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Abstract

We study the effect of crystal field anisotropy in the underscreened S = 1 Kondo lattice model. Starting from
the two orbital Anderson lattice model and including a local anisotropy term, we show, through Schrieffer-Wolff
transformation, that local anisotropy is equivalent to an anisotropic Kondo interaction (J‖ 6= J⊥). The competition
and coexistence between ferromagnetism and Kondo effect in this effective model is studied within a generalized
mean-field approximation. Several regimes are obtained, depending on the parameters, exhibiting or not coexistence
of magnetic order and Kondo effect. Particularly, we show that a re-entrant Kondo phase at low temperature can be
obtained. We are also able to describe phases where the Kondo temperature is smaller than the Curie temperature
(TK < TC). We propose that some aspects of uranium and neptunium compounds that present coexistence of
Kondo effect and ferromagnetism, can be understood within this model.

1 Introduction

The properties of many cerium or ytterbium compounds
are well accounted for by the S = 1/2 Kondo-lattice
model, where a strong competition exists between the
Kondo effect and magnetic ordering arising from the
RKKY (Ruderman-Kittel-Kasuya-Yosida) interaction be-
tween rare-earth atoms at different lattice sites. This sit-
uation is well described by the Doniach diagram,[1, 2]
which gives the variation of the Néel temperature and of
the Kondo temperature with increasing antiferromagnetic
intrasite exchange interaction JK between localized spins
and conduction-electron spins. However, uranium and
neptunium compounds exhibit a different behavior. The
Kondo behavior of rare earth and actinide compounds de-
pends on the number of f electrons. For example, in the
case of cerium and ytterbium rare earth systems, the lo-
calized S = 1/2 spins of the 4f electrons interact with
the spin of the conduction electrons via the s − f ex-
change, leading to Kondo and magnetic interactions that
can be described by the usual S = 1/2 Kondo lattice
model. The situation is different for the uranium and

neptunium compounds. In this case, the total spin of the
5f electrons is S > 1/2 and screening may be only par-
tial when the number of conduction electrons channels n
is smaller than 2S [3]. Many actinide compounds, like
UTe [4], UCu0.9Sb2 [5], NpNiSi2 [6] and Np2PdGa3 [7],
have been reported to exhibit an underscreened Kondo ef-
fect; all of them also exhibit ferromagnetic order, with a
relatively large Curie temperature of the order of 50-100
K. Very recently it was found another neptunium com-
pound, Np2PtGa3 [8], presenting a similar effect, i.e. co-
existence of Kondo effect and ferromagnetism, but with a
smaller Curie temperature ∼ 26 K.

Another important point is that the 5f electrons are
less localized than the 4f electrons [9, 10, 11] and their
localized character can be easily changed under pressure.
For example, when applying pressure in UTe samples, the
Curie temperature, TC initially increases, then reaches a
maximum and decreases [12]. This can be understood as
a decrease of the degree of localization of the 5f electrons
under pressure [13, 14].

In previous works [14, 15, 16], the possible coexis-
tence of ferromagnetic order and Kondo effect was dis-
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cussed in detail. Particularly, the Schrieffer-Wolf trans-
formation was applied to a degenerate periodic Ander-
son Hamiltonian with two f−electrons on a degenerate
f−level, resulting in a S = 1 spin in the ground state,
and a Kondo interaction between the S = 1 spins and
the conduction electrons was obtained, together with an
effective 5f bandwidth that corresponds to a delocaliza-
tion of the f−electrons [14]. In this way it was possible to
obtain a qualitative phase diagram that agrees with the
experimental results for some uranium and neptunium
compounds which show coexistence of Kondo effect and
ferromagnetism.

Here we are interested in the effect of crystal field
anisotropy on the S = 1 Kondo lattice model. The
effect of anisotropy has been well studied for the case
of S = 1/2 Kondo compounds, particularly cerium
compounds [17, 18] where the specific heat and trans-
port properties have been well understood by consider-
ing anisotropy. In the case of actinide compounds with
larger values of the spin, and stronger delocalization of
the f−electrons, we also expect that the behavior of
the Kondo and Curie temperatures will change when
anisotropy is considered. So, in the following we ana-
lyze the anisotropic underscreened Kondo lattice (UKL)
model, focusing on two different regimes which are pe-
culiar to the S = 1 UKL model : the re-entrant Kondo
regime and the ferromagnetic phase with TK < TC .

2 The UKL Model with

anisotropy

Following ref. [14] we first describe the 5f electrons sys-
tem using the periodic Anderson lattice model with two
localized orbitals. This allow us to describe local S = 1
magnetic sites. The Hamiltonian is written as follows:

H = H0 +Hhyb , H0 = Hs +Hf +Hani , (1)

where

Hs =
∑

kσ

ǫkc
†
kσckσ , (2)

Hf =
∑

iασ

ǫfn
f
iασ +

∑

i

[

U(nf
i1↑n

f
i1↓ + nf

i2↑n
f
i2↓)

+ U ′(nf
i1↑n

f
i2↓ + nf

i1↓n
f
i2↑) + (U ′ − J)(nf

i1↑n
f
i2↑ + nf

i1↓n
f
i2↓)

− J(f †
i1↑fi1↓f

†
i2↓fi2↑ + h.c.)

]

, (3)

Hhyb =
∑

ikασ

(

Vkαe
ik·Ric†

kσfiασ + V ∗
kαe

−ik·Rif †
iασckσ

)

,

(4)

Hani = −D
∑

i

(Sf
z )

2
i . (5)

Hs represents the kinetic energy for the conduction elec-
trons, being ǫk the dispersion relation and c†

kσ (ckσ) the
creation (annihilation) operator for conduction electrons.

As usual, no degeneracy of the conduction band is con-
sidered. The local energy ǫf , the Coulomb interaction
of two f electrons in the same orbital, U , in different
orbitals, U ′ and the Hund coupling, J , are included into
Hf , with f †

iασ (fiασ) being the creation (annihilation) op-
erator in the site i, orbital α and spin σ. Finally, the
term Hhyb represents the hybridization between the con-
duction electrons and the f electrons and Hani is a local
magnetic anisotropy, leading to uniaxial (for D > 0) or
planar anisotropy (for D < 0).

This model has been partially studied in ref. [14]
but without the last term. Here we study the effect of
anisotropy. For this purpose we generalize the Schrieffer-
Wolff (SW) transformation [19] for the Hamiltonian de-
scribed in equation (1) (details of the SW transforma-
tion are given in Appendix A). The anisotropy term in
equation (5) removes the degeneracy between the f states
Sz = | ± 1〉 and Sz = |0〉. For positive values of the pa-
rameter D, the states with Sf

z = ±1 have smaller energy
than the one with Sz = 0.

From the SW transformation of the Hamiltonian (1),
the Kondo interaction can be written as:

HK =
1

2

∑

ik

[

J⊥(c
†
k′↑ck↓S

f−
i + c†

k′↓ck↑S
f+
i )

+J‖(c
†
k′↑ck↑ − c†

k′↓ck↓)S
f
zi

]

, (6)

where the parallel (diagonal) and the perpendicular (non-
diagonal) Kondo interactions are

J‖ = −2
|VkF

|2
U ′ − J + ǫf − µ− 3D/4

,

J⊥ = −|VkF
|2
( 1

U ′ − J + ǫf − µ− 3D/4

+
1

U ′ − J + ǫf − µ+D/4

)

, (7)

To stabilize ferromagnetic order, we include in the UKL
model a ferromagnetic exchange interaction between
neighboring spins HH = 1

2JH
∑

〈ij〉 S
f
i · Sf

j , with JH < 0.

The presence of the anisotropy is explicitly visible in
the expressions of these interaction parameters J‖ and J⊥,
given by equation (7). Thus, the magnetic anisotropy in-
duces an anisotropic Kondo interaction. It can be checked
easily from equation (7) that,D > 0 implies that J‖ < J⊥.
We define new parameters α and JK as follows:

α =
J‖
J⊥

, and JK =
J‖ + J⊥

2
. (8)

D > 0 is equivalent to α < 1. The anisotropic S = 1/2
Kondo lattice model has been studied by several au-
thors [20] without any microscopic justification of the
anisotropy of the interaction; here we show that for S = 1,
the anisotropic Kondo interaction results from the local
anisotropy.
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3 Influence of anisotropy on the

phase diagram

In the following, we use the same generalized mean field
decoupling scheme already utilized in refs. [14, 15] and

calculate self-consistently the order parameters: 〈Mf
i 〉 =

〈Sz
i 〉 ≡ 〈Sz

i1 + Sz
i2〉 for the magnetization of the f elec-

trons and 〈λiσ〉 =
∑

α〈f
†
iασciσ〉 for the Kondo hybridiza-

tion as a function of JK , temperature and α. From the
variation of the critical temperature for ferromagnetic or-
der, TC , and Kondo temperature, TK , we can build the
phase diagram. As it will be shown in the next paragraph,
it is also necessary to introduce two characteristic temper-
atures T1 and T ′

1, associated with re-entrant phases that
appear when the order parameters, 〈λσ〉 and 〈Mf 〉, are
zero at T = 0 but different from zero above T1 and T ′

1. In
all the following calculations, the half bandwidth WD is
taken as the energy unit, and we fix the intersite exchange
JH = −0.01, the conduction band filling to 〈nc〉 = 0.8,
and the total number of f electrons per site and per or-
bital to 〈nf 〉 = 1.

In the UKL model, the f electrons are not purely lo-
calized and a small effective bandwidth was obtained from
the SW transformation [14]. This effective f bandwidth
is defined as

W f = 2Aσǫk , (9)

where Aσ is proportional to the magnetization of the f
electrons 〈Mf 〉, the Kondo exchange interactions J ’s and
a numerical parameter P (see equation (27) in Appendix
B and ref.[14]) that measures the width of the f−band
compared to the width of the conduction band. Here,
we consider P as a free parameter, and we describe the
results for two values of P : P = 0.20 and for P = 0.30.
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Figure 1: (color online) Phase diagrams for P = 0.20. (a)
T versus JK for α = 1 and (b) T versus α for JK = 0.50.
The red color region represents the ferromagnetic order
and the blue color region represents the Kondo phase. A
region of coexistence can be observed in both phase dia-
grams.
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Figure 2: (color online) Phase diagrams for P = 0.30. (a)
T versus JK for α = 1 and (b) T versus α for JK = 0.43.
The red color region represents the ferromagnetic order
and the blue color region represents the Kondo phase. A
region of coexistence can be observed in both phase dia-
grams.

The phase diagram as a function of JK is shown on
figure 1(a) for P = 0.20, and in the absence of anisotropy
(α = 1). When the Kondo coupling JK is not strong
enough (JK . 0.51), Kondo effect is not stable for T → 0,
but it is stable in a narrow temperature region for JK
very close to 0.50. In this region, the Kondo effect can
occur between two characteristic temperatures: T1 and
TK . Figure 3 shows the behavior of the mean field pa-
rameters as a function of temperature. Such re-entrant
behavior corresponds to the case presented in figure 3(b)
for JK = 0.50. Also, figure 1(b) shows the phase dia-
gram for a value of JK = 0.50, and as a function of α.
The re-entrance is found in a large range of α. The width
of the re-entrance region is maximum for α ∼ 1 and de-
creases when α increases. On the other hand, the Kondo
effect is enhanced when α decreases to values smaller than
1. Thus, it seems clear that the anisotropy plays against
the Kondo effect while the Curie temperature is almost
insensitive to changes in the anisotropy.

Figure 2(a) shows the phase diagram for a larger
f−bandwidth, (P = 0.30) and no anisotropy (α = 1).
In this case, there is a region where TK < TC , i.e. Kondo
effect start to occur within the ferromagnetic phase. Such
a behavior corresponds to some experiments in actinide
compounds [6, 7]. It can be seen on figure 3(e), close
to the critical JK value below which Kondo effect disap-
pears, that the transition is abrupt between a ferromag-
netic state and mixed phase Kondo+ferromagnetic with a
discontinuous jump of the magnetization. The variation
of the critical temperatures for fixed JK = 0.43, as a func-
tion of anisotropy, is presented in figure 2(b). In this case,
there is also a re-entrant phase, but for the ferromagnetic
phase: the ferromagnetic state is stable only between two
temperatures T ′

1 and TC , but below T ′
1, Kondo effect dom-

inates and ferromagnetism disappears. This behavior can

3



hb

0

0.2

0.4

0.6

0.8

0 0.01 0.02 0.03

O
rd

er
p
a
ra

m
et

er
s

T

T
′
1

TK TC

(d) P = 0.30

JK = 0.43

α = 0.92

0 0.01 0.02 0.03

T

(e) P = 0.30

JK = 0.43

α = 1.00

0 0.01 0.02 0.03 0.04

T

(f) P = 0.30

JK = 0.43

α = 1.08

0

0.2

0.4

0.6

0.8

1

(a) P = 0.20

JK = 0.50

α = 0.90

T1
TK

TC

(b) P = 0.20

JK = 0.50

α = 1.00

(c) P = 0.20

JK = 0.50

α = 1.10

〈Mf 〉

〈λ↑〉

Figure 3: Variation of 〈Mf 〉 and 〈λ↑〉 as a function of temperature for different values of α in the two cases studied
here, P = 0.20 and P = 0.30.

be clearly seen on figure 3(d), where it is evident that
ferromagnetism disappears at low temperature.

Summarizing, for both values of P , TC has a simi-
lar behavior. It increases with increasing JK and has a
maximum when TC is of the same order than TK . This
variation of TC corresponds to what was observed in ex-
periments [4, 21, 22] and it was already discussed from
a theoretical point of view in [23], where it was proposed
that this maximum is due to delocalization of the 5f elec-
trons. Here, as in our previous papers, [15, 14], we pro-
pose that this maximum is related to the competition with
Kondo effect.

Figure 3 presents the variation of the order param-
eters 〈Mf〉 and 〈λ↑〉 as a function of temperature, for
different values of α for P = 0.20, (figures 3(a-c)), and
JK = 0.50, and for P = 0.30 and JK = 0.43, (figures 3(d-
f)). The values of α in figure 3 were chosen to emphasize
the difference between the possible scenarios present for
this model.

For P = 0.20, the coexistence of FM and Kondo effect
is clearly observed for α = 0.90, where TK > TC (fig-
ure 3(a)). Close to the case without anisotropy (α ≈ 1),
the behavior is very interesting, as already pointed out:
at low T , the system presents a purely FM phase, while
a coexistence FM + Kondo is observed above a tem-
perature T1 (figure 3(b)). Increasing α, ferromagnetism
dominates, and Kondo effect is observed only in a small
temperature-region (figure 3(c)). On the other hand, the
results for P = 0.30 are very different. For α . 0.96,
Kondo effect is strong enough to destroy completely the
FM state at low temperature (figure 3(d)). A coexis-
tence of FM + Kondo is observed at low T when α ≈ 1
(figure 3(e)). With decreasing temperature, there is first

a ferromagnetic state between TC and TK and then a
mixed Kondo-ferromagnetic state below TK with a clear
decrease of the ferromagnetic magnetization. In the
Kondo-ferromagnetic phase, the f -moments are partially
screened, and the f -moments are reduced to a value close
to 1/2. This is in agreement with the description given
by Nozières and Blandin [3] of the underscreened Kondo
effect: the conduction electrons cannot completely screen
a S = 1 localized spin, and the system is described below
TK by an effective S = 1/2 spin, which can order due
to the intersite exchange. For bigger values of α the FM
is predominant and no Kondo effect is observed (figure
3(f)).

4 Summary and conclusions

We have shown that the anisotropic UKL Hamiltonian
can be derived from the S = 1 Kondo lattice model, if a
local anisotropy term is included. A large variety of pos-
sible phase diagrams has been obtained, exhibiting inter-
esting behaviors, as the possibility of abrupt transitions in
the order parameters or re-entrant Kondo and FM phases
at finite temperatures. The results have been shown for
two different values of the parameter P , which measures
the delocalization of the 5f electrons. The changes when
the calculations are performed with other possible values
of P are only qualitative.

Finally, the results shown in this paper present some
similarities with experimental results on two groups of
compounds. For P = 0.20, the variation of anisotropy
can describe the variation of the Kondo and Curie tem-
peratures as a function of pressure or magnetic field in
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UGe2 [24, 25, 26, 27]. In some regions of the phase dia-
gram, a transition between two different ferromagnetic or-
ders is observed, with a higher magnetic moment for T →
0. In our curves this can be observed in figure 3(b), where
the transition occurs from FM to FM+Kondo phases. For
P = 0.30, the kink found in 3(e) is also observed in
some neptunium compounds (NpNiSi2, Np2PdGa3 and
Np2PtGa3) [6, 7, 8]. In these compounds, the magne-
tization at small applied magnetic field collapses at low
temperatures, while the magnetization grows to a finite
value and goes trough a second order transition for higher
temperature. So, the UKL model, and the idea of a possi-
ble coexistence of Kondo effect and ferromagnetic order,
first suggested by B. Coqblin [28, 29, 30], is very promis-
ing for the description of actinide compounds that present
Kondo effect and ferromagnetism.
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Appendix

A Schrieffer-Wolff transformation

The Schrieffer-Wolff transformation [19] relates the An-
derson and Kondo Hamiltonians. In this work we use the
same method described in Ref. [31], where the canonical
transformation permit us to obtain from the hybridization
term Hhyb, a new term H̃ , give by

〈b|H̃ |a〉 =
1

2

∑

c

〈b|Hhyb|c〉〈c|Hhyb|a〉

(

1

Ea − Ec

+
1

Eb − Ec

)

.

(10)

This equation represents the scattering process from an
initial state |a〉, through a intermediate state |c〉, to a final
state |b〉 where Ea, Ec and Eb are the respective eigenen-
ergies. The states |a〉, |b〉 and |c〉 should be eigenstates of
H0. We basically consider two scattering process: the first
one is the process where the initial and final states have
one conduction electron and two f -electrons; the second
scattering process have three f -electrons in both initial
and final states.

The eigenstates and eigenenergies for the first process

are defined as

c†
kσf

†
i1σf

†
i2σ|0〉; E = U ′ − J + ǫk + 2ǫf −D , (11)

c†
kσ

1√
2

(

f †
i1↑f

†
i2↓ + f †

i1↓f
†
i2↑

)

|0〉;

E = U ′ − J + ǫk + 2ǫf , (12)

c†
kσc

†
k′σ′f

†
iασ′′ |0〉; E = ǫk + ǫk′ + ǫf −D/4 . (13)

For the second process we have

f †
jβσ′f

†
i1σf

†
i2σ|0〉; E = U ′ − J + 3ǫf − 5D/4 , (14)

f †
jβσ

1√
2

(

f †
i1↑f

†
i2↓ + f †

i1↓f
†
i2↑

)

|0〉; (15)

E = U ′ − J + 3ǫf −D/4 , (16)

c†
kσf

†
jβσ′f

†
iασ′′ |0〉; E = 2ǫf + ǫk −D/2 . (17)

The first scattering process gives origin to the Kondo
interaction. The inclusion of anisotropy in the model,
equation 1, modifies the diagonal and the non-diagonal
part of the Kondo interaction as shown below

HK =
1

2

∑

ikk′

[

Jk,k′

⊥(c
†
k′↑ck↓S

f−
i + c†

k′↓ck↑S
f+
i )

+Jk,k′

‖(c
†
k′↑ck↑ − c†

k′↓ck↓)S
f
zi

]

, (18)

where the perpendicular and parallel part of Jk,k′ are

Jk,k′

⊥ = −Vk′ αV
∗
kαe

i(k−k
′)·Ri×

( 1

U ′ − J + ǫf − ǫk′ − 3D/4
+

1

U ′ − J + ǫf − ǫk +D/4

)

,

(19)

Jk,k′

‖ = −Vk′ αV
∗
kαe

i(k−k
′)·Ri×

( 1

U ′ − J + ǫf − ǫk′ − 3D/4
+

1

U ′ − J + ǫf − ǫk − 3D/4

)

.

(20)

B Mean field approach

Taking into account all terms from the Schrieffer-Wolff
transformation and the terms from H0 and HH , a new
Hamiltonian can be written as

H ≡ H0 +HH + H̃ . (21)

After a mean-field approximation an effective Hamilto-
nian is obtained and it reads

H =
∑

iασ

Ef
σn

f
iασ +

∑

kσ

ǫkσn
c
kσ +

∑

kασ

Λσ

(

λkασ + λ†
kασ

)

+
∑

kασ

Aσǫkf
†
kασfkασ + C , (22)
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where

Ef
σ = ǫf + U ′〈nf

σ̄〉+ (U ′ − J)〈nf
σ〉+ J‖σ〈mc〉

− J‖

8

(

〈λ↑〉2 + 〈λ↓〉2
)

− J⊥
4
〈λ↑〉〈λ↓〉

+ JHzσ〈Mf〉+Bσ , (23)

Bσ = −P 〈nf
σǫ〉

[

J‖

2
(1 + 2σ〈Mf 〉) + J⊥

8
(1− 2σ〈Mf 〉)

]

+ P 〈nf
σ̄ǫ〉

[

J‖

8
(1 + 2σ〈Mf 〉)− J⊥

8
(3 + 2σ〈Mf〉)

]

,

(24)

ǫkσ = ǫk + J‖σ〈Mf 〉 , σ = ±1

2
, (25)

Λσ = −1

4

(

J‖〈λσ〉+ J⊥〈λσ̄〉
)

, (26)

Aσ = − P

32

[

3J‖ + 4J⊥ + 4σ〈Mf 〉
(

5J‖ − 2J⊥
)

+3J‖〈Mf 〉2
]

, (27)

C = −2U ′N〈nf
↑〉〈n

f
↓〉 − (U ′ − J)N

(

〈nf
↑ 〉2 + 〈nf

↓〉2
)

+
J‖
2
N

(

〈λ↑〉2 + 〈λ↓〉2
)

+ J⊥N〈λ↑〉〈λ↓〉

− JH
2

zN〈Mf〉2 − J‖N〈mc〉〈Mf 〉 − 4Aσ〈nf
σǫ〉 , (28)

The value of zJH is renormalized by zJH → zJH +D (z
is the number of first neighbor and is taking equal to 6
in a cubic lattice). We consider the mean field param-
eters in the uniform solution, and we assume that both
orbitals remain equivalent. We also define the average oc-
cupation number of conduction electrons, 〈nc〉, where the
magnetization is 〈mc〉 = 1

2 (〈nc
↑〉 − 〈nc

↓〉), and the average

occupation number of f electrons per orbital, 〈nf 〉.
The mean field parameters are obtained by calculating

the Green’s functions. Considering that the conduction
electrons have a constant density of state ρ0 = 1/2WD,
the self-consistent equations are written as:

〈nc
σ〉 = ρ0

∫ WD

−WD

dǫ
[

F1σ(ǫ)− (Aσǫ+ Ef
σ )F2σ(ǫ)

]

, (29)

〈nf
σ〉 =

ρ0
2

∫ WD

−WD

dǫ
[

f(Ef
σ +Aσǫ) + F1σ(ǫ)

−
(

ǫ− µ+ σJ‖〈Mf 〉
)

F2σ

]

, (30)

〈λσ〉 = 2ρ0

∫ WD

−WD

F2σ(ǫ)Λσ̄ , (31)

〈nf
σǫ〉 =

ρ0
2

∫ WD

−WD

ǫdǫ
[

f(Ef
σ +Aσǫ) + F1σ(ǫ)

−
(

ǫ− µ+ σJ‖〈Mf 〉
)

F2σ

]

, (32)

where µ is the chemical potential, f(ω) = (1+ eω/T )−1 is

the Fermi-Dirac distribution and

F1σ(ǫ) = f [Ω+
σ (ǫ)]− f [Ω−

σ (ǫ)] (33)

F2σ(ǫ) =
f [Ω+

σ (ǫ)]− f [Ω−
σ (ǫ)]

∆Ωσ(ǫ)
, (34)

with

Ω±
σ (ǫ) =

1

2

[

ǫ(1 +Aσ)− µ+ Ef
σ + σJ‖〈Mf 〉 ±∆Ωσ(ǫ)

]

,

(35)

∆Ωσ(ǫ) =

√

[

ǫ(1−Aσ)− µ− Ef
σ + σJ‖〈Mf 〉

]2
+ 8(Λσ)2 .

(36)
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