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Network couplings of oscillatory large-scale systems, such as the brain, have a space-time structure composed
of connection strengths and signal transmission delays. We provide a theoretical framework, which allows treating
the spatial distribution of time delays with regard to synchronization, by decomposing it into patterns and therefore
reducing the stability analysis into the tractable problem of a finite set of delay-coupled differential equations.
We analyze delay-structured networks of phase oscillators and we find that, depending on the heterogeneity of
the delays, the oscillators group in phase-shifted, anti-phase, steady, and non-stationary clusters, and analytically
compute their stability boundaries. These results find direct application in the study of brain oscillations.
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I. INTRODUCTION

Time delays due to finite signal transmission are unavoid-
able in physical, biological, and technical systems. They are
often considered a nuisance and can be mostly ignored when
they are small with regard to the characteristic time scale of
the system. In a number of systems though, foremost in the
brain, the delays (10 to 200 ms) are on the same scale as the
signal operation (10 to 250 ms) [1,2] and contribute critically
to the system’s spatiotemporal organization. Rhythms and
their synchronization, as one of the key mechanisms of brain
function [3,4], are ubiquitous in the nervous system and are
particularly sensitive to delays, because shifts in phasing
may easily change the nature of the mutual influences from
excitatory to inhibitory and vice versa.

The spatiotemporal organization of oscillatory networks
is often studied via coupled phase oscillators, which arise
for weak interactions [5–8]. Phase models represent a simple
class of models for interacting nonlinear limit-cycle oscillators
that exhibit richness in behavior while at the same time
admit analytic approaches and a direct link to more complex
biophysical models. For small delays, the delayed interactions
between oscillators are reduced to phase shifts [7–9], but
they appear inside the state variables [7,8] when delays
are of the order of 1/coupling-strength. Transmission delays
become particularly long in large-scale brain models with
biologically realistic connectivity [10,11], which have become
feasible with the recent advance of non-invasive structural
brain imaging [12,13]. Together, the connectivity strengths and
time delays, define the connectome as the final determinant of
the brain network behavior [14,15]. In absence of delays, the
importance of couplings’ topology for the synchronization of
phase oscillators is well understood, both in random [16,17],
and in networks structured by natural frequencies and coupling
strengths [18,19].

Many of the phase network models of the brain use explicit
delays in the state variable (see [8] for review) and make
simplifying assumptions on either their distribution (such as
distance dependence [20]) or the spatial coupling topology
(such as rings in one dimension [21]). In this article we will

*spase.petkoski@univ-amu.fr

develop a principled approach for decomposing the coupling’s
structure into modes, which characterize synchronization as
a function of the spatial distribution of the time delays.
Phase reduction of weakly delay-coupled oscillators with
long delays in comparison to the coupling strengths Ki,j or
natural frequencies ωi leads to periodic coupling function with
explicit heterogeneous time delays [7,8]. The general coupling
function may lead to an enormous diversity of collective
states [22] and have been shown to be of interest for the
brain dynamics [5,23]. However, for the reasons of analytical
tractability much research keeps only an initial portion of
its Fourier series, therefore leading to the Kuramoto model
(KM) [6]. Considering the KM for symmetric, link-dependent
delays, τi,j = τj,i , phases θi of each oscillator evolve as

θ̇i = ωi + 1

N

N∑
j=1

Ki,j sin[θj (t − τi,j ) − θi], i = 1 . . . N,

(1)
where ωi follow a probability density function (PDF) g(ω).
Recent works on the KM study steady synchronization for
arbitrary parameters [24], glassy [25], and chimera [26] states,
non-isochronicity [27], non-autonomicity [28], and networks
of spiking neurons [29–31].

II. MODEL

Upon analysis of human connectomes, each consisting
of a few million tracts identified with magnetic resonance
imaging and connecting 68 cortical regions [32] where for
each link weights are numbers of the individual tracts and
lengths are their averages, the results imply that the lengths
of connection routes between brain areas are multimodaly
distributed, Fig. 1(a).

Moreover, the modes in the lengths distribution are spatially
heterogeneous and as a first approximation two main modes
correspond to the intra- and inter-hemispheric links, Figs. 1(b)
and 1(c). This insight suggests that the complex space-time
structure of the connectivity maybe approximated by a less
complex mode decomposition in the parameter space, which
will aid in the mathematical analysis of the large-scale brain
dynamics. These ideas have been previously exploited by
mean field techniques [33] in which degrees of freedom are
associated with variation of a parameter. In neuroscience,

2470-0045/2016/94(1)/012209(7) 012209-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.94.012209


SPASE PETKOSKI et al. PHYSICAL REVIEW E 94, 012209 (2016)

FIG. 1. Tract lengths and weights from 100 healthy subjects. Joint
distribution (a), and histogram of weighted lengths for (b) intra- and
(c) inter-hemisphere links.

this approach has been successfully applied to neural popu-
lations with heterogeneous thresholds [34]. We take here an
equivalent approach for distributed delays. To emphasize the
influence of temporal component of the space-time structure
upon the network dynamics, we only consider homogeneous
strength for the connections, Ki,j = K , and the extension to
distributed connection weights is straight forward. Besides,
unimodal positive couplings, as observed in Fig. 1(a), do not
bring novel mean-field behavior for the KM with randomly
distributed frequencies [16,35,36]. The network dynamics is
then described by order parameters, which either represent the
collective behavior from the instantaneous phases [6],

z(t) ≡ r(t)eiψ(t) = N−1
∑

j

eiθj , (2)

or the delayed, node-dependent mean-field [37] that acts as
forcing on each oscillator

ξi(t) = N−1
∑

j

eiθj (t−τi,j ), (3)

hereafter referred to as global and local order parameters.
At least two modes can then be identified from the distri-

bution of tract lengths, Fig. 1(a), which as first approximation
for simplicity is assumed to be bimodal-δ:

h(τ ) = p′
1δ(τ − τ1) + p′

2δ(τ − τ2), p′
1 + p′

2 = 1. (4)

We apply this distribution of delays on three architectures: (i)
random; (ii) identical internal and external delays, model A
(see Fig. 2); and (iii) different internal and randomly, equally
distributed external delays, model B. Besides representing
distinct phenomenological structures, these are motivated from
the connectome. Its simplest decomposition on a left and a right
hemisphere identifies the peaks in h(τ ) as internal and external
links, Figs. 1(b) and 1(c), leading to model A. Other more
complex divisions of the brain network could possibly identify
patterns of the other architectures, or their combination.

FIG. 2. Sketch of delay-imposed structure and connectivity ma-
trices for oscillators in models A and B with link delays τ1 dark (blue)
dashed lines and τ2 light (red) lines.

To preserve the distribution h(τ ), which is over the
links, the division of the nodes, p1,2, for model A satisfies
[p′2

1 + (1 − p′
1)2]/[2p′

1(1 − p′
1)] = p1/(1 − p1), which gives

p1,2 = Re{[1 ∓
√

±(1 − 2p′
1,2)]/2}, whereas for model B,

p1,2 = p′
1,2. The global order parameters hence read

z(t) = p1z
I + p2z

II . (5)

Superscripts correspond to the particular populations of
models A or B, whereas because of the spatial homogeneity
for the non-structured network, zI,II = z can represent any
proportion of nodes. Similarly, the homogeneity of the internal
links delays of subpopulations implies

ξ
I,II
i (t) = ξ I,II (t) = zI,II (t − τint) = z

I,II
t−τint

, (6)

where τint are the internal delays of the populations. Substitut-
ing Eqs. (5), (6) to Eq. (1), governing equations for all three
topologies read

θ̇i = ωi − K
[
p1rt−τ1 sin

(
θi − ψt−τ1

)
+p2rt−τ2 sin

(
θi − ψt−τ2

)]
, (7)

θ̇
I,I I
i = ω

I,II
i − K

[
p1,2r

I,II
t−τ1

sin
(
θ

I,II
i − ψ

I,II
t−τ1

)
+p2,1r

II,I
t−τ2

sin
(
θ

I,II
i − ψ

II,I
t−τ2

)]
, (8)

θ̇
I,I I
i = ω

I,II
i − K

{
p1,2r

I,II
t−τ1,2

sin
(
θi − ψ

I,II
t−τ1,2

)
+p2,1/2

[
r

II,I
t−τ1

sin
(
θi − ψ

I,II
t−τ1

)
+ r

II,I
t−τ2

sin
(
θi − ψ

II,I
t−τ2

)]}
. (9)

III. LOW-DIMENSIONAL DYNAMICS

For infinitely large populations the dynamics of the system
is described by PDFs for the phases of single oscillators,
ρI,II (θ,ω,t), which using continuum limit of Eqs. (7), (8),
(9) evolve according to continuity equations

∂ρI,II

∂t
= − ∂

∂θI,II
(θ̇ I,I I ρI,II ). (10)

Applying the OA ansatz [38], PDFs for the phases yield

ρI,II (θ,ω,t) = g(ω)

2π

{
1 +

∞∑
k=1

[αI,IIk(ω,t)eikθ + c.c.]

}
,
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FIG. 3. Critical couplings for incoherence for random bimodal-δ delays, Eq. (15), (a, b), and for structured models A, Eq. (16), (c) and
B, Eq. (17), (d). (a) Lowest couplings K < Kc (black surface) for steady, Eq. (18), stable, Eq. (19) solutions. (b) Intersection of plot (a) for
τ2 = 0.6 (upper surface is thin blue and lower is dashed black line) and numerical results, Eq. (1), for incoherence (blue triangles), coherence
(black squares) and bistability (grey shaded areas). Parameters: μ = 2π , γ = 0.1, and p1 = 0.5.

and consequently the global order parameters become

zI,II (t) =
∫ ∞

−∞
αI,II∗(ω,t)g(ω)dω. (11)

For a Lorentzian distribution g(ω) = γ /π/[(ω − μ)2 + γ 2]
with mean μ and scale γ , the populations’ low dimensional
dynamics [24,26–28,37–39] become

ż = (iμ − γ )z − K/2
[
p1,2

(
z2 z∗

t−τ1,2
− zt−τ1,2

)
+p2,1

(
z2z∗

t−τ2,1
− zt−τ2,1

)]
, (12)

żI,I I = (iμ − γ )zI,II − K/2
[
p1,2

(
zI,II 2 z

I,II ∗
t−τ1

− z
I,II
t−τ1

)
+p2,1

(
zI,II 2z

II,I ∗
t−τ2

− z
II,I
t−τ2

)]
, (13)

żI,I I = (iμ − γ )zI,II − K/2
{
p1,2

(
zI,II 2 z

I,II ∗
t−τ1,2

− z
I,II
t−τ1,2

)
+p2,1/2

[
zI,II 2

(
z
II,I ∗
t−τ1

+ z
II,I ∗
t−τ2

) − z
II,I
t−τ1

− z
II,I
t−τ2

]}
.

(14)

A. Critical couplings

The incoherent state, {z = 0, ρ = 1/2π}, is a trivial
solution to these systems, and due the non-negative inter-
population contributions, Eqs. (13), (14), the possibility of
only one incoherent populations is restricted. The lowest
couplings for which the incoherence becomes unstable and
synchronisation appears are determined from the purely
imaginary eigenvalues of Jacobian matrices of the vector
[zI ,zII ]T for structured, and of z for random heterogeneity.
For the latter these are solutions of

γ + i(β − μ) = K/2[p1e−iβτ1 + p2e−iβτ2 ], (15)

whereas for models A and B, respectively, the following global
conditions appear:

[γ + i(β − μ)][γ + i(β − μ) − K/2 e−iβτ1 ]

= p1p2K
2/4(e−i2βτ2 − e−i2βτ1 ), (16)

[γ + i(β − μ)][γ + i(β − μ) − K/2(p1e−iβτ1 + p2e−iβτ2 )]

= p1p2K
2/16(e−iβτ2 − e−iβτ1 )2. (17)

It is worth noting that the evolutions of zI,II , Eqs. (12), (13),
(14), depend only on the first Fourier harmonics of ρI,II ,
Eq. (11), and the same harmonic is the only one left in the
linearized continuity equation (10) [40], hence, studying the
dynamics of a small perturbation in the PDF of the phases
ρI,II (θ,ω,t) would yield the same conditions.

The critical couplings, Fig. 3, show the crucial role of the
delay’s topology in shaping the synchronization landscape.
For the case with no structure in the couplings, the ridges
of Kc are highest at |τ1 − τ2| = nT/2, where T = 2π/μ is
a mean period of the natural frequencies and n is a positive
odd integer. These are followed by smaller peaks at τ1,2 =
nT/2, Figs. 3(a) and 3(b). For model A, the internal delays
[τint = τ1 in Fig. 3(c)] are the main factor for preventing the
synchronization around nT/2, same as for unimodal delays
[37,40]. On the other hand, the interpopulation influence is
T/2 periodic, with largest Kc around τ2 = nT/4. This is due
to the anti-phase arrangement of the synchronized populations
(see Fig. 4), which causes them to enhance coherence for
τ2 around nT/2. For model B, the synchronizability is more
complex, but it is still a combination of the former two: Kc has
T periodic peaks at τ1,2 = nT/2 due to the internal antireso-
nance of populations, and T/2 periodic at |τ1 − τ2| = nT/4,
corresponding to the interpopulation influence, Fig. 3(d). In
all scenarios the peaks are dampened at consecutive periods.

Randomly distributed delays imply spatial homogeneity,
where each oscillator is forced by a mean field from oscillators
linked with delay τ1, and from those with τ2, Eq. (7). These
local order parameters, Eq. (3), are at distance �(τ2 − τ1),
where � is the frequency of synchronization. For a steady,
ṙ = 0, traveling wave synchronization [24,36], the mean field,
z = re�t , has parameters

� = μ − K/2(r2 + 1)(p1 sin �τ1 + p2 sin �τ2),

r =
√

1 − 2γ /[K(p1 cos �τ1 + p2 cos �τ2)]. (18)
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FIG. 4. Anti-phase clusters for model A with (a) 2, (b) 3 and (c) 9
equal populations. (a, b) Blue and red are for the first and second, and
grey is for the overall population. (a) Magnitude of order parameters,
theoretical (dashed blue, thick red and dotted grey), Eq. (13) and
numerical results (blue squares, red circles and grey triangles), Eq. (1)
for N = 100000 oscillators. Inset: PDF of the phases. (b, c) Order
parameters zm. (c) Each of the three thicker arrows accounts for
two identical mean-fields. Parameters: K = 2, μ = 2π , γ = 0.1, (a)
τ = [0.3,0.7], (b, c) τ = [0.15,0.55].

Their stability is obtained by introducing a small perturbation
δz = (e(λ+iβ)t + e(λ−iβ)t )ei�t , and looking for solutions of
Eq. (12) with non-negative λ [37]. This yields

γ − i(� − μ − β) + K/2(p1A1 + p2A2) = 0, (19)

where A1,2 = 2r2e−i�τ1,2 − e−i(β−�)τ1,2 − r2e−i(β+�)τ1,2 , and if
solutions exist, then re�t is not stable. Hence, the lower
bounds of synchronization, the black surface in Fig. 3(a), are
determined by exploring stable solutions for K < Kc, and they
follow the same resonant patterns as the critical couplings.
Numerical results in Fig. 3(b) confirm the regions where the
population either synchronizes, or becomes incoherent, for any
of the many initial states in the range r(t)|t∈[− max(τ ),0] = [0,1]
that we checked. However, time delays imply infinitely many
possible initial states and it is very probable that some of the
solutions have extremely small basins of attractions, as was
also reported in [37,41], and are difficult to be numerically
recovered.

Bistability, where synchronizability depends on the initial
history, was recovered in between the critical surfaces. The
integration was performed on both, the full system with N =
1000 oscillators, Eq. (1) and the low-dimensional dynamics,
Eq. (12). Interestingly, beside multiple stable solutions of
Eq. (18), the same procedure unveils non-steady synchroniza-
tion, ṙ �= 0, for initial states close to the incoherence, in regions
around τ = [nT/2,(n + 1)T/2] that decrease in size for
increasing n [42]. These are consequence of the bimodality of
delays, since they are not reported for non-identical oscillators
with homogeneous [40,41] or with unimodal heterogeneous
delays [37].

B. In and anti-phase clustering

In model A, if equally divided, identical r and � can be
assumed for each populations. Stationarity conditions then
read

zI = rei�t , zII = rei(�t+φ), ṙ = 0, �φ̇21 = φ̇ = 0,

(20)

and substituting them into Eq. (13), yields

φ̇ = −K/2(r2 + 1) cos �τ2 sin φ.

This implies φ = 0 ± π , with stable zero phase shift for
�τ2 ∈ (−π/2,π/2) and φ = π stable otherwise. Thus, by
increasing the delay between the populations, they rearrange
from in- to anti-phase, Fig. 4(a). Notably, non-steady states
occur for certain low coherence initial states, around the same
parameter’s space as for the random case [42].

The same clustering phenomenon persists for more than
two equal populations: their order parameters are identical for
�τ2 in the right half-plane, or they arrange to cancel each other
otherwise.

In this case however the PDF of the delays Eq. (4) changes
and since the system is symmetric the distribution of the links
follows the division of the network nodes. Thereupon,

h(τ ) = 1/Mδ(τ − τ1) + (M − 1)/Mδ(τ − τ2),

and the model no longer corresponds to a simple spatial
rearranging of the same global distribution of time-delays.

Continuing Eq. (13) for M populations with pm =
1/M, ∀m ∈ [1..M], mean-phases φm evolve as

φ̇m = μ − Kr(r2 + 1)

2M

⎡
⎣sin �τ1 +

∑
j �=m

sin(�τ2 + �φmj )

⎤
⎦.

(21)

Therefore the stationarity of r and �φ̇mn for all pairs of
populations (m,n) implies∑

j

ei�φmj =
∑

j

ei�φnj .

This is satisfied either if all complex order parameters are
aligned, or if they cancel each other in the stationary state. For
the latter, an equidistant arrangement is the exclusive pattern
for 2 and 3 populations with mean phase distances of π and
2π/3, respectively, Figs. 4(a) and 4(b). For M > 3 this is no
longer unique and there are infinite possible arrangements. In
some of these it is possible identical order parameters to occur
for some of the populations, while the sum of all of them is
still 0, Fig. 4(c). As for the mean-field parameters, their steady
state values are given by

� = μ − M
K

2
(r2 + 1)

⎡
⎣sin �τ1 +

∑
j �=m

sin(�τ2 + �φmj )

⎤
⎦,

r =
√

1 − 2Mγ

K[cos �τ1 + ∑
j �=m cos(�τ2 + �φmj )]

. (22)

For in-phase arrangement, �φmj = 0, ∀ m,j ∈ [1..M], and
the above trigonometric sums become (M − 1) sin �τ2 and
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FIG. 5. (a) Magnitudes of non-steady global order parameters, (b)
mean field frequencies, and (c)–(e) adjusted frequencies for model B.
(Green) arrows in (a, b) indicate the time points t = [18.2,19.1,20]
for the results in plots (c)–(e). Blue, red and grey correspond to the
first, second, and the overall population. (a, b) Theoretical (dashed
blue, thick red and dotted grey), Eq. (14), and numerical results (blue
squares, red circles and grey triangles), Eq. (1). Parameters: K = 3,
p1 = 0.5, μ = 2π , γ = 0.1, τ = [0.23,0.74], N = 100000.

(M − 1) cos �τ2, respectively, while for the anti-phase state
they yield − sin �τ2 and |cos�τ2|. Consequently, increasing
the number of populations decreases the level of coherence, as
shown in Figs. 4(b) and 4(c) for three and for nine populations.

C. Time-varying synchronization

For model B with equal populations, assuming that they
settle to same r and �, Eqs. (14), (20) give

φ̇ = −K

4
(r2 + 1)(cos �τ1 + cos �τ2)

(
sin φ + tan

��τ

2

)
,

(23)

�ṙ = Kr

4
(r2 − 1)(sin �τ1 + sin �τ2)

(
sin φ + tan

��τ

2

)
.

(24)

Hence, |��τ | ∈ (−π/2,π/2) is a necessary condition for this
stationarity and the synchronized clusters are at distance φ =
− arcsin tan(��τ/2). However, if |��τ | /∈ (−π/2,π/2),
Eqs. (23), (24) cannot be zero and these instabilities con-
tinuously persist, implying non-stationary synchronization,
Fig. 5(a). This is characterized with fast spikes of the overall
mean frequency, Fig. 5(b), and continuous rearrangement
of oscillators, so that some of them are always entrained
with the mean field of the other population, as can be
seen from the adjusted versus the natural frequencies of the

0  20 40 60 80 100 120

f [Hz]

1  

10 

100

K
c

rnd.
A
B
〈τ〉
τ=0

FIG. 6. Critical couplings for synchronization at EEG frequen-
cies for all-to-all network with identical coupling strengths and
different bimodal-δ spatial distributions of realistic brain delays,
τ = [18 ms, 42 ms], p1 = 0.7.

individual oscillators, θ̇ (ω), captured at different moments in
Figs. 5(c)–5(e). Contrary to the previous scenarios, the non-
steady states here can appear for all initial conditions and for
a wider parameter space [42].

D. Realistic brain delays and EEG frequencies

If we set identical propagation velocity from within the
physiological range for brain signals [2], e.g., at 2 m/s, then
for the human brain tract lengths data shown in Fig. 1, the
time delays due to tracts have peaks around 18 ms and 42 ms
with proportion p1 = 0.7 for the the bimodal δ approximation
Eq. (4). Taking these values for networks with Lorentzian
natural frequencies with spread γ = 0.1 rad/s as in the earlier
examples, but with means μ at realistic EEG frequency
range, using Eqs. (15), (16), (17) we calculate the regions
of synchronizability for the three discussed delay-imposed
networks (random, model A, and model B), Fig. 6. For
comparison, the critical coupling for an identical delay 〈τ 〉
corresponding to the mean of all delays 〈h(τ )〉 for these
parameters, and for absent delays, τ = 0, is also shown.

The positions of the peaks of the critical couplings Kc

relatively to the period T are as discussed in Sec. III A, with
the delays now being fixed, instead of the natural frequencies.
We see that Kc can differ by 3 orders of magnitude depending
on the frequency and the network architecture, with bimodal
scenarios showing distant patterns from the case with a single
delay, while each structured case is also specific.

Note that for fully realistic description of the brain synchro-
nizability, the heterogeneous connectivity weights, Fig. 1(a),
which imply a complex network [17], would also need to be
taken into account.

IV. SUMMARY

Transforming many time delays into spatial patterns within
the couplings’ space-time structure provides a novel concept
for a better understanding of large-scale network dynamics.
Together with the various dynamical regimes discussed ear-
lier, these findings unveil the critical importance of spatial
heterogeneity of the time-delays in the coupling matrix. Unlike
populations defined by coupling strengths or natural frequen-
cies [18], the structure here stems solely from the link-delays,
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and introduces non-trivial spatiotemporal dynamics compared
to homogeneous [39–41], or random unimodal heterogeneous
delays [37]. Future work should extend these results for other
coupling functions of the phase reduced model, e.g., similar to
those in [5], and for realistic neurons.

We have here provided a theoretical framework, which
allows treating the space-time structure of couplings as a whole
with regard to its effects upon network synchronization. A
relevant real-world example is found in clinical neuroscience,
where the reshaping of the time delays is common in
neurodegenerative diseases such as multiple sclerosis [43], but
also known to be critical in aging [44] and neuroplasticity [45].

Finally, anti-phase spatio-temporal brain patterns as a
paradigm [46], analogous to those observed for model A as
a first approximation of the connectome, have been observed
and modelled across different frequency bands, and imaging
[11] and electrophysiological data [47]. Similarly, many recent

models for the pair-wise coherence in connectome-based
networks of phase oscillators [10,48] that try to reproduce
the patterns of coherence and incoherence observed in resting
brain, would be simplified by several orders of magnitude by
applying our reduction. This becomes even more important for
finer brain parcellations, where the numerical analysis of the
full-delayed system is tremendously computational extensive.
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