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Abstract The increasing amount of data stored in the form of dynamic interac-
tions between actors necessitates the use of methodologies to automatically extract
relevant information. The interactions can be represented by dynamic networks in
which most existing methods look for clusters of vertices to summarize the data. In
this paper, a new framework is proposed in order to cluster the vertices while de-
tecting change points in the intensities of the interactions. These change points are
key in the understanding of the temporal interactions. The model used involves non
homogeneous Poisson point processes with cluster dependent piecewise constant
intensity functions and common discontinuity points. A variational expectation
maximization algorithm is derived for inference. We show that the pruned exact
linear time method, originally developed for univariate time series, can be consid-
ered for the maximization step. This allows the detection of both the number of
change points and their location. Experiments on artificial and real datasets are
carried out and the proposed approach is compared with related methods.
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1 Introduction

The development of communication infrastructures has led to an unprecedented
collection of data stored in the form of interactions between units of interest. For
instance, interactions can correspond to email exchanges between employees of a
company. They can also be characterized by posts between individuals via social
media (Twitter, Facebook, Linkedin) or text messaging. In practice, interactions
occur at specific time points, which are often recorded. Thus, if actor i interacts
with actor j, at time η, the corresponding interaction can be represented by a
triple (i, j, η). The set of all triples can then be used to build a dynamic graph
where each actor is associated with a node, and an edge between two nodes (i, j)
is present at time η if the corresponding interaction (i, j, ν) is recorded in the data
set.

Statistical models for dynamic graphs are usually discrete in time, i.e. prede-
fined time intervals are considered and interactions during those time intervals are
aggregated to obtain snapshots. In the binary case, two nodes of a graph snapshot
are connected if an interaction between them occurred during the corresponding
time frame. The number of interactions between the nodes during the time frame
can also be recorded. Most of these models consider the stochastic block model
(SBM) (Wang and Wong, 1987; Nowicki and Snijders, 2001) and extend it to the
dynamic framework. SBM assumes that vertices are spread in latent clusters and
that the probability for two nodes to connect depends on their respective clusters.
No assumption is made on the connection probabilities such that different types
of clusters of nodes can be taken into account. In its original form, SBM cannot
deal with dynamic interactions. Yang et al (2011) proposed a dynamic version of
SBM by allowing the cluster of each node to switch at time t+ 1 depending on its
current state at time t. The switching probabilities are all characterized by a tran-
sition matrix. The alternative approach of Xu and Hero III (2013) characterizes
the temporal changes through a state space model and relies on the Kalman filter
along with the Rauch-Tung-Striebel smoother, for inference. Contrary to Yang
et al (2011), the edge probabilities are seen as time varying parameters in Xu and
Hero III (2013). The work of Yang et al (2011) was generalized by Matias and
Miele (2016) to deal with other types of edges. In their paper, they also showed
that it was not possible to let both the connectivity parameters and cluster mem-
berships vary over time without incurring into identifiability issues. Other static
variants of the SBM model have also been adapted to the dynamic context. For
instance, Xing et al (2010), Ho et al (2011) and Kim and Leskovec (2013) extended
the mixed membership SBM of Airoldi et al (2008) in order to look for overlapping
clusters of nodes, through time. Moreover, the dynamic random subgraph model
(DRSM) (Zreik et al, 2016) was built upon the RSM model (Jernite et al, 2014) to
uncover clusters within subgraphs provided a priori. Note that the popular static
latent position model of Hoff et al (2002) was also extended by Sarkar and Moore
(2005) and Friel et al (2016) to deal with dynamic interactions.

The scope of application of the models for dynamic graphs we have discussed
so far is limited. Indeed, aggregating the data leads to a loss of information and
the choice of the time intervals used to build the snapshots has a strong impact on
the results (Matias et al, 2015). In order to deal with dynamic interactions on a
continuous time frame, a natural choice is to consider point processes. Thus, Matias
et al (2015) relied on the so called (doubly stochastic) non homogenous Poisson
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point processes (NHPPP). Following a SBM like approach, nodes are assumed to
belong to hidden clusters. Each pair of nodes is then associated to a NHPPP whose
intensity function depends on the respective clusters. A variational expectation
maximization (VEM) algorithm is finally employed to non parametrically estimate
these functions and to uncover the clusters. This work is partially related to Dubois
et al (2013) who relied on a parametric form for the intensity functions, which
depend on the past network history and other predefined statistics. An alternative
approach was proposed by Corneli et al (2016b) where the intensity functions of
the Poisson point processes are assumed to be piecewise constant on predefined
time intervals, each time interval belonging to an hidden time cluster. In their
model, the value of each intensity function at time t not only depends on the
clusters of nodes, but also on the corresponding time cluster. A greedy search
algorithm was proposed to uncover the clusters.

In this paper, we extend the work of Matias et al (2015) to simultaneously
uncover clusters of nodes sharing connection profiles, and to look for adjacent
time intervals on which the connectivity patterns between pairs of clusters are
stationary. In practice, considering dynamic interactions over a continuous time
interval, we assume the intensity functions of the NHPPP to depend on the hidden
node clusters and to be piecewise constant. Moreover, they are assumed to share
D − 1 common discontinuities whose location and number are unknown. These
discontinuities induce a segmentation of the entire time interval over which the
interactions are observed. In order to perform inference, a VEM algorithm is de-
rived. We show that the V-M step can be tackled relying on a multiple changepoint
detection tecnique for univariate time series, the pruned exact linear time (PELT)
(Killick et al, 2012) method, which we adapted to our framework. Finally, the
number of clusters of vertices is estimated using a Bayesian information criterion
(BIC) involving variational approximations.

An alternative model to Poisson processes based ones has been proposed in
Guigourès et al (2012, 2015). As the model proposed in the present paper, this
approach does not aggregate the temporal network prior analyzing it. It also pro-
duces both clusters of nodes and a segmentation of time. It is therefore a natural
reference model in our context. By being based on the non parametric MODL ap-
proach Boullé (2010), the triclustering technique of Guigourès et al (2012, 2015)
can handle non Poisson distributed interaction counts but it is somewhat blind
to intensity changes as will be illustrated in Section 4.1.2. In particular, time seg-
ments cannot be detected when the type of connectivity structure is persistent
through time but subject to parallel shifts in the interaction intensity levels.

The paper is organized as follows. In Section 2, we introduce the model and
notations. In Section 3, we derive the VEM algorithm along with the model se-
lection procedure. Finally, in Section 4, some experiments on simulated and real
data are carried out to assess the proposed methodology.

2 A generative model for continuous time dynamic graphs

We consider interaction data with time-stamps and assume that a set of N actors
{1, . . . , N} is provided. Those actors are assumed to interact (possibly repeatedly)
at arbitrary times, that are recorded. A flat (i.e. non graphical) representation of
those interactions is a finite setD = {(im, jm, νm)}1≤m≤M , subset of {1, . . . , N}2×
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R+, in which a triple (i, j, ν) represents an interaction between actors i and j, at
time ν. The temporal period under study is the interval [0, T ]. Without loss of
generality, we assume that D is sorted on the time variable. In addition, each
interaction time is supposed to be unique (see Section 2.3). Then 0 < ν1 < ν2 <
. . . < νM < T 1.

In order to simplify the presentation, self interactions and directed interactions
are not considered in this paper. Extensions to those cases are straightforward. The
proposed approach makes the implicit assumption that interaction time spans do
not play a significant roles in the general behaviour of the actors. Lifting this
assumption and modelling explicitly the duration of the interactions is out of the
scope of this paper.

2.1 Continuous time dynamic graph

Those interaction data can be seen as a dynamic (or time evolving) graph. The
actor set corresponds to the set of nodes of the graph. Then each interaction (i, j, ν)
can be seen as an edge in the graph, connecting i and j, and decorated by the
time ν. This graph is in general a multiple graph in the sense that two nodes i
and j can be connected by multiple edges (with different times). Another way of
seeing the interaction data as a graph would be to follow Guigourès et al (2015)
and to use the general framework of Casteigts et al (2012). In both cases, the most
important aspect is that the proposed model is not based on a time series of graphs
but rather on a fixed graph whose edges have a temporal dimension. This latter
approach is more general as it allows one to model time as a continuous variable
rather than a discrete one.

2.2 Node/actor clusters

Following the Stochastic Block Model (SBM) generative scheme (Wang and Wong,
1987; Nowicki and Snijders, 2001), we assume that the connectivity in a dy-
namic graph is explained by hidden roles: each node/actor belongs to a cluster of
nodes/actors and the way actors interact depends only on their respective clusters.
In addition, cluster memberships are assumed to be fixed through time. Conversely,
as we shall see in the following section, the connectivity parameters are allowed to
change. These two modeling assumptions respect the identifiability principle for
dynamic SBMs provided in Matias and Miele (2016) who showed that the connec-
tivity parameters and group memberships should not both be allowed to change
over time.

Thus, each node i is associated to a random variable Zi sampled from a multi-
nomial distribution

P(Zi = k) = πk, ∀k ∈ {1, . . . ,K},
where K is the number of clusters and

K∑
k=1

πk = 1.

1 Interaction times are assumed to be strictly positive and νM+1 is assumed to fall outside
the time interval [0, T ]: νM+1 ≥ T a.s.
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We denote Z = {Z1, . . . , ZN} the set of all latent variables. Note that the 0-1
notation Zi = (Zi1, . . . , ZiK) with Zik = 1 if node i belongs to the k-th cluster, 0
otherwise, will be used interchangeably with the notation where Zi ∈ {1, . . . ,K},
when no confusion occurs. Finally, the vector of cluster proportions is denoted
π = (π1, . . . , πK).

2.3 Time-stamped interactions as point processes

Let us consider two fixed nodes, i and j. We denote M (i,j) the number of edges be-
tween i and j, in other words the number of distinct times ν such that (i, j, ν) ∈ D.
Without loss of generality, those interaction times can be sorted into the following
list

A(i,j) := {ν(i,j)1 , . . . , ν
(i,j)

M(i,j)}, (1)

with ν
(i,j)
1 < ν

(i,j)
2 < · · · < ν

(i,j)

M(i,j) . In probabilistic terms, A(i,j) can be seen
as a point process. As such a point process takes values in [0, T ], it is naturally
associated to a counting process {M (i,j)(t)}t∈[0,T ]. The random variable M (i,j)(t)
counts the number of interactions, between i and j, that happened before (or
exactly at) t, i.e.

M (i,j)(t) =
∣∣∣A(i,j)∩]0, t]

∣∣∣ ,
where |S| denotes the cardinal of the set S. A simple yet flexible generative model
for the interaction times in A(i,j) is the nonhomogeneous Poisson point process
(NHPPP). Such a process is characterized by an intensity function κ(i,j)(·), posi-
tive and integrable on [0, T ]. Denoting

κ̄(i,j)(t) =

∫ t

0

κ(i,j)(s)ds, t ≤ T,

assuming that A(i,j) is generated by a NHPPP with intensity function κ(i,j) means
that for all t ∈ [0, T ],M (i,j)(t) follows a Poisson distribution with parameter κ̄ij(t).

As pointed out in the previous section, the proposed model follows the SBM
rationale in which the way actors interact depends only on their hidden role (a.k.a.
cluster). Combined with the NHPPP assumption, this leads to the following as-
sumptions:

1. given Z, the A(i,j) for all i > j are generated by N(N −1)/2 independent non-
homogeneous Poisson point processes with intensity functions {κ(i,j)(·)}i>j ;

2. there are K(K + 1)/2 positive integrable functions λ = {λkg(·)}k,g defined on

[0, T ] such that κ(i,j)(t) = λZiZj (t) for all t ∈ [0, T ].

With those assumptions, the conditional likelihood of a set of interactions A(i,j)

between two nodes i and j is given by (Daley and Vere-Jones, 2003)

p(A(i,j)|Zi = k, Zj = g, λkg) =
M(i,j)∏
m=1

λkg(ν(i,j)m ) exp (−Λkg(T )) , (2)

with

Λkg(t) :=

∫ t

0

λkg(s)ds.
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Notice that as the A(i,j) are assumed to be generated by Poisson point pro-
cesses, all the interaction times are distinct (almost surely). This justifies the
assumption used at the beginning of the present section.

The data set D can be seen as the union of all the A(i,j), with the added
information of the interacting pairs at each interaction time: the pair (im, jm)
corresponds to the nodes actually having an interaction at time νm. Combining
equation (2) applied to all those processes with the conditional independence as-
sumption between them, we obtain the following complete data likelihood

p(D, Z|λ, π) = p(D|Z,λ)p(Z|π)

= exp

− N∑
j>i

ΛZiZj (T )

 M∏
m=1

λZimZjm (νm)
N∏
i=1

πZi .
(3)

2.4 Common change points

The generative model proposed above assumes some structure on the node set
but none on the time interval. While this approach can be interesting in some
settings (Corneli et al, 2016a), it reduces to some extent interpretation possibilities.
In particular, such a flexible model does not emphasize brutal changes in the
interaction structure between clusters of nodes.

In order to emphasize those aspects, we assume that the intensity functions of
the NHPPPs are piecewise constant and that the D intervals on which they are
constant are shared between all functions. In other words, we assume that there
are D − 1 change points

0 = η0 < η1 < · · · < ηD−1 < ηD = T, (4)

such that for all 0 ≤ d ≤ D, 1 ≤ k ≤ K and 1 ≤ g ≤ K, λkg(·) is constant on
[ηd, ηd+1[. Therefore

λkg(t) =
D∑
d=1

λkgd1[ηd−1ηd[(t), ∀k, g ∈ {1, . . . ,K}, (5)

where λkgd := λkg(ηd−1) and 1G(.) is the indicator function over a set G2. In
the following, η = {η1, . . . , ηD−1} denotes the set of change points and λ is the
(K ×K ×D) tensor3 with elements λkgd.

A crucial consequence of the piecewise constant assumption is that on an in-
terval [ηd, ηd+1[, all the Poisson point processes are homogeneous and thus do not
exhibit any temporal structure. On the contrary, the intensity is allowed to change
arbitrarily from one interval to the next one, allowing brutal changes in the in-
teraction patterns between clusters. In addition, taking into account the piecewise
constant assumption, allows us to simplify the complete data likelihood as shown
in the following proposition.

2 Since the whole time interval [0, T ] is considered, the intensity functions can be assumed
(exceptionally) left continuous in t = T . In formulas: λkg(T ) = λkg(ηd−1).

3 We use the same notation to denote the set of K(K + 1)/2 intensity functions and the
tensor because under our assumptions they correspond to two different views of the same
object. Notice that the frontal slices of λ are symmetric K ×K matrices since we are dealing
with undirected graphs.
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Proposition 1 Using the constraints in equation (5), the complete data log like-
lihood becomes

log p(D, Z|θ) =

−
D∑
d=1

K∑
k,g

λkgd∆d
 N∑
j>i

ZikZjg

− log(λkgd)

 N∑
j>i

ZikZjgX
(d)
ij


+

N∑
i=1

K∑
k=1

Zik log πk, (6)

where

1. θ := {η,λ, π}
2. ∆d is the size of the interval [ηd−1, ηd[,

3. X
(d)
ij := N (i,j)(ηd)−N (i,j)(ηd−1) is the increment of conditional Poisson point

process {M (i,j)(t)}t∈[0,T ] over the segment [ηd−1, ηd[, i.e. the number of inter-
actions that occurred between i and j during the time interval [ηd−1, ηd[.

Proof See appendix A.1.

3 Estimation

This section focuses on the inference of the model proposed above. This involves
estimating the number K of clusters and the number D of adjacent time intervals,
as well as the parameter θ. Therefore, we introduce first a penalized likelihood
criterion for model selection. A variational approximation for this criterion is then
introduced, leading to a variational expectation maximization (VEM) algorithm.
It is finally shown how to integrate an efficient change point detection algorithm
in the VEM loop to estimate the piecewise constant intensities.

3.1 Penalized likelihood

Given the set of all observed interactions D, our goal is to estimate the clustering
structure in the actor/node space and the segmentation structure in the temporal
space. In particular, we aim at choosing the number K of clusters and the number
of change points (by choosing D) as well as their location η.

A natural quality measure in this context is the observed data (integrated)
log-likelihood

log p(D|K, η,D) = log

(∫
λ,π

p(D,λ, π|K, η,D)dλdπ

)
. (7)

Unfortunately this marginal log likelihood does not have an analytical form so we
propose to replace it with a penalized likelihood (BIC like) term

log p̃(D|K, η,D) = max
λ,π

log p(D|K, η,D,λ, π)− 1

2
C(K,D) logα, (8)
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where

C(K,D) := K − 1 +
K(K + 1)D

2
,

accounts for the number of model parameters. The term α in equation (8) is
related to the number of observations and will be discussed in Section 3.4.2. In
other words, we consider the following optimization problem, for inference

max
K,η,D,λ,π

log p(D|K, η,D,λ, π)− 1

2
C(K,D) logα. (9)

While this allows to avoid to consider directly the log-likelihood in equation
(7), two difficulties remain: log p(D|K, η,D,λ, π) is not directly calculable and the
optimization over η and D is a complex non smooth problem. To tackle these
issues, two strategies are proposed. A variational approach is used in order to
derive a lower bound of log p(D|K, η,D,λ, π) (see Sections 3.2 and 3.3) while a
change point detection technique is considered to address the optimization over η
and D (see Section 3.4).

3.2 A variational bound

The first difficulty mentioned above is that computing the log likelihood term
log p(D|K, η,D,λ, π) is not tractable. Indeed, it involves summing over all the
KN possible sets Z, i.e.

log p(D|K, η,D,λ, π) = log

(∑
Z

p(D, Z|K, η,D,λ, π)

)
.

Moreover, p(Z|D,K, η,D,λ, π) cannot be factorized so the standard expectation
maximization (EM) algorithm (A. P. Dempster, 1977) cannot be considered for
inference. For more details on these issues, see Daudin et al (2008) in the case of
the standard SBM.

Therefore, we introduce an approximate distribution q(Z) for Z and use the
standard variational decomposition

log p(D|K, η,D,λ, π) =

L (q(Z);K, η,D,λ, π) +KL (q(Z)||p(Z|D,K, η,D,λ, π)) ,

where

L (q(Z);K, η,D,λ, π) =
∑
Z

q(Z) log
p(D, Z|K, η,D,λ, π)

q(Z)

= Eq(Z)

[
log

p(D, Z|K, η,D,λ, π)

q(Z)

]
,

and KL denotes the Kullback-Leibler divergence between the true and approximate
posterior distribution q(Z) of Z, given the data and model parameters

KL (q(Z)||p(Z|D,K, η,D,λ, π)) = −Eq(Z)

[
log

p(Z|D,K, η,D,λ, π)

q(Z)

]
.
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Since log p(D|K, η,D,λ, π) does not depend on the distribution q(Z), maximizing
L with respect to q(Z) is equivalent to minimizing the KL divergence (over q(Z)
also).

As the KL divergence is non negative, L (q(Z);K, η,D,λ, π) is obviously a
lower bound of log p(D|K, η,D,λ, π) for all q(Z), thus we use the standard vari-
ational bounding method. In our case, it consists in replacing the problem (9)
by

max
K,η,D,λ,π,q(Z)

f (q(Z),K, η,D,λ, π) , (10)

where

f (q(Z),K, η,D,λ, π) = L (q(Z);K, η,D,λ, π)− 1

2
C(K,D) logα. (11)

As in Daudin et al (2008) for the SBM, the Z distribution is approximated by
a factorized distribution

q(Z) =
N∏
i=1

q(Zi) =
N∏
i=1

K∏
k=1

τZikik . (12)

This leads to the following expression for L.

Proposition 2 If q(Z) is of the form used in equation (12), then

L (q(Z);K, η,D,λ, π) =

−
D∑
d=1

K∑
k,g

λkgd∆d
 N∑
j>i

τikτjg

− log(λkgd)

 N∑
j>i

τikτjgX
(d)
ij


+

N∑
i=1

K∑
k=1

τik log
πk
τik

. (13)

Proof This expression can easily be obtained by taking the expectation with re-
spect to q(Z) of the log likelihood in equation (6) and by adding the following
entropy term

H(q) := −Eq(Z)[log(q(Z))].

3.3 Variational expectation maximization

Problem (10) is solved relying on a VEM algorithm which optimizes the function
f(q(Z);K, η,D, λ, π) which respect to η, D, λ, π, and with respect to q(Z), al-
ternately. The number K of clusters is handled via a grid search (see Section 3.5)
and it is considered fixed in the present section.

Given η, D, λ and π, the optimization with respect to q(Z) is straightforward.
This corresponds to the E step of the algorithm (see Section 3.3.1). Then, given
q(Z), the parameters λ as well as π are optimized away, and we use a change point
detection procedure to optimize the criterion with respect to η and D. The opti-
mization with respect to η,D,λ and π corresponds to the M step of the algorithm.
The E and M steps are then iterated until convergence.
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3.3.1 Maximization with respect to τ (E step)

The E step is based on the following proposition.

Proposition 3 A first order condition for f (q(Z),K, η,D,λ, π) to be maximal
with respect to q(Z) is

τik =
πk
C

exp

 −
D∑
d=1

K∑
g=1

λkgd∆d
 N∑
j 6=i

τjg

− log(λkgd)

 N∑
j 6=i

τjgX
(d)
ij

 ,

where

C =
K∑
k=1

τik,

∀i ∈ {1, . . . , N}, k ∈ {1, . . . ,K}.

Proof See Appendix A.2.

In the E step of the algorithm, the entries of the set τ = {τ1, . . . , τN} are updated
in turn until convergence of τ . This corresponds to a fixed point procedure, as
in Daudin et al (2008) for instance. We emphasize that τik is the (approximate)
posterior probability for node i to be in cluster k, given the data and model
parameters. Thus, the clustering structure uncovered by the method is encoded
through τ .

3.3.2 Maximization with respect to π

Notice that f (q(Z),K, η,D,λ, π) can be written

f (q(Z),K, η,D,λ, π) =
N∑
i=1

K∑
k=1

τik log
πk
τik

+ g(q(Z),K, η,D,λ),

where the function g does not depend on π. Thus, q(Z) and K being fixed, maxi-
mizing f with respect to η , D, λ, π can be done independently on π and on the
other parameters. The estimated value for π (under the constraint

∑K
k=1 πk = 1)

is then

π̂k =

∑N
i=1 τik
N

, ∀k ∈ {1, . . . ,K}.

3.3.3 Maximization with respect to λ

Maximizing f with respect to λ leads to the following estimates

λ̂kgd =



∑N
j>i τikτjgX

d
ij

∆d
∑N
j>i τikτjg

when g > k,∑N
j 6=i τikτjkX

d
ij

∆d
∑N
j 6=i τikτjk

when g = k.

(14)

Notice that contrary to π̂, λ̂ does depend on η and D, which are also considered
in the M optimization step.
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3.3.4 Maximization with respect to η and D

Obviously, we have

max
η,D,λ,π

f (q(Z),K, η,D,λ, π) = max
η,D

max
λ,π

f (q(Z),K, η,D,λ, π) .

Thus, q(Z) and K being fixed, f can be evaluated in λ̂ and π̂ obtained in the
previous sections. In detail

max
λ,π

f (q(Z),K, η,D,λ, π) =
D∑
d=1

G([ηd−1, ηd[)− 1

2

K(K + 1)D

2
logα+const, (15)

where all the terms which do not depend on η and/or D have been absorbed into
the constant const and

G([ηd−1, ηd[) :=

−
K∑
k,g

λ̂kgd∆d
 N∑
j>i

τikτjg

− log(λ̂kgd)

 N∑
j>i

τikτjgX
(d)
ij

 . (16)

Notice that the criterion to maximize (now with respect to η and D) is a sum of
independent components: each gain function G([ηd−1, ηd[) applies only to inter-
actions that take place in the time interval [ηd−1, ηd[. Notice in particular that

for a given d, the λ̂kgd are obtained from the quantities X
(d)
ij which correspond

themselves to interaction counts during the time interval [ηd−1, ηd[.

3.4 Segmentation

Up to a change of sign4, the criterion (15), to be maximized with respect to η and
D, has the general form used in change point detection problems (see equation (1)
in Killick et al, 2012, for instance) and efficient algorithms used in this context
can be considered for inference.

3.4.1 Dynamic programming

Let us first recall that those types of additive costs can be solved exactly via a
form of dynamic programming (Jackson et al, 2005). Indeed, denoting F (s,D) the
maximal value of the criterion (15), when restricted to interactions that happen
in ]0, s], and for at most D segments, we have, as in Jackson et al (2005); Killick

4 In the framework of change point detection for time series, a cost function to be minimized
is associated to each time segment. In contrast, we introduce a gain function to be consistent
with the problem formulation used so far. However the two definitions are equivalent since the
cost function can be thought as a gain function multiplied by -1.
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et al (2012)

F (T,D) = max
η,D′≤D

 D′∑
d=1

(
G([ηd−1, ηd[)− 1

2

K(K + 1)

2
logα

) ,
= max

ζ

{
max

η′,D′≤D−1

 D′∑
d=1

(
G([η′d−1, η

′
d[)− 1

2

K(K + 1)

2
logα

)
+ G([ζ, T [)− 1

2

K(K + 1)

2
logα

}
,

= max
ζ

[
F (ζ,D − 1) + G([ζ, T [)− 1

2

K(K + 1)

2
logα

]
. (17)

Notice that in those equations, η corresponds to at most D − 1 change points in
[0, T [, ζ is a unique change point and η′ corresponds to at most D − 2 change
points in [0, ζ[.

3.4.2 Restriction on the change point locations

There are two limitations in equation (17): a maximal number of change points has
to be specified and the optimization over ζ (i.e. over the position of a given change
point) remains an open problem. While in theory this optimization is straightfor-
ward, the key point of the recurrence in equation (17) is the possibility of memo-
rizing F (ζ,D− 1) for all values of ζ. Indeed, the dynamic programming algorithm
proceeds by computing and memorizing F (ζ, 1) for all ζ, and then computes and
memorizes F (ζ, 2) using F (ζ, 1), etc.

Therefore, one has to reduce the search space for the change points to a finite
set. In practice, this corresponds to introducing a grid of points which are a priori
change point candidates:

P = {(t0, . . . , tU )|0 = t0 < t1 < · · · < tU = T, U ∈ N∗}.

A natural choice for P is the set of all interaction times in D, but other choices
can be used, such as intermediate times between interactions (e.g., times of the
form

νm+1+νm
2 ) or arbitrary regular grids. Notice that choosing a grid immediately

solves the problem of choosing the maximal value for D: it is exactly U .
The choice of P has several consequences. Firstly, the computational cost of

the dynamic programming (with or without pruning) is directly linked to U (see
below for details). Secondly, P acts as a minimal time resolution constraint. Thus,
a high value of U allows to pinpoint change points very precisely but at a high
computational cost, and vice versa. Therefore, both computational and expert
considerations should be taken into account for choosing P. If the computational
load is acceptable, using the set of all interaction times offers a maximal resolution,
but that might emphasize unneeded details.

The last consequence of the choice of P concerns the value of α in the penalized
log likelihood (see equation (8)). According to the hypotheses on the generative
model, we observe N(N − 1)/2 conditionally independent NHPPP. Each of those
processes is observed on the intervals [tu, tu+1[ via interaction counts. Those in-
teraction counts are independent per the general hypothesis on NHPPP. Thus, we
have α = UN(N − 1)/2 independent observations.
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3.4.3 Pruned exact linear time

In this paper, we consider the pruned exact linear time (PELT) method of Killick
et al (2012) originally developed for change point detection in univariate time
series. Using the recursive decomposition in (17) for maximization has a cost of
O(K2U2). For more details, we refer to Killick et al (2012). The key observation
is that for each point tu in P the gain of setting tu′ as the last change point before
tu, has to be computed, for all tu′ < tu. Fortunately, some points tu can be pruned
through the optimization routine. This is the principle of PELT and in practice it
allows to speed up the exploration of the segmentation space. We use the following
result whose general statement and formal proof are given in Killick et al (2012).

Again, consider tu′ and tu such that tu′ < tu and tu′ is not the last change
point before tu. Then(

F (tu′ , U − 1) + G([tu′ , tu[)− 1

2

K(K + 1)

2
logα

)
< F (tu, U).

Moreover if tu′ fulfils the condition

F (tu′ , U − 1) + G([tu′ , tu[) < F (tu, U),

then tu′ can never be the optimal last change point prior to tu′′ , for all tu′′ > tu.
This statement is true for all gain functions satisfying the following condition

G([tu′ , tu[) + G([tu, tu′′ [) ≥ G([tu′ , tu′′ [), tu′ < tu < tu′′ . (18)

Proposition 4 The condition (18) is fulfilled by the gain function G(·) we defined.

Proof See appendix A.3.

The pseudocode Algorithm 1 illustrates how the PELT algorithm works.

3.5 Selection of K and initialization clusters

As any EM like approach, the algorithm proposed for inference depends on some
initializations. Notice, however, that once initial values for τ and K are provided,
the other model parameters (D, θ) = (D, η,λ, π) are estimated in the maximiza-
tion (M) step and those estimates are employed in the E step to obtain a better
estimate of τ and so on until the criterion f(q(Z),K, η,D, λ, π) (11) no longer
increases (i.e. convergence). For a fixed value of K the initialization of τ can be
obtained in several ways. For example a N × N adjacency matrix can be built
by aggregating all the interactions over the time interval [0, T ], hence the entry
(i, j) of this adjacency matrix corresponds to M (i,j), with the previous notations.
Then, clustering algorithms like k-means, hierarchical clustering or spectral clus-
tering can be used to get an estimate of Z. Finally the initial matrix τ is built such
that τik is one if Zi = k, zero otherwise. Another method to initialize τ consists in
applying a k-means clustering on the rows of the N × UN matrix corresponding

5 Notice that in case the minimal partition is used, X
(u)
ij is trivially equal to one for the pair

(i, j) interacting at tu−1 and zero for all the other pairs.
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Algorithm 1 PELT for dynamic SBM

Input:

A grid 0 = t0 < t1 < · · · < tU = T .

An (N ×N × U) tensor X whose entry5(i, j, u) is X
(u)
ij

A matrix τ of variational probabilities.

The penalty α = UN(N − 1)/2.

A fixed positive number of clusters K.

The gain function G(.).

Initializations: F (0) = 1
4K(K + 1) logα, cp(0) = NULL, R1 = 0.

for η∗ in 1, . . . , U do

Calculate F (η∗) = maxη∈Rη∗ [F (η) + G([tη+1, tη∗ [)− F (0)].

Let η =argmaxη∈Rη∗ [F (η) + G([tη+1, tη∗ [)− F (0)].

Set cp(η∗) = [cp(η), η].

Set Rη∗+1 = {η ∈ Rη∗ ∪ {η∗} | F (η) + G([tη+1, tη∗ [) ≥ F (η∗)}.
end for

Output: The change points stored in cp(U).

to the mode-1 unfolding of the tensor X (see Kolda and Bader, 2009, for more de-
tails). In each experiment in Section 4, all the mentioned initialization techniques
are attempted. The one leading to the highest finale value of the lower bound is
finally retained.

So far, we have assumed that the number of clusters was fixed. However, in
practice K is unknown and has to be inferred from the data. Again, we rely on
the criterion defined in equation (11) which involves a penalization term over K.
Recalling that the optimal number of segments is selected by the PELT procedure
(see Section 3.3), the VEM algorithm described in this section is run for different
values of K in {1, . . . ,Kmax}, for some fixed Kmax, and the value K maximiz-
ing the criterion is retained. The pseudocode Algorithm 2 summarizes the whole
estimation routine.

4 Experiments

4.1 Simulated datasets

Some experiments on simulated data are carried out to test the proposed ap-
proach. Our model (called hereafter PELT-Dynamic SBM) is compared with the
triclustering approach proposed in Guigourès et al (2012, 2015). The approach is
referred to as MODL (while MODL is a more generic technique Boullé (2010)).
As pointed out in the introduction, this method is non parametric and search for
clusters of nodes and time segments. It is based on a combinatorial generative
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Algorithm 2 VEM algorithm

Input:

A maximum number of clusters Kmax.

A set D of M interaction times.

The criterion f(·) in equation (11).

Initializations: Store ← vector(Kmax), Pmts ← list(Kmax)

for K in 1, . . . ,Kmax do

τ ← Some clustering algorithm

{D, θ} ← Maximization(τ,D)

while f(·) increases do

τ ← Expectation(D, D, θ)
{D, θ} ← Maximization(τ,D)

end while

Store[K] ← f(K,D, τ, θ)

Pmts[K] ← {τ, θ}
end for

K∗ ← argmax(Store).

Output: The estimated parameters in Pmts[K∗].

model estimated via a maximum a posteriori approach. As our model, it has no
user tunable parameter and is therefore fully automated.

4.1.1 First scenario

The experiments considered in this section are related to the simulation setup
in Section III.A of Guigourès et al (2012). Each network generated is made of
40 nodes, grouped in four clusters: 5 vertices are in clusters 1 and 2, 10 vertices
in cluster 3 and 20 vertices in cluster 4. The time interval [0, 100] is split into
four segments (I1 = [0, 20[, I2 = [20, 30[, I3 = [30, 60[ and I4 = [60, 100[) and
each segment is associated with a specific interaction pattern between clusters, as
illustrated in Figure 1. For each number of edges varying from 50 to 10000, 50
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Fig. 1: Image graph for each time segment

dynamic graphs are sampled according to the following procedure:
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1. A node and a random interaction time are sampled uniformly in {1, . . . , 40}
and [0, 100], respectively. The vertex is then assigned to its cluster and the
interaction time to its segment.

2. If the cluster of the selected vertex is connected to one or more clusters over the
considered time segment (see Figure 1), a second vertex is sampled uniformly
at random in the union of these clusters, and an edge is generated.

3. The first two steps are repeated until the desired number of edges is reached.
4. Finally, 30% of edges are rewired uniformly at random.

The only difference between the current setup and the one used in Guigourès
et al (2012), is that the networks in the present paper are undirected. Notice
that the generative process for those data is neither Poisson based model nor the
combinatorial model used by MODL.

For estimation purposes, a regular grid P (Section 3.4.2) with unitary length
time intervals is used for PELT-Dynamic SBM. Both algorithms (PELT-Dynamic
SBM and MODL) are applied to the generated interaction data and results are
assessed at an aggregated level (cluster numbers) and at a more refined level relying
on the adjusted Rand indexes (Rand, 1971).

In Figure 2 the mean number of clusters K (respectively time segments, D)
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Fig. 2: The average number of clusters and time segments detected by MODL and
PELT-Dynamic SBM versus number of sampled edges

found by the two methods is plotted in blue (green) as a function of the number
of edges.

As it can be seen, MODL provides more accurate estimates of both K and D
for a small number of edges, while PELT-Dynamic SBM needs denser networks to
recover the true number of clusters and time segments. These results are confirmed
in Figures 3 and 4.
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Fig. 3: ARIs for the change points (η)

For each number of edges, adjusted Rand indexes (ARI) are computed to asses
the quality of the estimates provided for Z and η by the two models. For what
concerning the change point locations, when no change point is detected the ARI
is zero, conversely when η̂1 = 20, η̂2 = 30 and η̂3 = 60 the ARI is one. For each
number of edges, two box-and-whiskers plots are produced, one for MODL (on the
left hand side) and the other for our method (right hand side).

As pointed out above, the data are not generated according to our model or
to MODL combinatorial one. However, our model is still parametric which might
explain the less accurate estimates provided here as compared to MODL. We show
in the following sections that when the data are generated with a model closer to
our model, the results are quite different.

4.1.2 Second scenario

The graphs generated in the second simulation scenario are made of 75 nodes,
grouped into two clusters and undirected interactions are simulated over the time
interval [0, 10]. This interval is split into three segments I1 = [0, η1[, I2 = [η1, η2[,
I3 = [η2, 10[, where the change points η1 as well as η2 are set to 2.1 and 6.9,
respectively. Interactions are sampled by thinning (Lewis and Shedler, 1979) ac-
cording to the model we introduced in Section 2, based on the following intensity
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Fig. 4: ARIs for the cluster memberships (Z)

functions (IFs)

λZiZj (t) =

{
0.11I1(t) + 0.21I2(t) + 0.051I3(t) if Zi = Zj

0.051I1(t) + 0.11I2(t) + 0.0251I3(t) if Zi 6= Zj ,

for all j > i. Thus, the IFs define a persistent community structure (see Fortunato,
2010, for more details) through time in which the intensity of the interactions
within clusters is twice the intensity of the interactions between clusters. The
following sampling procedure is used to sampled 50 dynamic graphs:

1. Each vertex is assigned to one of the two clusters with probability 1/2.
2. Interactions between each pair of nodes (i, j) are sampled according to the

NHPPP with IF λZi,Zj (t).

Again, to introduce some noise in the data, 10% of edges are rewired. Considering
this new setting, we aim at evaluating the clusters uncovered by our methodology
along with the estimates of the change point locations η1 and η2. The grid P of all
observed interactions in D was considered for inference. As mentioned in Section
3.4.2, this allows to pinpoint change points more accurately. The use of such a grid
is made possible here because of the limited number of interactions generated.

Regarding the clustering task, we present in Figure 5 the results for MODL
and a k-means algorithm applied on the adjacency matrix where all interactions
over the time interval [0, 10] are aggregated. Note that contrary to MODL and
PELT-Dynamic SBM, k-means was provided with the true number of clusters.
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Fig. 5: Boxplots over 50 simulations of the ARIs for the clustering structures
obtained by k-means, MODL and PELT-Dynamic SBM for scenario 2

Clearly, MODL and PELT-Dynamic SBM recover the clusters more accurately
than k-means with PELT-Dynamic SBM slightly outperforming MODL: 3 null
ARIs versus 8 and 33 unitary ARIs versus 26.

In terms of change point detection, due to the particular generative struc-
ture, MODL cannot recover any time cluster and considers the dynamic graph
as stationary. Indeed in order to avoid parametric assumptions, MODL uses rank
based modeling for numerical values. In the triclustering context of Guigourès et al
(2012, 2015) this means that interaction times are replaced interaction orders. This
explains why MODL is blind to the time structure in the present scenario.

Conversely PELT-Dynamic SBM always retrieves the right number of change
points in the data. The change point estimates can be observed in Figure 6 and
Kernel density estimates are plotted along with the true change points as red
vertical lines. This illustrates the accuracy of the proposed estimation procedure
and its superiority to MODL in this situation.

4.1.3 Third scenario

This section aims at illustrating that aggregating interactions can lead to an im-
portant loss of information. Thus, each graph generated is made of 100 nodes
clustered in two groups, with 50 nodes each. Moreover, the time interval [0, 12]
is split into four segments of equal size delimited by the change points η1 = 3,
η2 = 6 and η3 = 9. Finally, interactions are sampled by thinning according to the
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Fig. 6: Kernel density estimates over 50 simulations of the change points estimated
by PELT-Dynamic SBM, for scenario 2. The true values of η1 and η2 are given by
the red vertical lines

following IFs

λZiZj (t) =

{
0.051I1(t) + 0.11I2(t) + 0.051I3(t) + 0.11I4 if Zi = Zj

0.11I1(t) + 0.051I2(t) + 0.11I3(t) + 0.051I4 if Zi 6= Zj ,

for all j > i and Id denotes the d-th segment. By construction, integrating the IFs
over [0, 12] leads to

Λ11(T ) = Λ12(T ) = Λ21(T ) = Λ22(T ) = 3.8.

Thus, the average number of interactions is the same for all pairs of clusters which
makes clusters indistinguishable when aggregating the interactions over the time
interval. As for the previous simulation scenarios, 50 dynamic graphs are generated
and 10% of edges of each graph are rewired uniformly at random. MODL as well as
PELT-Dynamic SBM are then used to uncover clusters of vertices and to segment
the time interval. A regular grid P with unitary length time intervals is considered.
The results are presented in Figure 7 as ARIs for both the change points and the
cluster memberships. In this context, PELT-Dynamic SBM provides more reliable
estimates than MODL, which fails in retrieving any cluster or temporal structures,
in most cases. It’s a form of extreme blindness to the whole structure of the data
induced by the blindness to the temporal structure. Note that the results for PELT-
Dynamic SBM are similar when relying on a grid with a higher time resolution.

4.1.4 Summary

The scenarios studied in this section show that PELT-Dynamic SBM is able to
recover both the cluster and the temporal structure of dynamic graphs without the
need for a strong prior aggregation of the interactions (a minimal aggregation is
used for computational reasons in some of the experiments). Contrarily to MODL,
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Fig. 7: Adjusted Rand indexes for the change points η (left hand side) and the
cluster memberships Z (right hand side)

PELT-Dynamic SBM discovers structural changes that are only based on a mod-
ification of the intensity of the interaction. Thus both approaches have different
use cases. In particular, the temporal structure of the data is more easily captured
by our model than by MODL.

4.2 Real data

We now focus on a cycle hire usage dataset, collected in London and publicly
available at http://api-portal.tfl-gov.uk/docs. It characterizes the interac-
tions that occurred on September 9, 2015, between the Santander stations. The
dynamic network considered is made of 735 nodes and 64514 undirected edges
(with no self loops), collected with a minute precision over the day. One edge con-
necting nodes i and j at a given time corresponds to a cycle hire from station i
to station j or, conversely from station j to station i. To limit the computational
burden of the segmentation step, we relied on a regular grid P corresponding to 96
time intervals of 15 minutes. The PELT-Dynamic SBM was then applied several
times, for different values of K from 0 to 20. The highest value of the criterion f
(equation 11) was attained for K = 11 clusters and D = 5 time segments. MODL
does not find any temporal structure in those data despite obvious changes in the
aggregated intensities (see Figure 9). Results are presented in Figure 8. The San-
tander stations are plotted on a London map6 different symbols/colors corresponds
to different clusters identified by the model. Interestingly (and as expected), gen-
erally nearby stations are placed in the same cluster and the geographical distance
between them plays a key role. In Figure 9, an histogram of the interaction times
in the whole network is provided. Two peaks are visible around 8.30 and 18.30.
The five segments detected by the methodology are delimited by the vertical red
lines in the figure. We observe a strong alignment between the histogram and the
segments estimated. In particular, the two observed picks are clearly associated
with segment 2 and 3, respectively. We now concentrate on analyzing the results

6 Map data are available from http://www.openstreetmap.org and copyrighted Open-
StreetMap contributors.

http://api-portal.tfl-gov.uk/docs
http://www.openstreetmap.org
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Fig. 8: The 11 clusters found by PELT-Dynamic SBM represented here with 11
different symbols/colors on the left hand side

for cluster 3 (identified by the symbol + in Figure 8) which is made of stations
from central London. This cluster actually corresponds to a community with higher
values for the IF within the cluster than for all the IFs describing the levels of
interactions with other clusters. Figure 10 gives some examples of intra and inter
IFs related to cluster 3. The results are presented for clusters 1 (�) and 7 (©)
which are geographically adjacent to cluster 3, and for clusters 4 (×) and 10 (⊗),
which are not. Overall, as mentioned already, the intra IF is higher. However, this
figure also highlight a temporal pattern. Indeed, it appears the inter IFs for the
adjacent clusters are higher in the morning and in the evening than for the rest
of the day. A somehow similar pattern is observed for clusters 4 and 10 but with
much lower values in general. This is coherent with cycles being hired more often
to go to a station close geographically.

In order to highlight another feature of the proposed methodology, we now give
some results regarding cluster 8. More specifically, Table 1 provides the aggregated
interactions between clusters 7 (©) and 8 (∗), over the segments uncovered. In the
first segment, 16 interactions occurred between vertices of cluster 8 and 47 between
vertices of cluster 8 and vertices of cluster 1. Thus, cluster 8 has a disassortative
connectivity pattern with less intra edges. Conversely, in segment 2, they are more
intra edges (502) within cluster 8 than between clusters 8 and 1. This corresponds
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Fig. 9: An histogram shows how frequent interactions (cycle hires) are during the
day. The vertical lines correspond to the estimated change points

to a community pattern. Looking through all the segments, we can observe that
the community and disassortative pattern for cluster 8 alternates through time.
Thus, clustering the vertices while detecting change points in the intensity of the
interactions is mandatory here because the connectivity patterns of the data set
keep changing. Therefore, any method aggregating the data would miss important
information present in the data. In conclusion, the uncovered clusters as well as

Table 1: Aggregated interactions for clusters 1 (©) and 8 (∗) during the five seg-
ments uncovered. On the main diagonal of each table, the numbers of interactions
within clusters are reported: for cluster 1 on the left/top, for cluster 8 on the
right/bottom. Interactions between clusters are outside the main diagonal. Com-
munity structure for cluster 8 is indicated in blue. Disassortative structure for
cluster 8 is indicated in red.

104 47

47 16

0.00-6.45

742 441

441 502

6.45-9.45

1106 368

368 338

9.45-17

912 419

419 984

17-19.45

572 128

128 108

19.45-0.00

the change point locations seems to be meaningful on a ground truth basis and the
PELT-Dynamic SBM proved to be fit to uncover interaction patterns that could
not easily be detected by other static or dynamic clustering algorithms.
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Fig. 10: Estimated IFs for groups (3, ·). Groups 1 and 7 are geographically adjacent
to cluster 3 whereas 4 and 10 are not

5 Conclusion

In this paper, we proposed a new model for dynamic networks, based on condi-
tional non homogeneous Poisson point processes. The model assumes that vertices
belong to unknown clusters whose number and composition are fixed in time but
unknown. The intensity functions are then dependent on the clusters of nodes
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and assumed to be stepwise, with common discontinuity points. In order to rely
on the exact pruned linear time method to infer the location and number of the
discontinuity points, we considered a specific inference framework. Thus, we ap-
proximated a marginal log likelihood through a penalized BIC like term, for which
we derived a variational lower bound. In this context, we used a variational expec-
tation maximization algorithm for the inference. The methodology we proposed
allows to do the segmentation of the intensity functions and the clustering of the
nodes simultaneously. Experiments on toy data sets and real data were used to
illustrate the relevance of the method.

A Proofs

A.1 Proof of Proposition 1

Proof Notice, first, that the central factor on the r.h.s. of the equality in equation (3) can be
written as

M∏
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λZimZjm (νm) =

M∏
m=1

N∏
j>i

(
λZiZj (νm)

)1
A(i,j) (νm)

,

where 1G(·) is the indicator function on a set G and A(ij) has been defined in Equation (1).
By inverting the product on the right hand side, because of the indicator function we get
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 ,
where ν

(i,j)
m are the interaction times in the set A(i,j), whose cardinality is M(i,j). Thanks to

the equation (5), the following holds
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Note that the last equality employs the definition of counting process

M(i,j)(t) =
M(i,j)∑
m=1

1]0,t](ν
(i,j)
m ).

By replacing (19) into the equation (3) and using that

ΛZiZj (T ) =

K∑
k,g

Λkg(T )ZikZjg =

D∑
d=1

K∑
k,g

λkgd∆dZikZjg ,

it suffices to take the logarithm of the likelihood and the proposition is proven.
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A.2 Proof of Proposition 3

Proof The following objective function is taken into account

L (q(Z);K, η,D,λ, π) +

N∑
i=1

li

(
K∑
k=1

τik − 1

)
.

This function has to be maximized with respect to both τ and the N Lagrange multipliers
l1, . . . , lN , introduced to take into account the normality of the lines of τ . The most difficult
step consists in taking the partial derivative of the objective function with respect to τi0k0 .
We first focus on those terms of L(·) depending on d
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Hence
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 ,

where the last equality comes from the symmetry (i.e. interactions are undirected) of the
frontal slices of tensors X and λ. Notice that the last term in the above equation is the
function inside the exponential in Proposition 3. The remaining terms of L(·), not involving
d, can be differentiated straightforward. Imposing the partial derivatives of L(·) equal to zero
and using the above equation leads to the following system{

log(τi0k0 ) = log(πk0 )− ∂Q(τ,θ)
∂τi0k0

+ li0 − 1∑K
k0=1 τi0k0 = 1 ∀(i0, k0).

The solution is obtained straightforward after some manipulations and this concludes the
proof.

A.3 Proof of Proposition 4

Proof The following definitions are introduced to keep the notation uncluttered

Skg : =
N∑
j>i

τikτjg

Y
[s,t[
kg : =

N∑
j>i

τikτjg(M(i,j)(t)−M(i,j)(s)) ∀s < t.
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Moreover, for every tue < tuf < tug , the following short hand notation is used

∆e,f := tuf − tue

and similarly for ∆f,g and ∆e,g . Hence, we get
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where the first and the last equalities come from the definition of G(·). This concludes the
proof.
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Boullé M (2010) Data grid models for preparation and modeling in supervised learning, Mi-
crotome

Casteigts A, Flocchini P, Quattrociocchi W, Santoro N (2012) Time-varying graphs and
dynamic networks. International Journal of Parallel, Emergent and Distributed Systems
27(5):387–408, DOI 10.1080/17445760.2012.668546

Corneli M, Latouche P, Rossi F (2016a) Block modelling in dynamic networks with
non-homogeneous poisson processes and exact ICL. Social Network Analysis and
Mining 6(1):1–14, DOI 10.1007/s13278-016-0368-3, URL http://dx.doi.org/10.1007/
s13278-016-0368-3

Corneli M, Latouche P, Rossi F (2016b) Exact ICL maximization in a non-stationary temporal
extension of the stochastic block model for dynamic networks. Neurocomputing 192:81 –
91, DOI 10.1016/j.neucom.2016.02.031

Daley DJ, Vere-Jones D (2003) An introduction to the theory of point processes: volume I:
Elementary Theory and Methods. Springer

Daudin JJ, Picard F, Robin S (2008) A mixture model for random graphs. Statistics and
Computing 18(2):173–183

Dubois C, Butts C, Smyth P (2013) Stochastic blockmodelling of relational event dynamics.
In: International Conference on Artificial Intelligence and Statistics, vol 31 of the Journal
of Machine Learning Research Proceedings, pp 238–246

Fortunato S (2010) Community detection in graphs. Physics Reports 486(3-5):75 – 174
Friel N, Rastelli R, Wyse J, Raftery AE (2016) Interlocking directorates in irish companies us-

ing a latent space model for bipartite networks. Proceedings of the National Academy of Sci-
ences 113(24):6629–6634, DOI 10.1073/pnas.1606295113, http://www.pnas.org/content/
113/24/6629.full.pdf
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