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Sound production on a “coaxial saxophone” is investigated experimentally. The coaxial saxophone is a
variant of the cylindrical saxophone made up of two tubes mounted in parallel, which can be seen as a
low-frequency analogy of a truncated conical resonator with a mouthpiece. Initially developed for the
purposes of theoretical analysis, an experimental verification of the analogy between conical and cylindrical
saxophones has never been reported. The present paper explains why the volume of the cylindrical
saxophone mouthpiece limits the achievement of a good playability. To limit the mouthpiece volume, a
coaxial alignment of pipes is proposed and a prototype of coaxial saxophone is built. An impedance model
of coaxial resonator is proposed and validated by comparison with experimental data. Sound production
is also studied through experiments with a blowing machine. The playability of the prototype is then
assessed and proven for several values of the blowing pressure, of the embouchure parameter, and of the
instrument’s geometrical parameters.

1 Introduction

In the family of the single-reed instruments, the main
difference between the clarinet and the saxophone is
the shape of the resonator of the instrument. The reso-
nance frequencies of these instruments exhibit different
behaviors: cylindrical resonators produce mainly odd
harmonics while conical resonators produce even and
odd harmonics (when a mouthpiece with an adequate
volume is used).
In the literature [1, 2, 3], an analogy has been made and
reveals that it is possible to produce even harmonics
with resonators constructed with cylindrical tubes. This
analogy was first suggested by Benade [4]. Based on a
low frequency approximation, this analogy consists in
representing a conical resonator by two cylindrical pipes
with equal cross section areas mounted in parallel. A
first tube is equivalent to a truncated cone (the resonator
part), and the other tube represents the missing part
of the truncated cone (the volume of which is usually
equal to that of the mouthpiece). Note that this analogy
corresponds also to a particular case of a series of stepped
cones [5]. Initially, this analogy was developed for the
purpose of theoretical analysis, taking advantage of the
fact that in the time domain the reflection functions
are simpler for cylinders than for cones. However, in
this analogy, the volume of the mouthpiece is considered
to be null. This is why in [1] the authors make the
following remark: “...cylindrical saxophones cannot be
built easily for experimental observations (because of
the finite volume of a real mouthpiece)...”. This would
explain why, to our knowledge, no playable example of
cylindrical saxophone has emerged.
The aim of the present paper is to show how it is
yet possible to produce sounds experimentally with a
modified cylindrical saxophone - called coaxial saxophone
in this paper. The first section recalls the analogy
between conical and cylindrical saxophones and explains
how the volume of the mouthpiece is harmful for the
playability of the instrument with this geometry. The
coaxial saxophone geometry is then introduced in Sec-
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Fig. 1: Schematics of: (a) a conical resonator with mouthpiece,
(b) a cylindrical saxophone without mouthpiece and (c) a

cylindrical saxophone with mouthpiece.

tion 3: the coaxial alignment of the two cylindrical pipes
makes it possible to minimize the damaging effect of the
mouthpiece volume. Simulations and measurements on a
prototype are studied in order to understand the modal
behavior of a coaxial saxophone. Finally, the prototype is
played with an artificial mouth and the sound produced
is analyzed. Particular attention is paid to the nature
of the oscillation regimes - periodic or not - which are
produced by this instrument according to the control
parameters imposed by the musician.

2 Problem statement

This section recalls the analogy between conical and
cylindrical saxophones in order to highlight the main
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limitation of this analogy for the sound production. In [1],
it is shown that, at low frequencies, a conical resonator
can be analogous to two cylindrical tubes mounted in
parallel. For a truncated cone with a cylindrical mouth-
piece whose volume is the same as the missing volume
of the cone (see Fig. 1(a)), the input impedance is:

Ztc = jZc

(
1

kLm
− kLm

3
+ cot kLc

)−1

, (1)

where Zc = ρc/S. S is the cross section area of the
small end of the truncated cone, ρ is the air density,
and c is the speed of sound. Lm is the length of the
mouthpiece, Lc is the length of the truncated cone and k
is the wavenumber. For cylindrical resonators mounted
in parallel (see Fig. 1(b)), the input impedance is:

Zts = jZc (cot kLa + cot kLb)
−1
, (2)

where La and Lb are the lengths of the two cylinders.
Within the low frequency approximation, Equation (1)
is an expansion of Eq. (2) at the third order provided
that Lb = Lc and La = Lm. But the analogy between
these two equations has no practical application since
the mouthpiece is not taken into account in Eq. (2).
From Eq. (2) it can be deduced that the resonance
frequencies of two cylindrical resonators mounted in
parallel are perfectly harmonic. Adding a mouthpiece to
this cylindrical saxophone (sketched in Fig. 1(c)) results
in an alteration of the harmonicity of the impedance
peaks of the instrument.

The impedance curves plotted in Fig. 2 are obtained
through simulations for the three resonator geometries
presented in Fig. 1. The parameters used for these
simulations are detailed as follows. The conical resonator
has an input radius rc = 7.5 · 10−3m, the apex angle
is θ = 0.035rad, the length of the conical tube is Lc =
0.72m and the length of the mouthpiece is Lm = 0.08m.
The cylindrical saxophone has a radius r = 7.5 · 10−3m,
the lengths of the two mounted cylinders are Lb = 0.75m
and La = 0.185m, respectively. The mouthpiece has
a radius r = 7.5 · 10−3m, and its length is determined
by the value of the inner volume, Vm = 1.5 · 10−5m3

(standard values for tenor saxophone mouthpieces). The
mouthpiece is treated as a cylindrical tube plugged in
series with the resonator.
These input impedances illustrate that at low frequen-
cies the analogy between a conical and a cylindrical
saxophone is basically valid in the absence of a mouth-
piece. The low frequency limit is represented by the
anti-resonance localized near 900 Hz (depending on the
geometrical dimensions of the cylindrical saxophone [1]).
Below this limit the values of resonance frequencies are
similar for the first three peaks. Differences between peak
amplitudes are explained by larger visco-thermal losses
in the cylindrical saxophone compared with a conical
saxophone.
The addition of the mouthpiece strongly modifies the
input impedance of the cylindrical saxophone. Indeed,
the addition of a mouthpiece results in two defects. The
first one is a significant alteration of the harmonicity
of the resonance frequencies. For instance, focusing
on the two lowest resonance frequencies f1 and f2, the
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Fig. 2: Simulated input impedance for: a conical resonator with
mouthpiece, a cylindrical saxophone (dashed line) and a

cylindrical saxophone with mouthpiece. The input radius and the
length of the conical resonator are rc = 7.5 · 10−3m and

Lc = 0.72m respectively. The cylindrical saxophone has a radius
r = 7.5 · 10−3m, the lengths of the two mounted cylinders are
Lb = 0.75m and La = 0.185m respectively. The mouthpiece

volume is Vm = 1.5 · 10−5m3.

ratio f2/f1 = 2 without mouthpiece and f2/f1 = 1.9
when the mouthpiece is added. As studied in previous
work [6], inharmonicity favors the bifurcation towards
non-conventional oscillation regimes, such as multiphonic
sounds and squeaks. The second effect of the mouthpiece
is to generate an additional resonance, around 950 Hz.
This resonance is due to the discontinuity between the
mouthpiece cross-section and the connection of the two
cylindrical tubes (the effective cross-section is doubled
at the connection). Note that the frequency of this
additional resonance is related to the length of the
mouthpiece (quarter wave resonance). Furthermore, it
can be observed that the amplitude of this resonance
is greater than that the other resonance amplitudes.
This hinders the emergence of self-sustained oscillations
corresponding to the two lower registers.
These two modifications of the input impedance caused
by the addition of a mouthpiece suggest some trouble
with the instrument playability. To ensure the ease
of playing, the effect of the mouthpiece needs to be
minimized, and a suitable geometry for the cylindrical
saxophone has to be sought.

3 Coaxial resonator

3.1 Description of the coaxial geometry

In order to minimize the effect of the mouthpiece volume,
a coaxial geometry is chosen, replacing the original align-
ment of the pipes. The geometry proposed is sketched
in Fig. 3. The construction of the coaxial geometry
ensures that the cross-section area at the end of the
mouthpiece is equal to the sum of the cross-section areas
of the two cylinders: no discontinuity occurs and thus
the emergence of any additional resonance is avoided.
A prototype is constructed according to the geometrical
dimensions presented in Table 1. For the design of this
prototype, simulations of input impedances have been
carried out, as detailed in Section 3.2.1. The prototype
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Fig. 3: Schematic of the coaxial geometry. No discontinuity is
present at the connection between the mouthpiece and the

resonator. The cylindrical part of the mouthpiece is extended by
the outer tube inserted therein.

rb e Lb (max)
Inner tube 5.5mm 0.975mm 0.5m

ra La (max)
Outer tube 8.5mm 0.163m

Table 1: Dimensions of the prototype of coaxial resonator. ra
and La are the radius and the length of the outer tube, rb and Lb

those of the inner tube. e is the wall thickness of the inner tube.

outer and inner tubes are made of plexiglass and copper,
respectively. The inner tube is centered inside the outer
tube by means of two rows of support needles (see
Fig. 3). Several lengths of copper tubes are used to
test different playing frequencies. In order to ensure
the analogy with a conical resonator, the diameter and
the thickness of the inner tube are chosen so that its
cross-section area is equal to that of the annular gap
between the two cylinders. A standard tenor saxophone
mouthpiece is used (Yamaha 4C model). The bore of
this mouthpiece is cylindrical. In order to minimize the
effective mouthpiece volume, the cylindrical part of the
mouthpiece is associated with the outer tube. To achieve
this, the inner cylinder is inserted inside the mouthpiece
up to x = 0 (see Fig. 3).

3.2 Input impedance of a coaxial
resonator

The coaxial saxophone can be viewed as a particular case
of the cylindrical saxophone. Therefore, it is necessary to
verify how a classical model of cylindrical saxophone can
be modified to correctly represent the coaxial alignment
of the tubes. An experimental and numerical study of the
input impedance of the coaxial resonator is then carried
out in order to highlight the effect of the geometrical
parameters.

3.2.1 Computation of input impedances

Input impedances of coaxial saxophones are computed
in the same way as those of cylindrical saxophones (see
Section 2). The visco-thermal losses at the walls are
greater in the annular region than in a simple cylindrical
pipe. A crude approximation is made: visco-thermal
losses are assumed to be proportional to the wall area of

the annular region (on the interval x = [0, La]). For
further discussion about this assumption, see [8, 9].
Therefore, the ratio µ between the surfaces of the inner
and outer walls of the annular guide is defined:

µ =
2πLa(ra + rb)

2πLarb
. (3)

To ensure the analogy with the cylindrical saxophone,
the cross-sectional area of the annular gap must be equal
to that of the inner tube (Sa = Sb), thus ra =

√
2rb

leads to µ = 1 +
√

2. Notice that if the coefficient µ
was ignored, the height of the impedance peaks would
be overestimated, but the overall shape of the input
impedances would be preserved.
The input impedance of the coaxial saxophone is given
by:

Zcs = jZc (cot kaLa + cot kbLb)
−1
, (4)

where the wavenumbers kb and ka are expressed [7] with
the ratio µ as:

kb = k0

(
1 +

1.044
√−2j

rvb

)
(5)

and

ka = k0

(
1 + µ

1.044
√−2j

rva

)
. (6)

The Stokes numbers for the inner and the outer tubes are
expressed as rva = ra

√
k0/lv and rvb = rb

√
k0/lv, where

k0 = ω/c and lv is the viscous characteristic length.
It remains to use an approximation for the radiation of
the outer tube. Despite to the annular bore between
the outer and the inner tubes, it is assumed to radi-
ate like a cylindrical tube. Therefore, the radiation
impedance for both tubes is that of a tube without
flange Zc

(
j0.61krb + 1

4 (krb)
2
)
. At low frequencies, this

approximation is rigorous concerning the real part of
the impedance (because of the energy conservation)
whereas is it crude for the imaginary part of the radiation
impedance.

3.2.2 Validation of the impedance model

To validate the impedance model of coaxial saxophone,
experiments are carried out for various values of length
La and Lb. First, simulated and measured input
impedances for different lengths Lb are compared in
Fig. 4. The apparatus developed in [10] is used for the
measurement of the input impedances. No mouthpiece
is considered for the impedance measurement, the
impedance sensor is plugged at position x = 0 (see the
Fig. 3).
A qualitative agreement is observed between
measurements and simulations (see Fig. 4). The
multiplicative coefficient µ models correctly the visco-
thermal losses in the annular region, since the heights
of the resonance peaks are well estimated. Thus, the
model of coaxial saxophone presented previously can be
used for the design of more advanced prototypes.

3.2.3 Influence of the mouthpiece volume

The influence of the mouthpiece volume is now studied
experimentally, focussing on the inharmonicity of the
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(c) Lb = 0.415
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(d) Lb = 0.5

Fig. 4: Comparison between the measured input impedance for
the coaxial prototype and the simulated impedance for a

cylindrical saxophone without mouthpiece (see Section 3.2.1),
La = 16.3cm and Lb is varying.
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Fig. 5: Measured inharmonicity between the two first impedance
peaks as a function of the equivalent volume of the mouthpiece.

two lowest resonance frequencies. In order to modify
experimentally the mouthpiece volume on the prototype,
the inner tube is pulled from x = 0 to x = x∗ > 0 (see
Fig. 3). The reduction of the outer tube length (from
La to La − x∗) allows easy change of the mouthpiece
volume to an arbitrary value. Inharmonicity arising
from this modification of La is much lower than that
brought by the addition of an equivalent mouthpiece
volume (this fact was verified according to simulations).
For the inharmonicity estimation, resonance frequen-
cies are obtained from the zero crossing of the input
impedance phase. The inharmonicity between the first
two resonance frequencies is defined as η = f2/(2f1)− 1.
Fig. 5 shows that the larger the mouthpiece volume,
the greater the inharmonicity. The most relevant piece
of information is that a high range of inharmonicity is
obtained with standard values of mouthpiece volume.
For most resonator lengths Lb, the inharmonicity is
greater than 2.5%, which may limit the stability of
the first periodic oscillation regimes [11] (ideally the
inharmonicity should be zero). This result highlights why
a mouthpiece with a short chamber should be preferred
for playing a saxophone with coaxial geometry. Indeed,
the volume of the mouthpiece mostly brings a negative
inharmonicity and thus the global inharmonicity of the
coaxial resonator is deteriorated - which does not happen
with a troncated cone.

3.2.4 Influence of the length of the outer tube

Other experiments are carried out to study the influence
of the outer tube on the input impedance of the coaxial
saxophone. Fig. 6 presents the amplitude ratio A2/A1

between the two first resonance peaks as a function of the
length La of the outer tube. The equivalent mouthpiece
volume is modified when La is shifted, but this has a
negligible influence on the amplitude ratio compared
to the influence of the increase in Lb. This has been
confirmed by simulations.
Results reveal that the shorter the outer length La, the
higher the amplitude ratio A2/A1. This is consistent
with what is happening with a conical saxophone. For
the shorter outer tubes tested, the amplitude of the
second resonance becomes larger than twice the first one.
Furthermore, Fig. 6 shows that the overall evolution
of the relative amplitude of the two first resonance
frequencies can be different from one resonator length
Lb to another. In particular, it can be observed than for
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Fig. 6: Measured amplitude ratio between the two first resonance
peaks as a function of the length of the outer tube.

a short resonator tube (Lb = 29.4cm) the amplitude of
the first impedance peak is almost always higher than
that of the second peak, even for a short outer tube
(La = 12.3cm).
Similar effects are observed with conical saxophones when
the resonator conicity increases. Indeed, in the context
of the analogy with the conical saxophone, modifying
La can be seen as a way to adjust the conicity of the
instrument [12]. In practice, a simple change in the
length of the external cylinder is expected to modify
the tone color regardless of the fingering played. This is
exemplified in the next section.

4 Sound production on a coaxial
saxophone

In order to study the sound production, an artificial
mouth is used to play the prototype of coaxial saxophone
in controlled conditions.

4.1 Experimental setup

A photo of the experimental device is shown in Fig. 7.
The coaxial saxophone is connected to the artificial
mouth at the level of the mouthpiece (played with a
Hemke premium reed with force 4). Inside the artificial
mouth, an artificial lip is pressed against the reed and
brings the required damping to avoid squeaks when
playing the instrument [13]. The artificial lip is made
with a latex tube filled with water through a syringe.
The bearing force of the lip on the reed is controlled by
the water pressure imposed by the syringe. The artificial
lip is placed around 1cm downstream from the tip of
the reed. The experimental device used in this study
has been used for a previous study [6] where details
concerning its functioning are given.

In order to measure the acoustic signal produced by the
instrument, an Endevco pressure microphone (8507C-5
model) is inserted into the mouthpiece. Another similar
sensor is used to measure the static pressure in the
artificial mouth to control in real-time the servo-valve
regulating the supply pressure through a closed-loop
system (technical details are available in [14]). In
addition, a Burkert flowmeter (8701 model) is used to
measure the volume flow entering the instrument. A
National Instrument acquisition module (NI9215) uses a

system
Air regulation

Mouthpiece
microphone

conditioning
Signal

saxophone
Cylindrical

(control of the lip)
Syringe

Mouthpiece
Artificial mouth

Fig. 7: Picture of the experimental device and the prototype of
coaxial saxophone.

sampling frequency of 44kHz to digitize the experimental
signals, which are then recorded on a computer.

The control parameters imposed by the artificial mouth
are estimated by recording the air flow entering the
instrument and the static pressure [6]. The embouchure
parameter ζ and the blowing pressure γ are considered
to be independent. These dimensionless parameters
are estimated experimentally from the measurement of
the so-called nonlinear characteristics of the exciter [15]
(noted NLC hereafter).
After each modification of the bearing force of the ar-
tificial lip on the reed (by acting on the syringe), the
NLC is measured. By fitting the measurement with the
NLC model [15], the maximum airflow Umax and the
corresponding pressure difference Pmax are estimated.
The embouchure parameter ζ is then obtained through
the following relation [15]:

ζ =

√
3

2

Umax

Pmax
Zc. (7)

Likewise, the dimensionless blowing pressure is estimated
from the following relationship:

γ =
Pm

3Pmax
, (8)

with Pm the static supply pressure. More details about
the estimation of the control parameters γ and ζ can be
found in [6].
Note that the control parameters γ and ζ are
dimensionless. The minimum pressure required for the
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complete closure of the reed channel corresponds to
γ = 1. When the bearing force of the lip on the reed is
large enough to completely close the reed channel, the
parameter ζ vanishes.

4.2 Mouthpiece pressure waveform

One way to describe sound production on a coaxial
saxophone consists in studying the mouthpiece pressure
waveform.
Figs. 8(a) shows the mouthpiece pressure signal. It is
similar to the classical Helmholtz motion obtained for
conical reed instruments [3, 12], with a v-shaped episode
followed by a quasi-plateau. Furthermore, Fig. 8(b)
shows that the sound contains both even and odd har-
monics. Therefore the analogy between conical and
coaxial saxophones is verified experimentally.
In Figs. 8, it can also be observed that the length La

of the outer tube, which corresponds to the truncated
part of the cone, modifies the internal waveform. The
length of the outer tube can be viewed as the parameter
that determines an equivalent conicity (apex angle of the
cone) [12].
The spectral content of sounds produced by the coaxial
saxophone may be modified by the adjustment of the
length La. As shown in Fig. 8(b), the shorter the
outer tube, the greater the second and third harmonic
(compared to the first one). Therefore, the tone color
of a coaxial saxophone can be easily modified just by
adjusting (or changing) the length of outer tube.
Likewise, Fig. 8(b) shows that the playing frequency
also depends on the length of the outer tube. This
is particularly useful in practice for the tuning of the
instrument.

4.3 Maps of the oscillation regimes in
the control parameter space

A general overview of the sound production can be
obtained by deriving maps of oscillation regimes with re-
spect to the control parameters γ and ζ. For this purpose,
the methodology detailed in a previous work [6] is applied
to the prototype of coaxial saxophone. For a linearly
increasing ramp of the blowing pressure, the parameters
space is spanned by horizontal lines corresponding to
the constant embouchure setting ζ. For each value of
ζ, a spectrogram of the mouthpiece pressure signal is
computed. This is relevant because the pressure ramps
used during the experiments are very slow (about one
minute from the minimum to maximum pressure value).
The same qualitative results are obtained with upward
and downward ramps. For each value of ζ obtained ex-
perimentally, instantaneous frequencies and amplitudes
are estimated on the spectrogram by the Matlab function
findpeaks. An algorithm is used to classify these data into
different oscillation regimes. Three types of regimes are
identified: a static regime (no sound), a quasi-periodic
regime (multiphonic sound, noted QP in Fig. 9) and a
periodic regime. Different playing frequencies of periodic
regimes are possible and are represented by a register
index. In Fig. 9, R1 and R2 correspond to the first and
second registers, respectively.
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Fig. 8: (a) Mouthpiece pressure signal and (b) its spectrum
amplitude measured for different lengths of the outer tube La.
The resonator length is constant Lb = 35.8cm. The control

parameters are γ = 0.31 and ζ = 0.44.

Fig. 9 shows maps for four different lengths of the res-
onator Lb, which can be seen as different fingerings,
while the length of the outer tube is kept constant. Each
regime is symbolized by a particular color.
The main periodic regimes of self-sustained oscillations
produced by the coaxial saxophone are associated with
the two first resonance frequencies of the instrument.
This result was expected since, as shown in Fig. 4, the
amplitudes of these two resonance peaks are higher than
those of the other resonances peaks. Consequently, the
bifurcation to these registers is favored. Overall, the
range of control parameters available to play the different
registers of the instrument is rather wide. Although
quantitative, these results indicate the good playability
of the instrument, since registers can be stable even for
large variations of γ.
Furthermore, quasi-periodic oscillations also appear on
the maps in Fig. 9. This is related, at least partly, to
the inharmonicity due to the mouthpiece (as detailed
in Sections 2 and 3). For the two following resonator
lengths, Lb = 29.4cm and Lb = 35.8cm (see Figs. 9(a)
and 9(b)), quasi-periodicity is very rare and appears only
as a transition between the two periodic registers. Thus,
quasi-periodicity does not appear here as a defect that
could alter the playability of the instrument.
However for the resonator lengths Lb = 41.5cm and
Lb = 50cm, quasi-periodicity is more present. Indeed,
as shown in Figs. 5 and 6, the inharmonicity and the
relative amplitude of the second resonance are greater for
longer resonators. This feature of the coaxial resonator
is an aggravating factor that favors the production of
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Fig. 9: Mapping of the oscillation regimes for different lengths
of the internal tube Lb in the space of the control parameters
(γ, ζ). The length of the outer tube is set at La = 16.3cm. R1

and R2 correspond to the first and second registers, respectively,
while QP means quasi-periodicity.

quasi-periodic regimes [11]. This explains why periodic
regimes are less widespread for Figs. 9(c) and 9(d).

In summary, the maps in Fig. 9 show the variability of
oscillation regimes playable with a coaxial saxophone.
Extensive ranges of periodic regimes are playable, which
illustrates the good playability of the coaxial saxophone.
However, in the design of a more complete instrument,
some properties concerning resonances of the instrument
(such as inharmonicity) are to be avoided in order to
provide a good stability in periodic sound production.
Moreover, this is important to avoid strong adjustments
in control parameters that the musician may have to
impose between two fingerings.

5 Conclusion

The results presented above show that a coaxial geometry
makes it possible to experimentally verify the cylindrical
saxophone analogy. The prototype of coaxial saxophone
presented in this paper can produce periodic oscillation
with a waveform very similar to that of conical resonators.
The measurement of maps in the control parameter space
illustrates the playability of the first two registers of the
instrument. The use of an impedance model proves
that the mouthpiece volume must be minimized to favor
the playability of the instrument. Similarly, it is shown
that the coaxial alignment of the two tubes prevents
a parasitic resonance limiting the stability of periodic
regimes.
As shown by the patent recently published about original
pipe structures for wind instruments [16, 17], there is
an industrial interest for radically new types of acous-
tic resonators. With an aim towards realistic musical
instruments, current research could be applied to the
coaxial saxophone. Numerical optimization could be
applied to help the instrument maker to design a com-
plete instrument[18] (resonator geometry, position of
the side holes, etc). Finally, the study of bifurcation
mechanisms, associated with the analysis of musicians’
playing strategies, would make it possible to anticipate
the playability and the stability of a complete instrument.
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