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Statistical estimation of the Oscillating Brownian Motion

Antoine Lejay∗ Paolo Pigato†

May 30, 2017

Abstract

We study the asymptotic behavior of estimators of a two-valued, discontinuous
diffusion coefficient in a Stochastic Differential Equation, called an Oscillating Brownian
Motion. Using the relation of the latter process with the Skew Brownian Motion, we
propose two natural consistent estimators, which are variants of the integrated volatility
estimator and take the occupation times into account. We show the stable convergence of
the renormalized errors’ estimations toward some Gaussian mixture, possibly corrected
by a term that depends on the local time. These limits stem from the lack of ergodicity
as well as the behavior of the local time at zero of the process. We test both estimators
on simulated processes, finding a complete agreement with the theoretical predictions.

Keywords: Oscillating Brownian Motion, Gaussian mixture, local time, occupation time, Arcsine
distribution, Skew Brownian Motion

1 Introduction

Diffusion processes with discontinuous coefficients attract more and more attention for
simulation and modelling purposes (see references in [25]). Many domains are actually
concerned, such as geophysics [36], population ecology [5, 6], finance [7, 32], . . . among others.
From a theoretical point of view, diffusions with discontinuous coefficients are an instance of
Stochastic Differential Equations (SDE) with local time — also called skew diffusion — for
which many results are contained in the work of J.-F. Le Gall [22].

Estimation comes together with simulation and modelling, as models need to be calibrated.
This article deals with the parametric estimation of the coefficients of a one-dimensional SDE
of type

Yt = x+

∫ t

0
σ(Ys) dWs +

∫ t

0
b(Ys) ds, (1.1)

where W is a Brownian motion and x 7→ σ(x) takes two values {σ+, σ−} according to the
sign of x, when the process Y is observed at discrete times iT/n, i = 0, . . . , n up to a time T .
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In a first part, we consider that (1.1) contains no drift (b = 0). The solution Y to (1.1) is
called an Oscillating Brownian Motion (OBM). This process was studied by J. Keilson and
J.A. Wellner in [20] who give some of its main properties and close form expressions for its
density and occupation time.

We provide two very simple estimators which generalize the integrated volatility (or
averaged squared) estimator (in finance, σ is called the volatility when Y represents the
logarithm of the price of an asset). For two processes Z,Z ′, we set

[Z,Z ′]nT :=
n∑
i=1

(Zi,n − Zi−1,n)(Z ′i,n − Z ′i−1,n) and Q̄nT (Z,+) :=
1

n

n∑
i=1

1(Zi,n ≥ 0)

with Zi,n = ZiT/n. The quantity Q̄nT (Z,+) is an approximation of the occupation time of Z
on the positive axis up to time T . Our estimator (σ̂n+)2 of σ2

+ is then [Y +, Y +]/Q̄nT (Y,+),
where Y + is the positive part of Y . A similar estimator is defined for σ2

−. Although an
analytic form is known for the density, this estimator is simpler to implement than the
Maximum Likelihood Estimator based on discrete observations. Besides, it also applies when
b 6= 0, while explicit expressions for the density become cumbersome, at best [23, 33].

We show first that σ̂n+ is a consistent estimator of σ+. Yet it is asymptotically biased. We
also prove that

√
n((σ̂n+)2 − σ2

+) converges stably to a mixture of Gaussian distributions (in
which, unsurprisingly, the occupation time of the positive side appears) plus an explicit term
giving the bias.

When estimating σ+, the actual size of the “useful” sample is proportional to the occupation
time of R+. Therefore, a dependence on the occupation time is to be expected in any reasonable
estimator. The law of the occupation time for the OBM follows an arcsine type distribution,
which generalizes the one of the Brownian motion. Since these laws carry much mass close
to the extremes, this amounts to say that many trajectories of this process spend most of
the time on the same side of 0. Therefore, with a high probability, either σ+ or σ− is only
based on few observations. This affects our central limit theorem as well as the quality of the
estimation of (σ+, σ−), meaning that the limit law will not be a Gaussian one, as one would
expect from the approximation of quadratic variation, but a Gaussian mixture displaying
heavy tails.

Another tool of importance in this framework, strictly connected with the occupation
time, is the local time. Given a stochastic process Y , its local time at a point x, denoted by
{Lxt (Y )}t≥0, represents the time spent by Y at x, properly re-scaled. It has a fundamental role
in the study of SDEs with discontinuous coefficients. Intuitively, the local time appears when
dealing with discontinuous coefficients because it helps to quantify what happens locally at the
discontinuity. A Lamperti’s type transform applied with the help of the Itô-Tanaka formula
shows that Y is intimately related to the Skew Brownian Motion (SBM, see [12,28]) X, the
solution to the SDE

Xt = x+Wt + θL0
t (X), −1 < θ < 1,

through a simple deterministic transform X = Φ(Y ) [9, 30].
In the present paper, the local time plays an important role for two reasons. First,

because we use the transform X = Φ(Y ) to apply some convergence results which extend
to the SBM some results of J. Jacod on the asymptotic behavior of quantities of type
n−1/2

∑n
i=1 f(Xi−1,n, Xi,n). Second, because the local time itself appears in the limit of the

above quantities. Actually, the asymptotic bias is related to the local time.
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We then provide a second simple estimator of σ2
±, defined as (mn

±)2 = [Y ±, Y ]nT /Q̄
n
T (Y,±)

which is also consistent. We show that
√
n((mn

±)2 − σ2
±) converges stably to a Gaussian

mixture. The asymptotic bias observed in
√
n((σ̂n±)2−σ2

±) is removed through the introduction
of the quadratic term [Y +, Y −] which is related to the local time. The variance of the former
limit is not larger than the one of the latter.

In Corollary 3.8, we also generalize these convergence results in presence of a bounded
drift term. We prove that the estimators mentioned above converge to analogous limit random
variables, depending on the occupation time of the SDE under study. Unlike for the OBM,
the limit law is not explicit for SDEs with general drift, since the law of the occupation time
is not know, if not in special cases (see e.g. [19, 43,44]).

The novelty of the paper lies in the treatment of a discontinuous diffusion coefficient. This
implies a drastic difference with the case of regular coefficients, as the situation cannot be
reduced to a Brownian one (the measure of the SBM being singular with respect to the one
of the Brownian motion [22]). This explains the presence of an asymptotic bias for σ̂n±, which
is removed by a correction (leading to mn

±) involving only a fraction of order n−1/2 of the
observations.

Unlike for many estimators, the framework is not the one of ergodic processes, but of
null recurrent ones. On the last point, our study does not fit the situations considered e.g.,
in [2, 13,14].

Differently from many estimators constructed for diffusion processes, we find a mixed
normal distribution in the limit. This is due to the lack of ergodicity of the process. For
diffusions, asymptotic convergence involving a mixture of normal distributions (with different
type of limits) is already observed in the works of F. Florens-Zmirou [10] for non-parametric
estimation, and of J. Jacod [16,17], from which we borrow and adapt the general treatment.
The core of our proof requires the adaptation to the SBM of some results on the convergence
toward the local time given in [16].

There are several extensions of the present results which we consider with in subsequent
articles [26,27].

First, the asymptotic behavior of the estimators allows one to construct confidence regions
for (σ−, σ+). In particular, we could set up a statistical hypothesis test to decide whether or
not σ− = σ+. This is done in [27] to detect leverage effects in stock prices.

Second, there are some situations in which there is no reason to assume a priori knowledge
of the threshold for the volatility. Since the transition density function of Oscillating Brownian
motion is explicitly known [20], our estimator is easily coupled with a model selection procedure
such as the Akaike Information Criterion (AIC) [1]. We select possible thresholds that spans
the values of the observations. For each threshold r, we estimate (σ−, σ+) after having shifted
the process by r. We then compute the likelihood Λ(r) using the estimated values of (σ−, σ+).
Therefore, we select the one for which Λ(r) is the highest (all the models have the same
number of parameters).

Such a procedure was applied in [27] to 21 stocks prices. It gives estimations that are
similar with the ones of [34] where a methodology coming from the study of the Self-Exciting
Threshold AutoRegressive (SETAR [41]) times series were used.

Third, we may want to couple our estimators with ones for the drift. With a two valued
drift, this could be useful to detect mean-reverting effects in financial prices. One difficulty is
that estimators for the drift necessarily rely on long time. In presence of a drift, our argument
relying on the Girsanov theorem no longer applies as the Girsanov weight degenerates as the
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time horizon increases. Hence, a suitable construction that encompass both the diffusivity
and the drift has to be found.

Content of the paper

In Section 2 we define the Oscillating Brownian Motion (OBM) and recall some useful
properties. In Section 3 we define our estimators and state precisely the convergence theorems.
These results are then proved is Section 4. In Section 5 we consider the Oscillating Random
Walk, a discrete process that can be used to construct the OBM, and study an estimator
on this discrete process. Section 6 is devoted to the implementation of the estimators of the
OBM, and contains numerical experiments showing the good behavior of the estimators in
practice.

Notations

For notational convenience, we work on the time interval [0, 1]. Our results can be extended
to a general time interval via a space-time re-scaling (see Remark 3.7). Throughout the paper,
we use the following notation for convergence of random variables: p−→ in probability; law−−→
in law; sl−→ stable in law; law

= denotes equality in law. The Lebesgue measure is written
Leb. The positive and negative parts of x ∈ R are denoted by x+ = x ∨ 0, x− = (−x) ∨ 0.
For any continuous semimartingale M , we write 〈M〉 for its quadratic variation process. For
y ∈ R we define the (symmetric) local time of M at y as the process (Lyt (M))t∈[0,1], with
(See [38, Corollary VI.1.9, p. 227])

Lyt (M) = lim
ε↓0

1

2ε

∫ t

0
1{y−ε≤Ms≤y+ε} d〈M〉s almost surely.

When we do not specify y, we mean the local time at 0: Lt(M) = L0
t (M).

For fixed n ∈ N, we consider the discretization of [0, 1] given by 0, 1/n, . . . , 1. For any
process (Mt)t∈[0,1], we write Mk,n = Mk/n. For any processes M,M̄ we also set the “discrete
bracket”

[M,M̄ ]n1 =

n∑
k=1

(Mk,n −Mk−1,n)(M̄k,n − M̄k−1,n).

We also write [M ]n1 = [M,M ]n1 .

2 Oscillating Brownian Motion

For two parameters σ+, σ− > 0, we define the diffusion coefficient σ as follows:

σ(y) = σ+1(y ≥ 0) + σ−1(y < 0), ∀y ∈ R. (2.1)

LetW be a Brownian motion with its (completed) natural filtration (Gt)t≥0 on a probability
space (Ω,F ,P). From now on, we denote by Y the unique strong solution to

Yt = Y0 +

∫ t

0
σ(Ys) dWs. (2.2)
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Strong existence and uniqueness of Y is granted by the results of [22]. Following the
terminology of [20], we call Y an Oscillating Brownian Motion (OBM)

We recall some known properties of Y , proved in [20].
For (t, x, y) ∈ (0, 1]×R2, let p(t, x, y) be the density of Yt in y with respect to the Lebesgue

measure, with initial condition Y0 = x. In [20] explicit formulas are given for the transition
density, which is based on linear combination of Gaussian ones. The map x 7→ p(t, x, y) (for
fixed (t, y)) and y 7→ σ(y)2p(t, x, y) (for fixed (t, x)) are continuous. In particular, p(t, x, ·) is
discontinuous and has a jump at 0.

The transition density function with respect to the Lebesgue measure is

p(t, x, y) =



2σ+

σ−(σ+ + σ−)

1√
2πt

e
−( x

σ+
− y
σ−

)2 1
2t for x ≥ 0, y < 0,

2σ−
σ+(σ+ + σ−)

1√
2πt

e
−( y

σ+
− x
σ−

)2 1
2t for x < 0, y ≥ 0,

1

σ+

√
2πt

(
e
−( x

σ+
− y
σ+

)2 1
2t +

σ− − σ+

σ− + σ+
e
−( x

σ+
+ y
σ+

)2 1
2t

)
for x ≥ 0, y ≥ 0,

1

σ+

√
2πt

(
σ−
σ+

e
−( x

σ−
− y
σ−

)2 1
2t +

σ+ − σ+

σ+ + σ−

σ−
σ+

e
−( x

σ−
+ y
σ−

)2 1
2t

)
for x < 0, y < 0.

(2.3)
Integrating (2.3),

P(Yt < 0|Y0 > 0) =
2σ+

σ+ + σ−
Φ
(
−Y0/(σ+

√
t)
)
,

P[Yt > 0 | Y0 < 0] =
2σ−

σ− + σ+
Φ
(
Y0/(σ−

√
t)
)
,

(2.4)

where Φ is the cumulative density function of the standard Gaussian. The law of the
occupation time of R+ is also computed in [20]. Let the occupation time of R+ be defined as

Q+
t = Leb{s ≤ t : Ys ≥ 0}. (2.5)

The distribution of Q+
t , with Y0 = 0 a.s., is explicit. The scaling Q+

1
law
= Q+

t /t holds, and

P(Q+
1 ∈ du) =

1

π

1√
u(1− u)

σ+/σ−
1− (1− (σ+/σ−)2)u

du for 0 < u < 1. (2.6)

This generalizes the arcsine law for the occupation time of the Brownian Motion. The
occupation time Q− on R− is easily computed from Q+ since obviously, Q−t + Q+

t = t for
any t ≥ 0.

We introduce the process (Xt)t≥0, setting Xt = Yt/σ(Yt) for t ≥ 0. It follows from the
Itô-Tanaka formula that X is a Skew Brownian Motion (SBM, see [28]), meaning that X
satisfies the following SDE:

Xt = X0 +Bt + θLt(X), (2.7)

where B is a Brownian Motion, Lt(X) is the symmetric local time of X at 0, X0 = Y0/σ(Y0)
and the coefficient θ is given by

θ =
σ− − σ+

σ− + σ+
. (2.8)
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We write from now on BM for Brownian Motion, SBM for Skew Brownian Motion, OBM for
Oscillating Brownian Motion. The local times of X and Y are related by

Lt(X) =
σ+ + σ−
2σ+σ−

Lt(Y ) (2.9)

(see [28] for a special case from which we easily recover this formula).

3 Main results

3.1 The stable convergence

Before stating our results, we need to recall the notion of stable convergence, which was
introduced by A. Rényi [37]. We refer to [18] or [17] for a detailed exposition. Let Zn a
sequence of E-valued random variables defined on the same probability space (Ω,F ,P). Let Z
be an E-valued random variable defined on an extension, (Ω̃, F̃ , P̃). We then say that Zn
converges stably to Z (and write Zn

sl−−−→
n→∞

Z) if:

E[Y f(Zn)] −−−→
n→∞

Ẽ[Y f(Z)]

for all bounded continuous functions f on E and all bounded random variables Y on (Ω,F)
(or, equivalently, for all Y as above and all functions f which are bounded and Lipschitz).
This notion of convergence is stronger than convergence in law, but weaker than convergence
in probability. We use in this paper the following crucial result: for random variables Yn, Zn
(n ≥ 1), Y and Z,

if Zn
sl−−−→

n→∞
Z and Yn

p−−−→
n→∞

Y then (Yn, Zn)
sl−−−→

n→∞
(Y, Z).

3.2 Estimators for the parameters the Oscillating Brownian motion

Let us assume that we observe the process Y solution to (2.2) at the discrete times 0, 1/n, . . . , 1.
We want to estimate σ+, σ− from these observations.

A natural estimator for the occupation time Q+
1 defined in (2.5) is given by the Riemann

sums (see Section 4.4):

Q̄n1 (Y,+) =
n∑
k=1

1(Yk,n ≥ 0)

n
. (3.1)

We define now σ̂n+ as

σ̂n+ =

√
[Y +]n1

Q̄n1 (Y,+)
. (3.2)

We will show that σ̂n+ is a consistent estimator for σ+. Similarly, we set

Q̄n1 (Y,−) =
n∑
k=1

1(Yk,n < 0)

n
= 1− Q̄n1 (Y,+) and σ̂n− =

√
[Y −]n1

Q̄n1 (Y,−)
.

Finally, we define our estimator of the vector (σ+, σ−)′ as

σ̂n =

(
σ̂n+
σ̂n−

)
.
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Theorem 3.1. Let Y be solution of (2.2) with Y0 = 0 a.s., and σ̂n defined in (3.2). Then

(i) The estimator is consistent:

σ̂n
p−−−→

n→∞

(
σ+

σ−

)
.

(ii) There exists an extension (Ω̃, F̃ , P̃) of (Ω,F ,P) carrying a Brownian motion B̄ independent
from W such that

√
n

(
(σ̂n+)2 − σ2

+

(σ̂n−)2 − σ2
−

)
sl−−−→

n→∞


√

2σ2
+

Q+
1

∫ 1
0 1(Ys > 0) dB̄s

√
2σ2
−

1−Q+
1

∫ 1
0 1(Ys < 0) dB̄s

−
( 1

Q+
1

1
1−Q+

1

)
2
√

2

3
√
π

(
σ−σ+

σ+ + σ−

)
L1(Y ).

(3.3)
The stable limit in the above result depends on the path of Y through its local time L1(Y )
and its occupation time Q±1 . By identifying the distribution of the limit, we can rewrite
(3.3) as a convergence in distribution involving elementary random variables as

√
n

(
(σ̂n+)2 − σ2

+

(σ̂n−)2 − σ2
−

)
law−−−→
n→∞

√2σ2
+√

Λ
N1√

2σ2
−√

1−Λ
N2

− 8
√

2

3
√
π

(σ−σ+)2

σ+ + σ−

ξ√
(1− Λ)σ2

− + Λσ2
+

√1−Λ
Λ√
Λ

1−Λ



=


√

2σ2
+√

Λ

(
N1 − 8

3
√
π

1
r+1

ξ
√

1−Λ√
(1−Λ)+Λr2

)
√

2σ2
−√

1−Λ

(
N2 − 8

3
√
π

1
1/r+1

ξ
√

Λ√
Λ+(1−Λ)/r2

)
 , (3.4)

where r = σ+/σ−, ξ,N1,N2,Λ are mutually independent, ξ ∼ exp(1), N1,N2 ∼ N(0, 1)
and Λ follows the modified arcsine law (2.6) with density

pΛ(τ) =
1

πτ1/2(1− τ)1/2

r

1− (1− r2)τ
.

Remark 3.2. The Brownian case is σ =: σ+ = σ−, r = 1. The limit law is

√
2σ2

 1√
Λ

(
N1 − 4

3
√
π
ξ
√

1− Λ
)

1√
1−Λ

(
N2 − 4

3
√
π
ξ
√

Λ
) 

where Λ follows the classical arcsine law (see [31,38]).

Remark 3.3. In (4.21) we prove

√
n[Y +, Y −]n1

sl−−−→
n→∞

2
√

2

3
√
π

σ+σ−
σ+ + σ−

L1(Y ).

Actually, each term of type (Y +
ti
− Y +

ti−1
)(Y −ti − Y

−
ti−1

) vanishes unless sgn(Yti) 6= sgn(Yti−1).
Thus,

√
n[Y +, Y −]n1 provides us with as an estimator of the local time since it somehow

counts the number of crossings of zero (cf. [16, 24]).
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Remark 3.4. We assume Y0 = 0 a.s. because we need Y0 to visit both R+ and R−. This
happens a.s. in any right neighborhood of 0 if the diffusion starts from 0. If the initial
condition is not 0, we shall wait for the first time at which the process reaches 0, say τ0, and
consider the (random) interval [τ0, T ].

We define now a different estimator for σ± by

mn
+ :=

√
[Y +, Y ]n1
Q̄n1 (Y,+)

, mn
− :=

√
[Y −, Y ]n1
Q̄n1 (Y,−)

and mn :=

(
mn

+

mn
−

)
. (3.5)

Theorem 3.5. Let Y be solution of (2.2) with Y0 = 0 a.s., and mn defined in (3.5). The
following convergence holds for n→∞:

√
n

(
(mn

+)2 − σ2
+

(mn
−)2 − σ2

−

)
sl−−−→

n→∞


√

2σ2
+

Q+
1

∫ 1
0 1(Ys > 0) dB̄s

√
2σ2
−

1−Q+
1

∫ 1
0 1(Ys < 0) dB̄s

 ,

where B̄ is a BM independent of Y on an extension (Ω̃, F̃ , P̃) of (Ω,F ,P). We can rewrite
such a convergence as follows:

√
n

(
(mn

+)2 − σ2
+

(mn
−)2 − σ2

−

)
law−−−→
n→∞

√2σ2
+√

Λ
N1√

2σ2
−√

1−Λ
N2

 , (3.6)

where N1,N2,Λ are mutually independent, N1,N2 ∼ N(0, 1) and Λ follows the modified
arcsine law with density given by (2.6), with r = σ+/σ−.

Remark 3.6. Comparing Theorems 3.1 and 3.5, we see that an asymptotic bias is present
in σ̂n, but not in mn. This bias has the same order (∼ 1/

√
n) as the “natural fluctuations” of

the estimator. Because the local time is positive, it is more likely that σ̂n± underestimates σ±.
For a more quantitative comparison between the convergence of the two estimators, see
Remark 4.18. In Section 6, we compare the two estimators in practice.

Remark 3.7. Theorem 3.5 gives the asymptotic behavior for an estimator of (σ+, σ−) in
the presence of high frequency data, yet with fixed time horizon T = 1. The OBM enjoys a
scaling property : if Y is an OBM issued from 0, then (

√
cYt/c)t∈R+ is an OBM issued form

0, for any c > 0 constant (see [38, Exercise IX.1.17, p. 374]). Using this fact, we can easily
generalize Theorem 3.5 to the case of data on a time interval [0, T ] for some fixed T > 0. We
set

mn,T
+ :=

√
[Y +, Y ]nT
Q̄nT (Y,+)

, mn,T
− :=

√
[Y −, Y ]nT
Q̄nT (Y,−)

. (3.7)

The estimator is consistent and we have the following convergence:

√
n

(
(mn,T

+ )2 − σ2
+

(mn,T
− )2 − σ2

−

)
sl−−−→

n→∞


√

2Tσ2
+

Q+
T

∫ T
0 1(Ys > 0) dB̄s

√
2Tσ2

−
T−Q+

T

∫ T
0 1(Ys < 0) dB̄s

 ,

where B̄ is a BM independent of W on an extension of the underlying probability space. The
limiting random variable follows the law given in (3.6), which actually does not depend on T .
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A slightly different approach is to imagine that our data are not in high frequency,
but that we observe the process at regular time intervals, for a long time. In this case
it is more reasonable to consider an OBM (Yt)t∈R+ , construct an estimator depending on
(Yi)i=0,1,...,T−1,T , T ∈ N, and then take the limit in long time. We set

µT+ :=

√
[Y +, Y ]TT
Q̄TT (Y,+)

, µT− :=

√
[Y −, Y ]TT
Q̄TT (Y,−)

.

Using again Theorem 3.5 and the diffusive scaling of the OBM, we have the following
convergence:

√
T

(
(µT+)2 − σ2

+

(µT−)2 − σ2
−

)
law−−−−→
T→∞

√2σ2
+√

Λ
N1√

2σ2
−√

1−Λ
N2

 .

The limit distribution is again the law given in (3.6). Theorem (3.1) can also be generalized
to high frequency data on an interval [0, T ] and to equally spaced data in long time, using
the diffusive scaling and (4.19)-(4.20). For example, analogously to (3.7), we define

σ̂n,T+ :=

√
[Y +, Y +]nT
Q̄nT (Y,+)

, σ̂n,T− :=

√
[Y −, Y −]nT
Q̄nT (Y,−)

.

Again, the limit law does not change and is the one given in (3.4).

3.3 A generalization to OBM with drift

We consider now a wider class of processes, adding a drift term to equation (2.2). Formally,
let now ξ be the strong solution to

dξt = b(ξt) dt+ σ(ξt) dWt, (3.8)

with ξ0 = 0, σ defined in (2.1) and b measurable and bounded. Again, strong existence and
uniqueness of the solution to (3.8) is ensured by the results of [22].

Let mn(ξ) be defined as in (3.5):

mn
+(ξ) =

√
[ξ+, ξ]n1
Q̄n1 (ξ,+)

, mn
−(ξ) =

√
[ξ−, ξ]n1
Q̄n1 (ξ,−)

and mn(ξ) :=

(
mn

+(ξ)
mn
−(ξ)

)
.

Let us also denote Q+
1 (ξ) =

∫ 1
0 1(ξs > 0) ds.

Corollary 3.8. The following convergence holds for n→∞:

√
n

(
(mn

+(ξ))2 − σ2
+

(mn
−(ξ))2 − σ2

−

)
sl−−−→

n→∞


√

2σ2
+

Q+
1 (ξ)

∫ 1
0 1(ξs > 0) dB̄s

√
2σ2
−

1−Q+
1 (ξ)

∫ 1
0 1(ξs < 0) dB̄s

 ,

where B̄ is a BM independent of W on an extension of the underlying probability space. We
can rewrite such convergence as follows:

√
n

(
(mn

+(ξ))2 − σ2
+

(mn
−(ξ))2 − σ2

−

)
law−−−→
n→∞

 √2σ2
+√

Θ
N1√

2σ2
−√

1−Θ
N2

 ,

where N1,N2,Θ are mutually independent, N1,N2 ∼ N(0, 1) and Θ
law
= Q+

1 (ξ).
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Remark 3.9. Unlike for the OBM, the limit law is not explicit in Corollary 3.8, since the
law of the occupation time of the positive axes is not know in general (See e.g., [19,21,43,44]).
On the other hand, some information on the law of Θ can be obtained, at least in some
special cases, via Laplace transform.

We also stress that this dependence on the occupation time is due the actual sample size
of the data giving us useful information. Indeed, when estimating σ+, the number of intervals
that we can use is proportional to the occupation time of R+. Analogously for the negative
part.

Remark 3.10. Corollary 3.8 holds if {Gt}t defined in 4.22 is uniformly integrable, a condition
ensured by the boundedness of b. An example of model with non-bounded b fitting into this
framework is the SET-Vasicek [7], a generalization of the Vasicek interest rate model to a
non-constant volatility, given exactly by (2.1):

dξt = −α(ξt − β) dt+ σ(ξt) dWt.

Remark 3.11. The scaling property described in Remark 3.7 no longer holds in this situation,
so that the estimator can only be used in the “high frequency” setting.

4 Proofs of the convergence theorem

This section is devoted to the proof Theorems 3.1 and 3.5. We first deal with some general
approximation results which are well known for diffusions with regular coefficients (see [16–18]),
but not for the framework considered here with discontinuous coefficients (when θ 6= 0, the
law of the SBM is singular with respect to the one of the BM [22]).

Following [9, 30], we use the connection between the OBM and the SBM through a
Lamperti-type transform. Hence, we apply the results of [24] to the convergence of estimators
of quadratic variation, covariation and occupation time for these processes. Finally, we use
all these results to prove the main Theorems 3.1 and 3.5.

4.1 Approximation results

Let us write
Leb(φ) =

∫ ∞
−∞

φ(α) dα

for the Lebesgue integral of a function. In [24], the following approximation result, adapted
from [16], is proved for the SBM solution of (2.7).

Lemma 4.1. Let f be a bounded function such that
∫
|x|k|f(x)| dx <∞ for k = 0, 1, 2 and X

be a SBM of parameter θ ∈ [−1, 1] (i.e., the solution to (2.7)). Then for any a > 0,

P

[∣∣∣∣∣ 1√
n

n−1∑
i=1

f(Xi,n

√
n)− λ̄θ(f)L1(X)

∣∣∣∣∣ > a

]
→ 0,

where {Lt(X)}t≥0 is the symmetric local time at 0 of the SBM and

λ̄θ(f) = (1 + θ) Leb(f⊕) + (1− θ) Leb(f	) (4.1)

with
f⊕(x) = f(x)1(x ≥ 0) and f	(x) = f(x)1(x ≤ 0).
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Remark 4.2. In particular, when θ = 0, X is BM and the coefficient in front of the local
time is simply Leb(f). We recover there a special case of Theorem 4.1 in [16] by J. Jacod.

We prove now an approximation result for the OBM.

Lemma 4.3. Let Y be the OBM in (2.2). Let f be a bounded function such that
∫
|x|k|f(x)| dx <

∞ for k = 0, 1, 2. Then for any a > 0,

P

[∣∣∣∣∣ 1√
n

n−1∑
i=1

f(Yi,n
√
n)− λσ(f)L1(Y )

∣∣∣∣∣ > a

]
→ 0,

where Lt(Y ) is the local time of Y and

λσ(f) =

(
Leb(f⊕)

σ2
+

+
Leb(f	)

σ2
−

)
. (4.2)

Proof. Recall Yt/σ(Yt) = Xt, (2.9) and (2.8). Let f̃(x) = f(σ(x)x). We have

λ̄θ(f̃) = (1 + θ) Leb(f̃⊕) + (1− θ) Leb(f̃	)

=
2σ−

σ+(σ− + σ+)
Leb(f⊕) +

2σ+

σ−(σ− + σ+)
Leb(f−) =

2σ+σ−
(σ− + σ+)

λσ(f),

so λσ(f)Lt(Y ) = λ̄θ(f̃)Lt(X). Therefore, from Lemma 4.1, for any a > 0,

P

[∣∣∣∣∣ 1√
n

n−1∑
i=1

f(Yi,n
√
n)− λσ(f)Lt(Y )

∣∣∣∣∣ > a

]

= P

[∣∣∣∣∣ 1√
n

n−1∑
i=1

f̃(Xi,n

√
n)− λ̄θ(f̃)L1(X)

∣∣∣∣∣ > a

]
−−−→
n→∞

0.

This concludes the proof.

We state now a very special case of Theorem 3.2 in [15], that we apply several times in
this work. The version in [15] holds for semimartingales, not only martingales, the processes
involved can be multi-dimensional, and the limit process is not necessarily 0. Anyway, we
do not need this general framework here. Stating the theorem only for one-dimensional
martingales converging to 0 allows us to keep a simpler notation, which we introduce now: for
each càdlàg process J we write ∆n

i J = Ji/n − J(i−1)/n. Consider a filtered probability space
(Ω,F ,F ,P) carrying a Brownian motion B. The filtration F = (Ft)t∈[0,1] is the natural
(completed) one for the Brownian motion. We define the filtration Fn as the “discretization”
defined by Fnt = F[nt]/n.

Theorem 4.4 (Simplified form of Lemma 3.2 in [11]). We consider a triangular array
{χni }i=1,...,n of random variables where each χni is Fi/n-measurable, square-integrable and
satisfies E[χni | F i−1

n
] = 0.

If
n∑
i=1

E
[
|χni |2

∣∣∣ F i−1
n

]
p−−−→

n→∞
0, (4.3)

then Zn1 =
∑n

i=1 χ
n
i converges to 0 in probability as n→∞.

11



Remark 4.5. In [15] some kind of uniform integrability is assumed in the limit, whereas here
we do not ask explicitly for such a condition. The reason is that the uniform integrability
assumption is implied by the fact that the limit in (4.3) is 0.

4.2 Scaled quadratic variation of Brownian local time

Let (βt)(t∈[0,1]) be a BM and L(β) its local time at 0. Let us recall the diffusive scaling

property (βct, Lt(β))t>0
law
= (
√
cβ,
√
cL(β)) for any c > 0 (see e.g. [38, Exercise 2.11, p. 244]).

Let H = (Ht)t∈[0,1] be the natural (completed) filtration of β.
For i = 1, . . . , n, we write Hi,n = Hi/n.

Lemma 4.6. Let L(β) be the Brownian local time at 0. The following convergence holds:

√
n[L(β)]n1 =

√
n

n∑
i=1

(Li,n(β)− Li−1,n(β))2 p−−−→
n→∞

4
√

2

3
√
π
L1(β).

We split the proof of this result in the next tree lemmas. We start with the explicit
computations on the moments of the Brownian local time.

Lemma 4.7. For p ≥ 1, we set φp(α) := E[L1(β)p | β0 = α]. We have

Leb(φp) =
2

p+ 1
E|N |p+1, (4.4)

where N denotes a standard Gaussian random variable. Besides, the following tail estimates
hold for p = 2, 4 and α 6= 0.

φ2(α) ≤ e−α
2/2

|α|
√

2π
and φ4(α) ≤ 16

√
2√
π

e−α
2/4

|α| . (4.5)

Remark 4.8. These functions φp will be useful when applying Lemma 4.1 and Remark 4.2,
taking, for fixed p, f = φp. Inequalities (4.5) imply that the integrability condition for f is
satisfied and the theorem can be applied.

Proof. Formula (6) in [40] gives the following expression for the moments of the Brownian
local time

φp(α) = 2p

∫ ∞
0

xp−1P(N ≥ |α|+ x) dx.

To apply Remark 4.2 we need to compute the following integral

Leb(φp) =

∫ ∞
−∞

φp(α) dα = 2

∫ ∞
0

φp(α) dα = 2

∫ ∞
0

2p

∫ ∞
0

xp−1

∫ ∞
0

e−t
2/2

√
2π

1[t≥|α|+x] dtdx dα.

Changing the order of integration by Fubini-Tonelli’s theorem,

Leb(φp) = 4p

∫ ∞
0

e−t
2/2

√
2π

dt

∫ ∞
0

xp−1 dx

∫ ∞
0

1[t≥|α|+x] dα =
2

p+ 1
E|N |p+1,

so (4.4) is proved. We now use the following bound for Gaussian tails:
∫∞
x

e−t
2/2
√

2π
dt ≤ e−x

2/2

x
√

2π
.

We apply it twice and find the upper bound for p = 2:

φ2(α) = 4

∫ ∞
0

x

∫ ∞
0

e−t
2/2

√
2π

1[t≥|α|+x] dt dx ≤ e−α
2/2

|α|
√

2π
.
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For p = 4 we apply the same inequality:

φ4(α) = 8

∫ ∞
0

x3

∫ ∞
0

e−t
2/2

√
2π

1[t≥|α|+x] dt dx

≤ 8

∫ ∞
0

x3 e−(α+x)2/2

(|α|+ x)
√

2π
dx ≤ 8

∫ ∞
0

x2 e
−(α+x)2/2

√
2π

dx.

Now, since xe−x ≤ e−1 for all x ≥ 0,

φ4(α) ≤ 16

∫ ∞
0

e−(|α|+x)2/4

√
2π

dx ≤ 32
e−α

2/4

|α|
√

2π
.

Hence the result.

We consider now the quadratic sum in Lemma 4.6, and write

√
n

n∑
i=1

(Li,n(β)− Li−1,n(β))2 =
√
n

n∑
i=1

E[(Li,n(β)− Li−1,n(β))2|Hi−1,n]

+
√
n

n∑
i=1

(
(Li,n(β)− Li−1,n(β))2 − E[(Li,n(β)− Li−1,n(β))2|Hi−1,n]

)
.

In the next two lemmas we prove the convergence of the two summands. Lemma 4.6 follows
directly.

Lemma 4.9. Let L(β) be the Brownian local time at 0. The following convergence holds:

√
n

n∑
i=1

E[(Li,n(β)− Li−1,n(β))2|Hi−1,n]
p−−−→

n→∞

4
√

2

3
√
π
L1(β).

Proof. The diffusive scaling property of (β, L(β)) implies that for any p ≥ 1,

E[(Li,n(β)− Li−1,n(β))p | Hi−1,n] =
1

np/2
E
[
L1(β)p

∣∣ β0 =
√
nβi−1,n

]
. (4.6)

Setting p = 2 and since Leb(φ2) = 2
3E|N |3 from (4.4), Remark 4.2 below Lemma 4.1 implies

that

√
n

n∑
i=1

E[(Li,n(β)− Li−1,n(β))2|Hi−1,n] =

n∑
i=1

1√
n
φ2(βi−1,n

√
n)

p−−−→
n→∞

4
√

2

3
√
π
L1(β).

Hence the result.

We consider now the martingale part.

Lemma 4.10. With

Hi,n := (Li,n(β)− Li−1,n(β))2 − E[(Li,n(β)− Li−1,n(β))2|Hi−1,n],

it holds that
√
n
∑n

i=1Hi,n
p−−−→

n→∞
0.
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Proof. The statement is proved using Theorem 4.4 by setting χni :=
√
nHi,n. We prove (4.3).

From (4.6) with p = 4,

E
[
H2
i,n

∣∣Hi−1,n

]
≤ E

[
(Li,n(β)− Li−1,n(β))4

∣∣Hi−1,n

]
=

1

n2
φ4(βi−1,n

√
n).

With Remark 4.2 below Lemma 4.1, n−1/2
∑n

i=1 φ4(βi−1,n
√
n) converges in probability to

Leb(φ4)L1(β) because of (4.5). Thus,

n

n∑
i=1

E
[
H2
i,n

∣∣Hi−1

]
≤ 1√

n

(
1√
n

n∑
i=1

φ4(βi−1,n

√
n)

)
p−−−→

n→∞
0.

The proof is then complete.

4.3 Scaled quadratic covariation of skew Brownian motion and its local
time

We now give some results on the scaled quadratic covariation between the SBM and its local
time. For the Brownian motion W with the filtration G = (Gt)t≥0 of Section 2, we consider X
the strong solution to Xt = x+Wt + θLt(X) for θ ∈ [−1, 1] and L(X) its local time (apart
from the results in [22], strong existence for the SBM has been proved first in [12]).

Lemma 4.11. For X and L(X) as above, the following convergence holds:

√
n[X,L(X)]n1 =

√
n

n∑
i=1

(Xi,n −Xi−1,n)(Li,n(X)− Li−1,n(X))
p−−−→

n→∞
0, (4.7)

√
n[|X|, L(X)]n1 =

√
n

n∑
i=1

(|Xi,n| − |Xi−1,n|)(Li,n(X)− Li−1,n(X))
p−−−→

n→∞
0, (4.8)

√
n[X+, L(X)]n1 =

√
n

n∑
i=1

(X+
i,n −X+

i−1,n)(Li,n(X)− Li−1,n(X))
p−−−→

n→∞
0. (4.9)

We set
Zi,n := (Xi,n −Xi−1,n)(Li,n(X)− Li−1,n(X)) (4.10)

and write

√
n

n∑
i=1

Zi,n =
√
n

n∑
i=1

E[Zi,n|Gi−1,n] +
√
n

n∑
i=1

(
Zi,n − E[Zi,n|Gi−1,n]

)
.

We prove (4.7) in the next two lemmas. Once (4.7) is proved, (4.8) follows since |X| is a
SBM with parameter θ = 1 (this is immediate from the Itô-Tanaka formula applied to (2.7)
by noting that for θ = 1, the SDE (2.7) is the one of a reflected Brownian motion) while (4.9)
follows from a combination of (4.7) and (4.8) since X+ = |X|+X

2 .

Lemma 4.12. With Zi,n defined in (4.10), the following convergence holds:

√
n

n∑
i=1

E[Zi,n | Gi−1,n]
p−−−→

n→∞
0. (4.11)
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Proof. We express first E(Xt − x)2 as a function of x using the law of the SBM. The density
transition function of the SBM is [28,42]

pθ(t, x, y) := p(t, x− y) + sgn(y)θp(t, |x|+ |y|)

where p(t, x) = (2πt)−1/2e−x
2/(2t), the Gaussian density. Therefore

E(Xt − x)2 = EB2
t + θtψ(x/

√
t) with ψ(x) :=

∫ ∞
−∞

(x− y)2 sgn(y)
e−(|x|+|y|)2/2
√

2π
dy.

We compute ψ for x > 0:

ψ(x) = −
∫ 0

−∞
(x− y)2 e

−(x−y)2/2

√
2π

dy +

∫ ∞
0

(x− y)2 e
−(x+y)2/2

√
2π

dy

= −
∫ ∞
x

z2 e
−z2/2
√

2π
dz +

∫ ∞
0

(x− y)2 e
−(x+y)2/2

√
2π

dy

and∫ ∞
0

(x− y)2 e
−(x+y)2/2

√
2π

dy =

∫ ∞
0

(x+ y)2 e
−(x+y)2/2

√
2π

dy − 4x

∫ ∞
0

y
e−(x+y)2/2

√
2π

dy

=

∫ ∞
x

z2 e
−z2/2
√

2π
dz − 4x

∫ ∞
0

(y + x)
e−(x+y)2/2

√
2π

dy + 4x2

∫ ∞
0

e−(x+y)2/2

√
2π

dy

=

∫ ∞
x

z2 e
−z2/2
√

2π
dz − 4x

∫ ∞
x

z
e−z

2/2

√
2π

dz + 4x2

∫ ∞
x

e−z
2/2

√
2π

dz.

So for x > 0

ψ(x) = −4x

∫ ∞
x

z
e−z

2/2

√
2π

dz + 4x2

∫ ∞
x

e−z
2/2

√
2π

dz = 4x(x(1− Φ(x))− p(1, x))

and ∫ ∞
0

ψ(x) dx = 2

(
E[|N |3]

3
− E[|N |]

)
= − 2

√
2

3
√
π
.

With the change of variable y → −y, we see that ψ is an odd function. Thus,
∫∞
−∞ ψ(x) dx = 0.

Recall now (2.7). Writing (Xt − x)− θLt(X) = Bt,

(Xt − x)2 + θ2Lt(X)2 − 2θ(Xt − x)Lt(X) = B2
t .

Recall that (|X|, L(X))
law
= (|β|, L(β)), where β is a BM. Moreover, φ2 defined in Lemma 4.7

is symmetric. So

ELt(X)2 = ELt(β)2 = tφ2(β0/
√
t) = tφ2(X0/

√
t).

Therefore

E(Xt − x)Lt(X) =
θ

2
ELt(X)2 +

1

2θ
(E(Xt − x)2 − EB2

t ) =
tθ

2
φ2(x/

√
t) +

t

2
ψ(x/

√
t)
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and

E[(Xi,n −Xi−1,n)(Li,n(X)− Li−1,n(X)) | Gi−1,n] =
1

2n
(θφ2(Xi−1,n

√
n) + ψ(Xi−1,n

√
n)).

Since φ2 is symmetric and applying (4.1),

λ̄θ(φ2) = Leb(φ2) = 2
E[|N |3]

3
.

Since ψ is anti-symmetric and (4.1)

λ̄θ(ψ) = (1 + θ) Leb(ψ+) + (1− θ) Leb(ψ−) = 2θ Leb(ψ+) = 4θ

(
E[|N |3]

3
− E[|N |]

)
so

λ̄θ

(
θφ2

2
+
ψ

2

)
= θ
(
E[|N |3]− 2E[|N |]

)
= 0.

It is straightforward to check that
∫
|x|k( θ2φ2(x) + 1

2ψ(x)) dx < ∞ for k = 0, 1, 2. With
Lemma 4.1, this proves (4.11).

Lemma 4.13. With Zi,n defined by (4.10), the following convergence holds:

√
n

n∑
i=1

(Zi,n − E[Zi,n | Gi−1,n])
p−−−→

n→∞
0.

Proof. To apply Theorem 4.4, we prove (4.3):

E
[
(Zi,n − E[Zi,n | Gi−1,n])2

∣∣ Gi−1,n

]
≤ E

[
(Xi,n −Xi−1,n)2(Li,n(X)− Li−1,n(X))2

∣∣ Gi−1,n

]
≤ E

[
(Xi,n −Xi−1,n)4

∣∣ Gi−1,n

]1/2E[(Li,n(X)− Li−1,n(X))4
∣∣ Gi−1,n

]1/2
and we upper bound the two factors. We know E

[
(Xi,n −Xi−1,n)4|Gi−1,n

]1/2 ≤ C
n . Recall

again that (|X|, L(X))
law
= (|β|, L(β)), where β is a BM, and that φ4 is symmetric. From

(4.6),

E
[
(Li,n(X)− Li−1,n(X))4

∣∣ Gi−1,n

]1/2 ≤ 1

n
φ4(Xi−1,n

√
n)1/2.

Because of (4.5), we apply Lemma 4.1 so that

nE
[
(Zi,n − E[Zi,n | Gi−1,n])2

∣∣ Gi−1,n

]
≤ C√

n

n∑
i=1

1√
n
φ4(Xi−1

√
n)1/2 p−−−→

n→∞
0.

Hence the result.
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4.4 Approximation of occupation time

In this section we extend the result in [35], which is proved for diffusions with smooth
coefficients, to the OBM. We consider approximating the occupation time of [0,∞) up to
time 1:

Q+
1 = Leb(s ∈ [0, 1] : Ys ≥ 0) =

∫ 1

0
1{Ys≥0} ds.

As previously, we suppose that we know the values Yi,n of Y on a grid of time lag 1/n.

Theorem 4.14. Let Y be given in (2.2) and Q̄n1 (Y,+) be given by (3.1). The following
convergence holds:

√
n

(
Q̄n1 (Y,+)−

∫ t

0
1{Ys≥0}

)
p−−−→

n→∞
0.

For i = 1, . . . , n, we consider

Ji,n =

(
1

n
1{Yi−1,n≥0} −

∫ i
n

i−1
n

1{Ys≥0} ds

)
= sgn(Yi−1,n)

∫ i
n

i−1
n

1{Yi−1,nYs<0} ds,

Ui,n = Ji,n − E[Ji,n | Gi−1,n].

(4.12)

The Ui,n are martingale increments. We write

√
n

(
Q̄n1 (Y,+)−

∫ 1

0
1{Ys≥0}

)
=
√
n

n∑
i=1

E[Ji,n | Gi−1,n] +
√
n

n∑
i=1

Ui,n.

In the following lemmas we prove the convergence of the two summands.

Remark 4.15. In [35] it is proved that the estimator times n3/4 is tight, so the speed of
convergence proved there, holding only for smooth coefficients, is faster than the speed proved
here. We are actually able to prove that n3/4 is the speed of convergence for the martingale
part

∑n
i=1 Ui,n also for the OBM (and other diffusions with discontinuous coefficients), but

not for the drift part
∑n

i=1 E[Ji,n | Gi−1,n]. We would need the central limit theorem giving
the speed of convergence corresponding to the law of large numbers proved in Lemma (4.3),
but this looks quite hard to get in the case of discontinuous diffusion coefficients. Anyway,
for our goal of estimating the parameters of the OBM, the fact that our estimator multiplied
with the “diffusive scaling”

√
n converges to 0 is enough. Actually, this result depends on

a compensation between two terms in Lemma 4.16 which holds for this particular diffusion
but for which we do not have results holding for a wider class of SDEs with discontinuous
coefficients.

Lemma 4.16. With Ji,n defined by (4.12), the following convergence holds:

√
n

n∑
i=1

E[Ji,n | Gi−1,n]
p−−−→

n→∞
0.
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Proof. From (4.12),

√
nE

[∫ i
n

i−1
n

sgn(Yi−1,n)1{Yi−1,nYs<0} ds

∣∣∣∣∣ Gi−1,n

]

=
√
n

∫ i
n

i−1
n

sgn(Yi−1,n)E
[
1{Yi−1,nYs<0}

∣∣∣ Gi−1,n

]
ds

=
√
n

∫ i
n

i−1
n

sgn(Yi−1,n)P[Yi−1,nYs < 0 | Gi−1,n] ds.

The process Y is time-homogenenous. Using the Markov property and (2.4) we compute this
quantity by reducing the distribution of (Ys, Yi−1,n)s∈[(i−1)/n,i/n] given Gi−1,n to the one of
(Ys, Y0)s∈[0,1/n] given Y0.

When Y0 > 0,

√
n

∫ 1
n

0
sgn(Y0)P[Y0Ys < 0 | Y0] ds =

√
n

∫ 1
n

0

2σ+

σ− + σ+
Φ(−Y0/(σ+

√
s)) ds

=
1√
n

2σ+

σ− + σ+

∫ 1

0
Φ(−Y0

√
n/(σ+

√
t)) dt =

1√
n
f(Y0

√
n),

where

f(x) :=
2σ+

σ− + σ+

∫ 1

0
Φ(−x/(σ+

√
t)) dt for x > 0.

Now, for Y0 < 0, we find similary,

√
n

∫ 1
n

0
sgn(Y0)P[Y0Ys < 0 | Y0] ds =

1√
n
f(Y0

√
n),

where

f(x) :=
−2σ−
σ− + σ+

∫ 1

0
Φ(x/(σ−

√
t)) dt for x < 0.

We can compute∫ ∞
0

f(x) dx =

∫ ∞
0

∫ 1

0

2σ+

σ− + σ+
Φ(−x/(σ+

√
s)) ds dx =

2σ2
+

σ− + σ+

∫ ∞
0

∫ 1

0
Φ(−x/√s) ds dx

and ∫ 0

−∞
f(x) dx =

−2σ2
−

σ− + σ+

∫ 0

−∞

∫ 1

0
Φ(x/

√
s) ds dx.

Therefore computing the coefficient in (4.2),

λσ(f) =
1

σ2
+

∫
f⊕ +

1

σ2
−

∫
f	 = 0.

Moreover,

|f(x)| ≤ C
∫ 1

0
Φ(Cx/

√
t)) dt ≤ Ce−Cx2

for some constant C, so
∫
|x|kf(x) dx < ∞ for all k ≥ 0. Applying Lemma 4.3 with

n−1/2f(
√
nYi−1,n) =

√
nE[Ji,n | Gi−1,n], we prove the statement.
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Lemma 4.17. With Ui,n defined by (4.12), the following convergence holds:

√
n

n∑
i=1

Ui,n
p−−−→

n→∞
0.

Proof. We consider (4.3). We have

E
[
U2
i,n

∣∣ Gi−1,n

]
= E

[
J2
i,n

∣∣ Gi−1,n

]
− E[Ji,n | Gi−1,n]2 ≤ E

[
J2
i,n

∣∣ Gi−1,n

]
.

From (4.12),

E
[
J2
i,n

∣∣ Gi−1,n

]
≤ 1

n
E

[∫ i
n

i−1
n

1{(Yi−1,nYs)<0} ds

∣∣∣∣∣ Gi−1,n

]

=
1

n

∫ i
n

i−1
n

P[Yi−1,nYs < 0 | Gi−1,n] ds =
1

n2
|f(Yi−1,n

√
n)|.

Therefore, with (4.2),

λσ(|f |) =
1

σ2
+

∫
f⊕ − 1

σ2
−

∫
f	 =

2

σ− + σ+

∫ ∞
−∞

∫ 1

0
Φ(x/

√
s) ds dx.

Lemma 4.3 implies

n
n∑
i=1

E
[
J2
i,n

∣∣ Gi−1,n

]
=

n∑
i=1

1

n
f(Yi−1,n

√
n)

p−−−→
n→∞

0.

This proves the result.

4.5 Proof of the main results

In this section we use all the results proved so far to prove Theorems 3.1 and 3.5.

Proof of Theorem 3.1. We set

ξt = σ+

∫ t

0
1(Ys > 0) dWs and ηt = σ−

∫ t

0
1(Ys < 0) dWs.

Itô-Tanaka’s formula (see [38]) gives the following equation for the positive and negative part
of Y :

Y +
t = ξt +

1

2
Lt(Y ), and Y −t = −ηt +

1

2
Lt(Y ). (4.13)

Moreover, ξ is a martingale with quadratic variation

〈ξ〉t =

∫ t

0
σ(Ys)

21(Ys > 0) ds = σ2
+

∫ t

0
1(Ys > 0) ds.

It is well known that the quadratic variation of a martingale can be approximated with the
sum of squared increments over shrinking partitions. Thus,

[ξ]n1
p−−−→

n→∞
〈ξ〉1 =

∫ 1

0
σ2

+1(Ys > 0) ds = σ2
+Q

+
1 (Y ). (4.14)
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From (4.13),

[Y +]n1 = [ξ]n1 +
[L(Y )]n1

4
+ [ξ, L(Y )]n1 = [ξ]n1 −

[L(Y )]n1
4

+ [Y +, L(Y )]n1 .

The local time L(Y ) is of finite variation, Y + is continuous. Thus [L(Y )]n1 as well as
[Y +, L(Y )]n1 converge to 0 almost surely. From (4.14),

[Y +]n1
p−−−→

n→∞

∫ 1

0
σ2

+1(Ys > 0) ds = σ2
+Q

+
1 (Y ). (4.15)

Recall the definition of Q̄n1 (Y,+) in (3.1). Then

Q̄n1 (Y,+)
a.s.−−−→
n→∞

∫ 1

0
1(Ys ≥ 0) ds = Q+

1 (Y ).

From (4.15) and (4.5), σ̂n+
p−→ σ+, and similarly σ̂n−

p−→ σ−. Therefore, the vector (σ̂n+, σ̂
n
−)

converges in probability to (σ+, σ−). The estimator (σ̂n+, σ̂
n
−) is then consistent.

We consider now the rate of convergence. From (4.13) applied to Y −, we have as in (4.5)
that (

[Y +]n1
[Y −]n1

)
=

(
[ξ]n1
[η]n1

)
+

(
[Y +, L(Y )]n1
[Y −, L(Y )]n1

)
−
(

1
1

)
[L(Y )]n1

4
.

We consider separately the tree summands. From the central limit theorem for martingales
(see for example [17], (5.4.3) or Theorem 5.4.2), since 1(Ys > 0)1(Ys < 0) = 0,

√
n

((
[ξ]n1 [ξ, η]n1

[η, ξ]n1 [η]n1

)
−
(
〈ξ〉1 0

0 〈η〉1

))
sl−−−→

n→∞

√
2

∫ 1

0

(
σ2

+1(Ys > 0) 0
0 σ2

−1(Ys < 0)

)
dB̄s,

where B̄ is a Brownian motion independent of the filtration of W . Therefore it is also
independent of L(Y ). Consider now the second summand. The OBM Y is linked to a SBM X
solution to (2.7) through Yt = Xtσ(Xt). With (2.9) and (4.9) in Lemma 4.11,

√
n[Y +, L(Y )]n1 =

√
n

2σ2
+σ−

σ+ + σ−
[X+, L(X)]n1

p−−−→
n→∞

0.

Clearly this also holds for [Y −, L(Y )]n1 , and we obtain the convergence in probability of√
n([Y +, L(Y )]n1 , [Y

−, L(Y )]n1 ) to (0, 0).
We use Lemma 4.6 for dealing with the third summand:

√
n[L(Y )]n1 =

√
n

(
2σ+σ−
σ+ + σ−

)2

[L(X)]n1

p−−−→
n→∞

4
√

2

3
√
π

(
2σ+σ−
σ+ + σ−

)2

L1(X) =
4
√

2

3
√
π

(
2σ+σ−
σ+ + σ−

)
L1(Y ). (4.16)

We obtain, using (3.1),

√
n

((
[Y +]n1
[Y −]n1

)
−
(
〈ξ〉1
〈η〉1

))
sl−−−→

n→∞

(√
2
∫ 1

0 σ
2
+1(Ys > 0) dB̄s√

2
∫ 1

0 σ
2
−1(Ys < 0) dB̄s

)
−
(

1

1

) √
2

3
√
π

(
2σ+σ−
σ+ + σ−

)
L1(Y ). (4.17)
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We write now

(
(σ̂n+)2 − σ2

+

(σ̂n−)2 − σ2
−

)
=


[Y +]n1 − σ2

+Q̄
n
1 (Y,+)

Q̄n1 (Y,+)
[Y −]n1 − σ2

−Q̄
n
1 (Y,−)

Q̄n1 (Y,−)



=


[Y +]n1 − 〈ξ〉1
Q̄n1 (Y,+)

[Y −]n1 − 〈η〉1
Q̄n1 (Y,−)

+


σ2

+(Q+
1 − Q̄n1 (Y,+))

Q̄n1 (Y,+)
σ2
−(1−Q+

1 − Q̄n1 (Y,−))

Q̄n1 (Y,−)

 .

Recall that Q̄n1 (Y,+) and Q̄n1 (Y,−) converge almost surely to Q+
1 (Y ) and Q−1 (Y ) = 1−Q+

1 .
Besides, 0 < Q+

1 < 1 a.s., because Y0 = 0. Therefore, from Theorem 4.14,

√
n


σ2

+(Q+
1 − Q̄n1 (Y,+))

Q̄n1 (Y,+)
σ2
−(1−Q+

1 − Q̄n1 (Y,−))

Q̄n1 (Y,−)

 p−−−→
n→∞

(
0
0

)
.

Using again (3.1) and (4.17),

√
n

(
σ̂n)2 − σ2

+

σ̂n)2 − σ2
−

)
sl−−−→

n→∞


√

2σ2
+

Q+
1

∫ 1
0 1(Ys > 0) dB̄s

√
2σ2
−

1−Q+
1

∫ 1
0 1(Ys < 0) dB̄s

−


1

Q+
1

1

1−Q+
1


√

2

3
√
π

(
2σ+σ−
σ+ + σ−

)
L1(Y ).

(4.18)

The statement is now proved, but we would like to get a more explicit expression for the law
of the limit random variable. Recall Q+

t (Y ) = Q+
t (X). From Corollary 1.2 in [3], standard

computations give that the joint density of (Lt(X), Q+
t ) is, for b > 0, τ ∈ [0, t]:

pLt(X),Q+
t

(b, τ) =
(1− θ2)b

4πτ3/2(t− τ)3/2
exp

(
−(1 + θ)2b2

8τ
− (1− θ)2b2

8(t− τ)

)
.

We set now

Zt =
Lt(X)

4

√
(1 + θ)2

Q+
t

+
(1− θ)2

t−Q+
t

.

Changing variable in the integration, the joint density of (Zt, Q
+
t ) is

pZt,Q+
t

(x, τ) =

(
x exp

(
−x

2

2

))(
1

πτ1/2(t− τ)1/2

1− θ2

(1 + θ)2(t− τ) + (1− θ)2τ

)
. (4.19)

We also find the joint density of (Zt, t−Q+
t ) as

pZt,t−Q+
t

(x, τ) =

(
x exp

(
−x

2

2

))(
1

πτ1/2(t− τ)1/2

1− θ2

(1 + θ)2τ + (1− θ)2(t− τ)

)
. (4.20)
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As we can factorize pZt,Q+
t

(x, τ) = pZt(x)pQ+
t

(τ), Zt and Q+
t are independent and their laws

are explicit. In particular from (2.6), for t = 1, pZ1(x) = x exp(−x2

2 ),

pQ+
1

(τ) =
1

πτ1/2(1− τ)1/2
× 1− θ2

(1 + θ)2(t− τ) + (1− θ)2τ

=
1

πτ1/2(1− τ)1/2
× σ+/σ−

1− (1− (σ+/σ−)2)τ
,

and

p1−Q+
1

(τ) =
1

πτ1/2(1− τ)1/2
× 1− θ2

(1 + θ)2τ + (1− θ)2(1− τ)

=
1

πτ1/2(1− τ)1/2
× σ−/σ+

1− (1− (σ−/σ+)2)τ
.

Let now Λ be a random variable with the same law of Q+
1 , and let ξ be an independent

exponential random variable of parameter 1. From (4.19), (4.20)( 1
Q+

1
1

1−Q+
1

)
L1(X)

law
=

4ξ√
(1− Λ)(1 + θ)2 + Λ(1− θ)2

√1−Λ
Λ√
Λ

1−Λ

=
2(σ+ + σ−)ξ√

(1− Λ)σ2
− + Λσ2

+

√1−Λ
Λ√
Λ

1−Λ

 .

Moreover, 
√

2σ2
+

Q+
1

∫ 1
0 1(Ys > 0) dB̄s

√
2σ2
−

1−Q+
1

∫ 1
0 1(Ys < 0) dB̄s

 law
=

√2σ2
+√

Λ
N1√

2σ2
−√

1−Λ
N2

 ,

where N1,N2 are standard Gaussian random variables independent of ξ and Λ. Therefore
the limit law has the expression given in the statement.

Proof of Theorem 3.5. Using (4.13), we obtain

[Y +, Y ]n1 =

[
ξ +

1

2
L(Y ), Y

]n
1

= [ξ, Y ]n1 +
1

2
[L(Y ), Y ]n1 .

From the Central Limit Theorem for martingales [17, Theorem 5.4.2] and since ξt + ηt = Yt,

√
n

((
[ξ, Y ]n1
[η, Y ]n1

)
−
(
〈ξ〉1
〈η〉1

))
=
√
n

((
[ξ, ξ]n1 + [ξ, η]n1
[η, ξ]n1 + [η, η]n1

)
−
(
〈ξ〉1
〈η〉1

))
sl−−−→

n→∞

√
2

∫ 1

0

(
σ2

+1(Ys > 0)
σ2
−1(Ys < 0)

)
dB̃s,

where B̃ is a BM independent of the filtration of W . Both W and B̃ are defined on an
extension (Ω̃, F̃ , P̃) of (Ω,F ,P) with P′ = P⊗ P′ where P′ carries the BM B̃. Moreover,

[L(Y ), Y ]n1 = [L(Y ), Y +]n1 − [L(Y ), Y −]n1 =
2σ2

+σ−
σ+ + σ−

[X+, L(X)]n1 −
2σ+σ

2
−

σ+ + σ−
[X−, L(X)]n1
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so
√
n[L(Y ), Y ]

p−→ 0 because of Lemma 4.11. Finally,

√
n

((
[Y +, Y ]n1
[Y −, Y ]n1

)
−
(
〈ξ〉1
〈η〉1

))
=
√

2

∫ 1

0

(
σ2

+1(Ys > 0)
σ2
−1(Ys < 0)

)
dB̃s.

This is the analogous of (4.17) in the proof of Theorem 3.1. From now on the proof follows
as in Theorem 3.1, but without the local time part.

Remark 4.18. We look for the origin of the asymptotic bias present in σ̂n, but not in mn.
Consider first the difference between the approximation of quadratic variation used in the
two different estimators:

[Y +, Y ]n1 = [Y +, Y +]n1 − [Y +, Y −]n1 = [Y +]n1 − [Y +, Y −]n1 .

From (4.13),

[Y +, Y −]n1 = −[ξ, η]n1 +
1

2
[ξ, L(Y )]n1 −

1

2
[L(Y ), η]n1 +

1

4
[L(Y )]n1

= −[ξ, η]n1 +
1

2
[Y +, L(Y )]n1 +

1

2
[L(Y ), Y −]n1 −

1

4
[L(Y )]n1 .

From the central limit theorem for martingales [17, Theorem 5.4.2],

√
n[ξ, η]n1

sl−−−→
n→∞

√
2

∫ 1

0
σ+1(Ys > 0)σ−1(Ys < 0) dB̄s = 0.

Since
√
n[Y ±, L(Y )]n1 converges in probability to 0, using (4.16) we obtain

√
n[Y +, Y −]n1

sl−−−→
n→∞

2
√

2

3
√
π

σ+σ−
σ+ + σ−

L1(Y ). (4.21)

We then see that the asymptotic bias in σ̂2
± is related to the bracket [Y +, Y −]n1 .

4.6 Proof of Corollary 3.8: adding a drift term via Girsanov Theorem

Let us start with a remark on the stability of the stable convergence under a Girsanov
transform.

Lemma 4.19. For two probability spaces (Ω,F ,P) and (Ω′,F ′,P′), let us define an extension
(Ω̃, F̃ , P̃) by of (Ω,F ,P) of the form

Ω̃ = Ω× Ω′, F̃ = F ⊗ F ′ and P̃ = P⊗ P′.

Assume that (Ω,F ,P) and (Ω′,F ′,P′) carry respectively Brownian motions W and W ′ with
natural (completed) filtrations F = (Ft)t>0 and F ′ = (F ′t)t>0. Assume also that W and W ′

are independent.
On (Ω,F ,P), let G be an exponential F -martingale which is uniformly integrable. Let Q

be the measure such that dQ
dP

∣∣∣
Ft

= Gt.

Suppose now that a sequence Zn on (Ω,F ,P) of FT -measurable random variables converges
stably to a random variable Z = AW ′B on the extension (Ω̃, F̃ , P̃) of (Ω,F ,P) where A and B
are FT -random variables on (Ω,F ,P) and B is a positive random variable.

Then Zn converges stably to Z = AW ′B on (Ω̃, F̃ ,Q⊗P′) where W ′ is a Brownian motion
independent from A and B (the laws of A and B are of course changed).
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Proof. Let us write Q̃ = Q⊗ P′. The Girsanov weight GT is FT -measurable and integrable
with respect to P. Hence, it is easily shown that for any bounded, FT -measurable random
variable Y and any bounded, continuous function f , E[GY f(Zn)] converges to EP̃[GY f(Z)].

Under Q̃, 〈W ′,W 〉 = 0 as W and W ′ are independent and the bracket does not change
under a Girsanov transform. This implies that W ′ is still a Brownian motion under Q̃. Hence
the result.

Proof of Corollary 3.8. Let ξ be solution to dξt = σ(ξt) dWt with an underlying Brownian
motion W on (Ω,F ,P). We denote by (Gt)t≥0 the filtration of W . Thus, ξ is an OBM.

The Girsanov theorem is still valid for discontinuous coefficients [22]. Let us set

Gt = exp

(∫ t

0

b(ξs)

σ(ξs)
dWs −

1

2

∫ t

0

(
b(ξs)

σ(ξs)

)2

ds

)
. (4.22)

Since b is bounded, we define a new measure Q by dQ
dP

∣∣∣
Gt

= Gt. Under Q, the process ξ is

solution to dξt = σ(ξt) dW̃t + b(ξt) dt for a Brownian motion W̃t = Wt −
∫ t

0 b(ξs)σ(ξs)
−1 ds,

t ≥ 0.
Theorems 3.1 and 3.5 hold for ξ under P. Therefore, Lemma 4.19 applies here. Thus,

√
n

(
(mn

+(ξ))2 − σ2
+

(mn
−(ξ))2 − σ2

−

)
Q̃-sl−−−→
n→∞


√

2σ2
+

Q+
1 (ξ)

∫ 1
0 1(ξs > 0) dB̄s

√
2σ2
−

1−Q+
1 (ξ)

∫ 1
0 1(ξs < 0) dB̄s

 ,

where B̄ is a BM independent of W and W̃ also under Q̃.

5 Oscillating Random Walk

In [20] the OBM is constructed also as a limit of discrete processes, called Oscillating Random
Walks (ORW), analogously to how the BM is constructed as a limit of Random Walks. The
aim of this section is to exemplify the phenomena of dependence on the occupation of the
limit law, in a simpler framework and with a non-technical proof.

We define the ORW as the following process. Fix 0 < p, q ≤ 1. For k ∈ N, we introduce
the following random variables:

Uk iid, P(Uk = 1) = P(Uk = −1) =
q

2
, P(Uk = 0) = 1− q,

Vk iid, P(Vk = 1) = P(Vk = −1) =
p

2
, P(Vk = 0) = 1− p,

Zk iid, P(Zk = 1) = P(Zk = −1) =
1

2
.

Now we set Y ∗0 = 0 and

Y ∗k+1 =


Y ∗k + Uk+1 if Y ∗k > 0,

Y ∗k + Vk+1 if Y ∗k < 0,

Y ∗k + Zk+1 if Y ∗k = 0.

We consider the re-normalized process

Y n
t = n−1/2Y ∗[nt].
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Let Y be an OBM of parameters σ2
+ = q, σ2

− = p driven by a Brownian motion W . As shown
in [39], it is possible to construct a birth and death process from the Brownian motion W
whose distribution is that of the normalized random walk Y n. Hence, for this particular
choice of Y n and Y with the same underlying Brownian motion, as shown in [20],

sup
0≤t≤K

|Y n
t − Yt|

p−−−→
n→∞

0 for all K > 0.

In this setting, 0 < σ−, σ+ ≤ 1. Yet we do not loose in generality because we can always re-
scale time and space so that the random walk Y n with p = σ2

+/(σ
2
++σ2

−) and q = σ2
−/(σ

2
++σ2

−)
converges in distribution to the OBM with diffusivity σ2

+ and σ2
− on the space of continuous

functions with the uniform norm.
In this appendix, we recover from the observations of Y n for some large n an estimator

for the parameters of the OBM.
We set βn = #{k ∈ N, k ≤ n : Y n

k/n > 0}, αn = #{k ∈ N, k ≤ n : Y n
k/n > 0, Y n

(k+1)/n 6=
Y n
k/n}, and introduce the following estimator of q = σ2

+:

q̂n =
αn

βn
. (5.1)

Theorem 5.1. Let q̂n be the estimator defined above. The following convergence holds:

√
n (q̂n − q) law−−−→

n→∞
N
√
q(1− q)

Λ
,

where Λ follows the law in (2.6), N is a standard Gaussian and they are independent.

Proof. When Y n
k/n > 0, Y n

(k+1)/n 6= Y n
k/n with probability q, and Y n

(k+1)/n = Y n
k/n with

probability 1− q. We can compute the log-likelihood and maximize it as in the statistics of
Binomial variables, finding that the maximum likelihood estimator for q is q̂n in (5.1). In [20]
it is proved that

#{k ≤ n : Yk ≥ 0}
n

law−−−→
n→∞

Λ,

where Λ follows the law in (2.6). This easily implies

βn

n

law−−−→
n→∞

Λ. (5.2)

Conditioning to βn, we have that αn follows is a binomial distribution with parameters q, βn.
We write the event

{√
n (q̂n − q) ≤ x

}
=

{√
βn

q(1− q) (q̂n − q) ≤ x
√

βn

nq(1− q)

}
.

From Berry-Essen inequality [4, 8], we have∣∣∣∣∣P[√n(q̂n − q) ≤ x
∣∣ βn]− Φ

(
x

√
βn

nq(1− q)

)∣∣∣∣∣ ≤ Cq/√βn,
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for some constant Cq. Now, from (5.2) and Portmanteau Lemma,

E

[
Φ

(
x

√
βn

nq(1− q)

)]
−−−→
n→∞

E

[
Φ

(
x

√
Λ

q(1− q)

)]
.

Moreover, E[Cq/
√
βn]→ 0. Recalling

P
[√
n(q̂n − q) ≤ x

]
= E

[
P
[√
n (q̂n − q) ≤ x

∣∣ βn]],
we obtain the following convergence

P
[√
n (q̂n − q) ≤ x

]
−−−→
n→∞

E

[
Φ

(
x

√
Λ

q(1− q)

)]
,

which implies the statement.

6 Empirical evidence

In this section we implement estimators σ̂n,mn and use them on simulated data. For doing
so, we reduce the OBM (2.2) to a SBM (2.7), and we simulate it through the simulation
method given in [25]. This method gives the successive positions {Xk∆t}k≥0 of the SBM,
hence the OBM, on a time grid of size ∆t.

Recall Remark 3.7, in particular estimators mn,T
± , σ̂n,T± , for which we have central limit

theorems with the same limit laws of (3.4), (3.6). We use the parameters: T = 5, ∆t = 0.01
(thus n = 500), σ− = 0.5, σ+ = 2 (so that θ = −0.48 in (2.7), pushing the process to the
negative side). In Figure 1, we plot the density of

Mn
± :=

√
n((mn,T

± )2 − σ2
±) and Sn± :=

√
n((σ̂n,T± )2 − σ2

±)

for N realizations of these estimators (meaning the simulation of N = 10 000 paths of the
OBM). Their empirical densities are compared with the ones of

M± :=

√
2σ2
±N√
Λ

and
(
S+

S−

)
:=


√

2σ2
+√

Λ

(
N1 − 8

3
√
π

1
r+1

ξ
√

1−Λ√
(1−Λ)+Λr2

)
√

2σ2
−√

1−Λ

(
N2 − 8

3
√
π

1
1/r+1

ξ
√

Λ√
Λ+(1−Λ)/r2

)
 ,

given in (3.6) and (3.4), with N ∼ N(0, 1) and ξ ∼ exp(1). The densities of M and S (which
do not depend on T ) are obtained by simulation. The occupation time Λ is simulated by
inverting its distribution function [21,29]:

Λ
law
=

σ2
−V

σ2
−V + σ2

+(1− V )
with V = sin2

(
Uπ

2

)
, U uniform on [0, 1).

We see that the limit distribution on the positive side has a larger variance than the
one in the negative side. This is due to the sample size, proportional to the occupation
time, which is on average larger on the side where the diffusion coefficient is smaller. We
also obtain a good agreement of the normalized empirical error with the prediction of the
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Figure 1: Densities of:
(a), (d) normalized error of the estimators Mn

± (solid line) and theoretical limits M± (dashed lines);
(b), (e) normalized error of the estimators Sn

± (solid line) and theoretical limits S± (dashed lines);
(c), (f) normalized error of the estimators Mn

± and normalized error of the estimators Sn
±.

central limit theorem. On the pictures on the right, we observe the difference between biased
and non-biased estimator; the grey area is the effect given by the shift to the left of the
distribution, caused by the local time term. This shift is more visible when the diffusion
coefficient is smaller.

We have also checked that the distribution of
√
n

[Y+,Y −]nT
T is close to the distribution

of 2
√

2
3
√
π
σ+σ−
σ++σ−

LT (Y )√
T

law
=

√
2

3
√
π

(
2σ+σ−
σ++σ−

)2
L1(X), which is straightforward since the density of

L1(X) is known (for this, we use P. Lévy’s identity that relates the local time to the supremum
of the Brownian motion whose density is explicitly known). The agreement is good.

Finally, the same simulation work can be done using the random walks defined in Section 5
using the simple approach. Again, the numerical results are in good agreement with the
theory, although some instabilities appear due to the fact that the occupation time may take
small values with high probability.
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