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Abstract

In this paper, we develop greedy algorithms to tackle the problem of finding sparse approxima-
tions of zeros of operators in a Hilbert space of possibly infinite dimension. Four greedy algorithms,
Subspace Pursuit, CoSaMP, HTP and IHT, which are classically used for sparse approximation, are
extended. A criterion, the Restricted Diagonal Property, is developed. It guarantees the definition
of the extended algorithms and is used to derive error bounds. We also provide examples and
experiments that illustrate these theoretical results.

Keywords: Sparse representation; greedy algorithm; Hilbert space; zero-finding; non-convex
optimization; Poisson denoising.

1 Introduction

1.1 Motivations

The demand for high-dimensional data analysis has been significantly boosted over the past decade
by, on the one hand, the emergence of large-size data such as found in medical or sonar imaging,
social networking, bioinformatics. . . and on the other hand, the democratization of portable devices
required to perform complex task with limited resources. When formalizing these problems, the large
dimensionality or amount of data available usually leads to a complex high-dimensional set of solutions,
while the number of collected samples to evaluate these solutions is significantly smaller. This renders
any inference from the data ill-posed. Sparse modeling has proved to be quite efficient to alleviate this
problem by capturing the intrinsic low-dimensional structure in the data that can not be revealed on
the raw problem. Having at hand computational methods aiming at modeling high dimensional data
with sparse representations is therefore of the utmost importance.

The seminal problem in sparse modeling is that of finding the best k-sparse approximation of a
signal y on a redundant dictionary Φ or more formally, to solve the problem:

Find x̂ ∈ argmin
x∈RK

1
2 ‖Φx− y‖

2
2 s.t. ‖x‖0 ≤ k. (P0)

Here K represents the dimension of the raw data and may thus be very large, while k denotes the
intrinsic low dimension and is small. Since the problem involves the number of non-zeros entries,
‖x‖0, it is combinatorial by nature and thus hard to solve. Two main categories of methods have been
proposed to tackle such problems. On the one hand, greedy methods focus on the original combinatorial
problem and try to solve it by taking local decisions. In fact, they aim at finding the so-called support
of x, which is the location of the non-zero entries, by taking the best decision locally. The value of the
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corresponding coefficients is of course estimated in the process as well. Although greedy methods such
as Matching Pursuit (MP) or Orthogonal Matching Pursuit (OMP) (Mallat and Zhang, 1993) were the
first techniques employed to solve Problem (P0), the second category, namely the relaxation methods,
has enjoyed a lot of attention in the literature. Relaxation methods use a proxy for the l0-pseudo norm
‖.‖0, thus rendering the problem easier to solve. The most popular relaxation is the l1-norm, which
leads to a convex optimization problem, but other techniques involving non-convex norms approaching
the l0-pseudo norm are used as well. Relaxation methods, although not designed to solved the original
problem, may provably solve it, as is the case for the l1 relaxation under the RIP property (Candès
et al., 2006). Moreover they have been studied quite thoroughly in several aspects since they also
pertain to a large class of research areas such as convex optimization, control, etc. As a result it has
been possible to extend their use quite further from the original setting of Problem (P0), for example
by considering other penalty terms (Kullback-Liebler divergence, hinge-loss), by modifying the sparse
structure to group-sparsity. . . or even tackling inverse problems instead of the approximation problem.

The scope of greedy methods has not been extended so far for now. The goal of this paper is to
go one step further in this direction. It tackles in particular the following questions: 1) Can greedy
methods be used in the inverse problem setting, where the penalty may not by differentiable and more
precisely, can the proximal tools, quite useful in convex optimization, be of help in this framework?
2) Can greedy methods be employed with non-linear operators, or solve for the more general questions
than approximation such as best k-sparse solution to a non-linear problem? 3) Can greedy methods
work in infinite dimension, knowing that so far, most guarantees in the matter actually rely on the
fact that the ambient space is of finite dimension?

1.2 State-of-the-art

Let us make a quick review of the literature concerning what we call here greedy methods.
In the context of finding the best k-sparse approximation of linear system of equations (i.e. Prob-

lem (P0)), many methods has been proposed. Besides the original Matching Pursuit (MP), Orthogonal
Matching Pursuit (OMP) (Mallat and Zhang, 1993), one can cite Iterative Hard Thresholding (IHT),
Compressed Sampling Matching Pursuit (CoSaMP) (Needell and Tropp, 2009) or Subspace Pursuit
(SP) (Dai and Milenkovic, 2009). These methods have been analyzed using linear algebra tools, in
particular notions like the Restricted Isometry Property (RIP), spark or mutual (in)coherence played
an essential role to analyze them. Moving away from the linear setting, that is, trying to exploit greedy
methods to find a k-sparse approximation to a non-linear system of equation thus requires new tools.

In the literature, several generalizations of the previously mentioned greedy methods have been
proposed, they all attempt to find the k-sparse element that minimizes a loss, (i.e. they replace the
1
2 ‖Φx− y‖

2
2 Problem (P0) with a more generic function):

Find x̂ ∈ argmin
x∈RK

f(x) s.t. ‖x‖0 ≤ k. (P1)

The first works in this direction are on OMP by (Zhang, 2011) and IHT (Blumensath, 2013) where
the authors used the Bregman divergence to build a criterion for convergence. This criterion has
then been used to generalize CoSaMP with the Gradient Support Pursuit (GRASP) (Bahmani et al.,
2013), Hard Thresholding Pursuit (Yuan et al., 2014) and the greedy forward-backward (Jalali et al.,
2011). Recently (Jain et al., 2014) provided a generalization of many existing methods in the context
of function minimizing and M-estimation. All these methods aim at finding the k-sparse minimizer of
a convex (generally smooth) function and in a finite dimensional Hilbert space.

In this paper, we propose a new point of view: instead of generalizing Problem (P0) to more
complex minimization problem, we rather ask whether greedy methods can solve a non-linear set of
equation denoted by an operator T under a sparsity constraint. We formulate the problem in a Hilbert
space that is not necessarily of finite dimension. We adapt four classical greedy methods, namely
CoSaMP, Subspace Pursuit, Iterative Hard thresholding and Hard Thresholding Pursuit (Foucart,
2011) to this setting. We propose a criterion that is quite inspired by the Restricted Isometry Property
and guarantees the behavior of these generalizations. We finally exhibit examples, both theoretical
and numerical to illustrate these results.
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1.3 Problem Formulation

Before expressing the problem we want to tackle, let us first detail the notation used throughout the
paper:

• H is a real separable Hilbert space, {ei}i∈N is an orthonormal basis of H (note that H need not
be finite-dimensional) and 〈., .〉 and ‖.‖ the corresponding scalar product and endowed norm.
For x in H, xi = 〈ei, x〉.

• T : H → H is an operator on H with full domain: dom(T) = H. I denotes the identity.

• supp(x) is the support of x:
supp(x) = {i ∈ N : xi 6= 0} . (1)

• For (x, y) ∈ H2, the union of their supports is supp(x, y) = supp(x) ∪ supp(y).

• ‖x‖0 = card(supp(x)) is the l0-pseudo norm of x. i.e. the number of non-zero entries in the
sequence {xi}i∈N (card denotes the cardinal).

• If R is a subset of N, Rc is its complement Rc = {i ∈ N/i 6∈ R}.

• x|R denotes the orthogonal linear projection of x onto span{ei, i ∈ R} for R a finite subset of
N:

x|R =
∑
i∈R

xiei . (2)

• x|k denotes the restriction of x to its k largest entries when k is an integer: given ψ a permutation
such that |xψ(i)| ≥ |xψ(i+1)| for all i, then

x|k =
k∑
i=1

xψ(i)eψ(i) . (3)

• PR is the orthogonal linear projection PR : x 7→ x|R when R a finite subset of N.

• Γ0(H) is the set of functions from H to ]−∞,+∞] which are lower semicontinuous, convex, and
proper.

In this paper we tackle the problem of finding a k-sparse solution of non-linear system of equation,
in other words:

Given T : H → H and d ∈ H, find x ∈ H s.t. T(x) = d and ‖x‖0 ≤ k . (P2)

As is clear by replacing T with T′ : x 7→ T(x)−d, it is equivalent to finding the zero of a non-linear
operator that is k-sparse:

Find x ∈ H s.t. T′(x) = 0 and ‖x‖0 ≤ k . (P3)

This problem may not always have a solution: for example, if T is the differential of a convex
function, Problem (P3) amounts to finding a global minimizer of that function which is k-sparse: that
may not exist ! The criterion we propose in Section 3.1 and the subsequent theorems show that if
Problem (P3) has a solution, we guarantee to converge to it, and otherwise we guarantee to find a
“good” guess in a sense that will be made clear by the theorems themselves.

1.4 Paper Organization

The rest of the paper is organized as follows. Section 2 details four greedy algorithms generalized to
the non-linear setting of Problem (P3). Section 3 introduces our new criterion, which is consequently
used in Section 4 to derive theoretical convergence guarantees for these four algorithms. The proofs
are given in Section 5. Examples of applications are given in Section 6 and numerical experiments in
Section 7.
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2 Four Generalized Greedy Algorithms

2.1 Algorithms

Let us start with explaining how to adapt what we call here greedy methods to solve Problem (P3).
The seminal methods that were designed to find the best k-sparse approximation on a dictionary
Φ = (φ1, . . . , φM ) in Problem (P0), namely MP and OMP, were termed greedy because of the way
they aggregate information. Indeed, starting from the null approximation or equivalently the empty
set for the support of the solution, they select at every iteration a new atom φi that is added to
the support and update the approximation accordingly. Here we will focus on the second generation
of so-called greedy methods designed for Problem (P0), where instead of starting from scratch and
selecting one atom at a time, one rather starts with a set of k atoms and have this support set evolve.
The first algorithm proposed that does so is CoSaMP (Needell and Tropp, 2009), other have followed
such as Subspace Pursuit (Dai and Milenkovic, 2009) or HTP (Foucart, 2011). We will generalize
those three which share the same structure, as well as Iterative Hard Thresholding which may be seen
as a simpler version (less focussed on the support).

The common structure of Subpace Pursuit, CoSaMP and HTP for Problem (P0) is the following.
Given a candidate support T of size k and a candidate solution x:

Step 1: One identifies new candidate atoms φi by examining the residual Φx− y.

Step 2: One defines an extended support S of size 2k or 3k or 4k, by aggregating T and the labels
of the atoms found at step 1.

Step 3: One designs b, a -possibly approximate- solution of Pb. (P0) on the extended support S.

Step 4: One identifies in b the k “best” atoms and update the support T of size k accordingly.

Step 5: One designs x, a -possibly approximate- solution of Pb. (P0) on the support T .

CoSaMP, HTP and Subspace Pursuit all proceed through these five steps and iterate. The new
directions chosen at step 1 are a set of k or 2k or 3k atoms yielding the largest coefficients of Φ∗(Φx−y).
Step 4 consists in selecting the k atoms with largest coefficients of b (i.e. T = supp(b|k)). Step 1 and
4 being essentially the same, the main differences lie in the way they design the solutions b and x
at step 3 and 5. The choices made in CoSaMP, HTP and Subspace Pursuit are: i) b or x is the
exact solution to the subproblem at stake, ii) b is an approximate solution found after a gradient step:
b = x− ηΦ∗(Φx− y) , iii) x is b|k.

To adapt these algorithms to the minimization of a generic differentiable loss in Problem (P1), one
notices that Φ∗(Φx − y) is the gradient of 1

2 ‖Φx− y‖
2
2 and thus simply use ∇f instead. To tackle

our problem of finding the zero of an operator, we naturally further replace ∇f with the operator T.
The common structure thus becomes:

Step 1: One identifies new candidate atoms φi by examining T(x).

Step 2: One defines an extended support S of size 2k or 3k or 4k, by aggregating T and the labels
of the atoms found at step 1.

Step 3: One designs b, a -possibly approximate- solution of Pb. (P3) on the extended support S.

Step 4: One identifies in b the k “best” atoms and update the support T of size k accordingly.

Step 5: One designs x, a -possibly approximate- solution of Pb. (P3) on the support T .
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Algorithm 1 Generalized Subspace Pursuit

1: Require: T, k .
2: Initialization: x← 0, S ← ∅.
3: repeat
4: G ← supp(T(x)|k) , . Step 1: select new directions.
5: Sold ← S ,
6: S ← G ∪ supp(x) , . Step 2: set extended support.

7: b ∈ H s.t.

{
supp(b) ⊆ S
T(b)|S = 0.

. Step 3: solve on extended support.

8: T ← supp(b|k) , . Step 4: set support.

9: x ∈ H s.t.

{
supp(x) ⊆ T
T(x)|T = 0.

. Step 5: solve on the support.

10: until Sold = S .
11: Output: x.

Algorithm 2 Generalized CoSaMP

1: Require: T, k .
2: Initialization: x← 0, S ← ∅.
3: repeat
4: G ← supp(T(x)|2k) , (∗)
5: Sold ← S ,
6: S ← G ∪ supp(x) ,

7: b ∈ H s.t.

{
supp(b) ⊆ S
T(b)|S = 0.

8: T ← supp(b|k) ,

9: x← b|k . (∗)

10: until Sold = S .
11: Output: x.

Algorithm 3 Generalized HTP

1: Require: T, k, η . (∗)
2: Initialization: x← 0, S ← ∅.
3: repeat
4: G ← supp(T(x)|k) , (∗)
5: Sold ← S ,
6: S ← G ∪ supp(x) ,

7: b← (I− ηT)(x)|S , (∗)

8: T ← supp(b|k) ,

9: x ∈ H s.t.

{
supp(x) ⊆ T
T(x)|T = 0.

10: until Sold = S .
11: Output: x.

Algorithm 4 Generalized Iterative Hard Thresholding

Require: T, k, η, ε .
Initialization: x← 0 .
repeat

b← (I− ηT)(x) , (∗)

T ← supp(b|k) ,
xold ← x ,
x← b|k . (∗)

until ‖xold − x‖ ≤ ε .
Output: x.

Generalized Subspace Pursuit (GSP) described in Algo. 1, Generalized CoSaMP (GCoSaMP) de-
scribed in Algo. 2 and Generalized HTP (GHTP) described in Algo. 3 follow the structure just de-
scribed. We pinpoint exactly steps one to five for Generalized Subspace Pursuit in Algo. 1. For the
two subsequent algorithms, we only marked with a star the differences with Generalized Subspace Pur-
suit. As noted before, the difference besides the number of new directions selected lies in the choice
for b and x. While Generalized Subspace Pursuit chooses the exact solution for both - which might
be computationally costly -, Generalized CoSaMP and Generalized HTP both choose to make some
approximations: Generalized CoSaMP does so in the last step x = b|k, while Generalized HTP does
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it in the third step: b = (I− ηT)(x)|S .
Let us discuss briefly the “exact solution” mentioned here. Given a finite set R the goal here is

to find the best element of H with support in R complying with Problem (P3). As mentioned in
Section 1, Problem (P3) may not have a solution, and naturally its restriction to elements supported
in R might not as well. However, one can guarantee the existence of a solution for the slightly relaxed
problem (used in GSP, GCoSaMP and GHTP):

Find z ∈ H s.t. supp(z) ⊆ R and T(z)|R = 0 . (P4)

Note that when T is the differential of a convex function, this corresponds to a minimizer among the
vectors supported in R which does exist under mild conditions.

Let us finally mention a fourth generalized greedy algorithm: Generalized Iterative Hard Thresh-
olding (GIHT) described in Algo. 4. This simpler algorithm does not focus on finding the support
but rather directly x. It does so by selecting the k largest entries of b = (I− ηT)(x), thus essentially
bypassing the concept of extended support used above. Its name stems from the fact that selecting
the k largest entries of an element z of H i.e. z|k is also called hard-thresholding. Although simpler in
essence, we will show that the same convergence analysis may be conducted for Generalized Iterative
Hard Thresholding and the three other algorithms described above.

2.2 When are these algorithms well-defined ?

Before discussing the convergence of these algorithms, one must first ensure that they are well-defined.
Since T is an operator on H with full domain, GIHT as well as steps 1, 2 and 4 in GSP, GCoSaMP and
GHTP are well-defined. So are the approximations used in step 5 of GCoSaMP (x = b|k) or step 3 of
GHTP (b = (I− ηT)(x)|S). The remaining question is thus to ensure the existence of the solution of
the subproblems in steps 3 and 5 of GSP. More precisely, for GSP one needs to ensure for all sets R of
size smaller or equal than 2k, there exists an element z in H, verifying i) R contains the support of z
and ii) R is disjoint from the support of T(z) (i.e. supp(z) ⊆ R and T(z)|R = 0). Although this is not
the case in general, this happens for example when I−T is a contraction. We will see in Section 4.1
that we need a less strong property to ensure that the algorithms are well-defined and guarantee their
convergence at the same time. This property is called the Restricted Diagonal Property.

3 The Restricted Diagonal Property

In this section, we present the Restricted Diagonal Property and its links to the criteria used in the
literature.

3.1 The Restricted Diagonal Property

To ensure the convergence of algorithms 1 to 4, we ask that the operator T has a specific property,
namely it looks like a diagonal operator bounded away from zero locally on k-sparse vectors. To this
end, we introduce D1 the set of diagonal operators bounded away by 1:

D1 =

D : H → H,
x 7→

∑
i dixiei

s.t. ∀x ‖Dx‖ ≥ ‖x‖

 . (4)

Definition 1 (Uniform Restricted Diagonal Property). T is said to have the Uniform Restricted
Diagonal Property (URDP) of order k if there exists αk > 0 and a diagonal operator Dk in D1 such
that

∀(x, y) ∈ H2, card(supp(x, y)) 6 k ⇒ ‖T(x)−T(y)−Dk(x− y)‖ 6 αk ‖x− y‖ . (5)

In other words, the T has the Uniform Restricted Diagonal Property of order k when its k-sparse
increments look diagonal. Depending on the algorithm, the existence and convergence may be proved
with a less stringent version, the Restricted Diagonal Property, that allows the diagonal operator to
vary on different subspaces of size k:
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Definition 2 (Restricted Diagonal Property). T is said to have the Restricted Diagonal Property
(RDP) of order k if there exists αk > 0 such that for all subsets S of N of cardinal at most k, there
exists a diagonal operator DS ∈ D1 such that

∀(x, y) ∈ H2, supp(x, y) ⊆ S ⇒ ‖T(x)−T(y)−DS(x− y)‖ 6 αk ‖x− y‖ . (6)

Note that by definition αk 6 αk+1.

Remark 3. When T has the Restricted Diagonal Property (resp. Uniform RDP) of order 2k then
for all k-sparse vectors i.e. when ‖x‖0 6 k and ‖y‖0 6 k, we have ‖T(x)−T(y)−D(x− y)‖ 6
α2k ‖x− y‖, with D = Dsupp(x,y) (resp. D = D2k).

Remark 4. If in addition α2k < 1, then T is injective on the set of k-sparse vectors. Indeed, since the
diagonal operators involved are bounded away from zero by one, we have in this case: ‖T(x)−T(y)‖ ≥
(1− α2k) ‖x− y‖ when ‖x‖0 6 k and ‖y‖0 6 k.

Remark 5. When T has the Uniform Restricted Diagonal Property with α2k < 1 and D bounded,
one also has

(1− α2k) ‖x− y‖ 6 ‖T(x)−T(y)‖ 6 (‖D2k‖+ α2k) ‖x− y‖ ,
when ‖x‖0 6 k and ‖y‖0 6 k. If T is linear, this means that T is RIP with constant max(α2k, ‖D2k‖−
1 + α2k). Thus for linear operators, the operators having the Uniform Restricted Diagonal Property
of order 2k with a bounded D form a subset of the RIP operators of order k. Note that this is not the
case any more for the operators having Restricted Diagonal Property which thus concerns a different
set of operators.

3.2 Characterization of the Uniform Restricted Diagonal Property

To further link the URDP to properties used in the literature, we first give a characterization expressing
the differences T(x)−T(y) rather than the differences against diagonal T(x)−T(y)−D(x− y):

Theorem 6. Assume that D ∈ D1 is bounded in the following sense

|||D|||k
def
= sup
{x6=y, card(supp(x,y))≤k}

‖D(x− y)‖
‖x− y‖

= sup
{x 6=0, card(supp(x))≤k}

‖D(x)‖
‖x‖

<∞. (7)

we have:

1. If βT is URDP of order k for D, with αk < 1 and β > 0 then

∀(x, y) ∈ H2, card(supp(x, y)) ≤ k ⇒

{
‖T(x)−T(y)‖ ≤ |||D|||k+αk

β ‖x− y‖
〈T(x)−T(y), D(x− y)〉 ≥ 1−αk

β ‖x− y‖2 .
(8)

2. If there exists (m,L) ∈ R2 such that 0 < m and 0 ≤ |||D|||2k −
m2

L2 < 1 and

∀(x, y) ∈ H2, card(supp(x, y)) ≤ k ⇒
{
‖T(x)−T(y)‖ ≤ L ‖x− y‖
〈T(x)−T(y), D(x− y)〉 ≥ m ‖x− y‖2 . (9)

then (βT) is URDP of order k for D, with αk = |||D|||2k −
m2

L2 and β = m
L2 .

Remark 7. Consider the assumption m2

L2 ≤ |||D|||2k ≤
m2

L2 + 1 made in Theorem 6. Notice that
Eq. (9) implies that m ≤ L|||D|||k so that the left inequality is always true. We also pinpoint that

|||D|||2k ≤
m2

L2 + 1 always holds for D = I.

The proof is postponed to A. The conclusion is that being URDP of order k for a bounded D
and αk < 1 is up to a scaling equivalent to T having a Lipschitz property and a lower bound on
the scalar product 〈T(x)−T(y), D(x− y)〉, both properties holding on the couples (x, y) such that
card(supp(x, y)) 6 k.

Remark 8. A similar theorem hold for T having the RDP and further assuming that there exist a
uniform bounded of the type of Eq. (7) on the matrices DS in Definition 2.
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3.3 Uniform Restricted Diagonal Property with the identity, RIP and other cri-
teria

Let us consider T = ∇f with f : H → R+ smooth. Theorem 6 shows that a scaled version of ∇f is
URDP of order k, with αk < 1 and D the identity if and only if ∇f is Lipschitz and f has a strong
convexity property on the couples (x, y) such that card(supp(x, y)) 6 k. This is the same content
as the Restricted Strong Smoothness and Restricted Strong Convexity developed in (Bahmani et al.,
2013; Yuan et al., 2014) for the resolution of Problem (P1).

Furthermore, for the classical case of the quadratic loss i.e. f(x) = ‖Ax− z‖22, one also verifies
easily that Theorem 6 shows that a scaled version of ∇f is URDP of order k, with αk < 1 and D the
identity if and only if A is RIP (Candès et al., 2006).

Let us also emphasize that Theorem 6 shows that Uniform RDP with D different from identity
encompasses a greater set of functions than the classical notions seen above. Indeed as soon as D has
at least one negative eigenvalue the second inequality in Eq. (8) does not yield convexity anymore,
and the Lipschitz characteristic is preserved only if D is bounded.

4 Theoretical Guarantees

In this section, we present the theoretical guarantees we obtain for Algorithms 1 to 4. They rely
on T having the Restricted Diagonal Property. We show how this ensures that the algorithms are
well-defined and derive the error bounds.

4.1 The Restricted Diagonal Property and existence of solutions to Problems (P3)
and (P4)

Proposition 9.

1. Problem (P3) has at most one solution when T has the Restricted Diagonal Property of order
2k with α2k < 1.

2. Problem (P4) has at least one solution for all sets R of cardinal at most k when T has the
Restricted Diagonal Property of order k with αk < 1.

Examining the size of the support set when Problem (P4) appears at step 3 or 5 of the algorithm,
one deduces that

Corollary 10.

• GSP (Algo. 1) is well-defined when T is an operator having the Restricted Diagonal Property
of order 2k with α2k < 1.

• GCoSaMP (Algo 2) is well-defined when T is an operator having the Restricted Diagonal Prop-
erty of order 3k with α3k < 1.

• GHTP (Algo 3) is well-defined when T is an operator having the Restricted Diagonal Property
of order k with αk < 1.

Let us now prove Proposition 9:

Proof. 1. As noted in Remark 4, if T has the RDP of order 2k with α2k < 1, then T is injective
on the set of k-sparse vector and thus Problem (P3) has at most one solution.
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2. Let R be of cardinal at most k. Since T has the RDP of order k with αk < 1, there exists DR
in D1 such that Eq. (6) holds. Noting DR(z) =

∑
i∈R diziei, we have

‖T(x)−T(y)−DR(x− y)‖2 =
∑
i 6∈R

[T(x)i −T(y)i]
2 +

∑
i∈R

[T(x)i −T(y)i − di(xi − yi)]2 ,

≥
∑
i∈R

[T(x)i −T(y)i − di(xi − yi)]2 ,

≥
∑
i∈R

d2
i

[
T(x)i
di
− T(y)i

di
− (xi − yi)

]2

,

≥ min
j∈R

d2
j

∑
i∈R

[
T(x)i
di
− T(y)i

di
− (xi − yi)

]2

,

≥
∥∥TR(x)i −TR(y)i −PR(x− y)

∥∥2
,

where we have defined TR : H → H, x 7→
∑

i∈R
T(x)i
di

ei and we have used that minj∈R d
2
j ≥ 1

(since DR in D1). Combining this with Eq. (6), we obtain:

∀(x, y) ∈ span(ei, i ∈ R)2,
∥∥TR(x)−TR(y)− (x− y)

∥∥ 6 αk ‖x− y‖ . (10)

In other words TR − I is a contraction from span(ei, i ∈ R) into itself. span(ei, i ∈ R) being a
subspace of H of finite dimension, it is also a Banach space. The contraction thus has a fixed
point (Cegielski, 2013). There exists x0 in span(ei, i ∈ R) such that TR(x0) − I(x0) = x0 i.e.

TR(x0) =
∑

i∈R
T(x0)i
di

ei = 0. Using again that |di| ≥ 1, we have: T(x0)i = 0, for i in R and
thus x0 solves Problem (P4).

4.2 Error bounds

The (Uniform-)Restricted Diagonal Property allows to guarantee the good behavior of the different
algorithms presented in Section 2. As is the case for the original versions such as CoSaMP, the
guarantee is an error bound divided into two parts: one is vanishing exponentially fast while the
second refers to an incompressible error as seen in (Needell and Tropp, 2009).

Let us state first the error bound for Generalized Support Pursuit:

Theorem 11. Denote by x? any k-sparse vector and αS the unique real root of g(x) = x3 +x2 +7x−1
(αS < 1). If there exists ρ > 0 such that ρT has the Restricted Diagonal Property of order 3k with
α3k 6 αS. Then xN , the N -th iterate of GSP (Algo. 1), verifies∥∥xN − x?∥∥ 6

1

2N
∥∥x0 − x?

∥∥+ 12ρ
∥∥∥T(x?)|2k

∥∥∥ . (11)

Note that the incompressible error
∥∥∥T(x?)|2k

∥∥∥ vanishes if x? is a solution of Problem (P3), assuring

that GSP converges exponentially fast to it. Otherwise, the iterates are guaranteed to approach the
“best” k-sparse vector in the sense that it is the one for which the best 2k-sparse approximation of
T (x) is the smallest.

A similar bound holds for GCoSaMP:

Theorem 12. Denote by x? any k-sparse vector and αC = 2√
3
− 1. If there exists ρ > 0 such that

ρT has the Restricted Diagonal Property of order 4k with α4k 6 αC . Then xN , the N -th iterate of
Generalized CoSaMP (Algo. 2), verifies∥∥xN − x?∥∥ 6

1

2N
∥∥x0 − x?

∥∥+ 12ρ
∥∥∥T(x?)|3k

∥∥∥ . (12)

9



Notice that a similar theorem was proposed in Bahmani et al. (2013) for the special case where
T = ∇f is URDP (D = I).

By contrast with GSP and GCoSaMP, we require the Uniform Restricted Diagonal Property to
hold with the identity matrix for GHTP and GIHT:

Theorem 13. Denote by x? any k-sparse vector. Assume that 3
4 < η < 5

4 . If T has the Uniform

Restricted Diagonal Property of order 2k with D2k = I and α2k 6 αH = 7 − 2
√

11. Then xN , the
N -th iterate of Generalized HTP (Algo. 3), verifies∥∥xN − x?∥∥ 6

1

2N
∥∥x0 − x?

∥∥+ 2 (1+2η)(1−α2k)+4
(1−α2k)2

∥∥∥T(x?)|2k

∥∥∥ . (13)

A similar bound has been shown in (Yuan et al., 2014). Notice that there exists a variant of HTP
where one can select l < k new directions at each iteration instead of k (line 4 of Algo. 3), which has
been proved to be beneficial in Jain et al. (2011).

For GIHT, the error bound reads:

Theorem 14. Denote by x? any k-sparse vector and αη = 1−4|η−1|
4(1+|η−1|) . Assume that 3

4 < η < 5
4 so that

αη > 0. If T has the Uniform Restricted Diagonal Property of order 2k with D2k = I and α2k 6 αη .
Then xN , the N -th iterate of Generalized IHT (Algo. 4), verifies∥∥xN − x?∥∥ 6

1

2N
∥∥x0 − x?

∥∥+ 4η
∥∥T(x?)|3k

∥∥ . (14)

The guarantees derived for the algorithms differ for the RDP bounds (αS , αC , αH , αη) and factor
in front of the incompressible error term. However, the fundamental difference between the algorithms
does not lie there, but rather in the possibility to consider RDP operators (for GSP and GCoSaMP)
rather than the Uniform-RDP with the identity (for GIHT and GHTP).

Indeed, as we have seen in Section 3, Uniform-RDP with the identity relates to the properties
previously developed in the literature to control greedy algorithms for minimizing functions i.e. when
T = ∇f . More precisely it is equivalent to a Lipschitz property on ∇f combined with a strong
convexity property on f on couples of sparse vectors. This is precisely what is used in (Bahmani
et al., 2013) for example to prove a bound similar to Theorem 12 for GCoSaMP for minimizing a
function.

By contrast, GSP and GCoSaMP only require the Restricted Diagonal Property which, for T = ∇f ,
does not imply Lipschitz properties nor convexity: the diagonal operators involved may change with
subspaces, and include negative diagonal values... (see also Section 6 for details). Thus, Theorems 11
and 12 also show that GSP and GCoSaMP can naturally handle a larger class of Problems than GIHT
and GHTP, namely they can be used for finding k-sparse extrema of functions with either convex, or
concave or neither of both properties on k-sparse vectors.

Additionally Theorems 11 to 14 extend the scope of greedy algorithms to finding k-sparse zeros of
operators (Problem P3).

5 Proof

In this section, we show how to derive the error bound for GSP (Theorem 11). The proof has a similar
structure as the ones in (Needell and Tropp, 2009) or (Bahmani et al., 2013). It relies on the two
lemmas described in Section 5.1 that use the RDP to control the differences T(x)−T(y) on supp(x, y)
and its complement when x and y are sparse. With those, we are able to control the error made in the
three main actions taken by the algorithms. We state the corresponding three Lemmas in Section 5.2.
We then proceed to the complete proof of Theorem 11 by successively bounding the error made at
each step of the algorithm in Section 5.3.

The proofs of the bounds for GCoSaMP, GHTP and GIHT (Theorems 12 to 14) are similar and
postponed to B.
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Note that running GSP with ρT or T yields the same iterates, therefore the error bound may be
proved by setting T′ = ρT and showing that if T′ has the Restricted Diagonal Property of order 3k
with α3k 6 αS then ∥∥xN − x?∥∥ 6 1

2N

∥∥x0 − x?
∥∥+ 12

∥∥∥T′(x?)|2k∥∥∥ . (15)

Here we assume that x? is a k-sparse vector in H.

5.1 The Two Pillars

Let us show that the RDP allows to control the difference T(x)−T(y) of any two sparse vectors both
on the union of their support supp(x, y) (Lemma 15) and on its complement (Lemma 16). These two
lemmas are the pillar of the analysis of the error bounds.

Lemma 15 characterizes how the energy of T(x)−T(y) spreads on subsets of the support supp(x, y).

Lemma 15. Assume that T has the Restricted Diagonal Property of order k with αk. Let x, y ∈ H
be such that card(supp(x, y)) 6 k, we have:

∀R′ ⊆ N,
∥∥∥(T(x)−T(y))|R′

∥∥∥ > (1− αk)
∥∥∥(x− y)|R′

∥∥∥− αk ∥∥∥(x− y)| supp(x,y)\R′
∥∥∥ (16)

Proof. Let S = supp(x, y) then we have,∥∥(T(x)−T(y))|R′
∥∥ =

∥∥(T(x)−T(y)−DS(x− y) + DS(x− y))|R′
∥∥

=
∥∥(DS(x− y))|R′ − (T(x)−T(y)−DS(x− y))|R′

∥∥
>
∥∥(DS(x− y))|R′

∥∥− ∥∥(T(x)−T(y)−DS(x− y))|R′
∥∥

>
∥∥DS((x− y)|R′)

∥∥− ‖(T(x)−T(y)−DS(x− y))‖
>
∥∥(x− y)|R′

∥∥− αk ‖x− y‖ , since ‖DS(z)‖ ≥ ‖z‖
> (1− αk)

∥∥(x− y)|R′
∥∥− αk ∥∥(x− y)|S\R′

∥∥ .

The following lemma controls the energy of T(x)−T(y) outside of the supports of x and y.

Lemma 16. Assume that T has the Restricted Diagonal Property of order k with αk. Let x, y ∈ H
be such that card(supp(x, y)) 6 k, we have:

∀F ⊆ N s.t F ∩ supp(x, y) = ∅,
∥∥(T(x)−T(y))|F

∥∥ 6 αk ‖x− y‖ . (17)

Proof. Let S = supp(x, y), since F ∩ S = ∅ then DS(x− y))|F = 0 and∥∥(T(x)−T(y))|F
∥∥ =

∥∥(T(x)−T(y)−DS(x− y))|F
∥∥ 6 ‖T(x)−T(y)−DS(x− y)‖ 6 αk ‖x− y‖ .

5.2 Error Bounds for the Main Steps

Here we derive error bounds for the following actions

1. changing support (steps 1 and 2 of the algorithms),

2. computing an exact solution of a subproblem (steps 3 and 5 of GSP, step 3 of GCoSaMP, step
5 of GHTP),

3. computing a k-sparse approximation (steps 5 of GCoSaMP, step 3 of GHTP).

In the first lemma, we consider the influence of merging two sets when seeking for new directions.
One set is usually the current support set T while the other is derived from the support of T(x).
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Lemma 17 (Changing supports). Assume that T has the Restricted Diagonal Property of order k
with αk < 1. Let R and S be subsets of N and x, y ∈ H. Assume that supp (x, y) ⊆ R, card(R) 6 k,
and

∥∥T(x)|R
∥∥ 6

∥∥T(x)|S
∥∥, then∥∥(x− y)|Sc
∥∥ 6 2αk

1−αk
‖x− y‖+ 1

1−αk

(∥∥T(y)|R\S
∥∥+

∥∥T(y)|S\R
∥∥) .

If additionally supp (x) ⊆ S, we have∥∥y|Sc∥∥ 6 2αk
1−αk

‖x− y‖+ 1
1−αk

(∥∥T(y)|R\S
∥∥+

∥∥T(y)|S\R
∥∥) .

Proof.
∥∥T(x)|R

∥∥ 6
∥∥T(x)|S

∥∥ implies
∥∥T(x)|R\S

∥∥ 6
∥∥T(x)|S\R

∥∥.
Using the triangle inequality and Lemma 15, we have,∥∥T(x)|R\S

∥∥ >
∥∥(T(x)−T(y))|R\S

∥∥− ∥∥T(y)|R\S
∥∥

> (1− αk)
∥∥(x− y)|R\S

∥∥− αk ∥∥(x− y)| supp(x,y)\(R\S)

∥∥− ∥∥T(y)|R\S
∥∥

> (1− αk)
∥∥(x− y)|R\S

∥∥− αk ‖x− y‖ − ∥∥T(y)|R\S
∥∥ .

Moreover since supp(x, y) ∩ (S \ R) = ∅, Lemma 16 yields∥∥T(x)|S\R
∥∥ 6

∥∥(T(x)−T(y))|S\R
∥∥+

∥∥T(y)|S\R
∥∥

6 αk ‖x− y‖+
∥∥T(y)|S\R

∥∥ .

Combining these two inequalities, we obtain

αk ‖x− y‖+
∥∥T(y)|S\R

∥∥ > (1− αk)
∥∥(x− y)|R\S

∥∥− αk ‖x− y‖ − ∥∥T(y)|R\S
∥∥ .

Noting that (x− y)|R\S = (x− y)|Sc because supp (x, y) ⊆ R and αk < 1, we conclude∥∥(x− y)|Sc
∥∥ 6 2αk

1−αk
‖x− y‖+ 1

1−αk

(∥∥T(y)|R\S
∥∥+

∥∥T(y)|S\R
∥∥) .

The second lemma controls the distance from a k-sparse vector to a solution of the subproblem (P4).

Lemma 18 (Control of the distance to an exact solution of a subproblem). Assume R is a subset of
N of cardinal at most l, b solves Problem (P4), and T has the Restricted Diagonal Property of order
k + l with αk+l < 1. ∀x ∈ H k-sparse, we have∥∥(x− b)|R

∥∥ 6 1
1−αk+l

∥∥T(x)|R
∥∥+

αk+l

1−αk+l

∥∥x|Rc

∥∥ .

Proof. Lemma 15 shows∥∥∥(T(x)−T(b))|R

∥∥∥ > (1− αk+l)
∥∥∥(x− b)|R

∥∥∥− αk+l

∥∥∥(x− b)| supp(x,b)\R

∥∥∥∥∥∥(T(x)−T(b))|R

∥∥∥ > (1− αk+l)
∥∥∥(x− b)|R

∥∥∥− αk+l

∥∥∥(x− b)|Rc

∥∥∥
Using supp(b) ⊆ R and T(b)|R = 0, we obtain∥∥∥T(x)|R

∥∥∥ > (1− αk+l)
∥∥∥(x− b)|R

∥∥∥− αk+l

∥∥x|Rc

∥∥ .

The result follows from αk+l < 1.

The two previous lemmas use the RDP. By contrast, the next lemma does not, it is a result of
linear algebra.

Lemma 19 (k-sparse approximation). Assume that x is k-sparse and supp(y) ⊆ S, we have∥∥x− y|k∥∥ 6 2
∥∥(x− y)|S

∥∥+
∥∥x|Sc∥∥ .

Proof. The proof is a direct application of the k-sparse approximation,∥∥x− y|k∥∥ 6
∥∥(x− y|k)|S

∥∥+
∥∥(x− y|k)|Sc

∥∥
6
∥∥x|S − y|k∥∥+

∥∥x|Sc∥∥
6
∥∥x|S − y∥∥+

∥∥y − y|k∥∥+
∥∥x|Sc∥∥ .

Since y|k is the best k-sparse approximation of y and x is k-sparse, we have
∥∥y − y|k∥∥ 6

∥∥x|S − y∥∥.
So
∥∥x− y|k∥∥ 6 2

∥∥x|S − y∥∥+
∥∥x|Sc∥∥ = 2

∥∥(x− y)|S
∥∥+

∥∥x|Sc∥∥.
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5.3 Proof of Theorem 11 (error bound on GSP)

With these five lemmas at hand, one can prove Theorems 11 to 14. We detail here the proof for GSP
and postpone the proofs for the other algorithms in B.

The proof proceeds by proving an error bound at each step of the algorithm, to obtain a recursive
bound on the error

∥∥xt − x∗∥∥. This in turn gives sufficient conditions on α3k.

5.3.1 Analysis of the main steps

First, let us fix the iteration t of Algorithm 1, we denote by xt the current estimate and xt+1 the one
obtained at end of the iteration, the sets G, S, T and the element b are the ones computed during this
iteration (i.e. with x = xt). x? stands for a fixed k-sparse vector in H.

Influence of the guessed support (Step 1 and 2)
Note that T has RDP of order 3k with α3k 6 αS < 1 implies that T has RDP of order 2k with

α2k 6 α3k < 1.
Define R = supp(xt, x?), we have card(R) 6 2k. Remember that S = supp(xt) ∪ supp(T (xt)|k).

Note that supp(xt) ⊆ S and
∥∥T (xt)|R

∥∥ 6
∥∥T (xt)|S

∥∥ since supp(xt)∩supp(T (xt)) = ∅. Thus lemma 17
yields ∥∥∥x?|Sc∥∥∥ 6 2α2k

1−α2k

∥∥xt − x?∥∥+ 1
1−α2k

(∥∥T(x?)|R\S
∥∥+

∥∥T(x?)|S\R
∥∥) .

Noting that card(R \ S) 6 k and card(S \ R) 6 k , we conclude∥∥∥x?|Sc∥∥∥ 6 2α2k
1−α2k

∥∥xt − x?∥∥+ 2
1−α2k

∥∥T(x?)|k
∥∥ . (18)

Optimization over the extended support (Step 3)
Apply Lemma 18 with l = 2k and R = S to obtain∥∥(b− x?)|S

∥∥ 6 1
1−α3k

∥∥T(x?)|S
∥∥+ α3k

1−α3k

∥∥∥x?|Sc∥∥∥ . (19)

Updating the support set (Step 4)
Lemma 19 proves that ∥∥b|k − x?∥∥ 6 2

∥∥(b− x?)|S
∥∥+

∥∥∥x?|Sc∥∥∥ . (20)

Combining this with Eq. (19) yields:∥∥b|k − x?∥∥ 6 2
1−α3k

∥∥T(x?)|S
∥∥+ 1+α3k

1−α3k

∥∥∥x?|Sc∥∥∥ . (21)

Since T = supp(b|k), we have, ∥∥∥x?|T c

∥∥∥ =
∥∥(b|k − x?)|T c

∥∥ 6
∥∥b|k − x?∥∥ .

So that ∥∥∥x?|T c

∥∥∥ 6 2
1−α3k

∥∥T(x?)|S
∥∥+ 1+α3k

1−α3k

∥∥∥x?|Sc∥∥∥ . (22)

Optimization over the updated support (Step 5)
Pick l = k and R = T and apply Lemma 18 to obtain∥∥(xt+1 − x?)|T

∥∥ 6 1
1−α2k

∥∥T(x?)|T
∥∥+ α2k

1−α2k

∥∥∥x?|T c

∥∥∥ . (23)

So ∥∥xt+1 − x?
∥∥ 6

∥∥(xt+1 − x?)|T
∥∥+

∥∥(xt+1 − x?)|T c

∥∥
6
∥∥(xt+1 − x?)|T

∥∥+
∥∥∥x?|T c

∥∥∥
6 1

1−α2k

∥∥T(x?)|T
∥∥+ 1

1−α2k

∥∥∥x?|T c

∥∥∥ . (24)

Let us now combine these inequalities to bound recursively
∥∥xt+1 − x?

∥∥.

13



5.3.2 Recursion

We start from Eq. (24), insert Eq (22) and obtain∥∥xt+1 − x?
∥∥ 6 1

1−α2k

∥∥T(x?)|T
∥∥+ 1

1−α2k

∥∥∥x?|T c

∥∥∥
6 1

1−α2k

∥∥T(x?)|T
∥∥+ 1

1−α2k

2
1−α3k

∥∥T(x?)|S
∥∥+ 1

1−α2k

1+α3k
1−α3k

∥∥∥x?|Sc∥∥∥ .

Since α2k 6 α3k, we can simplify the constants and since card(T ) ≤ card(S) ≤ 2k we have∥∥T(x?)|T
∥∥ ≤ ∥∥T(x?)|2k

∥∥ and
∥∥T(x?)|S

∥∥ ≤ ∥∥T(x?)|2k
∥∥, so∥∥xt+1 − x?

∥∥ 6
(

1
1−α3k

+ 2
(1−α3k)2

)∥∥T(x?)|2k
∥∥+ 1+α3k

(1−α3k)2

∥∥∥x?|Sc∥∥∥ .

Then inserting Eq. (18) yields∥∥xt+1 − x?
∥∥ 6 3−α3k

(1−α3k)2

∥∥T(x?)|2k
∥∥+ 1+α3k

(1−α3k)2

(
2α2k

1−α2k

∥∥xt − x?∥∥+ 2
1−α2k

∥∥T(x?)|k
∥∥)

6 3−α3k
(1−α3k)2

∥∥T(x?)|2k
∥∥+ 1+α3k

(1−α3k)2
2α3k

1−α3k

∥∥xt − x?∥∥+ 1+α3k
(1−α3k)2

2
1−α3k

∥∥T(x?)|2k
∥∥

6
(

3−α3k
(1−α3k)2

+ 1+α3k
(1−α3k)2

2
1−α3k

)∥∥T(x?)|2k
∥∥+ 1+α3k

(1−α3k)2
2α3k

1−α3k

∥∥xt − x?∥∥ ,

6 2α3k(1+α3k)
(1−α3k)3

∥∥xt − x?∥∥+
α2
3k−2α3k+5

(1−α3k)3

∥∥T(x?)|2k
∥∥ .

The sequence
{∥∥x? − xt∥∥}

t
thus verifies∥∥xt+1 − x?
∥∥ 6 2α3k(1+α3k)

(1−α3k)3

∥∥xt − x?∥∥+
α2
3k−2α3k+5

(1−α3k)3

∥∥T(x?)|2k
∥∥ . (25)

5.3.3 Error bound

From Eq.(25), we deduce

∥∥xt − x?∥∥ 6
(

2α3k(1+α3k)
(1−α3k)3

)t ∥∥x0 − x?
∥∥+

α2
3k−2α3k+5

(1−α3k)3

t−1∑
i=0

(
2α3k(1+α3k)

(1−α3k)3

)i ∥∥T(x?)|2k
∥∥ . (26)

The geometric sequence converges if only if 2α3k(1+α3k)
(1−α3k)3

< 1 which is equivalent to α3k < α1, where α1

is the unique real root of g(x) = x3 − x2 + 5x− 1 (note that α1 < 1).
For more clarity, we gave in Theorem 11 the sufficient condition

2α3k(1+α3k)
(1−α3k)3

6
1

2
⇔ α3k 6 αS , (27)

where αS is the unique real root of h(x) = x3 + x2 + 7x− 1 (note that αS < 1). If α3k < αS , we also
have

α2
3k−2α3k+5

(1−α3k)3

t−1∑
i=0

(
2α3k(1+α3k)

(1−α3k)3

)i
6

α2
3k−2α3k+5

(1−α3k)3

t−1∑
i=0

1
2i

6 2
α2
3k−2α3k+5

(1−α3k)3
6 2 (αS)2−2αS+5

(1−αS)3
6 12 .

We conclude ∥∥xt − x?∥∥ 6 2−t
∥∥x0 − x?

∥∥+ 12
∥∥T(x?)|2k

∥∥ .

This finishes the proof of Theorem 11.

6 Examples

In this section, we show examples of applications where T is related to a function f : H → R.
To show the versatility of the Generalized Greedy algorithms, the examples cover: finding sparse
approximations of minimizers of a twice differentiable convex function (Section 6.2), finding sparse
approximations of minimizers of a non-differentiable convex function (Section 6.3), and finding sparse
approximations of stationary points of a function that is neither concave nor convex but differentiable
(Section 6.4).
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6.1 Uniform Restricted Diagonal Property and second order differentiability

Let us first further characterize the URDP for T = ∇f and f twice differentiable on sparse sets.
Let us define for A : H → L(H,H) (L(H,H) is the set of linear bounded operators on H)

λk(A)
def
= inf{

(z,u), u 6=0
card(supp(z,u))≤k

} 〈u,A(z)(u)〉
‖u‖2

. (28)

Λk(A)
def
= sup{

(z,u), u 6=0
card(supp(z,u))≤k

} ‖A(z)(u)‖
‖u‖

. (29)

The following characterization follows from Theorem 6

Theorem 20. Assume f : H → R is twice differentiable on {x/ card(supp(x)) ≤ k}. Assume that D

is in D1. If 0 < λk(D
T∇2f), Λk(∇2f) <∞, and 0 ≤ |||D|||2k −

λk(DT∇2f)2

Λk(∇2f)2
< 1 then (β∇f) is URDP

of order k for D, with αk = |||D|||2k −
λk(∇2f)2

Λk(∇2f)2
and β = λk(∇2f)

Λk(∇2f)2
.

Again, for D = I, we recover the second order criteria defined along with the Restricted Strong
Smoothness and Restricted Strong Convexity developed in (Bahmani et al., 2013; Yuan et al., 2014),
confirming that our results encompass those of the present literature. We give the example of logistic
regression in the next section. It also bear similarities with the “Sparse eigenvalue” criterion in (Yang
et al., 2016).

6.2 Example of the Logistic Regression

Let us consider the case of supervised learning with a learning set {(yn, ln)}n=1...N , where yn ∈ H = Rd
is the n-th training vector and ln ∈ {0, 1} its label. We assume that the yn are independent identically
distributed with the same law as the random vector Y and that the labels ln follows a logistic law of
parameter x knowing yn that is:

P(ln|yn, x) =
1

(1 + exp(−〈yn, x〉))ln(1 + exp(〈yn, x〉))1−ln .

We wish to estimate the parameter x ∈ H to classify new instances of Y. Here we choose to
estimate x as the minimizer of the negative log-likelihood penalized by a Tikhonov term i.e. we
minimize for a given µ > 0

f(x) = 1
N

N∑
n=1

− log(P(ln|yn, x)) + 1
2µ ‖x‖

2
2 . (30)

We have:

f(x) = 1
N

N∑
n=1

(log(1 + exp(〈yn, x〉))− ln 〈yn, x〉) + 1
2µ ‖x‖

2
2 . (31)

∇f(x) = 1
N

N∑
n=1

(
1

1 + exp(〈yn, x〉)
− ln

)
yn + µx . (32)

∇2f(x) = 1
N

N∑
n=1

1

(1 + exp(〈yn, x〉))(1 + exp(−〈yn, x〉))
yny

T
n + µI . (33)

We thus have:

∀x, µI � ∇2f(x) � µI + 1
4N

N∑
n=1

yny
T
n . (34)
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Hence f is strongly convex on H and λk(∇2f) ≥ µ. Assuming furthermore that the k-sparse
projections of Y are bounded almost surely i.e.

∃ R, such that P(
∥∥Y|k∥∥2 ≤ R) = 1,

we have card(supp(u)) ≤ k ⇒ uTyny
T
nu ≤ R ‖u‖

2. Hence Λk(∇2f) ≤ µ+ R
4 so that β∇f is URDP of

order k for Dk = I, αk = 1− 1(
1+

R
4µ

)2 and β = µ(
µ+

R
4

)2 . For µ large enough, one can then guarantee

the convergence of all four algorithms for f . (Note that similar bounds were obtained in Bahmani
et al. (2013) for λk and Λk).

6.3 Application to Non-Smooth Convex Functions

In the last subsection, we considered a smooth function, but most of functions in Γ0(H) are not smooth.
One way to deal with such issue is to regularize the function itself using an infimal convolution. Here
we use the Moreau-Yosida regularization which is an infimal convolution with an `2-norm.

The Moreau-Yosida regularization of a function f ∈ Γ0(H) (Lemaréchal and Sagastizábal, 1997)
of parameter λ is defined by:

Mλ,f (x) = inf
y∈H

[
1

2λ ‖x− y‖
2 + f(y)

]
. (35)

The Moreau-Yosida envelope of a convex lower semi-continuous function has full domain and its
gradient is Lipschitz. Moreover, its minimizer is also a minimizer of the original function. These
properties make this regularization useful when dealing with non-smooth function, but it can also be
useful to regularize smooth function (e.g.the exponential as it does not have a Lipschitz gradient).

One interesting fact about the Moreau-Yosida regularization, is its link with proximal operator,
we have,

∇Mλ,f = (I− proxλf )/λ , (36)

with the proximal operator of f defined as,

proxλf : x 7→ argmin
z∈H

λf(z) +
1

2
‖z − x‖ . (37)

Proximal operators can be viewed as generalization of orthogonal projections and are easily computable
for a large set of functions (l2-, l1-, or mixed-norms, TV-norm....).

We propose to use T = ∇Mλ,f in our Generalized Greedy algorithms. All the iterates will be
well-defined because Mλ,f is convex and differentiable on H. The theoretical error bounds will hold
however only for the cases where the (U)RDP is shown (the natural Lipschitz property of T is a step
toward it). In the experimental section (Section 7), we show an example where f denotes the Poisson
likelihood.

6.4 Sparse approximation of stationary points of a differentiable function that is
neither convex nor concave

Here H = RN is split into H = RN1 × RN2 with N1 + N2 = N . x ∈ H is written accordingly
x = (x1, x2). Let us assume that A1 ∈ RP×N1 and A2 ∈ RP×N2 have the RIP property of order k,
with constants δ1

k and δ2
k. Pick z1 ∈ RP , z2 ∈ RP and γ such that 1 6 γ < 1√

δ2k
. We wish to find the

best k-sparse approximation of the stationary points of

f(x) = f(x1, x2) = 1
2 ‖A1x1 − z1‖22 −

γ
2 ‖A2x2 − z2‖22 (38)

Notice that f is a difference of convex functions so it is neither convex nor concave. We have:

∇f(x) =

(
AT1 A1x1 −AT1 z1

−γAT2 A2x2 + γAT2 z2

)
. We define D =

(
IN1 0
0 −γIN2

)
. We have:

∇f(x)−∇f(y)−D(x− y) =

(
(AT1 A1 − IN1)(x1 − y1)

(−γAT2 A2 + γIN2)(x2 − y2)

)
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so that:

‖∇f(x)−∇f(y)−D(x− y)‖22 =
∥∥AT1 A1 − IN1)(x1 − y1)

∥∥2

2
+ γ2

∥∥AT2 A2 − IN2)(x2 − y2)
∥∥2

2

6 δ1
k ‖x1 − y1‖22 + δ2

kγ
2 ‖x2 − y2‖22

6 max(δ1
k, δ

2
kγ

2)(‖x1 − y1‖22 + ‖x2 − y2‖22)

6 max(δ1
k, δ

2
kγ

2) ‖x− y‖22 .

Since max(δ1
k, δ

2
kγ

2) < 1 We conclude that T = ∇f(x) has the URDP with D and so that GSP and
GCoSaMP may be used in that case.

7 Experiments

7.1 Poisson-sparsity

Let us assume that we observe y ∈ Rn, a Poisson corrupted version of the true image x ∈ Rn,
both containing n pixels. We also assume that x has a k-sparse representation on the dictionary
Φ = (ϕ1, . . . , ϕm) ∈ Rn×m:

x = Φc =
∑

cjϕj with ||c||0 = k � n ,

where the atoms are normalized (‖ϕj‖ = 1), and that Φ is a tight frame with constant ν.
Our goal is to reconstruct x given the data y, the sparsity k and the dictionary Φ, which may be

done by solving:

x̂ = Φĉ, where ĉ = argmin
c∈Rm s.t. ||c||06k

Fy(Φc) , (P5)

where Fy(x̂) is a data fidelity term that quantifies how well an estimated image x̂ fits the observed
data y. A natural fidelity term is the negative-log-likelihood Fy(x) = − logP(y|x) which reads in the
case of Poisson noise

Fy(x) = − logP(y|x) =
n∑
i=1

f(xi, yi), with

f(ξ, η) =


−η log(ξ) + ξ if η > 0 and ξ > 0,

ξ if η = 0 and ξ > 0,

+∞ otherwise.

(39)

Notice that Fy(x) is finite only when x complies with the data, which implies x ∈ Rn+ and xi > 0 if
yi > 0. Moreover, due to the logarithm, it gradient is not defined on its all domain. As proposed in
Section 6.3, we seek x̂ using our four Generalized Algorithms on T = ∇Mλ,Fy◦Φ.

Proposition 21 (Gradient of the Moreau-Yosida regularization of the Poisson neg-log-likelihood (Com-
bettes and Pesquet, 2007)). If Φ is a tight frame of constant ν>0, then the gradient of Mλ,Fy◦Φ is:

∇Mλ,Fy◦Φ = 1
νλΦ∗ ◦ (I− proxνλFy

) ◦Φ with

proxνλFy
(x)i =

xi − νλ+
√
|xi − νλ|2 + 4νλyi

2
. (40)

7.2 Visual comparison

In this section, we evaluate the performance of our the Generalized Greedy alternatives (named `0
methods) and compare them to the classical convex relaxation using the `1-norm instead of the `0-
pseudo-norm (hereafter named `1 method). The estimation is implemented using the model in (Com-
bettes and Pesquet, 2008). The experiments shed light on the effects of using the `0-pseudo-norm
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instead the `1-norm, the consequences of using the Moreau-Yosida regularization and the difference
between the different sparse methods.

Two experiments are proposed using two classical images (Cameraman and Barbara) with two
different dictionaries, the undecimated wavelet transform (with the symlet 6) and the curvelet trans-
form. Notice that both transforms are redundant and so well fit for the denoising task. The noise level,
which is parameterized by the maximal intensity of the original image x (higher maximal intensity
means less noise) is set to either high or medium.

For all the experiments, we set the Moreau-Yosida regularization parameter to 1. This value may
lead to a non-negligible bias but allows for a better convergence rate. The sparsity parameter of the
`0 and `1 methods have been fixed to give comparable sparsity levels. Note that finding good (or
optimal) parameters is an open problem in both cases (see (Vaiter et al., 2012) for an example for the
Gaussian noise case).

(a) Original (b) Noisy

(c) GSP (d) GHTP (e) GCoSaMP

(f) GIHT (g) `1 method

Figure 1: Denoising Cameraman with a maximal intensity of 5 with the undecimated wavelet trans-
form.

Figure 1 shows the results for the Cameraman with a maximal intensity of 5 (high noise). To
show the differences of photometry, the images in a same figure are always displayed using the same
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grayscale colormap. Assuming that the image is sparse in the undecimated wavelet domain (which is
partly true), we apply the `0 methods (Fig. 1(c)-(f)) and compare them to the `1 method (Fig. 1(g)).
Notice that both GSP and GCoSaMP leads a smoother image, while most of the details are preserved
with GHTP, GIHT and the `1-norm. Because the Cameraman is not truly sparse in the chosen
domain, enforcing the sparsity for the reconstruction is not relevant. However, using the `0 preserves
the photometry better: for example the coat of the Cameraman is darker in Fig. 1(f) than in Fig. 1(g).

(a) Original (b) Noisy

(c) GSP (d) GHTP (e) GCoSaMP

(f) GIHT (g) `1 method

Figure 2: Denoising Cameraman with a maximal intensity of 30 with the undecimated wavelet trans-
form.

We repeat the experiment with a maximal intensity of 30 (medium noise). As the noise is weaker,
more details should be recovered. Figure 2 shows the results with both methods. The `0 methods
(Fig. 2(c)-(f)) preserves the details as well as the `1 method (Fig. 2(g)). Furthermore, both GHTP
and GIHT lead to pretty good reconstruction. As with the previous experiment, the most important
difference between Fig. 2(f) and Fig. 2(g) is the photometry. For example, the camera is brighter in
Fig. 2(f) (like in the original) than in Fig. 2(g). We believe that the difference of reconstruction quality
between GHTP and GIHT on one side, and GSP and GCoSaMP on the other side, is the diagonal
fixed to identity. As the Poisson negative-log-likelihood is a convex function, as a consequence of the
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Baillon-Haddad theorem (Bauschke and Combettes, 2010), the diagonal should be close to the identity
and so the algorithms that make such assumption (GHTP and GIHT) are better than scale-insensitive
methods (GSP and GCoSaMP).

To show the effect of the choice of the dictionary, we repeat the experiment with the Barbara image
(Fig. 3(a)) because of the curve-like textures on the pants, at a maximal intensity of 30 (medium noise).
Figure 3 shows the results for each method using two different dictionaries, Fig. 3(c) and Fig. 3(d) for
the curvelet transform and Fig. 3(e) and Fig. 3(f) for undecimated wavelet transform. As expected
the `0 method also shows a better photometry. Moreover, for both methods, the curvelet transform
is better at restoring the textures. With the undecimated wavelet transform, part of the textures is
lost and the `0 method is less efficient than the `1 method (see specifically the shawl). This shows the
importance of the selection of the dictionary while using sparse method. Using the wrong one may
lead to artifacts and loss of some structures (like textures).

(a) Original (b) Noisy

(c) `0 method (d) `1 method

(e) `0 method (f) `1 method

Figure 3: Denoising Barbara with a maximal intensity of 30. (c) and (d) using the curvelet transform.
(e) and (f) using the undecimated wavelet transform.
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Sparse Cameraman Galaxy

MAE SSIM MAE SSIM

Noisy 1.57 0.32 0.63 0.19

GSP 0.32 0.87 0.17 0.71

SP (Dai and Milenkovic, 2009) 0.55 0.63 0.28 0.55

SAFIR (Boulanger et al., 2010) 0.36 0.86 0.15 0.84

MSVST (Zhang et al., 2008) 0.31 0.84 0.12 0.83

`1-relaxation 0.64 0.73 0.32 0.50

Table 1: Comparison of denoising methods on a sparse version of Cameraman (k/n = 0.15) and the
NGC 2997 Galaxy.

7.3 Comparison with state of art methods

Finally, we compare one of the proposed method (GSP) with other states-of-art methods: Sub-
space Pursuit (SP) (Dai and Milenkovic, 2009) (denoising with the Gaussian negative-log-likelihood),
SAFIR (Boulanger et al., 2010) (with the parameters from (Makitalo and Foi, 2011)), MSVST (Zhang
et al., 2008) (a variance-stabilizing approach) and a convex `1-relaxation of (P5) i.e. a procedure mini-
mizing the Poisson negative-log-likelihood on a `1-ball (using a projection onto the `1-ball (Combettes
and Pesquet, 2012; Chierchia et al., 2012)).

We apply these methods on two images, a sparse version of the Cameraman and the NGC 2997
galaxy (peak intensity at 5, see Fig. 4). We use the exact parameters (sparsity for GSP and SP and `1-
norm for the `1-relaxation) for the sparse cameraman and tune them for the Galaxy. For each method
we compute the mean absolute deviation (MAE) and the SSIM (Wang et al., 2004) and display them
in Table 1.

The MSVST gives the best results in terms of MAE and SAFIR does so for the SSIM. GSP is
competitive with both these state-of-the-arts methods in Poisson denoising. Moreover GSP is in both
cases better than SP and the `1-relaxation. While the performance over SP shows the benefits of
using non-quadratic cost in the case of high Poisson noise level, the performance over the `1-relaxation
emphasizes that using the exact sparse `0 a-priori enables to recover a better dynamic than its convex
relaxation counterpart. These remarks are visually confirmed for the galaxy (Fig. 4).

8 Conclusion

In this paper, we have extended the scope of four common greedy methods from sparse approximation
or sparse constrained minimization to the more general problem of sparse approximation of zeros
of operators in a Hilbert space of possibly infinite dimension. This enables to run these algorithms
with operators that are not gradient (and so not related to a function). We introduced a convergence
criterion, the Restricted Diagonal Property, that generalizes the previous proposed criteria (RIP, RSC,
RSS) and bounds the error after N steps. We have shown that RDP enables the generalized versions
of Subspace Pursuit and CoSaMP to handle neither convex nor concave optimization problems. This
suggests that both algorithms are not “corrected versions” (i.e. with corrected steps) of the more
classical GIHT or GHTP, but belong to another class of methods. We plan to study what kind of
algorithms (or schemes) show such an invariance property.

Several perspectives toward further generalizations of these algorithms are of interest. First, intro-
ducing additional constraints (e.g. positivity, unit simplex) as it has been done for IHT by Beck and
Hallak (2015) should lead to very interesting applications like sparse support vector machine (with
the Hinge loss function). Secondly, one could extend the setting from Hilbert to Banach spaces, as
has already been proposed for the Orthogonal Matching Pursuit by Temlyakov (2008). Finally, we
would like to broaden our Restricted Diagonal Property by comparing the increments to the action of
an isometry rather than a diagonal operator. Such an extension is linked with Hyers-Ulam stability
analysis (Jung, 2011) for isometry, and would help to build a less restrictive criterion.
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(a) Original (b) Noisy

(c) GSP (d) SP (e) MSVST

(f) SAFIR (g) `1-relaxation

Figure 4: NGC 2997 Galaxy image (a), a noisy version (b) and several denoising results (c-g).
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A Uniform Restricted Diagonal Property

Proof of Theorem 6. Assume that D is in D1 and that |||D|||k is finite.
Proof of 1: Assume (βT) is URDP of order k for D, αk < 1 and β > 0. Pick (x, y) ∈ H2, such

that card(supp(x, y)) ≤ k, we have:

‖βT(x)− βT(y)−D(x− y)‖ ≤ αk ‖x− y‖ ⇒‖βT(x)− βT(y)‖ − ‖D(x− y)‖ ≤ αk ‖x− y‖
⇒‖βT(x)− βT(y)‖ ≤ αk ‖x− y‖+ ‖D(x− y)‖

⇒‖T(x)−T(y)‖ ≤ |||D|||k + αk
β

‖x− y‖ (41)

and

‖βT(x)− βT(y)−D(x− y)‖ ≤ αk ‖x− y‖ ⇒‖D(x− y)‖ − ‖βT(x)− βT(y)‖ ≤ αk ‖x− y‖
⇒‖βT(x)− βT(y)‖ ≥ ‖D(x− y)‖ − αk ‖x− y‖

⇒‖T(x)−T(y)‖ ≥ 1− αk
β

‖x− y‖ (since D ∈ D1)

(42)

so that

〈T(x)−T(y), D(x− y)〉 = 1
β 〈βT(x)− βT(y), D(x− y)〉

=
1

2β

(
‖βT(x)− βT(y)‖2 + ‖D(x− y)‖2 − ‖βT(x)− βT(y)−D(x− y)‖2

)
≥ 1

2β

(
(1− αk)2 ‖x− y‖2 + ‖x− y‖2 − α2

k ‖x− y‖
2
)

(using URDP, D ∈ D1 and Eq. (42))

≥
(1− αk)2 + 1− α2

k

2β
‖x− y‖2

≥1− αk
β

‖(x− y)‖2 (43)

Proof of 2: Assume that f verifies Eq. (9). Pick (x, y) ∈ H2, such that card(supp(x, y)) ≤ k; for
any β > 0 we have:

‖βT(x)− βT(y)−D(x− y)‖2 = ‖βT(x)− βT(y)‖2 + ‖D(x− y)‖2 − 2β 〈T(x)−T(y), D(x− y)〉
≤ β2L2 ‖x− y‖2 + |||D|||2k ‖x− y‖

2 − 2βm ‖x− y‖2 (using Eq. (9))

≤ (β2L2 + |||D|||2k − 2βm) ‖x− y‖2

Pick β = m
L2 . Note that β > 0 and β2L2 + |||D|||2k − 2βm = |||D|||2k −

m2

L2 thus if (x, y) ∈ H2, such
that card(supp(x, y)) ≤ k, we obtain:

‖βT(x)− βT(y)− (x− y)‖2 ≤
(
|||D|||2k −

m2

L2

)
‖x− y‖2

which shows that (βT) is URDP of order k for D, αk = |||D|||2k −
m2

L2 and β = m
L2 . Note that

αk = |||D|||2k −
m2

L2 < 1 by assumption.

B Error bounds

B.0.1 Proof of GCoSaMP’s error bound (Theorem 12)

Proof of Theorem 12. T and ρT yield the same iterates, so we assume that T has the Restricted
Diagonal Property of order 4k with α4k 6 αC = 2√

3
− 1 < 1. Let x? in H be any k-sparse vector, xt

be the t-th iterate of Algo. 2. Let G = supp(T(xt)|2k) and S = G ∪ supp(xt), b such that supp(b) ⊆ S
and T(b)|S = 0 and T = supp(b|k).
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Influence of the guessed support (Step 1 and 2)
Define R = supp(xt, x?), we have card(R) 6 2k. Note that supp(xt) ⊆ S. We have

∥∥T (xt)|R
∥∥ 6∥∥T (xt)|S

∥∥ because card(R) 6 2k and S = G ∪ supp(xt) supp(T(xt)|2k) ∪ supp(xt). Thus lemma 17
yields ∥∥∥x?|Sc∥∥∥ 6 2α2k

1−α2k

∥∥xt − x?∥∥+ 1
1−α2k

(∥∥T(x?)|R\S
∥∥+

∥∥T(x?)|S\R
∥∥) .

Noting that card(R \ S) 6 k and card(S \ R) 6 2k , we conclude∥∥∥x?|Sc∥∥∥ 6 2α2k
1−α2k

∥∥xt − x?∥∥+ 2
1−α2k

∥∥T(x?)|2k
∥∥ . (44)

Optimization over the extended support (Step 3)
Apply Lemma 18 with l = 3k and R = S and using that T has the RDP of order l+ k = 4k with

α4k 6 αC < 1, we obtain ∥∥(b− x?)|S
∥∥ 6 1

1−α4k

∥∥T(x?)|S
∥∥+ α4k

1−α4k

∥∥∥x?|Sc∥∥∥ . (45)

Updating the support set (Step 4 and 5)
Lemma 19 proves that ∥∥b|k − x?∥∥ 6 2

∥∥(b− x?)|S
∥∥+

∥∥∥x?|Sc∥∥∥ . (46)

Since xt+1 = b|k, we combine Eq. (44), (45) and (46)to obtain∥∥xt+1 − x?
∥∥ 6 2

∥∥(b− x?)|S
∥∥+

∥∥∥x?|Sc∥∥∥
6 2

1−α4k

∥∥T(x?)|S
∥∥+ 2α4k

1−α4k

∥∥∥x?|Sc∥∥∥+
∥∥∥x?|Sc∥∥∥

6 2
1−α4k

∥∥T(x?)|3k
∥∥+ 1+α4k

1−α4k

∥∥∥x?|Sc∥∥∥
6 2

1−α4k

∥∥T(x?)|3k
∥∥+ 1+α4k

1−α4k

(
2α2k

1−α2k

∥∥xt − x?∥∥+ 2
1−α2k

∥∥T(x?)|2k
∥∥)

6 2
1−α4k

∥∥T(x?)|3k
∥∥+ 1+α4k

1−α4k

(
2α4k

1−α4k

∥∥xt − x?∥∥+ 2
1−α4k

∥∥T(x?)|3k
∥∥)

6 4
(1−α4k)2

∥∥T(x?)|3k
∥∥+ 2α4k(1+α4k)

(1−α4k)2

∥∥xt − x?∥∥
We have

2α(1+α)
(1−α)2

6 1
2 ⇔ 3α2 − 6α− 1 6 0⇔ −1− 2√

3
6 α 6 −1 + 2√

3
= αC (47)

and
4

(1−α4k)2
6 4

(1−αC)2
= 3

(
√

3−1)2
6 6 , (48)

which completes the proof.

B.0.2 Proof of GHTP’s error bound (Theorem 13)

The core of GHTP is a descent step followed by an optimization on the estimated support.

Proof of Theorem 13. Assume that T has the Uniform Restricted Diagonal Property of order 2k with
D2k = I and α2k 6 αH = 7 − 2

√
11, and that 3

4 < η < 5
4 . Let x? in H be any k-sparse vector, xt

be the t-th iterate of Algo. 3. Let G = supp(T(xt)|k) and S = G ∪ supp(xt), b = (xt − ηT(xt))|S and
T = supp(b|k).

Influence of the guessed support (Step 1 and 2)
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Notice that xt solves Problem (P4) and G and S are the same as in GSP so the same arguments
as in the proof in Section 5.3.1 apply and Eq. (18) holds:∥∥∥x?|Sc∥∥∥ 6 2α2k

1−α2k

∥∥xt − x?∥∥+ 2
1−α2k

∥∥T(x?)|k
∥∥ . (18)

Solution on the extended support (Step 3)

‖b− x?‖ 6
∥∥(b− x?)|S

∥∥+
∥∥∥x?|Sc∥∥∥

6
∥∥(xt − ηT(xt)− x?)|S

∥∥+
∥∥∥x?|Sc∥∥∥

6
∥∥∥[xt − x? −T(xt) + T(x?) + (1− η)

(
T(xt)−T(x?)

)
− ηT(x?)

]
|S

∥∥∥+
∥∥∥x?|Sc∥∥∥

6
∥∥(xt − x? −T(xt) + T(x?))|S

∥∥+ |1− η|
∥∥(T(xt)−T(x?))|S

∥∥+ η
∥∥T(x?)|S

∥∥+
∥∥∥x?|Sc∥∥∥

6 α2k

∥∥xt − x?∥∥+ |1− η| (1 + α2k)
∥∥xt − x?∥∥+ η

∥∥T(x?)|2k
∥∥+

∥∥∥x?|Sc∥∥∥ (49)

6 (α2k + |1− η| (1 + α2k))
∥∥xt − x?∥∥+ η

∥∥T(x?)|2k
∥∥+

∥∥∥x?|Sc∥∥∥ (50)

where Eq. (49) holds because T is URDP of order 2k with D2k = I, and card(S) 6 2k.

Updating the support set (Step 4)
Notice that ∥∥∥x?|T c

∥∥∥ =
∥∥(b|k − x?)|T c

∥∥ 6
∥∥b|k − x?∥∥ 6

∥∥b|k − b∥∥+ ‖b− x?‖ .

But ‖b− x?‖ 6
∥∥b|k − b∥∥ since x? is k-sparse. Hence∥∥∥x?|T c

∥∥∥ 6 2 ‖b− x?‖ . (51)

Optimization over the updated support (Step 5)
We have ∥∥xt+1 − x?

∥∥ 6
∥∥(xt+1 − x?)|T

∥∥+
∥∥∥x?|T c

∥∥∥
6 1

1−α2k

∥∥T(x?)|T
∥∥+ α2k

1−α2k

∥∥∥x?|T c

∥∥∥+
∥∥∥x?|T c

∥∥∥ (52)

6 1
1−α2k

∥∥T(x?)|T
∥∥+ 1

1−α2k

∥∥∥x?|T c

∥∥∥ (53)

where Eq. (52) holds by applying Lemma 18 using that xt+1 solves Problem (P4) on T , that x? is
k-sparse and T is URDP of order 2k.

Let us finally combine Eq. (18), (50), (51) and (53) to obtain∥∥xt+1 − x?
∥∥ 6 1

1−α2k

∥∥T(x?)|T
∥∥+ 1

1−α2k

∥∥∥x?|T c

∥∥∥
6 1

1−α2k

∥∥T(x?)|T
∥∥+ 2

1−α2k
‖b− x?‖

6 1
1−α2k

∥∥T(x?)|T
∥∥+ 2

1−α2k

[
(α2k + |1− η| (1 + α2k))

∥∥xt − x?∥∥+ η
∥∥T(x?)|2k

∥∥+
∥∥∥x?|Sc∥∥∥]

6 1+2η
1−α2k

∥∥T(x?)|2k
∥∥+ 2(α2k+|1−η|(1+α2k))

1−α2k

∥∥xt − x?∥∥+ 2
1−α2k

∥∥∥x?|Sc∥∥∥
6 1+2η

1−α2k

∥∥T(x?)|2k
∥∥+ 2(α2k+|1−η|(1+α2k))

1−α2k

∥∥xt − x?∥∥+ 2
1−α2k

(
2α2k

(1−α2k)

∥∥xt − x?∥∥+ 2
1−α2k

∥∥T(x?)|2k
∥∥)

6 (1+2η)(1−α2k)+4
(1−α2k)2

∥∥T(x?)|2k
∥∥+ 2 (α2k+|1−η|(1+α2k))(1−α2k)+2α2k

(1−α2k)2

∥∥xt − x?∥∥
6 2

|1−η|(1−α2
2k)+(3−α2k)α2k

(1−α2k)2

∥∥xt − x?∥∥+ (1+2η)(1−α2k)+4
(1−α2k)2

∥∥T(x?)|2k
∥∥
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We have

2
|1−η|(1−α2)+(3−α)α

(1−α)2
6 1

2 ⇔ (5 + 4 |1− η|)α2 − 14α+ 1− 4 |1− η| > 0 (54)

Notice that hη 7→ hη(x) = (5 + 4 |1− η|)x2 − 14x+ 1− 4 |1− η| verifies

∃ αη > 0 s.t. hη(x) > 0, ∀x ∈ [0, αη]⇔ |1− η| < 1
4 .

And in this case, αη is the smallest root of hη:

αη =
14−
√

142−4(5+4|1−η|)(1−4|1−η|)
2(1−4|1−η|) .

If η verifies |1− η| < 1
4 then 7− 2

√
11 = α1 6 αη 6 lim

|1−η|→1
4
αη = 3

7 which finishes the proof.

B.0.3 Proof of GIHT’s error bound (Theorem 14)

The proof relies on the Uniform Restricted Diagonal Property of T.

Proof of Theorem 14. Let x? ∈ H be a k-sparse vector, xt ∈ H the t-th iterate of Algo. 4 and S =
supp(xt)∪suppx?. Assume T has the Uniform Restricted Diagonal Property of order 2k with D2k = I

and α2k 6 αη = 1−4|η−1|
4(1+|η−1|) and 3

4 < η < 5
4 . Define R = supp(xt) ∪ supp(xt+1) ∪ supp(x?).

Since xt+1 = b|k with b = xt − ηT(xt), we have∥∥xt+1 − x?
∥∥ =

∥∥b|k − x?∥∥
6
∥∥b|k − b|R∥∥+

∥∥b|R − x?∥∥
6 2

∥∥b|R − x?∥∥ (55)

6 2
∥∥∥(xt − x? − ηT(xt)

)
|R

∥∥∥
6 2

∥∥∥(xt − x? − (T(xt)−T(x?)
)

+ (1− η)
(
T(xt)−T(x?)

)
− ηT(x?)

)
|R

∥∥∥
6 2

∥∥xt − x? −T(xt) + T(x?)
∥∥+ 2 |η − 1|

∥∥T(xt)−T(x?)
∥∥+ 2η

∥∥T(x?)|R
∥∥

6 2α2k

∥∥xt − x?∥∥+ 2 |η − 1| (1 + α2k)
∥∥xt − x?∥∥+ 2η

∥∥T(x?)|3k
∥∥ (56)

6 2(α2k + |η − 1| (1 + α2k))
∥∥xt − x?∥∥+ 2η

∥∥T(x?)|3k
∥∥ ,

where Eq. (55) holds because x? is k-sparse and b|k is the best k-sparse approximation of b|R since
supp(b|k) = supp(xt+1) ⊆ R; and Eq. (56) holds because T has the Uniform Restricted Diagonal
Property of order 2k with D2k = I.

Noticing that 2(α2k + |η − 1| (1 + α2k)) 6
1
2 ⇔ α2k 6 αη = 1−4|η−1|

4(1+|η−1|) finishes the proof.
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