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Evaluation of hierarchical watersheds.
Benjamin Perret, Jean Cousty, Silvio Jamil F. Guimarães, and Deise S. Maia

Abstract—This article aims to understand the practical features of hierarchies of morphological segmentations, namely the quasi-flat
zones hierarchy and watershed hierarchies, and to evaluate their potential in the context of natural image analysis. We propose a novel
evaluation framework for hierarchies of partitions designed to capture various aspects of those representations: precision of their
regions and contours, possibility to extract high quality horizontal cuts and optimal non-horizontal cuts for image segmentation, and
ease of finding a set of regions representing a semantic object. This framework is used to assess and to optimize hierarchies with
respect to the possible pre- and post-processing steps. We show that, used in conjunction with a state-of-the art contour detector,
watershed hierarchies are competitive with complex state of the art methods for hierarchy construction. In particular, the proposed
framework allows us to identify a watershed hierarchy based on a novel extinction value, the number of parent nodes, that outperforms
the other hierarchies of morphological segmentations. This coupled with the fact that watershed hierarchies satisfy clear global
optimality properties and can be computed efficiently on large data, make them valuable candidates for various computer vision tasks.

Index Terms—hierarchy of partitions, image segmentation, watershed hierarchy, quasi-flat zones hierarchy, image analysis.

F

1 INTRODUCTION

H IERARCHIES of partitions are multi-scale image rep-
resentations that were first proposed in [1], [2]. They

have since appeared under various names: pyramids, hier-
archy of segmentations, partition trees, scale-sets. In a hier-
archy (of partitions), an image is represented as a sequence
of coarse to fine partitions satisfying the strong causality
principle [3], [4]: i.e., any partition is a refinement of the pre-
vious one in the sequence. They have various applications
in image processing and analysis: image segmentation [5],
[6], [7], [8], [9], [10], occlusion boundary detection [11],
image simplification [6], [9], [12], object detection [5], objects
proposal [10], visual saliency estimation [13]. In particular,
they have gained a large popularity with the works of [7]
whose hierarchical approach to the general problem of
natural image segmentation has outperformed state of the
art approaches.

It has long been noted [16], [17], [18] that the classical
morphological approach to image segmentation, i.e., the
watershed, is compliant with the strong causality princi-
ple. This enables to define hierarchies of watersheds (see
Figure 1) as a sequence of watershed segmentations of an
image whose minima are iteratively removed according
to an importance measure, e.g., related to their sizes. This
definition has been formalized in the context of minimum
spanning forests that already enabled to define watershed
cuts as an optimal solution to a combinatorial problem
related to minimum spanning tree [19]. It has also been
shown that hierarchies of watersheds are linked to the quasi-
flat zones hierarchies [20], to the single-linkage clustering
problem [21], and to connective segmentation [12], [22].

Hierarchies of watersheds are thus multi-scale represen-
tations which satisfies a global optimality property. More-
over, there exist efficient algorithms, with the same time
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Figure 1. Saliency maps of the morphological hierarchies studied in this
article –QFZ, WS-Dynamics, WS-Area, WS-Volume, and WS-Parents–
on the elefant image from Grabcut dataset [14] with SED gradient [15].

complexity as minimum spanning tree algorithms, to con-
struct them [23], [24] enabling to process large images in
real time. In recent years, they have been used for the com-
putation of morphological operators [25], in the context of
stochastic watershed segmentation [26], [27], [28]. However,
their practical performances have not yet been studied in
the general case of natural image analysis and the aim of
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this work is to understand their practical features and to
evaluate their potential in this context.

To this end, we propose a novel evaluation framework
for hierarchies of partitions specifically designed to capture
the various aspects of those representations: 1) quality of
regions and contours, 2) quality of produced segmentations
with horizontal cuts and optimal cuts, and 3) easiness of
finding a set of regions representing a semantic object.
These measures are evaluated on two types of natural image
datasets: 1) the Berkley segmentation dataset BSDS 500 [7],
[29], and 2) Grabcut [14] and Weizmann [30] object detec-
tion and segmentation datasets. Compared to the classical
approach for hierarchy evaluation that focuses only on the
horizontal cuts and the image segmentation problem, we
believe that the proposed framework offers a richer assess-
ment that better accounts for the hierarchical nature of the
representations and is not limited to a single use case.

This framework is used to evaluate and understand the
strengths and weaknesses of the considered hierarchies of
morphological segmentations. In particular, it allows us to
identify a watershed hierarchy based on a novel extinction
value, the number of parent nodes, that outperforms the
other hierarchies of morphological segmentations. Then,
we study the importance of the gradient measure for all
methods and the necessity to perform a filtering of some hi-
erarchies. Finally, the properties of the best found solutions
are discussed and compared to a state of the art approach.

The definition of quasi-flat zones and watershed hierar-
chies are given in Section 2. Existing evaluation methods for
hierarchies are discussed in Section 3. Section 4 presents the
evaluation framework and the new measures. The experi-
ments and their outcomes are discussed in Section 5. The
work is finally concluded in Section 6.

2 PRELIMINARY ON GRAPHS AND HIERARCHIES

In this section, we first review the definitions of graphs
and hierarchies of partitions. Then, we recall the definition
of the hierarchies of morphological segmentations used in
this article, namely the quasi-flat zones hierarchies and the
watershed hierarchies.

2.1 Graphs and hierarchies

In the sequel of this paper, the graph G is defined as a
pair (V,E) where V is a finite set and E is composed of
unordered pairs of distinct elements in V , i.e., E is a subset
of {{x, y} ⊆ V |x 6= y}. Each element of V is called a vertex
or a pixel, and each element of E is called an edge. The graph
G will model the image spatial domain, e.g., V is the regular
2D grid of pixels, and E is the 4 or 8 adjacency.

We denote by W a function from E to R that weights
the edges of G. Therefore, the pair (G,W ) is an edge-weighted
graph, and, for any u ∈ E, the value W (u) is the weight of u.

A partition, also called a segmentation, P of V is a family
of subsets of V such that: 1) the intersection of any two
distinct elements of P is empty, and 2) the union of the
elements of P is equal to V . Each element of a partition P
is called a region of the partition P . Given two partitions P1

and P2, we say that P2 is a refinement of P1 if every region
of P2 is included in a region of P1.

A hierarchy (of partitions) H = (P0, . . . ,Pn) is a sequence
of partitions of V such that P0 is the single region partition
P0 = {V }, the partition Pn contains every singletons of V ,
i.e., Pn = {{x} |x ∈ V }, and Pi is a refinement of Pi−1 for
all i in {1, . . . , n} (see Figure 2).

Given a hierarchy H = (P0, . . . ,Pn), the set of regions
of H, denoted by RH is the union of all partitions of H.
The inclusion relation on RH induces a tree structure (or a
dendrogram) where: V is the root, the singletons {x} with
x ∈ V are the leaves, and the parent of a region R 6= V of
RH, denoted by Parent(R), if the smallest region R′ of RH
that is strictly larger than R (see Figure 2).

Given a hierarchy H = (P0, . . . ,Pn), a partition P of
V made of regions of H (i.e., P ⊆ RH) is called a cut of H
(see Figure 2). The set of all cuts of a hierarchyH is denoted
by Π(H). A cut P is said horizontal if P = Pi for some i in
{1, . . . , n}.

2.2 Quasi-flat zones hierarchy
The quasi-flat zones have been studied since the 70’s (see
e.g., [12], [31], [32]). They are deeply linked to single-
linkage clustering and to the notion of a minimum spanning
tree [21]. A quasi-flat zone of the weighted graph (G,W ) at
level λ is a maximal set of vertices such that there exists a
path of maximal weight λ between any two of its vertices.
The quasi-flat zones of the weighted graph at a given level
λ is a partition of its vertices. The sequence of partitions
obtained for all possible values of λ is a hierarchy called the
quasi-flat zones hierarchy of the weighted graph (see Figure 1),
and denoted by QFZ.

2.3 Watershed hierarchies
Watershed hierarchies were first proposed in [16], [17], [18]
and have since been formalized in the context of minimum
spanning forests [19], [23]. Given a weighted graph and
a family of markers (i.e., subsets of the graph vertices
identifying the objects of interest), the problem of minimum
spanning forest is to find a spanning forest of minimum
total weight, defined as the sum of the weights of its edges,
such that each connected component of the forest contains
(is rooted in) exactly one marker. The connected components
of the minimum spanning forest then forms a segmentation
with a global optimality property similar to the one of the
minimal spanning tree. When the markers are the regional
minima of the weight map, the corresponding minimum
spanning forest segmentations are indeed the watershed
segmentations defined by the drop of water principle [19].

If the markers are ranked, e.g., according to an impor-
tance measure, it is possible to obtain a sequence of nested
minimum spanning forests such that the k-th minimum
spanning forest is rooted in the k-most important markers.
Thus, one can obtain a sequence of nested partitions, hence a
hierarchy of partitions as defined in this article, where every
partition is optimal. A usual choice to define a sequence of
markers is to rank the minima of the weight map according
to extinction values [33]. Such hierarchies are called hier-
archical watersheds; their theoretical properties and some
algorithms to construct them are studied in [20], [23], [24].

Extinction values are defined through regional attributes
defined on the connected components of the level sets of
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A cut of 

the hierarchy

Figure 2. A hierarchy of partitions of an image (source BSDS 500 [7]) is a sequence of coarse to fine partitions. The hierarchy can be represented
as a tree of regions. A cut is a partition made of regions of the hierarchy possibly taken at different levels (red dashed curve).

the weight map [33]. Intuitively, the extinction value of a
minima m for a given regional attribute is the smallest
value λm such that the minimum m disappears when all
components with an attribute smaller than λm are removed.
Common regional attributes are related to the size and to
the contrast of the components [33], [34]: e.g., dynamics,
area, or volume. Other authors have proposed regional
measures related to topological properties of the function
inside the components: topological height [35], or number
of descendants [35]. We propose to use a novel attribute
counting the number of parent nodes in the min-tree of the
weighted graph, i.e.,, the number of non leaf nodes among
the descendent of a node. All these regional attributes and
their associated extinction values can be computed from
the quasi-flat zones hierarchy of the weighted graph [24].
Among all the possibilities we have chosen to present the
results of (see Figure 1):

• area, volume, and dynamics which are the most
widely presented measures in the literature;

• number of parent nodes, which is up to our knowl-
edge a new proposal, that provides the best perfor-
mances in the following assessments.

Those regional attributes lead to the hierarchies denoted
respectively by WS-Area, WS-Volume, WS-Dynamics, and
WS-Parents in the following of this manuscript.

3 EVALUATION OF HIERARCHIES

This section reviews the different solutions proposed in the
literature for the evaluation of hierarchies. The evaluation
of hierarchies is subject to two major difficulties: 1) they
are complex structures often leading to large combinatorial
problems, 2) as an intermediate tool, they have various
usage and one hierarchy may be adapted for some tasks
but not for others.

A qualitative assessment of hierarchies can be performed
through a visual inspection of the saliency maps [17], i.e.,
image of contours where the brightness of a region contour
is proportional to the scale of the region. Figure 1 shows
saliency maps obtained with the quasi-flat zones hierarchy
and the considered watershed hierarchies. Such exercise is
however not trivial and may even be misleading as the
general impression may be largely influenced by the transfer
function used to convert the scale measure (that may have a
large dynamic range) to a viewable image.

Quantitative assessment of hierarchies focus on the eval-
uation of the individual segmentations that can be extracted
from a hierarchy. This approach enables to reuse the existing
image datasets with their ground-truth segmentations and
to benefit from the existing works on dissimilarity measures
between segmentations.

The most popular approach to evaluate a hierarchy,
developed by [7], consists in comparing each partition in the
sequence of partitions defining the hierarchy (the horizontal
cuts of the hierarchy) to the ground-truth. When the com-
parison measure produces precision and recall scores, their
evaluation along the sequence of partitions produces the so-
called precision-recall curves. To evaluate a hierarchy on a
whole dataset, two aggregated measures are then defined:
the optimal image scale OIS measuring the best achiev-
able score when taking the optimal horizontal cut in each
hierarchy, and the optimal data-set scale ODS measuring
the best achievable score when taking horizontal cuts at
the same level (the optimal scale) in every hierarchy. The
difference between the ODS and the OIS measures assesses
the consistency of the hierarchy in terms of scale: close
OIS and ODS values suggest that regions of equivalent
perceptual importance in different images are represented
at the same level of their respective hierarchies.

This framework has been applied with three different
measures: 1) F-Measure for regions (FR) [36] where image
segmentation is viewed as a multi-class clustering problem
on the image pixels, 2) F-Measure for boundaries (FB) [36],
[37], [38] where image segmentation is viewed as a binary
clustering problem on the pixels’ boundaries, and 3) F-
Measure for objects and parts (FOP) [39] which defines
empirical (pseudo) precision, recall based on the heuristic
classification of each region of the partitions as an object, a
part of an object, or noise. The work of [39] on the evaluation
of segmentation assessment measures has shown that FB
and FOP are highly discriminant between ground truths of
different images on the BSDS 500 image dataset [7]. On the
contrary, FR has shown a low discriminant power.

The horizontal cuts considered in that framework rep-
resent a subset of all possible partitions that can be con-
structed from a hierarchy. In order to better evaluate the
potential of hierarchies the authors of [40], [41] proposed to
look for the optimal cut, generally not horizontal, in a hier-
archy according to a given evaluation measure. This leads to
combinatorial optimization problems that have been solved
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in the two following cases: 1) upper bound on FB solved as
a linear fractional combinatorial optimization problem [40],
and 2) upper bound on local additive region measures
solved with dynamic programming [41] (similar to finding
the optimal partition for a given energy function [6], [42]).
Those methods does not provide any tool to extract this
upper bound cut when the ground truth is unknown: they
only measure the full potential of a hierarchy.

Up to our knowledge Maire et al. [43] is the single
attempt to provide a hierarchical ground-truths datasets.
They defined a hierarchical ontology of semantic objects
with 3 levels and asked human subjects to decompose
scene according to it: their dataset is thus strongly focused
on the category identified in the ontology and does not
corresponds to a general segmentation objective.

4 PROPOSED EVALUATION METHODOLOGY

In this section, we present an evaluation framework for hier-
archies of partitions. This framework is composed of several
supervised assessment measures, each enabling to quantify
a different aspect of the hierarchy. First, we explain the
choice of the assessment measures and their contributions.
Then, we give a detailed description of each measure.

We choose to focus on natural image processing and
more precisely on image/object segmentation. Our assess-
ment methodology comprises three parts:

1) We propose an evolution of the upper-bound on region
measures [41] enabling to quantify the maximal achiev-
able score of a hierarchy for the general segmentation
problem. This segmentation ability is studied with re-
spect to the number of desired regions in the target
segmentation, allowing us to identify, in the context of
hierarchies, some classical properties of image segmen-
tation such as under- and over-segmentation;

2) We propose new evaluation measures that aims to
quantify the easiness of finding a set of nodes of a
hierarchy representing a semantic object in the scene;

3) As a standard evaluation measure, we use the F-
Measure and precision-recall curves on boundaries
FB [36] (see Section 3) that quantify the contours quality
in the horizontal cuts of a hierarchy and the consistency
of their indexing. This measure is complementary to the
other region oriented measures and also provides a ref-
erence measure for the comparison with the literature..

4.1 Upper-bound on BCE measure

We propose an evolution of the upper-bound evaluation on
regions proposed by Pont-Tusset et al. [41] that consists in
two improvements: 1) the use of a dissimilarity measure that
enables to penalize both under- and over-segmentation, and
2) the definition of a new type of curve, the fragmentation-
upper bound curve that enable to measure the potential of
the hierarchy and the potential gain of non-horizontal cuts
compared to horizontal cuts.

In [41], the authors focused on the directional Hamming
distance [44] which is transparent to over-segmentation,
i.e., it does not penalize the subdivision of a region of the
ground-truth into multiple regions in the proposal segmen-
tation. In this work, we propose to use the Bidirectional

Consistency Error BCE [36] measure. The BCE measure
is symmetric and it is not transparent to over- or under-
segmentation. The evaluation of segmentation measures
provided by [39] evaluates BCE as a highly discriminant
measure on the image segmentation dataset BSDS 500 [7].

Given an image I , one ground-truth segmentation TI ,
and a proposal segmentation SI , the BCE measure of SI

and TI is defined by [36]:

BCE(SI ,TI) =

1

N

∑
R∈SI

R′∈TI

|R ∩R′|min

( |R ∩R′|
|R|

,
|R ∩R′|
|R′|

)
. (1)

Given a hierarchy of partitions HI on the image I , one
ground-truth segmentation TI and a number k of regions,
the Upper-Bound BCE score (UBBCE) for HI is the highest
BCE score for all the cuts of HI composed of k regions:

UBBCE(HI ,TI , k) = max
S∈Π(HI)
|S|=k

BCE(S,TI). (2)

Ground-truth

Hierarchy 1 Hierarchy 2

Figure 3. Illustration of under- and over-segmentation for hierarchies.
Hierarchies 1 and 2 are both composed of 2 levels. Compared to the
ground-truth, the first hierarchy manages to recover long contours in
its coarse level but then fails to recover the other contours at a finer
level: the optimal horizontal cut is the coarsest one and the hierarchy is
said to under-segment the image. With the second hierarchy the inverse
situation happens, the coarsest partition recovers all the contours of
the ground-truth but also contains extra-contours. However, the finest
partition looses the true contours and preserves extra contours: the
hierarchy is said to over-segment the image.

In order to better understand the content of the hierar-
chies and to account for the variations inside the evaluation
datasets, we propose the Fragmentation–Optimal Cut score
curve (FOC) where the mean-average Upper-Bound BCE
score (the mean image score over the database, with the
image score defined as the average score over the set of
ground-truths for the image) is plotted against the fragmen-
tation level of the segmentation defined as k/|TI |, the ratio
between the number of regions in the segmentation and the
number of regions in the ground-truth (see Figure 5). The
gain achieved by taking a non horizontal cut in the hier-
archy is evaluated with a second curve: the Fragmentation-
Horizontal Cut score curve (FHC) obtained by taking the
successive partitions of the hierarchy (similarly to precision-
recall curves). A large difference between, the FOC and FHC
curves suggests that the optimization algorithm has selected
regions from various levels of the hierarchy to find the
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optimal cut: the regions of the ground-truth segmentations
are thus spread at different levels in the hierarchy.

The FOC curve starts at the value corresponding to
the single region partitions (independent of the evaluated
hierarchy). Then, it generally quickly increases at low frag-
mentation levels as the optimization first selects the largest
regions that summarize the ground-truth. Then, the optimal
cut starts to include smaller regions that provides only little
score gain: this corresponds to the nearly flat part of the
curve. At a high level of fragmentation (not visible in the
figures), the algorithm cannot add new regions without
lowering the score and the curve starts to decrease.

In the ideal case, the maximum of the FOC and FHC
curves is achieved for a fragmentation of 1. If the maximum
appends at fragmentation level lower than 1, this means
that the hierarchy tends to capture the main feature of the
ground-truth with a low number of regions but then fails to
correctly refines those regions (see Hierarchy 1 in Figure 3):
in this case we say that the hierarchy has a tendency for
under-segmentation. If the maximum appends at a higher
fragmentation level than 1, this means that the hierarchy
is able to provide a set of superpixels for the ground-truth
but fails to merge them in a correct order (see Hierarchy 2
in Figure 3): in this case we say that the hierarchy has a
tendency for over-segmentation.

As an overall performance summary respectively on the
FOC and FHC curves, we compute the normalized area
under the curve, denoted respectively by AUC-FOC and
AUC-FHC. The area under the curve provides an evaluation
over a large range of fragmentation levels and thus accounts
for the hierarchical nature of the object of study. In order
to obtain a measure that is symmetric between under- and
over- fragmentation, we choose to calculate the area under
the curve on the interval ]0, 2]. Finally, the area under the
curve is normalized with a factor 1/2 to obtain a score
between 0 (worst) and 1 (best).

4.2 Object detection measure
The last measure, introduced in our previous work [45],
is based on supervised object detection with markers. It
quantifies how well a specific object of a scene can be
retrieved with different levels of information given on its
position.

In this evaluation we have chosen to use the procedure
described in [5] that constructs a two classes segmentation
from a hierarchy of partitions and two non-empty markers:
one for the background and one for the object of interest. Its
principle is to identify the object as the union of the regions
of the hierarchy that intersect the object marker but does
not touch the background marker. Formally, given an image
I , a hierarchy HI , an object marker Mo, and a background
marker Mb, the extracted object is defined by:

O(HI ,Mo,Mb) =
⋃
{R ∈ RHI

|R ∩Mo 6= ∅, R ∩Mb = ∅} .
(3)

This result can be computed efficiently with Algorithm 1.
In the first step of the algorithm, the hierarchy is browsed
from the leaves to the root. If the current node is labeled
Background then its parent node intersects the background
marker and is labeled Background. If the current node is
labeled Object and its parent is not currently labeled then it

Algorithm 1: Marker based object detection.
Data: A hierarchy of partition H on the graph G.
Data: The labeling ` on the leaves of H s.t. ∀x ∈ V ,

`({x}) ∈ {Object, Backgound, Undefined}
Result: The segmented object O according to Eq. (3).

// For all nodes from leaves to root
1 for all regions R in RH in increasing order do
2 if R 6= V then // R is not the root
3 if `(R) = Background then
4 `(Parent(R))← Background;
5 else if `(R) = Object and

`(Parent(R)) = Undefined then
6 `(Parent(R))← Object;

// For all nodes from root to leaves
7 for all regions R in RH in decreasing order do
8 if R 6= V and `(R) = Undefined then
9 `(R)← `(Parent(R));

10 O ← {x ∈ V | `({x}) = Object}

can be labeledObject. In the second step, the tree is browsed
from the root to the leaves and any non labeled node takes
the label of its parent. Finally, the labels of the leaves (the
image pixels) give the segmentation result.

In order to perform an objective assessment of the differ-
ent hierarchies we propose several automatic strategies to
generate object and background markers from the ground
truths. Our main idea is not to reproduce the interactive
segmentation process experienced by a real user but rather
to obtain markers representing different difficulty levels
or that resembles to human generated markers. The gen-
erated markers are the following (see Fig. 4): 1) Erosion
(Er): erosion by a ball of radius 45 pixels. If a connected
component is completely deleted by the erosion then a
single point located in the ultimate erosion of this connected
component is added to the marker, 2) Skeleton (Sk): mor-
phological skeleton given by [46], and 3) Frame (Fr): frame
of the image minus the object ground truth if the object
touches the frame (background only). Using the frame as
the background marker is nearly equivalent to having no
background marker in the sense that it does not depend of
the ground truth or of the image.

In the following, the combination of the background
marker MB and the object marker MF is denoted MB-MF
(for example, Fr-Sk stands for the combination of a Frame
marker for the background and a skeleton marker for the
object). Among all the possible combinations of markers,
we chose to concentrate on the following ones: 1) Sk-Sk
resembles to human generated markers, 2) Er-Er leaves a
large space between markers and represent a difficult case.
Nevertheless, the combination is symmetric in the sense that
the correct segmentation is roughly at equal distance from
the object and from the background marker, and 3) Fr-Sk
where the object marker resembles to a human generated
marker and the background marker conveys nearly no
information: this case is thus strongly asymmetric.

The performance of each segmentation result is eval-
uated with the F-Measure. The median score for the 3
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(a) Er-Er (b) Sk-Fr (c) Sk-Sk

Figure 4. Different combinations of markers. The combination of markers is indicated in the caption of each sub-figure in the form Background
Marker-Object Marker. In each figure the background and object markers are respectively depicted in red and blue.

marker combinations, is called Object Detection Median and
is denoted ODM.

5 EXPERIMENTS

This section presents the results of the experiments and
some discussions.

Precision-recall curves for boundaries and upper-bound
on BCE measure are evaluated on the BSDS 500 dataset [7],
[29] (200 test images). The object detection measure is
evaluated on the Grabcut [14] and Weizmann 1 object [30]
datasets (respectively 50 and 100 test images). We study
the importance of the gradient measure for all methods
(Section 5.1) and the necessity to perform a filtering of some
hierarchies (Section 5.2). The overall results are discussed
and compared to a state of the art approach (Section 5.3).

5.1 Influence of gradient

A classical way to weight the edges of a graph in image
analysis in general and for morphological segmentation in
particular is to use a gradient measure. The aim of this
section is to evaluate the influence of the gradient measure
on the quality of the hierarchies.

The most simple gradient measures use only colorimetric
information from the two pixels of an edge: in this category,
we consider an Euclidean distance in the RGB color space
and an Euclidean distance in the Lab color space, the latter
being more compliant with human color perception. How-
ever, recent advances on contour detection have lead to non
local supervised gradient estimators achieving better perfor-
mance on contour detection benchmarks: in this category,
we consider the globalized probability of boundary (gPb)
from [7] and the structured edge detector (SED) from [15].

Figure 5 shows the result of WS-Dynamics (top row) and
WS-Area (bottom row) with the four considered gradients
–RGB, Lab, gPb, and SED–. The results of QFZ (respectively
WS-Volume and WS-Parents), not shown here, are similar to
the results of WS-Dynamics (respectively WS-Area). A first
observation on WS-Dynamics with RGB and Lab gradients
is that its PR-Curves on boundaries seem truncated and its
FOS-Curves on regions are flat. In the first case, the trunca-
tion appears at the level where the partition of the hierarchy
contains more than 3 000 regions: the evaluation procedure
is stopped at this point as it becomes two demanding on

computational power. In the second case, the flat curve is
the result of the hierarchy not being able to provide any
meaningful partition with at most twice the number of
regions in the ground-truth. Those two observations can
be a consequence of WS-Dynamics (and similarly QFZ)
having its upper levels made only of small salient regions; a
solution to this problem is presented in the next section.

While the Lab gradient provides slightly better perfor-
mance compared to RGB gradient in most cases, we observe
a large gain by switching from a local RGB or Lab gradient
to a supervised non-local gradient like gPb or SED. The SED
gradient improve the results for every measure except the
FOC curve with WS-Dynamics compared to gPb gradient.
The FOC and FHC curves show that WS-Dynamics requires
much more regions to reach its maximal scores with SED
gradients which implies that the hierarchy tends to have
small irrelevant regions on its top layers. This suggests that
despite the regularization effect based on dynamics, which
tends to send lowly contrasted regions to the lower levels
of the hierarchy, WS-Dynamics remains sensitive to small
regions of high contrast that appear more often in SED
gradients than in gPb gradients.

In conclusion, we recommend the use of SED gradient
to build watershed hierarchies on natural images and the
following experiments will be conducted with this gradient.
Moreover, SED is about 3 orders of magnitude faster than
gPb [15] enabling to reach real time performance without
any particular material.

5.2 Small regions removal

As observed in the previous section, QFZ and WS-Dynamics
are sensitive to small regions even with a smooth gradient
as SED. In this section we evaluate the impact of an area
post-filtering on those hierarchies.

The area filter described in [47] removes contours itera-
tively in the hierarchy: starting from the leaves and moving
toward the root, the children of a node are merged if at least
one of them contains less than k pixels. In the following, we
express the strength of the filter as the ratio rk = k/N , with
N the number of pixels in the considered image.

Figure 6 shows the result of the filtering on QFZ (the
results on WS-Dynamics are similar) with four different
values of rk: 0 (no filter), 0.4‰ (roughly 50 pixels in a
BSDS 500 image [7]), 0.8‰, and 1.6‰. We observe that all
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Figure 5. Influence of the gradient on WS-Dynamics (top row) and WS-Area hierarchies (bottom row). Mean Precision-recall (PR) curves for
boundaries on BSDS 500: each curve represents the variation of precision and recall for the different partitions of the hierarchy. OIS and ODS
scores are given in the legend and are respectively represented in the plot by a square and a triangle. Fragmentation–Optimal Cut score curves
(FOC) for regions on BSDS 500: each plain curve represent the upper-bound score achievable for a given fragmentation value. The corresponding
dashed curves represent the score obtained by horizontal cuts. Area under curve for the plain curve (AUC-FOC) and the dashed curve (AUC-FHC)
are given in the legend. Supervised object detection on Grabuct and Weizmann datasets: for each method and each combination of markers,
we see: 1) the median F-measure (central bar), 2) the first and third quartile (extremities of the box), and 3) the lowest datum still within 1.5 inter
quartile range (difference between the third and first quartile) of the lower quartile, and the highest datum still within 1.5 inter quartile range of the
upper quartile range (lower and upper extremities). The median score over all markers combinations is given in the legend.

measures increase with rk, from rk = 0 to rk = 0.8‰. The
introduction of the filtering immediately produces a large
performance boost. For rk = 1.6‰ compared to k = 0.8‰,
the situation is mixed with an improvement on FOC mea-
sures, stagnation on objection detection measures, but a
degradation of OIS and ODS scores: this reflects a tradeoff
between the number of regions necessary to describe the
scene and the precision of boundaries.

The effect of the filtering on under- and over-
segmentation is presented in Figure 7. For each image and
each ground-truth of the dataset, we plot the number of
regions present in the optimal segmentation found against
the number of regions in the ground-truth (we define the
optimal segmentation as the segmentation that achieves 99%
of the optimal score with the fewest number of regions in
the FOC curve). We see that for WS-Dynamics (results are
similar for QFZ), larger values of rk tends to push the op-
timal segmentation from over-segmentation (position above
the diagonal where the optimal segmentation contains more
regions than the ground-truth) to under-segmentation (po-
sition below the diagonal where the optimal segmentation

contains less regions than the ground-truth). For rk = 0.8‰,
the optimal solutions have a mostly symmetrical distribu-
tion around the diagonal, suggesting no bias toward under-
or over-segmentation.

In conclusion, for QFZ and WS-Dynamics we recom-
mend to perform a post-filtering of the hierarchy by re-
moving regions smaller than 0.8‰ of the image size. One
can notice that the object detection measure is less sensitive
to the area filtering than other evaluation measures. This
suggests that, for some applications, the processing of the
hierarchy is naturally robust to small nodes and this filtering
may not be necessary.

5.3 Discussions

This section compares and discuss the best results obtained
for each hierarchy (see Figure 8).

As a reference state of the art result we also include
the Multiscale Combinatorial Grouping (MCG) hierarchies
from [10] in our assessments. MCG also uses SED as the
main cue for contour detection, but then merges several
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Figure 6. Influence of the area filter on QFZ. (See Figure 5 for explanation).
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Figure 7. Influence of area filtering on WS-Dynamics.

hierarchies (referred as OWT-UCM in the literature [7])
computed at different scales.

We can observe that QFZ is globally inferior to all the
other methods. WS-Dynamics shows good performances in
precise contour placement (high ODS and OIS scores) but
has a clear tendency for over-segmentation (maximum of
FOC and FHC curve occur at large values of fragmentation).
We can also notice that WS-Dynamics (and QFZ) perfor-
mances for object detections in the Sk-Sk case is significantly
lower than other methods; this suggests that the hierarchy
fails to correctly order regions near the boundaries which is
coherent with its tendency to over-segment (more regions
are needed to obtain the true contours).

On the contrary, WS-Area and WS-Volume show weaker
performance at contour location (average OIS and ODS
scores) and have a tendency for under-segmentation (max-
imum of FOC and FHC curve occur at low values of frag-
mentation). WS-Area shows a clear advantage over other
methods on object detection with Er-Er markers which can
be explained by the symmetric nature of the markers in this
case: the true contour is located roughly at equal distance
from both markers and WS-Area is particularly good at

producing a regular (in size) tiling of the contour image.
WS-Parents offers the best performances on every mea-

sure expect OIS compared to other watershed hierarchies.
As WS-Area and WS-Volume, it shows a small tendency
for under-segmentation. The results of MCG remain higher
than WS-Parents except for the object detection assessment:
this suggests that MCG, whose various components have
been either trained or optimized on BSDS 500 dataset, may
over-fit this particular dataset and not be the best method
for other applications than general segmentation.

6 CONCLUSION

We have proposed a novel evaluation framework for the
evaluation of hierarchies of partitions that enables to capture
the quality of different aspects of the hierarchies: regions,
contours, horizontal cuts, optimal cuts, nodes grouping,
under or over-segmentation. Compared to the classical ap-
proach for hierarchy evaluation that concentrates only on
the horizontal cuts and the image segmentation problem,
we believe that the proposed framework offers a richer
assessment that better accounts for the hierarchical nature
of the representation and is not limited to a single use case.

This framework was used to assess various hierarchies
of morphological segmentations. In particular, we studied
the importance of the gradient measure for all methods
and the necessity to perform a filtering of some hierarchies.
The framework also allowed us to identify a watershed
hierarchy based on a novel extinction value, the number
of parent nodes, that outperforms the other hierarchies of
morphological segmentations. We have shown that, used in
conjunction with a state-of-the art contour detector, most
watershed hierarchies are competitive or even sometimes
better than the complex state of the art method for hierarchy
construction. Moreover, watershed hierarchies are well de-
fined structure satisfying clear global optimality properties
and can be computed efficiently on large data: they are thus
valuable candidates for various computer vision tasks.

All the programs used to compute the hierarchies and
compute the evaluation measures (and their source code)
are available online at http://www.esiee.fr/∼perretb/
supeval.html.

http://www.esiee.fr/~perretb/supeval.html
http://www.esiee.fr/~perretb/supeval.html
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Figure 8. Best achieved results for each hierarchy and a state of the art method. (See Figure 5 for explanation).

In future work, we plan to study the integration of
more complex and relevant visual cue to define watershed
hierarchies, such as the ongoing works from [48] on itera-
tive stochastic watershed hierarchies generation [28] or [49]
on watershed hierarchies combinations. Another challenge
will be to take account for richer gradient information as
proposed by [50].
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