let x ∈ G+ such
that x = 〈x〉. There exists a nonnegative integer n such that a ≤ nb + nx. Since
x ∈ G+, it follows that (a− nb)+ ≤ nx; whence cn ≤ x. �

Example 5.2. A countable Abelian ℓ-group G, with order-unit, such that IdcG is

not a dual Heyting algebra.

Proof. Let G consist of all maps x : ω → Z such that there are (necessarily unique)
α, β ∈ Z such that x(n) = αn + β for all large enough n. Then G, ordered
componentwise, is an ℓ-subgroup of Zω. The constant function a, with value 1, and
the identity function b on ω both belong to G+, a + b is an order-unit of G, and
there is no least x ∈ IdcG such that 〈b〉 ⊆ 〈a〉 ∨ x. �

It is easy to see that the class of all ℓ-representable distributive lattices is closed
under finite direct products. We shall now show that this observation does not
extend to infinite products.

Proposition 5.3. Let D be a distributive lattice with zero. If D is not a dual

Heyting algebra, then Dω is not ℓ-representable.

Proof. Denote by ε : D →֒ Dω the diagonal embedding and suppose that Dω is
ℓ-representable. Since D is isomorphic to an ideal of Dω, it is also ℓ-representable,
thus, by Lemma 5.1, D has countably based differences. On the other hand, sinceD
is not a dual Heyting algebra, there are a, b ∈ D such that the set a⊖b (cf. (2.1)) has
no least element. Hence, the set a ⊖ b has a strictly descending coinitial sequence
(cn | n ∈ ω).

Now by Lemma 5.1, D(ω) has countably based differences. In particular, the
set ε(a) ⊖ ε(b) has a countable descending coinitial sequence (en | n ∈ ω). For all
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n, k ∈ ω, a ≤ b ∨ en(k), thus there exists f(n, k) ∈ ω such that cf(n,k) ≤ en(k).

Set x =
def

(
cf(n,n)+1 | n ∈ ω

)
. Since ε(a) ≤ ε(b) ∨ x, there exists n ∈ ω such that

en ≤ x. It follows that cf(n,n) ≤ en(n) ≤ x(n) = cf(n,n)+1, a contradiction. �

By taking D =
def

IdcG, for the ℓ-group of Example 5.2, we obtain immediately

the following.

Corollary 5.4. The class of all ℓ-representable bounded distributive lattices is not

closed under infinite products.

The following example shows, in particular, that there is no first-order theory
whose class of models is the one of all ℓ-representable bounded distributive lattices.

Example 5.5. A non-ℓ-representable bounded distributive lattice Dω1 , of cardinal-

ity ℵ1, with a countable ℓ-representable elementary sublattice.

Proof. Consider the finite chain 3 =
def

{0, 1, 2}. For every infinite set I, we denote

by BI the set of all subsets of I that are either finite or cofinite. The set DI , of
all pairs (X, x) ∈ BI × 3 such that x = 0 iff X is finite, is a sublattice of BI × 3.

Claim 1. Let I be countably infinite. Then DI is ℓ-representable.

Proof of Claim. While Claim 1 follows from our main theorem (viz., Theorem 11.1),
it is easy to give an explicit representation, which we shall do now. Since DI

∼= Dω,
it suffices to prove that Dω is ℓ-representable. Consider the Abelian ℓ-group G of
Example 5.2. Let x ∈ G+. By the definition of G, there are integers α and β such
that x(n) = αn+ β for all large enough n. We set

ρ(x) =
def





(supp(x), 0) , if α = β = 0 ,

(supp(x), 1) , if α = 0 and β > 0 ,

(supp(x), 2) , if α > 0 .

It is straightforward to verify that x ∝ y iff ρ(x) ≤ ρ(y), for all x, y ∈ G+. Fur-
thermore, the range of ρ is equal to Dω, thus ρ induces an isomorphism from IdcG
onto Dω. � Claim 1.

Claim 2. The lattice Dω1 does not have countably based differences. In particular,

it is not ℓ-representable.

Proof of Claim. The elements a =
def

(ω1, 1) and b =
def

(ω1, 2) both belong to Dω1 .

Furthermore, the set b⊖ a = {(X, 2) | X ⊆ ω1 cofinite} has no countable coinitial
subset. The second part of our claim follows from Lemma 5.1. � Claim 2.

For infinite subsets I and J of ω1 with I ⊆ J , we set

εJI (X, x) =
def

{
(X, x) , if X is finite ,(
X ∪ (J \ I), x

)
, if X is cofinite ,

for every (X, x) ∈ DI .

Then εJI is a 0, 1-lattice embedding from DI into DJ , and the εJI form a direct
system of bounded distributive lattices and 0, 1-lattice embeddings, with

εω1

λ [Dλ] =
⋃(

εω1

ξ [Dξ] | ω ≤ ξ < λ
)
, for every limit ordinal λ ≤ ω1 .

By the Löwenheim-Skolem Theorem (cf. Chang and Keisler [8]), the set C, of all
limit ordinals λ < ω1 such that εω1

λ [Dλ] is an elementary sublattice of Dω1 , is a
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closed unbounded subset of ω1. Pick λ ∈ C. Then Dλ is isomorphic to εω1

λ [Dλ],
which is an elementary sublattice of Dω1 . �

Note. Denote by Z the completely normal spectral space constructed by Delzell and
Madden in [14, Theorem 2]. Although there is an obvious 0, 1-lattice embedding
from Dω1 into K(Z), it is not hard to see that the two lattices are not isomorphic.
Hence, Z is not homeomorphic to the spectrum of Dω1 .

See also Problem 1 in Section 12.

6. Consonence and difference operations

The proof of our main theorem (Theorem 11.1) will make an extensive use of the
following concept of consonence, which is a local version of complete normality.

Definition 6.1. Let A and B be distributive lattices with zero.

• Elements x and y of A are consonent, in notation x ∼ y, or x ∼A y if A
needs to be specified, if there are u, v ∈ A such that x ≤ y ∨ u, y ≤ x ∨ v,
and u ∧ v = 0; then following Iberkleid, Mart́ınez, and McGovern [26], we
say that (u, v) is a splitting of (x, y).

• A subset Z of A is consonent in A if x ∼A y for all x, y ∈ Z.
• A map f : A→ B is consonent if f [A] is consonent in B.

Observe that the definition of complete normality, as stated in Definition 4.3(1),
says that a distributive latticeD with zero is completely normal iff any two elements
of D are consonent.

Note. In the context of Definition 6.1, if (u, v) is a splitting of (x, y), then so is
(u ∧ x, v ∧ y). Moreover, for all u ≤ x and v ≤ y, (u, v) is a splitting of (x, y) iff
x ∨ y = x ∨ v = u ∨ y and u ∧ v = 0.

Lemma 6.2. The following statements hold, for every distributive lattice D with

zero and all a, b, c ∈ D:

(1) a ∼ b iff b ∼ a.
(2) If either a and b are comparable or a ∧ b = 0, then a ∼ b.
(3) If a ∼ c and b ∼ c, then a ∧ b ∼ c and a ∨ b ∼ c.

Proof. (1) is trivial.
Ad (2). If a ≤ b, then (a, 0) is a splitting of (a, b). If a ∧ b = 0, then (a, b) is a

splitting of (a, b).
Ad (3). If (x, x′) is a splitting of (a, c) and (y, y′) is a splitting of (b, c), then

(x∨y, x′∧y′) is a splitting of (a∨b, c) and (x∧y, x′∨y′) is a splitting of (a∧b, c). �

Definition 6.3. Let L be a lattice and let S be a (∨, 0)-semilattice. A map
L×L→ B, (x, y) 7→ xr y is an S-valued difference operation on L if the following
statements hold:

(D0) xr x = 0, for all x ∈ L.
(D1) xr z = (xr y) ∨ (y r z), for all x, y, z ∈ L such that x ≥ y ≥ z.
(D2) xr y = (x ∨ y)r y = xr (x ∧ y), for all x, y ∈ L.

We say, further, that the difference operation r is normal if the following con-
dition holds:

(D3) (x r y) ∧ (y r x) = 0, for all x, y ∈ L.
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Although we will need the following lemma only in case L is distributive, we
found it worth noticing that it holds for arbitrary L.

Lemma 6.4. Let L be a lattice, let S be a (∨, 0)-semilattice, and let r be an S-
valued difference operation on L. Then xr z ≤ (xr y)∨ (yr z), for all x, y, z ∈ S
(triangle inequality). Furthermore, the map (x, y) 7→ x r y is isotone in x and

antitone in y.

Proof. After some amount of translation, this trivially follows from Wehrung [40,
Proposition 1.9]. We provide a direct proof for the reader’s convenience.

x

x ∨ y

y ∨ z′

u

v
y

z′ x ∧ y

y ∧ z′ = x ∧ y ∧ z

Figure 6.1. The sublattice generated by {x, y, z′}

Set z′ =
def

x ∧ z. The sublattice of L generated by {x, y, z′} is represented in

Figure 6.1, with u =
def

x ∧ (y ∨ z′) and v =
def

(x ∧ y) ∨ z′. Since

xr z = xr z′ (by (D2))

= (xr u) ∨ (ur v) ∨ (v r z′) (by (D1)) ,

it suffices to prove that xr u, ur v, and v r z′ are all below (xr y) ∨ (y r z). By
using (D2), (D1), and (D2) again, we obtain

xr u = (x ∨ y)r (y ∨ z′) ≤ (x ∨ y)r y = xr y .

By using (D1), (D2), (D1), (D2), we obtain

ur v ≤ ur (x ∧ y) = (y ∨ z′)r y ≤ (x ∨ y)r y = xr y .

By using (D2), the equation y ∧ z′ = (x ∧ y) ∧ (y ∧ z), (D2), (D1), (D2), we get

v r z′ = (x ∧ y)r (y ∧ z′) = (x ∧ y)r (y ∧ z) ≤ y r (y ∧ z) = y r z ,

thus completing the proof of the triangle inequality.
Now let x1, x2, y ∈ L with x1 ≤ x2. By using (D2) and (D0), we get

x1 r x2 = x1 r (x1 ∧ x2) = x1 r x1 = 0 ,

thus, by the triangle inequality, x1 r y ≤ (x1 r x2) ∨ (x2 r y) = x2 r y. The proof,
that y1 ≤ y2 implies xr y2 ≤ xr y1, is similar. �

Lemma 6.5. Let L be a finite lattice, let S be a (∨, 0)-semilattice, and let r be

an S-valued difference operation on L. Then the following statement holds:

ar b =
∨

(pr p∗ | p ∈ JiL , p ≤ a , p � b) , for all a, b ∈ L . (6.1)
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Proof. Since neither side of (6.1) is affected by changing the pair (a, b) to (a, a∧ b),
we may assume that a ≥ b, and then prove (6.1) by induction on a. The result
is trivial for a = b (use (D0)). Dealing with the induction step, suppose that
a > b. Pick a′ ∈ L such that b ≤ a′ and a′ is a lower cover of a. The set
{x ∈ L | x ≤ a and x � a′} has a minimal element p. Necessarily, p is join-irreduci-
ble and p∗ ≤ a′, so [p∗, p] projects up to [a′, a]. By (D2), prp∗ = ara′. Moreover,
by the induction hypothesis,

a′ r b =
∨

(q r q∗ | q ∈ JiL , q ≤ a′ , q � b) .

Using (D1), we get ar b = (ar a′)∨ (a′ r b) ≥
∨
(q r q∗ | q ∈ JiL , q ≤ a , q � b).

For the converse inequality, for any q ∈ JiL such that q ≤ a and q � b, observe

that b ≤ q†, thus

q r q∗ = q r q† (because q∗ = q ∧ q† and by (D2))

≤ ar b (use the second statement of Lemma 6.4),

thus completing the proof of the desired inequality. �

Lemma 6.6. Let D be a distributive lattice, let S be a (∨, 0)-semilattice, let r be

an S-valued difference operation on D. Then for all a1, b1, a2, b2 ∈ D, if a1 ≤ b1∨a2
and a1 ∧ b2 ≤ b1 (within D), then a1 r b1 ≤ a2 r b2 (within S).

Proof. Changing each bi to ai∧bi weakens the premise of Lemma 6.6, and, by (D2),
does not affect its conclusion. Hence, we may assume that ai ≥ bi, for i ∈ {1, 2}.
Set u1 =

def
a1 ∧ a2, v1 =

def
b1 ∧ a2, u2 =

def
u1 ∨ b2, v2 =

def
v1 ∨ b2. Then the interval

[b1, a1] projects down to [v1, u1], which projects up to [v2, u2], which is contained
in [b2, a2] (cf. Figure 6.2). Since, by (D2), the difference operation gives the same

a1

b1 u1

v1

u2

v2

a2

b2

Figure 6.2. The sublattice of D generated by {a1, b1, a2, b2}

value to projective intervals, it follows that a1 r b1 = u1 r v1 = u2 r v2. Moreover,
by (D1), a2rb2 = (a2ru2)∨(u2rv2)∨(v2rb2) ≥ u2rv2, so a2rb2 ≥ a1rb1. �

The following lemma will be a crucial source of difference operations throughout
the present paper. Although its proof is a straightforward exercise, we present it
nevertheless, due to its importance in the paper.

Lemma 6.7. Let D be a sublattice of a finite distributive lattice S. We set

xrS y =
def

∧
(s ∈ S | x ≤ y ∨ s) , for all x, y ∈ D . (6.2)
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Then xrS y is the least s ∈ S such that x ≤ y ∨ s. Furthermore, the operation rS

is an S-valued difference operation on D, and if D is consonent in S, then rS is a

normal difference operation on D.

Note. In their paper [15], Di Nola and Grigolia call x rS y the pseudo-difference

of x and y.

Proof. It follows immediately from the distributivity of S that x ≤ y ∨ (xrS y) for
all x, y ∈ D. Hence, xrS y is the least s ∈ S such that x ≤ y ∨ s.

Trivially, xrS x is the zero element of S, for every x ∈ D.
Let x, y, z ∈ D with x ≥ y ≥ z, set u =

def
xrS y and v =

def
yrS z. Then for every

s ∈ S, the inequality x ≤ z ∨ s implies x ≤ y ∨ s (because z ≤ y) and y ≤ z ∨ s
(because y ≤ x), that is, u ≤ s and v ≤ s. Hence, u ∨ v ≤ x rS z. Conversely,
x ≤ y ∨ u and y ≤ z ∨ v, thus x ≤ z ∨ u ∨ v, and thus x rS z ≤ u ∨ v, hence
completing the proof that xrS z = u ∨ v = (x rS y) ∨ (y rS z).

Let x, y ∈ D and let s ∈ S. Then x ≤ y ∨ s iff x ∨ y ≤ y ∨ s; thus x rS y =
(x∨ y)rS y. Similarly, x ≤ y∨ s iff x ≤ (x∧ y)∨ s (because S is distributive), thus
xrS y = xrS (x ∧ y).

So far we have proved that rS is a difference operation on D. Now suppose
that D is consonent in S and let x, y ∈ D. By assumption, x ∼S y, thus there are
u, v ∈ S such that x ≤ y ∨ u, y ≤ x ∨ v, and u ∧ v = 0. Since x rS y ≤ u and
y rS x ≤ v, it follows that (x rS y) ∧ (y rS x) = 0. �

Lemma 6.8. The following statements hold, for every finite distributive lattice S
and all elements a1, a2, a, b1, b2, b ∈ S:

(1) (a1 ∨ a2)rS b = (a1 rS b) ∨ (a2 rS b).
(2) arS (b1 ∧ b2) = (arS b1) ∨ (arS b2).
(3) If a1 ∼S a2, then (a1 ∧ a2)rS b = (a1 rS b) ∧ (a2 rS b).
(4) If b1 ∼S b2, then arS (b1 ∨ b2) = (arS b1) ∧ (arS b2).

Proof. Ad (1). For every s ∈ S,

(a1 ∨ a2)rS b ≤ s⇔ a1 ∨ a2 ≤ b ∨ s

⇔ a1 ≤ b ∨ s and a2 ≤ b ∨ s

⇔ a1 rS b ≤ s and a2 rS b ≤ s

⇔ (a1 rS b) ∨ (a2 rS b) ≤ s .

The desired conclusion follows.
Ad (2). For every s ∈ S,

arS (b1 ∧ b2) ≤ s⇔ a ≤ (b1 ∧ b2) ∨ s

⇔ a ≤ b1 ∨ s and a ≤ b2 ∨ s (because S is distributive)

⇔ arS b1 ≤ s and arS b2 ≤ s

⇔ (arS b1) ∨ (arS b2) ≤ s .

The desired conclusion follows.
Ad (3). We first compute as follows:

a1 rS b ≤
(
a1 rS (a1 ∧ a2)

)
∨
(
(a1 ∧ a2)rS b

)
(use Lemmas 6.4 and 6.7)

= (a1 rS a2) ∨
(
(a1 ∧ a2)rS b

)
(use (D2)).
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Symmetrically, a2 rS b ≤ (a2 rS a1) ∨
(
(a1 ∧ a2)rS b

)
. By meeting the two in-

equalities, we obtain, by using the distributivity of S, the following inequality:

(a1 rS b) ∧ (a2 rS b) ≤
(
(a1 rS a2) ∧ (a2 rS a1)

)
∨
(
(a1 ∧ a2)rS b

)
.

Now our assumption a1 ∼S a2 means that (a1rS a2)∧ (a2rS a1) = 0, so we obtain
the following inequality:

(a1 rS b) ∧ (a2 rS b) ≤ (a1 ∧ a2)rS b .

The converse inequality is trivial.
Ad (4). We first compute as follows:

arS b1 ≤
(
arS (b1 ∨ b2)

)
∨
(
(b1 ∨ b2)rS b1

)
(use Lemmas 6.4 and 6.7)

=
(
arS (b1 ∨ b2)

)
∨ (b2 rS b1) (use (D2)).

Symmetrically, arS b2 ≤
(
arS (b1 ∨ b2)

)
∨ (b1rS b2). By meeting the two inequal-

ities, we obtain, by using the distributivity of S, the following inequality:

(arS b1) ∧ (arS b2) ≤
(
arS (b1 ∨ b2)

)
∨
(
(b1 rS b2) ∧ (b2 rS b1)

)
.

Now our assumption b1 ∼S b2 means that (b1 rS b2) ∧ (b2 rS b1) = 0, so we obtain
the following inequality:

(arS b1) ∧ (arS b2) ≤ arS (b1 ∨ b2) .

The converse inequality is trivial. �

Lemma 6.9. Let S be a finite distributive lattice and let a1, a2, b1, b2 ∈ S. If

a1 ∼S a2 and a1 ∧ a2 ≤ b1 ∧ b2, then (a1 rS b1) ∧ (a2 rS b2) = 0.

Proof. Set b =
def

b1 ∧ b2. We compute as follows:

(a1 rS b1) ∧ (a2 rS b2) ≤ (a1 rS b) ∧ (a2 rS b) (because each bi ≥ b)

= (a1 ∧ a2)rS b (use Lemma 6.8)

= 0 (by assumption) . �

Lemma 6.10. Let D be a consonent sublattice of a finite distributive lattice E,

let S be a finite 0-sublattice of a distributive lattice L with zero, let g : E → L be

a 0-lattice homomorphism such that g[D] is a consonent subset of S. Let G be a

subset of D, generating D as a lattice. If g(xrE y) ≤ g(x)rS g(y) for all x, y ∈ G,
then g(xrE y) ≤ g(x)rS g(y) for all x, y ∈ D.

The situation in Lemma 6.10 is partly illustrated in Figure 6.3.

D ��
consonent

//

consonentg ↾D
��

E

g
��

S
� � // L

Figure 6.3. Illustrating Lemma 6.10
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Proof. Let x ∈ G. We claim that the setDx =
def

{y ∈ D | g(xrE y) ≤ g(x)rS g(y)}

is equal to D. Indeed, it follows from our assumptions that G ⊆ Dx. For all
y1, y2 ∈ Dx,

g
(
xrE (y1 ∨ y2)

)
= g

(
(x rE y1) ∧ (xrE y2)

)

(because D is consonent in E and by Lemma 6.8)

= g(xrE y1) ∧ g(xrE y2)

(because g is a meet-homomorphism)

≤
(
g(x)rS g(y1)

)
∧
(
g(x)rS g(y2)

)
(because y1, y2 ∈ Dx)

= g(x)rS

(
g(y1) ∨ g(y2)

)

(because g[D] is consonent in S and by Lemma 6.8)

= g(x)rS g(y1 ∨ y2) (because g is a join-homomorphism) ,

that is, y1 ∨ y2 ∈ Dx. The proof that y1 ∧ y2 ∈ Dx is similar, although easier since
it does not require any consonence assumption. Hence, Dx is a sublattice of D.
Since it contains G, it contains D; whence Dx = D.

This holds for all x ∈ G, which means that for all y ∈ D, the set D′
y =

def

{x ∈ D | g(xrE y) ≤ g(x)rS g(y)} contains G. Moreover, by an argument similar
to the one used in the paragraph above, D′

y is a sublattice of D. Hence, D′
y = D.

This holds for all y ∈ D; the desired conclusion follows. �

7. Homomorphism extension on distributive lattices

The key idea, of our proof of Theorem 11.1, is the possibility of extending certain
lattice homomorphisms f : D → L, whereD and L are distributive 0-lattices withD
finite and L completely normal, to finite, or countable, distributive extensions of D.
The following example shows that this is hopeless in general.

Example 7.1. Let m be a positive integer, and denote by Fm the Abelian ℓ-
group defined by generators a, b, c, and relations a ≥ b ≥ c ≥ 0 together with
(a−mb)∨ (b−mc) ≤ 0. Then 0 < 〈c〉 < 〈b〉 < 〈a〉 within Idc Fm, and the 4-element
chain 4 =

def
{0, 〈c〉, 〈b〉, 〈a〉} is ℓ-representable (by the third lexicographical power

of the integers). We claim that 4 is not a lattice-theoretical retract of Idc Fm.
Indeed, suppose that ρ : Idc Fm ։ 4 is such a retraction, set x = ρ

(
(a−mb)+

)
,

and y = ρ
(
(b−mc)+

)
. Then 〈a〉 = 〈b〉 ∨ x within 4, thus x = 〈a〉. Likewise,

〈b〉 = 〈c〉 ∨ y, thus y = 〈b〉. On the other hand, since ρ is a (∧, 0)-homomorphism,
x ∧ y = 0, a contradiction.

The problem raised by Example 7.1 makes our road to Theorem 11.1 more con-
voluted than one could have expected. The present section contains the required
lattice-theoretical extension results.

We will denote by J2 the second entry of Jaskowsky’s sequence, defined as the
lattice of all lower subsets of the three-element set {a, b, 1} with a < 1 and b < 1.
Hence, J2 is the distributive lattice obtained from the square, with atoms a and b,
by adjoining a new top element 1. It is represented in Figure 7.1.

For any bounded distributive lattice D, the free distributive product D∗J2, that
is, the coproduct of D and J2 in the category of bounded distributive lattices with
0, 1-lattice homomorphisms, can be identified with the sublattice of D3 consisting
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0

1

a b

a ∨ b

Figure 7.1. The lattice J2

of all triples (x, y, z) ∈ D3 such that z ≤ x and z ≤ y. This follows for example
from Grätzer [21, Theorem 12.5]. For x, y, z ∈ D, the element (x ∧ a) ∨ (y ∧ b) ∨ z
of D ∗J2 can be identified with the triple (x∨z, y∨z, z). We will need the following
form of that observation, which no longer requires any boundedness assumption
on D and which can be verified by a direct calculation.

Lemma 7.2. Let D and E be distributive lattices such that E has a zero, and let

a, b ∈ E such that a ∧ b = 0. Then for every lattice homomorphism f : D → E, the

map g : D ∗ J2 → E defined by

g(x, y, z) =
def

(
f(x) ∧ a

)
∨
(
f(y) ∧ b

)
∨ f(z) , for all (x, y, z) ∈ D ∗ J2 ,

is a lattice homomorphism. Moreover, g(x, x, x) = f(x) for every x ∈ D.

The harder extension results in our paper rely upon the following crucial lemma.

Lemma 7.3. Let E be a finite distributive lattice, let D be a 0, 1-sublattice of E,

and let a, b ∈ E such that the following conditions hold:

(1) E is generated, as a sublattice, by D ∪ {a, b}.
(2) D is a Heyting subalgebra of E.

(3) a ∧ b = 0.
(4) For every p ∈ JiD, p ≤ p∗ ∨ a ∨ b implies that either p ≤ p∗ ∨ a or p ≤ p∗ ∨ b.
(5) Let p, q ∈ JiD. If p ≤ p∗ ∨ a and q ≤ q∗ ∨ b, then p and q are incomparable.

Let L be a finite distributive lattice and let f : D → L be a consonent 0-lattice
homomorphism. We set

α =
def

∨
(f(p)rL f(p∗) | p ∈ JiD and p ≤ p∗ ∨ a) ,

β =
def

∨
(f(p)rL f(p∗) | p ∈ JiD and p ≤ p∗ ∨ b) .

Then f extends to a unique lattice homomorphism g : E → L such that g(a) = α
and g(b) = β.

Proof. The uniqueness statement on g follows immediately from Assumption (1),
so we need to deal only with existence. Our proof consists mainly of a series of of
claims.

Claim 1. The following equations hold:

α =
∨

(f(x)rL f(y) | x, y ∈ D and x ≤ y ∨ a) , (7.1)

β =
∨

(f(x)rL f(y) | x, y ∈ D and x ≤ y ∨ b) . (7.2)

Consequently, x ≤ y∨a implies that f(x) ≤ f(y)∨α, and, symmetrically, x ≤ y∨ b
implies that f(x) ≤ f(y) ∨ β, for all x, y ∈ D. Moreover, α ≤ f(1) and β ≤ f(1).
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Proof of Claim. Since f is consonent, the assignment (x, y) 7→ f(x)rL f(y) defines
an L-valued normal difference operation on D (use Lemma 6.7). By Lemma 6.5, it
follows that

f(x)rL f(y) =
∨

(f(p)rL f(p∗) | p ∈ JiD , p ≤ x , p � y) , for all x, y ∈ D .

(7.3)
Let x, y ∈ D such that x ≤ y ∨ a, and let p ∈ JiD such that p ≤ x and p � y.

The latter relation means that y ≤ p†. Hence, from x ≤ y ∨ a it follows that
p ≤ p† ∨ a, or, equivalently, p ≤ p∗ ∨ a. Therefore, by the definition of α, we
get f(p)rL f(p∗) ≤ α. Joining those inequalities over all possible values of p and
invoking (7.3), we get f(x) rL f(y) ≤ α. This proves that the right hand side
of (7.1) is less than or equal to α. The converse inequality being trivial, (7.1)
follows. The proof of (7.2) is symmetric. The final statements, that α ≤ f(1)
and β ≤ f(1), are obvious. � Claim 1.

Claim 2. Let x, y ∈ D such that x ≤ y ∨ a ∨ b. Then f(x) ≤ f(y) ∨ α ∨ β.

Proof of Claim. We must prove that f(x) rL f(y) ≤ α ∨ β. By (7.3), it suffices
to prove that f(p) rL f(p∗) ≤ α ∨ β for every p ∈ JiD such that p ≤ x and
p � y. The latter relation means that y ≤ p†, thus, for any such p, the inequality

p ≤ p† ∨ a ∨ b, or, equivalently, p ≤ p∗ ∨ a ∨ b, holds. By our assumption (4),
this implies that either p ≤ p∗ ∨ a or p ≤ p∗ ∨ b. By the definition of α and β,
this implies that either f(p) rL f(p∗) ≤ α or f(p) rL f(p∗) ≤ β. Therefore,
f(p)rL f(p∗) ≤ α ∨ β. � Claim 2.

Claim 3. For every v ∈ D, a ≤ v implies that α ≤ f(v) and b ≤ v implies that

β ≤ f(v).

Proof of Claim. We prove the first statement; the second statement is symmetric.
For every p ∈ JiD, p ≤ p∗ ∨ a implies that p ≤ p∗ ∨ v (because a ≤ v), thus
f(p) ≤ f(p∗) ∨ f(v), that is, f(p) rL f(p∗) ≤ f(v). By joining those inequalities
over all possible p, we get α ≤ f(v). � Claim 3.

Claim 4. There exists a unique map g : E → L such that

g
(
(x ∧ a) ∨ (y ∧ b) ∨ z

)
= (f(x)∧α)∨(f(y)∧β)∨f(z) , for all x, y, z ∈ D . (7.4)

Moreover, g(a) = α, g(b) = β, and g is a join-homomorphism extending f .

Proof of Claim. By our assumptions (1) and (3), every element t of E has the form
(x ∧ a) ∨ (y ∧ b) ∨ z, where x, y, z ∈ D. This implies the uniqueness statement
on g, and says that all we need to do is to verify that the right hand side of (7.4)
depends only on t; the map g thus defined, via (7.4), would then automatically be
a join-homomorphism extending f , satisfying, by virtue of the relations f(0) = 0,
α ≤ f(1), and β ≤ f(1) (cf. Claim 1), the equations g(a) = α and g(b) = β. Hence,
we only need to verify that the following implications hold, for every u ∈ D:

u ≤ (x ∧ a) ∨ (y ∧ b) ∨ z ⇒ f(u) ≤ (f(x) ∧ α) ∨ (f(y) ∧ β) ∨ f(z) , (7.5)

u ∧ a ≤ (x ∧ a) ∨ (y ∧ b) ∨ z ⇒ f(u) ∧ α ≤ (f(x) ∧ α) ∨ (f(y) ∧ β) ∨ f(z) , (7.6)

u ∧ b ≤ (x ∧ a) ∨ (y ∧ b) ∨ z ⇒ f(u) ∧ β ≤ (f(x) ∧ α) ∨ (f(y) ∧ β) ∨ f(z) , (7.7)
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for all u, x, y, z ∈ D. Since E is distributive, the premise of (7.5) is equivalent to
the conjunction of the following inequalities:

u ≤ x ∨ y ∨ z ;

u ≤ x ∨ b ∨ z ;

u ≤ a ∨ y ∨ z ;

u ≤ a ∨ b ∨ z .

Since f is a join-homomorphism and by Claims 1 and 2, those inequalities imply
the following inequalities:

f(u) ≤ f(x) ∨ f(y) ∨ f(z) ;

f(u) ≤ f(x) ∨ β ∨ f(z) ;

f(u) ≤ α ∨ f(y) ∨ f(z) ;

f(u) ≤ α ∨ β ∨ f(z) .

Since L is distributive, this implies in turn that f(u) ≤ (f(x)∧α)∨(f(y)∧β)∨f(z),
thus completing the proof of (7.5).

Similarly, since E is distributive and since a ∧ b = 0, the premise of (7.6) is
equivalent to the inequality u∧a ≤ (x∧a)∨ z, thus to the inequality u∧a ≤ x∨ z,
which can be written a ≤ (u→E (x∨ z)). By Assumption (2), this is equivalent to
the inequality a ≤ v, where we set v =

def
(u→D (x∨z)). By Claim 3, this implies that

α ≤ f(v). Hence, f(u)∧α ≤ f(u)∧f(v) = f(u∧v) ≤ f(x∨z) = f(x)∨f(z). Since L
is distributive, this implies in turn that f(u) ∧ α ≤ (f(x) ∧ α) ∨ (f(y) ∧ β) ∨ f(z),
thus completing the proof of (7.6). The proof of (7.7) is symmetric. � Claim 4.

Claim 5. α ∧ β = 0.

Proof of Claim. It suffices to prove that for all p, q ∈ JiD with p ≤ p∗ ∨ a and
q ≤ q∗ ∨ b, the relation (f(p)rL f(p∗))∧ (f(q)rL f(q∗)) = 0 holds. By Lemma 6.9,
it suffices to prove that f(p) ∧ f(q) ≤ f(p∗) ∧ f(q∗). Since f is a meet-homomor-
phism, it suffices to prove that p ∧ q ≤ p∗ ∧ q∗. However, it follows from (5) that p
and q are incomparable, so this is obvious. � Claim 5.

In order to conclude the proof of Lemma 7.3, it is sufficient to prove that g is
a meet-homomorphism. By Assumption (3) and Claim 5, respectively, it follows
from Lemma 7.2 that there are unique lattice homomorphisms d : D ∗ J2 → E and
δ : D ∗ J2 → L such that

d(x, y, z) = (x ∧ a) ∨ (y ∧ b) ∨ z and δ(x, y, z) =
(
f(x) ∧ a

)
∨
(
f(y) ∧ b

)
∨ f(z)

for all (x, y, z) ∈ D ∗ J2. Then Claim 4 implies that δ = g ◦ d. Moreover, it follows
from Assumption (1) that d is surjective. Now any two elements of E have the
form d(t1) and d(t2), where t1, t2 ∈ D ∗ J2, and

g(d(t1)) ∧ g(d(t2)) = δ(t1) ∧ δ(t2) = δ(t1 ∧ t2) = g(d(t1 ∧ t2)) ≤ g(d(t1) ∧ d(t2)) .

The converse inequality g(d(t1) ∧ d(t2)) ≤ g(d(t1)) ∧ g(d(t2)) is trivial. �
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8. Lattices of convex open polyhedral cones

Throughout this section we shall fix a real topological vector space E, not nec-
essarily finite-dimensional. Moreover, in all subsequent sections, for any closed
hyperplane H of E, we shall denote by H+ and H− the open half-spaces with

boundary H , with associated closed half-spaces H
+

=
def

cl(H+) and H
−

=
def

cl(H−).

Notation 8.1. For a set H of closed hyperplanes of E, we will set

ΣH =
def

{
H+ | H ∈ H

}
∪
{
H− | H ∈ H

}
,

ΣH =
def

{
H

+
| H ∈ H

}
∪
{
H

−
| H ∈ H

}
.

Furthermore, we will denote by Bool(H) the Boolean algebra of subsets of E gen-
erated by ΣH (equivalently, by ΣH), and by Clos(H) (resp., Op(H)) the lattice of
all closed (resp., open) members of Bool(H).

In particular, for every H ∈ H, the hyperplane H = E \ (H+ ∪ H−) belongs
to Bool(H). Moreover, the bounds of Bool(H) are ∅ and E.

Trivially, Clos(H) and Op(H) are both 0, 1-sublattices of Bool(H), which is
a 0, 1-sublattice of the powerset lattice of E. On one extreme end, Bool(∅) =
Clos(∅) = Op(∅) = {∅,E}. In general,

Bool(H) =
⋃

(Bool(H′) | H′ ⊆ H finite) ,

Op(H) =
⋃

(Op(H′) | H′ ⊆ H finite) ,

Clos(H) =
⋃

(Clos(H′) | H′ ⊆ H finite) .

For the remainder of this section we shall fix a nonempty setH of closed hyperplanes
of E through the origin.

Lemma 8.2. For every X ∈ Bool(H), the subsets cl(X) and int(X) both belong

to Bool(H). Moreover, Op(H) is generated, as a lattice, by ΣH ∪ {E}, and it is

Heyting subalgebra of the Heyting algebra O(E) of all open subsets of E.

Proof. For the duration of the proof, we shall denote by Clos′(H) (resp., Op′(H))
the sublattice of Bool(H) generated by ΣH ∪ {∅} (resp., ΣH ∪ {E}).

We first prove that the closure of any member of Bool(H) belongs to Clos′(H).
Writing the elements of Bool(H) in disjunctive normal form, we see that every
element of Bool(H) is a finite union of finite intersections of open half-spaces and

closed half-spaces with boundaries in H. Since Hσ = H
σ
\H , for each H ∈ H and

each σ ∈ {+,−}, it follows that every element of Bool(H) is a finite union of sets of
the form Q\F , where Q is a finite intersection of closed half-spaces with boundaries
in H and F is a finite union of members of H. Since the closure operator commutes
with finite unions, the first statement of Lemma 8.2 thus reduces to verifying that
cl(Q \ F ) belongs to Clos′(H), for any Q and F as above. Now this follows from
Lemma 2.4: if Q ⊆ F then cl(Q \ F ) = ∅, and if Q 6⊆ F , then Q ∩ F is nowhere
dense in Q, thus cl(Q \ F ) = cl(Q) = Q. The statement about the closure follows;
in particular, Clos′(H) = Clos(H). By taking complements, the statement about
the interior follows; in particular, Op′(H) = Op(H).

In particular, for all X,Y ∈ Op(H), the Heyting residue X → Y , evaluated
within the lattice O(E) of all open subsets of E, is equal to int

(
(∁X) ∪ Y

)
, thus, as

(∁X)∪Y belongs to Bool(H) and by the paragraph above, it belongs to Op(H). �
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In particular, the members of Op(H) are open polyhedral cones, that is, Boolean
combinations of open half-spaces of E. Lemma 8.2 also says that the topology on E
could be, in principle, omitted from the study of Bool(H) and Op(H).

Corollary 8.3. The subsets Bool(H) and Op(H) are independent of the structure

of topological vector space on E that makes all members of H closed.

Corollary 8.4. Let H1 and H2 be sets of closed hyperplanes of E. If H1 ⊆ H2,

then Op(H1) is a Heyting subalgebra of Op(H2).

Define a basic open member of Op(H) as a nonempty finite intersection of open
half-spaces with boundaries in H. In particular, the empty intersection yields the
basic open set E.

Corollary 8.5. Every join-irreducible element of Op(H) is basic open. In partic-

ular, it is convex.

Proof. It follows from Lemma 8.2 that every element of Op(H) is a finite union of
basic open sets. The desired conclusion follows immediately. �

It is easy to find examples showing that the converse of Corollary 8.5 does not
hold: A basic open member of Op(H) may not be join-irreducible. On the other
hand, it can be proved that the basic open members of Op(H) are exactly its convex
members. Since this fact will not be needed in the paper, we omit its proof.

Corollary 8.6. Let H be a closed hyperplane of E, with associated open half

spaces H+ and H−. Then the members of Op(H ∪ {H}) are exactly the sets of

the form

X ∪ (Y + ∩H+) ∪ (Y − ∩H−) , (8.1)

where X, Y +, and Y − are basic open in Op(H). Moreover, one can take

X ⊆ Y + ∩ Y − in (8.1).

Proof. For every basic open set X in Op(H ∪ {H}), there is a basic open set Y
in Op(H) such that either X = Y or X = Y ∩H+ or X = Y ∩H−. By Lemma 8.2,
every element of Op(H ∪ {H}) is a finite union of basic open sets, thus it has the
form (8.1). Moreover, changing Y σ to X ∪ Y σ, for σ ∈ {+,−}, does not affect the
right hand side of (8.1). Hence, one can take X ⊆ Y + ∩ Y − . �

Lemma 8.7. The top element of Op(H), namely E, is join-irreducible in Op(H).
Consequently, the subset Op−(H) =

def
Op(H) \ {E} is a 0-sublattice of Op(H). It is

generated, as a sublattice, by ΣH.

Proof. Any basic open member of Op(H), distinct from E, omits the origin. Hence,
any member of Op(H), distinct from E, omits the origin, and so the union of any
two such sets is distinct from E. This proves that E is join-irreducible in Op(H).
The verifications of the other statements of Lemma 8.7 are straightforward. �

Remark 8.8. Let H be finite. Then the unit of Op−(H) is equal to E \
⋂

H, which
is distinct from the unit of Op(H), which is equal to E. In particular, Op−(H) is
not a Heyting subalgebra of Op(H).
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9. Join-irreducible members of Op(H)

Throughout this section we shall fix a real topological vector space E and a
nonempty finite set H of closed hyperplanes of E through the origin. After having
conveniently described the join-irreducible members of Op(H) (cf. Lemma 9.2), we
will specialize Lemma 7.3 to lattices of the form Op(H).

Notation 9.1. For every U ∈ Op(H), we set HU =
def

{H ∈ H | H ∩ U 6= ∅}. The

intersection ∇U of all members of HU is a closed subspace of E.

The following lemma characterizes the join-irreducible elements in Op(H) in
terms of the operator ∇ defined above. Recall (cf. Lemma 2.1) that P † denotes
the largest element of Op(H) not containing P , and that the assignment P 7→ P †

defines an order-isomorphism from JiOp(H) onto MiOp(H).

Lemma 9.2. A nonempty, convex member P of Op(H) is join-irreducible, within

the lattice Op(H), iff P ∩ ∇P is nonempty. Moreover, in that case, the lower

cover P∗ of P , in Op(H), is equal to P \ ∇P , and P † = E \ (cl(P ) ∩ ∇P ).

Proof. Suppose first that P is join-irreducible. Suppose, by way of contradiction,
that P ∩ ∇P = ∅, that is, P ⊆

⋃
H∈HP

(E \H). Since P is join-irreducible in the
distributive lattice Op(H), it is join-prime in that lattice (cf. Lemma 2.1). Since
each E \ H belongs to Op(H), there exists H ∈ HP such that P ⊆ E \ H ; in
contradiction with H ∈ HP .

Suppose, conversely, that P∩∇P 6= ∅. The subset P \∇P belongs to Op(H) and
it is a proper subset of P , thus we only need to prove that every proper subset X
of P , belonging to Op(H), is contained in P \ ∇P . It suffices to consider the case
where X is join-irreducible in Op(H). By Corollary 8.5, X is basic open, so there
are a subset X of H and a family (εH | H ∈ X) of elements of {+,−} such that
X =

⋂
H∈X

HεH . Since P 6⊆ X , there exists H ∈ X such that P 6⊆ HεH . Hence,

P ∩H
−εH

6= ∅ . (9.1)

If P ⊆ H−εH , then X ⊆ H−εH , thus, since X ⊆ HεH , we get X = ∅, a contradic-
tion since X is join-irreducible. Hence, P 6⊆ H−εH , so

P ∩H
εH

6= ∅ . (9.2)

By (9.1) and (9.2), and since P is convex, it follows that P ∩ H 6= ∅, that is,
H ∈ HP . Hence, ∇P ⊆ H . Since X ∩ H = ∅, it follows that X ∩ ∇P = ∅, thus
completing the proof of the join-irreducibility of P .

Finally, it follows from Lemma 8.2 that the set U =
def

int ∁(P ∩ ∇P ) belongs

to Op(H). Moreover, U = ∁ cl(P ∩ ∇P ). Since P ∩ ∇P 6= ∅ and by Lemma 2.3,
we get U = ∁(cl(P ) ∩ ∇P ). For every V ∈ Op(H), P 6⊆ V iff P ∩ V $ P , iff
P ∩ V ⊆ P∗, iff P ∩ V ∩ ∇P = ∅, iff V ⊆ ∁(P ∩ ∇P ). Since V is open, this is
equivalent to V ⊆ U . Therefore, U = P †. �

Note. The atoms of Op(H), called the regions of the hyperplane arrangement H,
have been studied extensively, starting with Björner, Edelman, and Ziegler [6]. For
an atom P of Op(H), we get HP = ∅, thus ∇P = E.

Proposition 9.3. Let P and Q be join-irreducible elements in Op(H). If P $ Q,

then ∇Q $ ∇P .
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Proof. By definition, HP ⊆ HQ, thus ∇Q ⊆ ∇P . Since P $ Q and by Lemma 9.2,
P is contained in Q∗ = Q \ ∇Q, thus P ∩ ∇Q = ∅. Since P ∩ ∇P 6= ∅, it follows
that ∇P 6= ∇Q. �

Lemma 9.4. Let H be a closed hyperplane of E, let L be a finite distributive lattice,

and let f : Op(H) → L be a consonent 0-lattice homomorphism. We set

γσ =
def

∨
(f(P )rL f(P∗) | P ∈ JiOp(H) , P ⊆ P∗ ∪H

σ) , for each σ ∈ {+,−} .

Then f extends to a unique lattice homomorphism g : Op(H∪{H}) → L such that

g(H+) = γ+ and g(H−) = γ−.

Proof. We verify that Conditions (1)–(5) of Lemma 7.3 are satisfied, where we set
D =

def
Op(H), E =

def
Op(H ∪ {H}), a =

def
H+, and b =

def
H−. Conditions (1) (use

Corollary 8.6) and (3) are obvious. By Corollary 8.4, Op(H) is a Heyting subalgebra
of Op(H ∪ {H}); Condition (2) follows.

Let P be a join-irreducible element of Op(H) such that P ⊆ P∗ ∪H
+ ∪H−. By

Lemma 9.2, this means that P ∩ ∇P ⊆ H+ ∪ H−. Since P ∩ ∇P is convex, this
implies that P ∩∇P is contained either in H+ or in H−, thus that P is contained
either in P∗ ∪H

+ or in P∗ ∪H
−. Condition (4) follows.

For Condition (5), let P,Q ∈ JiOp(H) such that P ⊆ P∗∪H
+ and Q ⊆ Q∗∪H

−.
Suppose that P ⊆ Q. This means that P ∩∇P ⊆ H+, Q∩∇Q ⊆ H−, and P † ⊆ Q†,

thus, by Lemma 9.2, cl(Q) ∩∇Q ⊆ cl(P ) ∩∇P . Hence, Q ∩∇Q ⊆ H
+
, and hence

Q ∩∇Q = ∅, a contradiction. If Q ⊆ P , we get a similar contradiction. �

10. Extending homomorphisms on open polyhedral cones

Throughout this section we will consider the free real vector space R(ω) on ω
(see Section 3 for the notation). We endow R(ω) with its canonical inner product,
defined by

(x|y) =
def

∑

n∈ω

xnyn , for all x, y ∈ R(ω) .

This enables us to identify every element x ∈ R(ω) with the linear functional (x|−).
We endow R(ω) with its weak topology, making all those linear functionals contin-
uous. A hyperplane H of R(ω) is closed iff it is the the kernel of some element
of R(ω) \ {0}. Since x is determined up to a scalar multiple, the support of x
depends on H only, so we will denote it by supp(H). An element x ∈ R(ω) is
integral if all its entries are integers, that is, x ∈ Z(ω), and we say that a hyper-
plane H of R(ω) is integral if it is the kernel of some element of Z(ω) \ {0}. For a
set H of closed hyperplanes of R(ω), we shall set supp(H) =

def

⋃
(supp(H) | H ∈ H).

For any n ∈ ω, we shall denote by δn the vector whose nth coordinate is 1 and
all other coordinates are 0, and we shall denote by ∆n the kernel of δn, that is,
∆n =

def

{
x ∈ R(ω) | xn = 0

}
. We shall also set

∆+
n =

def

{
x ∈ R(ω) | xn > 0

}
, ∆−

n =
def

{
x ∈ R(ω) | xn < 0

}
.

For x ∈ R(ω) and S ⊆ ω, we shall denote by x↾S the restriction of x to S, extended
by zero on ω \ S.

Lemma 10.1. Let H be a set of closed hyperplanes of R(ω), with support S, and
let Z ∈ Bool(H). Then x ∈ Z iff x↾S ∈ Z, for all x ∈ R(ω).
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Proof. For each H ∈ H, pick a vector pH ∈ R(ω) with kernel H , and set H+ =
def

[[pH > 0]], H− =
def

[[pH < 0]]. Then for every x ∈ R(ω), x ∈ H+ iff (pH |x) > 0, iff

(pH |x↾S) > 0, iff x↾S ∈ H+. The proof forH− is similar. Since the H+ and the H−

generate Bool(H) as a Boolean algebra, the general result follows easily. �

Our next two lemmas both involve the constructionD∗J2 introduced in Section 7.

Lemma 10.2. Let H be a set of closed hyperplanes of R(ω) and let n ∈ ω\supp(H).
We denote by ϕ : Op(H) →֒ Op(H) ∗ J2 the diagonal embedding, by ψ : Op(H) →֒
Op(H∪{∆n}) the inclusion map, and we set ε(X,Y, Z) =

def
(X∩∆+

n )∪(Y ∩∆−
n )∪Z,

for all (X,Y, Z) ∈ Op(H) ∗ J2. Then ε is an isomorphism, and ψ = ε ◦ ϕ.

We illustrate Lemma 10.2 on Figure 10.1.

Op(H)
kKϕ

xxqq
qq
qq
qq
qq

t�
ψ

''O
OO

OO
OO

OO
OO

Op(H) ∗ J2 ε
// Op(H ∪ {∆n})

Figure 10.1. Illustrating Lemma 10.2

Proof. It is straightforward to verify that ϕ and ψ are both 0, 1-lattice homomor-
phisms, that ε is a 0, 1-join-homomorphism, and that ψ = ε◦ϕ. Moreover, it follows
from Corollary 8.6 that ε is surjective.

Set S =
def

supp(H). In order to prove that ε is one-to-one, it is sufficient to prove

that every triple (X,Y, Z) ∈ Op(H) ∗ J2 is determined by the set T =
def

ε(X,Y, Z).

Let t ∈ R(ω). Then t↾S ∈ ∆n, thus t↾S ∈ T iff t↾S ∈ Z, iff t ∈ Z (cf. Lemma 10.1);
hence T determines Z. Likewise, t↾S+δn ∈ ∆+

n , thus t↾S+δn ∈ T iff t↾S+δn belongs
to X ∪ Z = X , iff (using again Lemma 10.1) t↾S ∈ X , iff t ∈ X . Symmetrically,
t ↾S −δn ∈ T iff t ∈ Y . Therefore, T determines both X and Y . �

Lemma 10.3. Let H be a set of closed hyperplanes and let n ∈ ω \ supp(H).
Let L be a bounded distributive lattice, and let a, b ∈ L such that a ∧ b = 0. Then

every 0, 1-lattice homomorphism f : Op(H) → L extends to a unique 0, 1-lattice
homomorphism g : Op(H ∪ {∆n}) → L such that a = g(∆+

n ) and b = g(∆−
n ).

Proof. By Lemma 10.2, Lemma 10.3 can be reformulated, by replacing Op(H∪{∆n})
by Op(H) ∗ J2, the inclusion map ψ : Op(H) →֒ Op(H ∪ {∆n}) by the canonical
embedding ϕ : Op(H) →֒ Op(H) ∗ J2, ∆

+
n by ε−1(∆+

n ) = (E,∅,∅), and ∆−
n by

ε−1(∆−
n ) = (∅,E,∅).

By Lemma 7.2, the map g : Op(H) ∗ J2 → L defined by

g(X,Y, Z) =
def

(f(X) ∧ a) ∨ (f(Y ) ∧ b) ∨ f(Z) , for all (X,Y, Z) ∈ Op(H) ∗ J2 ,

is a lattice homomorphism, and g(X,X,X) = f(X) for every X ∈ Op(H). The
latter condition means that f = g ◦ ϕ. Now a = g(E,∅,∅) and b = g(∅,E,∅). �
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Lemma 10.4. Let H be a finite set of closed hyperplanes of R(ω), let a, b ∈ R(ω)

with respective kernels A and B, both belonging to H. We set

A+ =
def

[[a > 0]] , A− =
def

[[a < 0]] ,

B+ =
def

[[b > 0]] , B− =
def

[[b < 0]] ,

Cm =
def

ker(a−mb) , Hm =
def

H ∪ {Cm} ,

C+
m =

def
[[a > mb]] , C−

m =
def

[[a < mb]] ,

for any positive integer m. Then for all large enough m, the following statement

holds: For every finite distributive lattice L, every consonent 0-lattice homomor-

phism f : Op(H) → L extends to a lattice homomorphism g : Op(Hm) → L such

that g(A+ rOp−(Hm) B
+) = f(A+)rL f(B

+).

Note. The notation A+ rOp−(Hm) B
+ might look a bit crowded, in particular due

to the use of Op−(Hm) instead of Op(Hm). In reality, the distinction is immaterial
here, because Op−(Hm) is an ideal of Op(Hm), thus UrOp−(Hm)V = UrOp(Hm)V

for all U, V ∈ Op−(Hm).

Proof. Every P ∈ JiOp(H) is basic open, thus both cl(P ) and ∇P are intersections
of closed half-spaces with boundaries in H. Hence, there is a finite subset ΦP of
R(ω) \{0} such that cl(P )∩∇P =

⋂
x∈ΦP

[[x ≥ 0]] and ker(x) ∈ H for every x ∈ ΦP .

Denote by KP the convex cone of R(ω) generated by ΦP . We set

P =
def

{P ∈ JiOp(H) | −b /∈ KP } .

Since KP is a finitely generated convex cone of R(ω), it has the form

k⋂

i=1

[[pi ≥ 0]] ∩
⋂

l≥m

∆l ,

for nonzero vectors pi ∈ R(ω) and some m ∈ ω (cf. De Loera, Hemmecke, and
Köppe [13, Section 1.2]; the

⋂
l≥m ∆l is put there in order to reduce the problem

to the finite-dimensional case). Hence KP is topologically closed, and hence there
exists a positive integer m0 such that

−b+ (1/m)a /∈ KP , for all P ∈ P and all m ≥ m0 . (10.1)

We shall prove that every integer m ≥ m0 has the property stated in Lemma 10.4.
Let L be a finite distributive lattice and let f : Op(H) → L be a consonent 0-
lattice homomorphism. We consider the extension g of f , to a homomorphism
from Op(Hm) to L, given by Lemma 9.4, with H := Cm. In particular,

g(C+
m) =

∨(
f(P )rL f(P∗) | P ∈ JiOp(H) , P ⊆ P∗ ∪ C

+
m

)
. (10.2)

We claim that the following inequality holds:

f(A+) ∧ g(C+
m) ≤ f(A+)rL f(B

+) . (10.3)

Since L is distributive, this amounts to proving the following statement.

f(A+) ∧
(
f(P )rL f(P∗)

)
≤ f(A+)rL f(B

+) ,

for every P ∈ JiOp(H) such that P ⊆ P∗ ∪ C
+
m . (10.4)

Let P ∈ JiOp(H) such that P ⊆ P∗ ∪ C
+
m; that is, P ∩ ∇P ⊆ C+

m.
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Claim 1. cl(P ) ∩ ∇P ⊆ B
−
.

Proof of Claim. By Lemma 2.2, the statement cl(P ) ∩ ∇P ⊆ B
−

is equivalent to
the relation −b ∈ KP , that is, P /∈ P. Suppose, to the contrary, that P ∈ P.
Then, by (10.1), we get −b + (1/m)a /∈ KP . Again by Lemma 2.2, this means
that cl(P ) ∩ ∇P 6⊆ [[a ≥ mb]]. On the other hand, the assumption P ⊆ P∗ ∪ C+

m

means that P ∩∇P ⊆ [[a > mb]], which implies (cf. Lemma 2.3) that cl(P )∩∇P ⊆
[[a ≥ mb]]; a contradiction. � Claim 1.

Claim 2. P ∩B+ ⊆ P∗.

Proof of Claim. Otherwise P ⊆ B+, thus, a fortiori, P ∩ ∇P ⊆ B+. By Claim 1,

it follows that P ∩ ∇P ⊆ B+ ∩B
−
= ∅, a contradiction. � Claim 2.

Now suppose that P ⊆ A+. By Claim 2, the inequalities P ⊆ P∗ ∪ A+ and
P∩B+ ⊆ P∗ both hold, thus also f(P ) ≤ f(P∗)∨f(A

+) and f(P )∧f(B+) ≤ f(P∗).
Since rL is a difference operation on the range of f , it follows from Lemma 6.6
that f(P )rL f(P∗) ≤ f(A+)rL f(B

+), which implies (10.4) right away.
It remains to handle the case where P 6⊆ A+. Due to the obvious containment

C+
m ⊆ A+ ∪ B−, we get P ⊆ P∗ ∪ A

+ ∪B−, thus, since P is join-prime in Op(H),
we get P ⊆ B−, thus P ∩ B+ = ∅, and thus f(P ) ∧ f(B+) = 0. Now suppose
that (10.4) fails, and let q ∈ JiL below the left hand side but not the right hand
side. Since q ≤ f(A+) ≤ f(B+) ∨

(
f(A+)rL f(B

+)
)
and q � f(A+) rL f(B

+),
we get q ≤ f(B+). But q ≤ f(P )rL f(P∗) ≤ f(P ), thus q ≤ f(B+) ∧ f(P ) = 0, a
contradiction. This completes the proof of (10.4) in the general case, and therefore
of (10.3).

Now obviously, A+ ⊆ B+ ∪ (A+ ∩C+
m), thus A+ rOp−(Hm) B

+ ⊆ A+ ∩C+
m, and

thus

g(A+ rOp−(Hm) B
+) ≤ g(A+ ∩ C+

m) = f(A+) ∧ g(C+
m) ≤ f(A+)rL f(B

+) .

Since f(A+) ≤ f(B+) ∨ g(A+ rOp−(Hm) B
+), the converse inequality

f(A+)rL f(B
+) ≤ g(A+ rOp−(Hm) B

+)

holds, and therefore f(A+)rL f(B
+) = g(A+ rOp−(Hm) B

+). �

Notation 10.5. We set

HΦ =
def

{ker(x) | x ∈ Φ} , for every Φ ⊆ R(ω) \ {0} .

Say that a subset Φ of R(ω) is symmetric if −Φ = Φ.

Lemma 10.6. Let Φ be a symmetric subset of R(ω) \ {0} and set

Φ+ =
def

Φ ∪ {x− y | x, y ∈ Φ and x 6= y} .

Then Φ+ is symmetric and Op−(HΦ) is consonent in Op−(HΦ+).

Proof. It is trivial that Φ+ is symmetric. Since Op−(HΦ) is generated, as a lattice,
by ΣHΦ (cf. Lemma 8.7), it suffices, by Lemma 6.2, to prove that for any distinct
A,B ∈ HΦ, any two open half-spaces A+ and B+, with respective boundaries A
and B, are consonent in Op−(HΦ+). Since Φ is symmetric, there are a, b ∈ Φ,
with respective kernels A and B, such that A+ = [[a > 0]] and B+ = [[b > 0]].
The vectors a − b and b − a both belong to Φ+, with A+ ⊆ B+ ∪ [[a− b > 0]],



30 F. WEHRUNG

B+ ⊆ A+ ∪ [[b − a > 0]], and [[a− b > 0]]∩ [[b − a > 0]] = ∅. Hence, A+ and B+ are
consonent in Op−(HΦ+). �

Lemma 10.7. Let H be a finite set of integral hyperplanes, let L be a completely

normal distributive lattice with zero, let f : Op(H) → L be a 0-lattice homomor-

phism, let U, V ∈ Op−(H), and let γ ∈ L such that f(U) ≤ f(V )∨γ. Then there are

a finite set H̃ of integral hyperplanes, containing H, and a lattice homomorphism

g : Op(H̃) → L extending f , such that the following statements hold:

(1) Op−(H) is consonent in Op−(H̃).

(2) There exists W ∈ Op−(H̃) such that U ⊆ V ∪W and g(W ) ≤ γ.

Proof. We may assume that H is nonempty. Fix an enumeration (A0, B0), . . . ,
(An−1, Bn−1) of all pairs of open half-spaces with boundary in H. Moreover, fix
a finite chain S0 ⊆ S1 ⊆ · · · ⊆ Sn of finite sublattices of L, such that S0 contains
f [Op(H)] ∪ {γ} and Si is consonent in Si+1 whenever 0 ≤ i < n. We construct
inductively an ascending chain H = H0 ⊆ H1 ⊆ · · · ⊆ Hn of finite sets of in-
tegral hyperplanes, together with an ascending chain of lattice homomorphisms
fl : Op(Hl) → Sl, for 0 ≤ l ≤ n, such that f0 = f and

fk
(
Al rOp−(Hk) Bl

)
≤ f(Al)rS1 f(Bl) , whenever 0 ≤ l < k ≤ n . (10.5)

For k = 0 there is nothing to verify. Suppose having performed the construction
up to level k, with 0 ≤ k < n. By applying Lemma 10.4, with Hk in place of H,
fk in place of f , Sk+1 in place of L, and (Ak, Bk) in place of (A+, B+), we get
a finite set Hk+1 of integral hyperplanes, containing Hk, together with a lattice
homomorphism fk+1 : Op(Hk+1) → Sk+1, extending fk, such that

fk+1

(
Ak rOp−(Hk+1) Bk

)
= f(Ak)rSk+1

f(Bk) .

Since Sk+1 contains S1, it follows that

fk+1

(
Ak rOp−(Hk+1) Bk

)
≤ f(Ak)rS1 f(Bk) . (10.6)

Since Op−(Hk) is a sublattice of Op−(Hk+1) and since fk+1 extends fk, it follows
from the induction hypothesis (10.5) (with fixed k) that

fk+1

(
Al rOp−(Hk+1) Bl

)
≤ f(Al)rS1 f(Bl) , whenever 0 ≤ l < k ,

and hence, by (10.6),

fk+1

(
Al rOp−(Hk+1) Bl

)
≤ f(Al)rS1 f(Bl) , whenever 0 ≤ l < k + 1 ,

thus completing the verification of the induction step.
At stage n, we obtain a finite set Hn of integral hyperplanes, containing H,

together with a homomorphism fn : Op(Hn) → Sn, extending f , such that

fn(Ak rOp−(Hn) Bk) ≤ f(Ak)rS1 f(Bk) , whenever 0 ≤ k < n . (10.7)

By Lemma 10.6, there is a finite set H̃ of integral hyperplanes, containing Hn,

such that Op(Hn) (thus, a fortiori, Op(H)) is consonent in Op(H̃). Moreover, by
Lemma 9.4, the homomorphism fn : Op(Hn) → Sn extends to a homomorphism

g : Op(H̃) → S̃ for some finite sublattice S̃ of L containing Sn. Hence, from (10.7)
it follows that

g(Ak rOp−(H̃) Bk) ≤ f(Ak)rS1 f(Bk) , whenever 0 ≤ k < n . (10.8)

Since the open half-spaces, with boundary in H, generate Op−(H) as a lattice
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Op−(H) ��
consonent

//

consonentf↾Op−(H) = g↾Op−(H)

��

Op−(H̃)

g↾Op−(H̃)
��

S1
� � // S̃

Figure 10.2. Illustrating the proof of Lemma 10.7

(cf. Lemma 8.7) and since every pair of such half-spaces has the form (Ak, Bk), it
follows from Lemma 6.10, applied to (10.8) and the commutative square represented
in Figure 10.2, that

g(X rOp−(H̃) Y ) ≤ f(X)rS1 f(Y ) , for all X,Y ∈ Op−(H) .

In particular, g(U r
Op−(H̃)

V ) ≤ f(U)rS1 f(V ) ≤ γ. Let W =
def

U r
Op−(H̃)

V . �

Lemma 10.8. Let H be a finite set of integral hyperplanes, let L be a completely

normal distributive lattice with zero, let f : Op(H) → L be a 0-lattice homomor-

phism, let n be a positive integer, and let {(Ui, Vi, γi) | i ∈ [n]} be a set of triples

of elements of Op−(H)2 × L such that f(Ui) ≤ f(Vi) ∨ γi for each i ∈ [n]. Then

there are a finite set H̃ of integral hyperplanes, containing H, and a lattice homo-

morphism g : Op(H̃) → L extending f , such that the following statements hold:

(1) Op−(H) is consonent in Op−(H̃).

(2) For each i ∈ [n], there exists Wi ∈ Op−(H̃) such that Ui ⊆ Vi ∪ Wi and

g(Wi) ≤ γi.

Proof. Apply successively Lemma 10.7 to (U1, V1, γ1) up to (Un, Vn, γn). �

11. Representing countable completely normal lattices

This section is devoted to a proof of our main theorem (Theorem 11.1), together
with a short discussion of some of its corollaries.

Theorem 11.1. Every countable completely normal distributive lattice with zero is

isomorphic to IdcG, for some Abelian ℓ-group G.

Proof. Our goal is to represent a countable completely normal distributive lattice L
with zero. The lattice L, obtained from L by adding a new top element, is also
completely normal, and L is an ideal of L, so, by Lemma 3.1, any representation
of L as IdcG, for an Abelian ℓ-group G, yields L ∼= IdcG for an ℓ-ideal G of G.
Hence, it suffices to consider the case where L is bounded.

We fix a generating subset {an | n ∈ ω} of L.
Denote by HZ = {Hn | n ∈ ω} the set of all integral hyperplanes of R(ω). More-

over, let {(Un, Vn, γn) | n ∈ ω} be an enumeration of all triples (U, V, γ), where
U, V ∈ Op−(HZ) and γ ∈ L.

We construct an ascending chain (Hn | n ∈ ω) of nonempty finite subsets of HZ,
with union HZ, together with an ascending sequence (fn | n ∈ ω) of 0, 1-lattice
homomorphisms fn : Op(Hn) → L, as follows.

Take H0 =
def

{∆0} (cf. Section 10); so Op(H0) =
{
∅,∆+

0 ,∆
−
0 ,∆

+
0 ∪∆−

0 ,R
(ω)

}

is isomorphic to J2 (cf. Section 7). Let f0 : Op(H0) → {0, a0, 1} be the unique
homomorphism such that f0(∆

+
0 ) = a0, f0(∆

−
0 ) = 0, and f0

(
R(ω)

)
= 1.
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Suppose fn : Op(Hn) → L already constructed.
Let n = 3m for some integer m, denote by k the first nonnegative integer outside

supp(Hn), and set Hn+1 =
def

Hn ∪ {∆k}. By Lemma 10.3, there is a unique lattice

homomorphism fn+1 : Op(Hn+1) → L, extending f , such that fn+1(∆
+
k ) = am

and fn+1(∆
−
k ) = 0. This will take care of the surjectivity of the restriction, to

Op−(HZ), of the union of the fn.
Let n = 3m + 1 for some integer m, and set Hn+1 =

def
Hn ∪ {Hm}. Since L is

completely normal and the range of fn is finite, there is a finite sublattice S of L
such that the range of fn is consonent in S. By Lemma 9.4, fn extends to a lattice
homomorphism fn+1 from Op(Hn+1) to S, thus to L. This will take care of the
union of all fn be defined on Op(HZ).

Let, finally, n = 3m + 2 for some integer m. By Lemma 10.8, there is a finite
subset Hn+1 of HZ, containing Hn, such that Op(Hn) is consonent in Op(Hn+1),
together with an extension fn+1 : Op(Hn+1) → L, such that for every k ≤ n, if
{Uk, Vk} ⊆ Op−(Hn) and fn(Uk) ≤ fn(Vk)∨γk , then fn+1(UkrOp−(Hn+1)Vk) ≤ γk.

This will take care of the union of the fn be closed (as defined in the statement of
Lemma 3.2) on Op−(HZ).

The union f of all the fn is a surjective lattice homomorphism from Op(HZ)
onto L. Furthermore, the restriction f− of f to Op−(HZ) is a closed, surjective
lattice homomorphism from Op−(HZ) onto L. Now by the Baker-Beynon dual-
ity (cf. Proposition 3.7), Idc Fℓ(ω) is isomorphic to Lat(ω), which is identical to
Op−(HZ) (cf. Lemma 8.7). Hence, the map f− induces a closed, surjective lattice
homomorphism g : Idc Fℓ(ω) ։ L. By Lemma 3.5, this map factors through an
isomorphism from Idc(Fℓ(ω)/I) onto L, for a suitable ℓ-ideal I of Fℓ(ω). �

Recall that Delzell and Madden’s results in [14] imply that Theorem 11.1 does
not extend to the uncountable case.

Corollary 11.2. A second countable generalized spectral space X is homeomorphic

to the ℓ-spectrum of an Abelian ℓ-group iff it is completely normal.

Proof. By Theorem 11.1 and Lemma 4.7, it remains to prove that if the topology
of X has a countable basis, say B, then K(X) is countable. Every A ∈ K(X) is
the union of a subset BA of B, which, by the compactness of A, may be taken
finite. Since the assignment A 7→ BA is one-to-one, it determines a one-to-one map
from K(X) into the finite subsets of B; whence K(X) is countable. �

Recall that the complete normality of a spectral space X is equivalent to the
specialization order on X be a root system (cf. Proposition 4.4).

It is well known that the lattice C(G), of all convex ℓ-subgroups of any ℓ-group
(not necessarily Abelian) G, is the ideal lattice a completely normal distributive
lattice with zero (see Iberkleid, Mart́ınez, and McGovern [26, Section 1.2] for a
short overview). Of course, in the Abelian case, C(G) is isomorphic to the ideal
lattice of IdcG. A direct application of Theorem 11.1 yields the following.

Corollary 11.3. For every countable ℓ-group G, there exists a countable Abelian

ℓ-group A such that C(G) ∼= C(A).

The results of Kenoyer [28] and McCleary [31] imply that Corollary 11.3 does not
extend to the uncountable case. The question handled in both papers was credited,
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in the second paper, to Paul Conrad in a Workshop on ordered groups, Bowling
Green, Ohio, 1985.

The real spectrum SpecrR, of any commutative ring R, is a completely normal
spectral space (cf. Coste and Roy [12], Dickmann [16]). Moreover, it has a basis of
open sets which is indexed by finite sequences of elements of R; in particular, if R is
countable, then SpecrR is second countable. A direct application of Corollary 11.2
yields the following.

Corollary 11.4. For every countable, unital, commutative ring R, there exists a

countable Abelian ℓ-group A with unit such that SpecrR and SpecℓA are homeo-

morphic.

12. Discussion

12.1. Ideal lattices of dimension groups. A partially ordered Abelian group G
is a dimension group if G is directed, unperforated (i.e., mx ≥ 0 implies that x ≥ 0,
whenever x ∈ G and m is a positive integer), and G+ satisfies the Riesz refinement
property (cf. Goodearl [19]). The construction IdcG, for an Abelian ℓ-group G, ex-
tends naturally to arbitrary dimension groups, by replacing “ℓ-ideal” by “directed
convex subgroup” (in short ideal). However, now IdcG is only a (∨, 0)-semilattice.
This semilattice is always distributive (i.e., it satisfies the Riesz refinement prop-
erty), but it may not be a lattice. In fact, Every countable distributive (∨, 0)-semi-

lattice is isomorphic to IdcG for some countable dimension group G (this is implicit
in Bratteli and Elliott [7], Hofmann and Thayer [25], Bergman [2], and explicitly
stated as Goodearl and Wehrung [20, Theorem 5.2]); moreover, the countable size

is optimal (Wehrung [41]).
In particular, it follows from Goodearl and Wehrung [20, Theorem 4.4] that for

every distributive lattice L with zero, there exists a dimension group G such that
IdcG ∼= L (without any restriction on the cardinality of L). One could then hope to
be able to apply Theorem 1 of Elliott and Mundici [18], in order to infer that if L is
completely normal, then G is lattice-ordered. However, this would already fail for
the lattice L =

def
Dω1 of Example 5.5, simply because Dω1 is not ℓ-representable.

The problem lies in the fact that one cannot read, on IdcG (equivalently, on the
spectrum of G) alone, that every prime quotient of G be totally ordered. This fact
is illustrated by the following much easier example, also implied on page 181 in [18]:
let G be any non totally ordered simple dimension group (e.g., G = Q × Q with
positive cone consisting of all (x, y) with either x = y = 0 or x > 0 and y > 0).
Then IdcG ∼= 2, yet G is not totally ordered.

12.2. Lattices of ℓ-ideals in non-Abelian ℓ-groups. It is proved in Růžička,
Tůma, and Wehrung [36, Theorem 6.3] that Every countable distributive (∨, 0)-
semilattice is isomorphic to IdcG for some ℓ-group G; moreover, this result does

not extend to semilattices of cardinality ℵ2. The gap at size ℵ1 is not filled yet.

12.3. Open problems. While Example 5.5 gives an example of a non-ℓ-repre-
sentable distributive lattice with an ℓ-representable elementary sublattice, we do
not know whether the opposite situation may occur:

Problem 1. Let D be an elementary sublattice of a distributive lattice E. If E is
ℓ-representable, is D also ℓ-representable?
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While Theorem 11.1 implies a positive answer to Problem 1 in the countable
case, the uncountable case remains open. Analogues of Problem 1, for other func-
tors than Idc on Abelian ℓ-groups, may lead to different situations. Consider, for
example, the functor L, which to every von Neumann regular ring R associates the
lattice L(R) of all principal right ideals of R. Lattices of the form L(R) are said to
be coordinatizable. In [42], we construct a countable, coordinatizable lattice with a
non-coordinatizable elementary sublattice. In that paper, it is also proved that the
class of all coordinatizable lattices is not the class of models of any L∞,∞ sentence.
This suggests the following problem.

Problem 2. Prove that the class of all ℓ-representable distributive lattices is not
the class of models of any L∞,∞ sentence.

Finally, the analogy between ℓ-spectra and real spectra (cf. Section 1.2), together
with Corollary 11.2, suggests the following problem.

Problem 3. Is every second countable completely normal spectral space homeo-
morphic to the real spectrum of some commutative, unital ring?
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[36] Pavel Růžička, Jǐŕı Tůma, and Friedrich Wehrung, Distributive congruence lattices of

congruence-permutable algebras, J. Algebra 311 (2007), no. 1, 96–116. MR 2309879
[37] J. T. Snodgrass and Constantine Tsinakis, Finite-valued algebraic lattices, Algebra Univer-

salis 30 (1993), no. 3, 311–318. MR 1225870



36 F. WEHRUNG

[38] , The finite basis theorem for relatively normal lattices, Algebra Universalis 33 (1995),
no. 1, 40–67. MR 1303631

[39] Marshall H. Stone, Topological representations of distributive lattices and Brouwerian logics.,
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