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Abstract

Over the last decade, modelling systems based on unstructured grids have been

appearing increasingly attractive to investigate the dynamics of coastal zones.

However, the resolution of the sediment continuity equation to simulate bed evo-

lution is a complex problem which often leads to the development of numerical

oscillations. To overcome this problem, addition of artificial diffusion or bathy-

metric filters are commonly employed methods, although these techniques can

potentially over-smooth the bathymetry. This study aims to present a numerical

scheme based on the Weighted Essentially Non-Oscillatory (WENO) formalism

to solve the bed continuity equation on unstructured grids in a finite volume

formulation. The new solution is compared against a classical method, which

combines a basic node-centered finite volume method with artificial diffusion,

for three idealized test cases. This comparison reveals that a higher accuracy is

obtained with our new method while the addition of diffusion appears inappro-

priate mainly due to the arbitrary choice of the diffusion coefficient. Moreover,

the increased computation time associated with the WENO-based method to

solve the bed continuity equation is negligible when considering a fully-coupled

simulation with tides and waves. Finally, the application of the new method to

the pluri-monthly evolution of an idealized inlet subjected to tides and waves
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shows the development of realistic bed features (e.g. secondary flood chan-

nels, ebb-delta sandbars, or oblique sandbars at the adjacent beaches), that are

smoothed or nonexistent when using additional diffusion.

Keywords: Morphodynamic modelling; unstructured grid; WENO; diffusion;

coastal environments; Exner equation.

1. Introduction

Coastal zones often display fast morphological changes, which can lead to

socio-economical and environmental issues since a large part of the population

lives in these areas. Moreover, sea-level rise and potential increase in storminess

are likely to impact strongly these environments (IPCC, 2013). As a conse-5

quence, coastal management such as sediment dredging or erosion control plans

becomes increasingly challenging. To better address these problems, morpho-

dynamic modelling systems appeared as attractive tools and have experienced

significant improvement during the last decades (De Vriend, 1987; De Vriend

et al., 1993; Cayocca, 2001; Fortunato and Oliveira, 2004; Bertin et al., 2009;10

Zhang et al., 2013). However, a common problem of these models is the devel-

opment of numerical oscillations, due to both the decoupled way of solving the

hydrodynamic and the sediment continuity (or Exner) equations, and the inher-

ently unstable nature of the non-linear coupling between the sediment transport

module and the bed evolution module (Fortunato and Oliveira, 2007; Long et al.,15

2008). In order to overcome this problem, fully coupled approaches, where the

Exner–Saint-Venant system is solved simultaneously, have been successfully ap-

plied (e.g. Castro Dı́az et al., 2009; Soares-Frazão and Zech, 2011; Bouharguane

and Mohammadi, 2012). Unfortunately, this type of approach requires that the

sediment flux only depends on the water depth and the fluid velocity (e.g. as in20

Meyer-Peter and Müller (1948) or Grass (1981) formulae), which is not suitable

in coastal zones where sediment transport is a much more complex process due to

the presence of short waves. For coastal applications, the hydrodynamic and the

sediment transport are usually treated separately and the problem of numerical

2



oscillations is rather solved by using bathymetric filters and/or adding artificial25

diffusion (Cayocca, 2001; Johnson and Zyserman, 2002). Yet, these methods re-

quire the use of arbitrary thresholds or coefficient values, which potentially hides

the physical behavior of the bed forms, while the root of the problem remains

unsolved. Thus, the development of numerical schemes adapted to morphody-

namic modelling has been the concern of extensive research effort during the30

last decade. Hudson et al. (2005) reviewed several methods for 1D morpho-

dynamic systems, and investigated coupled solution of flow and bed-updating

equations with Lax-Wendroff and Roe schemes with and without flux-limiting

methods. This effort was extended to horizontally two-dimensional (2DH) mor-

phodynamic modelling by Callaghan et al. (2006), who applied a non-oscillating35

centered scheme (NOCS). Latter on, Long et al. (2008) compared several numer-

ical schemes to solve the Exner equation and showed that a weighted essentially

non-oscillatory (WENO) scheme (Liu et al., 1994) with an Euler temporal dis-

cretization was the best compromise between computational time, accuracy, and

numerical stability. However, these efforts concerned finite differences on regu-40

lar grids whereas a significant tendency for developing unstructured grid (UG)

versions of well-established models can been observed over the last years (e.g.

SWAN (Zijlema, 2009), DELFT3D (Kernkamp et al., 2011), or WaveWatchIII

(Tolman, 2014), and only a few studies concerned morphodynamic modelling

on UG (e.g. Kubatko et al., 2006; Benkhaldoun et al., 2011).45

Using WENO schemes on UG has been investigated for solving two-dimensional

conservation laws (e.g. Friedrich, 1998; Hu and Shu, 1999; Wolf and Azevedo,

2007), and even in three space dimensions (Tsoutsanis et al., 2011), but ap-

plications were restricted to the Euler and Burger equations. In particular,

Liu and Zhang (2013) distinguished two types of finite volume WENO schemes50

on UG: (1) a first one designed for the purpose of nonlinear stability or to

avoid spurious oscillations (being of our interest in the present study), and (2)

a second one (more complex) providing higher order of accuracy for equal or-

der of polynomial reconstruction. To our knowledge, the only application of a

WENO scheme on UG to morphodynamic modelling was done by Canestrelli55
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et al. (2010), who employed a coupled solution strategy for solving the hydro-

morphodynamic system. As mentioned above, this approach cannot be applied

for simulating morphodynamics in coastal areas because the sediment transport

becomes also a function of wave parameters.

Alternatively, this study presents a numerical method for UG morphody-60

namic modelling based on the WENO formalism in a finite volume framework

that is suitable for coastal applications. This method is implemented into the

SED2D sediment transport and bed evolution module of Dodet (2013), which

was adapted from the sediment transport and bed evolution module SAND2D

(Fortunato and Oliveira, 2004, 2007), part of the 2DH morphodynamic mod-65

elling system MORSYS2D (Bertin et al., 2009) and the 3D morphodynamic

modelling system MORSELFE (Pinto et al., 2012). As in the SAND2D mod-

ule, the original method for solving the Exner equation in SED2D uses node-

centered control volumes with sediment flux considered as constant inside each

element. In the present modelling system, SED2D is coupled with the hydrody-70

namic model SELFE (Zhang and Baptista, 2008), and the spectral wave model

WWM-II (Roland et al., 2012). Three test cases are considered to assess the

proposed scheme: (1) a migrating sandwave, allowing us to compare numeri-

cal and analytical results, (2) a migrating trench, where the robustness of the

method in the presence of strong bathymetric gradients is analyzed, and (3) the75

pluri-monthly evolution of an idealized inlet subjected to tides and waves.

2. The morphodynamic modelling system

2.1. General outline of the modelling system

The core of the system is the Semi-implicit Eulerian-Lagrangian Finite El-

ement (SELFE) modelling system of Zhang and Baptista (2008), which has80

now evolved to SCHISM (Zhang et al., 2016), and is based on UG. The main

feature of the circulation model in SELFE is the combination of an Eulerian-

Lagrangian Method with semi-implicit schemes, to treat the advection in the

momentum equations while relaxing the numerical stability constraints of the
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model (i.e. CFL condition can be exceeded). The Wind Wave Model II (WWM-85

II) of Roland et al. (2012) (third generation, spectral wave model) is coupled

to SELFE and simulates gravity waves generation and propagation by solving

the wave action equation (WAE) (Komen et al., 1996). WWM-II uses a resid-

ual distribution scheme (Abgrall, 2006) to solve the geographic advection in the

WAE, which also relaxes CFL constraints and allows using large time step with-90

out compromising the numerical stability. The 2DH sediment transport/bottom

evolution module SED2D (Dodet, 2013) computes sediment fluxes (total load,

i.e. sum of bed-load and suspended load) with classical semi-empirical for-

mulations based on depth-averaged velocity, water depth, bottom roughness,

sediment properties and wave parameters. The bed evolution over the morpho-95

logical time step is then computed by solving the Exner equation, this part being

detailed in the following sections since this is the core of the present study. This

modelling system is fully-coupled, parallelized, and the three modules share the

same computational grid and domain-decomposition.

2.2. Bed evolution equation and finite volume formulation100

The bottom evolution module computes the bed change at each grid node

by solving the sediment continuity/Exner equation, given by:

∂zb(x, t)

∂t
+

1

1− λ
∇ ·Q(x, t) = 0 (1)

where x = (x, y), zb(x, t) is the bed level elevation (positive upwards), λ is the

sediment porosity, and Q = (Qx, Qy) is the depth-integrated sediment transport

rate (in m3.s−1.m−1) computed at element centres by the sediment transport105

module.

Considering node-centered control volumes (Fig. 1), the semi-discrete finite

volume formulation (continuous in time, discrete in space) of Eq. 1 can be

written as:
∂

∂t

∫
Ωi

zb dΩ = − 1

1− λ

∫
Γi

Q · ndΓ (2)

with Ωi the control volume (or cell) for node i, Γi the corresponding boundary,110

and n the outward unit normal to Γi.
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Ωi Γi

node i

n

Q

Figure 1: Node-centered control volume Ωi and associated variables.

Using an Euler explicit time discretization, we have the fully-discrete finite

volume form: ∫
Ωi

∆zb dΩ = − ∆t

1− λ

∫
Γi

Q · ndΓ (3)

where ∆zb is the bed change during the morphological time step ∆t.

115

Bed level elevation zb (known at grid nodes) is assumed to vary linearly

within each element, allowing us to express left-hand side of Eq. 3 as:∫
Ωi

∆zb dΩ =

Nel∑
el=1

( 3∑
nd=1

∆zb(el, nd)

∫
Ωi,el

S(el, nd) dΩ

)
(4)

where Nel is the number of elements neighboring node i, and Ωi,el is the part of

Ωi belonging to element el. S(el, nd) is the element linear shape function that

equals 1 at node nd = i and 0 at the two other nodes of the element, which120

gives: ∫
Ωi,el

S(el, nd) dΩ = CndAi,el (5)

where Ai,el is the area of element el neighboring node i, and

Cnd =

22/108 if nd = i

7/108 if nd 6= i

(6)
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Once right-hand side of Eq. 3 is computed (see section 3), a system of125

Nnd equations with Nnd unknowns is obtained (Nnd is the total number of grid

nodes) and eventually solved with a Jacobi conjugate gradient method.

A fourth-order Runge-Kutta (RK) time discretization was also considered in

order to increase the morphological time step but this method implies perform-130

ing four times the WENO scheme described below for spatial discretization, for

each time step. Since the subsequent increase in computation time neither bal-

anced the gain in numerical stability nor improved substantially the accuracy,

the Euler explicit time discretization was retained. Similarly, it can be noted

that Long et al. (2008) did not observe any significant quantitative change in re-135

sults by considering a third-order RK scheme rather than a simple Euler explicit

scheme for time discretization, with a WENO scheme for spatial discretization.

3. The new numerical method

Contrary to the original method implemented in SED2D where the sediment

flux is assumed to be constant inside an element, the main feature of the WENO140

scheme is to compute a reconstruction polynomial Pi(x) for each control volume

in order to interpolate the sediment flux at the corresponding boundaries.

3.1. Spatial discretization

Each control volume Ωi defines a cell which is polygonally bounded, with a

finite number of line segments. Therefore, replacing sediment fluxes Q by Pi,145

the integral from Eq. 3 can be decomposed into:∫
Γi

Q · ndΓ =

∫
Γi

Pi · ndΓ =
∑
j

∫
Γi,j

Pi · ndΓ (7)

with j the line segment index. Each line integral is then discretized by a

q-point Gaussian integration formula:∫
Γi,j

Pi · n dΓ ≈ |Γi,j |
q∑

k=1

ξkPi(Gk) · n (8)
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where Gk and ξk are the Gaussian points and weights. We use q = 2, so with

x1 and x2 being the end points of the line segment Γi,j , the position of Gk are150

x(G1) = αx1 + (1− α)x2 and x(G2) = αx2 + (1− α)x1, with α = 1/2 +
√

3/6

and ξ1 = ξ2 = 1/2.

3.2. Polynomial reconstruction procedure

(a) Following a WENO procedure, we need to select several stencils for each

cell Ωi and to compute the corresponding polynomials which interpolate sedi-155

ment flux over the cell. As we want a numerical method with a relatively low

computational cost, each stencil related to Ωi is defined by three elements neigh-

boring node i (Fig. 2), such as a linear polynomial is computed for each stencil,

from the values of sediment flux computed at element centers. Only continuous

stencils are considered (i.e. for each stencil, there is no gap between the three160

elements) which avoids interpolation across discontinuities as recommended in

case of non-smooth solution (Friedrich, 1998). Consequently, if node i is an

interior grid node, the number N of stencils related to Ωi equals the number

of elements neighboring node i. Moreover, using these basic stencils facilitates

the implementation of the method on parallelized codes since there is no need165

to reach an element which is not a direct neighbor of node i.

node i

Figure 2: Example of a stencil (gray color) defined by three elements neighboring node i.

(b) For each stencil, the two linear polynomials corresponding to both com-
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ponents of the sediment flux are computed as:px,m(x) = px,m(x, y) = ax,mx+ bx,my + cx,m

py,m(x) = py,m(x, y) = ay,mx+ by,my + cy,m

(9)

where m is the stencil index, and such as for each element ∆e belonging to

stencil m we have:170 px,m(xc(∆e)) = Qx(xc(∆e))

py,m(xc(∆e)) = Qy(xc(∆e))

(10)

where Qx(xc(∆e) and Qy(xc(∆e)) are the sediment flux components computed

by the sediment transport module at the centre xc of element ∆e. Considering

these two values as the mean values of each sediment flux component over

element ∆e, they are conserved by (px,m, py,m) since:〈px,m(x)〉∆e = px,m(xc(∆e)) = Qx(xc(∆e))

〈py,m(x)〉∆e
= py,m(xc(∆e)) = Qy(xc(∆e))

(11)

where 〈〉∆e
is the spatial mean operator over ∆e.175

(c) Aiming to measure the smoothness of pm = (px,m, py,m) (i.e. how much

pm varies spatially), an oscillating indicator is computed for each stencil based

on Friedrich (1998):

OIm = OIx,m +OIy,m (12)

For the x-component we have:180

OIx,m =

[ ∫
Ωi

dX−2

[(
∂px,m(x, y)

∂x

)2

+

(
∂px,m(x, y)

∂y

)2]
dΩ

]1/2

(13)

leading in our case to

OIx,m =

√
|Ωi|
dX2

(a2
x,m + b2x,m) (14)

with the grid spacing dX = 〈
√
|∆e|〉m, |∆e| being the area of each element be-

longing to stencilm. OIy,m is computed by replacing (ax,m, bx,m) by (ay,m, by,m)
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in Eq. 14. Since OIm is function of a2
m = (a2

x,m, a
2
y,m) and b2

m = (b2x,m, b
2
y,m),

it vanishes in areas of constant sediment fluxes whereas it increases in areas of185

variable fluxes. The stencils corresponding to the lowest values of OIm will then

be favored for computing the reconstruction polynomial, through the weighted

average procedure described in the following.

(d) While an Essentially Non-Oscillating (ENO) scheme (Harten and Osher,190

1987) would only keep the linear polynomial having the lowest OIm value, the

WENO scheme considers a weighted combination of the N linear polynomials

to compute the reconstruction polynomial. The weights ωm are computed such

that their sum is one, following:

ωm =
(ε+OIm)−r∑N
k=1(ε+OIk)−r

(15)

where ε is a small value compared to OIm ensuring a non-zero denominator (we195

take ε = 10−10 m.s−1), and r is a positive integer. Friedrich (1998) indicates

that the weights should be of magnitude one for stencils in smooth regions while

it should be low in discontinuous regions, this condition being fulfilled for any

positive r. A sensitivity analysis leads us to take r = 1.

200

(e) The reconstruction polynomial at node i is finally computed as:

Pi(x) =

N∑
k=1

ωkpk(x) (16)

with Pi(x) = (Px,i, Py,i) and pk(x) = (px,k, py,k).

Regarding boundary conditions, the two following cases are considered:

1) If the number Nel of elements neighboring node i (where i belongs to the205

grid boundary(ies)) is such that Nel ≥ 3, then the number of stencils used to

compute Pi is N ≥ 1.

2) If Nel < 3, then no stencil is defined, and Pi is simply computed such

that for the one or two elements ∆e neighboring node i: Pi(∆e) = Q(xc(∆e)).
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3.3. Numerical flux210

For each line segment Γi,j of a cell Ωi, the sediment flux at Gaussian points

is approximated by the two reconstruction polynomials Pi and Pl, the latter

corresponding to the neighbor cell Ωl (Γi,j being the shared boundary segment

of both cells). This allows to compute the following two values for right-hand

side of Eq. 8:215

Fi,j = |Γi,j |
q∑

k=1

ξkPi(Gk) · n = |Γi,j |
1

2
(Pi(G1) + Pi(G2)) · n (17)

Fl,j = |Γl,j |
1

2
(Pl(G1) + Pl(G2)) · n (18)

with |Γi,j | = |Γl,j |.

A flux limiter (FL) is then applied in order to handle the strongest sediment

flux gradients, such as:

FFL
i,j = Fi,j +

1

2
φ(rFL)(Fi − Fi,j) (19)

220

FFL
l,j = Fl,j +

1

2
φ(rFL)(Fl − Fl,j) (20)

with Fi = |Γi,j |(Pi(xi) · n) and Fl = |Γl,j |(Pl(xl) · n). The FL function of

Chatkravathy and Osher is used (Chakravarthy and Osher, 1983), which reads

φ(rFL) = max(0,min(rFL, β)), with 1 ≤ β ≤ 2. Through the rFL value, the

FL function φ(rFL) quantifies the upwinding which is added to the scheme.

Important care is taken to define rFL, such that it tends to zero for smooth225

solutions and it increases near discontinuities. Since the sediment flux is a non-

linear function of the water depth h (always positive), we take rFL = |∆h|
〈h〉 with

∆h = h(i)− h(l) and 〈h〉 = 1
2 (h(i) + h(l)). Moreover we take β = 2, allowing a

maximum upwinding for the numerical flux. Indeed, we have FFL
i,j = Fi,j and

FFL
l,j = Fl,j if rFL = 0 (i.e. no effect of the FL on the scheme), whereas we have230

FFL
i,j = Fi and FFL

l,j = Fl if rFL ≥ β (i.e. a maximum upwinding is added to

the scheme).
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Finally, Eq.3 is solved by using an upwind flux formula to compute the final

flux at each line segment of cell Ωi:

F final
i,j =

min(FFL
i,j , F

FL
l,j ) if zb(i) < zb(l)

max(FFL
i,j , F

FL
l,j ) if zb(i) ≥ zb(l)

(21)

4. Numerical results235

4.1. Test case 1: Migrating sandwave

We first apply both the original and the new numerical method of SED2D

to the 2DH migration test case of an initially sinusoidal sandwave under uni-

directional and stationary flow in a straight channel, similarly to the 1D test

case of Hudson et al. (2005). We recall that an uncoupled solution strategy is240

used in this study, i.e. the hydrodynamic (fluid velocity and surface elevation)

is first solved by SELFE, allowing SED2D to compute the sediment transport

and to solve the Exner equation. In order to compare the numerical result with

the analytical solution, a simple transport rate function is considered, given by:

245 Q = (Qx, Qy) = (aubx, 0)

ux = Dx(h∆y)−1

(22)

where a and b are constants, u = (ux, 0) is the depth-averaged current velocity

(m.s−1), D = (Dx, 0) is the constant water discharge (m3.s−1), h = η − zb ≥ 0

is the water depth (with the mean water level η = 0 in the present case), and

∆y = 1.2 m is the channel width.

In order to devise a stringent test for the new method, the bed slope effect250

on the sediment transport is not considered in this first test case (unlike in the

next two test cases), allowing us to obtain the corresponding analytical solution

of the Exner equation by using the method of characteristics:

zb(x, t) = zb(x− czt, 0) (23)
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where cz = (cx,z, 0) is the phase velocity of the bedform:

cx,z(zb) =
1

1− λ
∂Qx

∂zb
=

1

1− λ
abubx
zb

(24)

The evolution of the sandwave is simulated using a = 0.001 s2.m−1, b = 3,255

Dx = 1 m3.s−1, and λ = 0.4, which yields a maximum Courant number of about

0.1 if estimated according to Damgaard et al. (2002) and Roelvink (2006) by

max|cz|∆t/∆x, with in our case ∆t = 2 s and ∆x = 0.15 m. The Euler-WENO

(EW) scheme is compared against the original Euler node-centered finite volume

method of SED2D, in which sediment flux is assumed to be constant inside each260

element. Since this latter scheme is proned to develop numerical oscillations

even for Courant numbers below unity, we also include a diffusion-like term in

the sediment transport formula which is common practice to stabilize the bed

evolution in morphodynamic modelling (Rakha and Kamphuis, 1997; Cayocca,

2001; Fortunato and Oliveira, 2007). This additional diffusion method consists265

in replacing the sediment transport rate Q by

Q∗ = Q− ε(1− λ)(|Qx|
∂zb
∂x

, |Qy|
∂zb
∂y

) (25)

where ε is a dimensionless coefficient, with usually ε ∈ [0, 5]. Fig. 3 (a) shows

the bed profiles at time t = 500 s and along y = 0.75 m for the original scheme

without and with additional diffusion (ε = 1), and for the EW scheme. While

the original scheme without additional diffusion shows the emergence of numeri-270

cal oscillations at the dune crest, accuracy is well improved with the EW scheme,

as confirmed by the associated errors (Fig. 3 (b)). The root-mean-square errors

for the original scheme without diffusion and for the EW scheme are 2.8 mm

and 0.8 mm, respectively. An over-smoothing of the dune is obtained for the

original scheme with additional diffusion, and will be discussed in more details275

in the next sections. The convergence analysis verifies this increased accuracy

obtained with the EW scheme (Fig. 4), especially for dx < 0.08 m where the

original scheme becomes highly unstable (for this particular case oscillations

are not developing near maximum transport gradients, which would suggest a

potential spatial limit for the original scheme).280
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4.2. Test case 2: Migrating trench

In this second test case based on a laboratory experiment of van Rijn (1987),

we study the evolution in a straight channel of a vertical depression (trench) in

the mobile sand bed, which allows us to test the robustness of the numerical

scheme in response to the initial bed level discontinuities. The water depth285

outside the trench and the water discharge in the x direction are set to 0.4 m and

0.23 m3.s−1 respectively, giving a maximum initial flow velocity of 0.49 m.s−1.

In order to test the EW scheme with a more complex sediment transport formula

than in test case 1, the formula of van Rijn (2007a,b) is used to compute both

bed-load (qb) and suspended load transport (qs):290

qb = 0.015uh(d50/h)1.2M1.5
e

qs = 0.012ud50M
2.4
e D−0.6

∗

(26)

where d50 is the median sediment diameter, and D∗ = d50

[
g(s− 1)/ν2

]1/3

is the dimensionless grain diameter, with ν the kinematic fluid viscosity and

s = ρs/ρ the specific sediment density (ρ and ρs are the density of water and

sediment respectively). Following van Rijn (2007a), the mobility parameter Me

is computed as:295

Me = max(0, |u| − ucr,c)/ [(s− 1)gd50]
0.5

(27)

and the critical current velocity for initiation of sediment motion is computed

as:

ucr,c =

0.19(d50)0.1 log(4h/d90) for 0.05 < d50 < 0.5 mm

8.5(d50)0.6 log(4h/d90) for 0.5 < d50 < 2 mm

(28)

The bed slope effect on the sediment transport is considered following the

method of Lesser et al. (2004), and the Exner equation is finally solved for the

total transport qtot = qb + qs. A median diameter of 0.14 mm is used, while300

the time step is set to 1 s, satisfying the equivalent Courant number stability

criterion. The bed profiles at mid-width channel shown on Fig. 5 after 1700 s

of simulation confirm the enhanced stability of the EW scheme compared to the
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original scheme. Unlike the previous test case, the inclusion of artificial diffusion

with the same coefficient value (ε = 1) strongly improves the results while no305

large over-smoothing of the bed profile is observed.
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Figure 5: Comparison of Euler-original without and with additional diffusion, and Euler-

WENO scheme results for test case 2 at t = 1700 s and y = 0.55 m.

4.3. Test case 3: Idealized inlet

In order to evaluate the improvement of our new method with a more realistic

case, we applied our modelling system to the idealized coastal lagoon of Nahon

et al. (2012) (Fig. 6) where tides and waves are considered. This test case310

is more challenging than the previous ones because the combination of waves

and tidal forcings yields both a large variability of sediment fluxes and strong

gradients over the domain.

The lagoon has an initial depth of 2.5 m relative to Mean Sea Level (MSL)

and is connected to the sea through a 700 m long and 300 m wide shore-normal315

oriented channel. The beach/shore face profile is alongshore uniform and goes

from 2 m above MSL down to 24 m depth, with maximum slopes of 0.014 at

the beach berm and 0.004 offshore. The grid resolution ranges from 300 m at

the open boundary down to 25 m at the inlet. As for test case 2, bed-load and

suspended load transport are computed using van Rijn (2007a,b) formula (see320

Eq. 26), with:

Me = (max(0, |u|+ γUw − ucr))/ [(s− 1)gd50]
0.5

(29)
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where Uw is the amplitude of the wave orbital velocity and γ = 0.4 for irregular

waves. Following van Rijn (2007a), the critical fluid velocity for initiation of

sediment motion in the presence of current and waves is:

ucr = βucr,c + (1− β)ucr,w (30)

where β = |u|/(|u| + Uw), and ucr,w is the critical wave orbital velocity for325

initiation of sediment motion computed as:

ucr,w =

0.24 ((s− 1)g)
0.66

(d50)0.33(Tp)0.33 for 0.05 < d50 < 0.5 mm

0.95 [(s− 1)g]
0.57

(d50)0.43(Tp)0.14 for 0.5 < d50 < 2 mm

(31)

where Tp is the wave peak period. As in the previous test case, the bed slope

effect on the sediment transport is considered following Lesser et al. (2004).

A mixed-energy regime is considered for this test case, meaning that the

ratio between the yearly-averaged tidal range and the significant wave height is330

approximately in the range [1, 2] according to Hayes (1979). The tidal forcing

at the open boundary consists of a simplified tide represented by the M2 con-

stituent with a 1.5 m amplitude, while a constant wave field characterized by

a significant wave height of 1.5 m, a peak period of 10 s and an average wave

direction of N290◦ is imposed at the open boundary. Such wave boundary con-335

ditions result in wave directions of the order of N280◦ at the breaking point,

which corresponds to an angle of 10◦ with respect to the shoreline, and drive

a southward longshore transport. Both hydrodynamic and morphological time

steps are set to ∆t = 30 s, while the time step for the wave model is set to

120 s. The CFL condition for morphodynamics is satisfied since the bedform340

phase velocity |cz| has to be less than min(∆x)/∆t = 0.83 m.s−1, which is a

very high limit value for our test case. A median sediment diameter of 0.5 mm

is used.

Because without any artificial diffusion the original scheme rapidly shows

numerical oscillations that turn the simulation useless (not shown), a sensitivity345

analysis led us to add diffusion with ε = 4 which is a suitable value to prevent the

development of these oscillations. A non-linear filter as used in Fortunato and
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open
boundary North

Figure 6: Computational grid of the idealized inlet test case, with zoom on initial bathymetry

of the inlet.

Oliveira (2007) was also added to this original scheme, aiming to eliminate local

extrema in the bathymetry after each morphological time step. On the opposite,

the EW scheme is applied without any artificial diffusion nor bathymetric filter,350

as for the previous test cases.

By analyzing the bathymetry simulated with both schemes after 3 and 5

months on Fig. 7 (taking about 20 hours on 24 processors), several differences

can be noticed. First, the main channel is found to be about 2 m deeper with the

EW scheme than with the original one. Besides, due to the wave-induced south-355

ward littoral drift, sediment accretion is observed at the northern (updrift) side

of the inlet. This causes a counterclockwise rotation of the main channel axis,

in agreement with mixed-energy-straight inlets described in Davis and Barnard

(2003), this evolution being more pronounced with the EW scheme. Moreover,

using the EW scheme leads to the development of a secondary flood channel on360

the updrift side of the ebb-delta, and shore-parallel sandbars on its downdrift

side, unlike using the original method (see also Fig. 8 (a), (b)). Finally, we ob-

serve the development of shore-oblique sandbars along the adjacent shorelines

only with the EW scheme (Fig. 8 (e)). On the other hand, the bathymetry
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obtained in the same area with the original scheme degenerates until it turns365

unrealistic (Fig. 8 (d)).

Figure 7: Simulated bathymetry at t = 3 and 5 months for the original scheme ((a) and (c)),

and the EW scheme ((b) and (d)), respectively.

5. Discussion

5.1. Improvements compared to alternative methods

The three test cases clearly show that the additional diffusion method ap-

pears problematic since no unique value of the diffusion coefficient is suitable370

at once for all test cases. Indeed, with ε = 1, the numerical result is over-

smoothed for test case 1, correct for test case 2, and oscillating for test case 3

(not shown but leading us to use a higher value in this case). The problem is
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Figure 8: Bathymetry of the idealized inlet (t = 4 months) and the updrift coast (t =

7 months) simulated using the original method with diffusion (a), (d), and the EW scheme (b),

(e). (c) The mixed-energy inlet of Maumusson (Atlantic coast, Charente-Maritime, France ;

Landsat image), exhibiting a secondary flood channel (1) and an emergent ebb-delta sandbar

(2). (f) Shore-oblique sandbars near Cap Ferret (Atlantic coast, Gironde, France ; Google

Earth, august 2012).
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that this coefficient requires to be arbitrarily user-defined and does not depend

on a relevant parameter, such as the local Courant number. This tuning be-375

ing specific for each test case, the coefficient value will not even suit over the

whole computational grid for some test cases, due to the variable bathymetry

and hydrodynamic conditions. This implies to choose a relatively high value to

overcome the development of numerical oscillations, but with the drawback of

over-smoothing some bed features. This behavior is illustrated with the test case380

of an idealized inlet subjected to tides and waves, where a higher bathymetric

complexity is captured when using the EW scheme. It handles relatively strong

sediment transport gradients without over-smoothing the bathymetry where

these gradients are lower, unlike the additional diffusion method. Moreover,

our proposed method constitutes an alternative to the discontinuous Galerkin385

method of Kubatko et al. (2006) which, despite its higher accuracy, may increase

the computation time substantially (Budgell et al., 2007). As shown on Fig. 9,

this is not the case here since using the EW scheme instead of the original one

leads to an increase of the SED2D computation time by a factor less than two,

which in the end appears negligible when looking at the total computation time390

(i.e. for a fully-coupled run). This point is of great importance for long-term

morphodynamic modelling (as shown in Guérin (2016)), and also when multi-

ple sediment classes are considered where the Exner equation is solved for each

class.

5.2. Implications for real-world applications395

Morphological predictions obtained with the EW scheme substantially differ

from those obtained with the original method when simulating an idealized inlet

subjected to tides and waves. Indeed, after 5 months of simulation, the inlet

main channel is about 2 m shallower when using the original method, which can

be explained by an over-smoothing effect of the additional diffusion. A detailed400

analysis also reveals that several bed features only develop with the EW scheme.

First, a secondary flood channel develops on the updrift side of the ebb-delta

while this morphological unit is commonly observed at many tidal inlets, such as
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Figure 9: Computation times for the idealized inlet test case (6-hours evolution), for the orig-

inal scheme with additional diffusion and non linear filter, and for the EW scheme. The com-

putation times for SED2D module and the fully-coupled modelling system (SELFE-WWM-

SED2D) are plotted.

the Maumusson inlet (Fig. 8 (b) and (c), marker 1). Secondly, ebb-delta sand-

bars develop on the downdrift side of the inlet and migrate onshore until they405

eventually weld onto the beach (Fig. 8 (b) and (c), marker 2). This common

behaviour of tidal inlets is also well documented while the modeled migration

rate of 1.5 to 3 m.day−1 is coherent with some observations (e.g. Pianca et al.,

2014). Finally, periodic oblique sandbars develop along the adjacent shorelines

only with the EW scheme. As studied by Garnier et al. (2006) with a 2DH410

morphodynamic model, these bed features can emerge by self-organization of

the coupling between waves, currents and morphology via sediment transport.

A wavelength range of about 350 to 500 m is obained in our case, which is con-

sistent with observations (e.g. Castelle et al. (2007) measured a range of 360

to 470 m; see Fig. 8 (f) for illustration). Although their physical significance415

cannot be formally demonstrated from this study, we expect that applications

to realistic sites will greatly benefit from our proposed method. Moreover, the

mean intertidal cross-shore bed slope obtained with the EW scheme after several

months (∼ 0.01) remains close to the initial one, whereas it reaches very large
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values (∼ 0.1) with the original method while the bathymetry turns unrealistic.420

Indeed, the increase of cross-shore bed slope reduces the surfzone width, which

increases the gradients of wave radiation stress and in turn increases the wave-

induced longshore current. As sediment transport is a non-linear function of

the current velocity, this problem may cause large errors in longshore transport

rates and impact the evolution of the inlet significantly.425

6. Conclusion

In order to improve an existing unstructured grid, 2DH, morphodynamic

modelling system, a numerical scheme combining an Euler temporal discretiza-

tion and a WENO formalism for spatial discretization is used to solve the Exner

equation. Through three idealized test cases, this numerical method is compared430

to the original one of SED2D module, which stability is guaranteed through the

inclusion of additional diffusion. The first two test cases demonstrate the en-

hanced accuracy of the EW scheme over the original one. Indeed, the additional

diffusion method is shown to be inappropriate since it remains arbitrary and does

not solve the problem locally. The advantages of the new method are also evalu-435

ated through the pluri-monthly morphodynamic simulation of an idealized inlet

subjected to tides and waves. Non-oscillating and realistic bed evolutions were

obtained, as partly attested when confronting the development and evolution of

several bedforms (e.g. ebb-delta sandbars, secondary flood channel, or oblique

sandbars at adjacent beaches) to related studies and satellite images. Moreover,440

the additional computation time due to the use of the EW scheme appears neg-

ligible when considering the total computation time (i.e. for a fully-coupled run

with waves and tidal forcings). Our new method can be implemented in any

UG, 2DH, parallelized, morphodynamic modelling system, but also in 3D mod-

els where the Exner equation is solved for bedload transport. Future work will445

be to use the EW scheme in realistic test cases and to compare its advantages

with alternative methods, such as the residual distribution schemes (Abgrall,

2006) which proved their efficiency in the wave model WWM-II.
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