Statistical estimation of the Oscillating Brownian Motion - Archive ouverte HAL
Article Dans Une Revue Bernoulli Année : 2018

Statistical estimation of the Oscillating Brownian Motion

Résumé

We study the asymptotic behavior of estimators of a two-valued, discontinuous diffusion coefficient in a Stochastic Differential Equation, called an Oscillating Brownian Motion. Using the relation of the latter process with the Skew Brownian Motion, we propose two natural consistent estimators, which are variants of the integrated volatility estimator and take the occupation times into account. We show the stable convergence of the renormalized errors' estimations toward some Gaussian mixture, possibly corrected by a term that depends on the local time. These limits stem from the lack of ergodicity as well as the behavior of the local time at zero of the process. We test both estimators on simulated processes, finding a complete agreement with the theoretical predictions.
Fichier principal
Vignette du fichier
estimation_oscillating_brownian_motion_FV.pdf (646.33 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01430794 , version 1 (10-01-2017)
hal-01430794 , version 2 (31-05-2017)
hal-01430794 , version 3 (08-09-2017)

Identifiants

Citer

Antoine Lejay, Paolo Pigato. Statistical estimation of the Oscillating Brownian Motion. Bernoulli, 2018, 24 (4B), pp.3568-3602. ⟨10.3150/17-BEJ969⟩. ⟨hal-01430794v3⟩

Relations

567 Consultations
521 Téléchargements

Altmetric

Partager

More