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Abstract 

We study coherent dynamics in a system of dipolar coupled spin qubits diluted in solid and 

subjected to a driving microwave field. In the case of rare earth ions, anisotropic crystal background 

results in anisotropic g tensor and thus modifies the dipolar coupling. We develop a microscopic 

theory of spin relaxation in transient regime for the frequently encountered case of axially 

symmetric crystal field. The calculated decoherence rate is nonlinear in Rabi frequency. We show 

that the direction of static magnetic field that corresponds to the highest spin g-factor is preferable 

in order to obtain higher number of coherent qubit operations. The results of calculations are in 

excellent agreement with our experimental data on Rabi oscillations recorded for a series of CaWO4 

crystals with different concentrations of Nd3+ ions. 
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Introduction 

It is well-known that localized electron spins in a solid are potential qubits for quantum 

information processing [1] since they provide opportunities for scaling and have long coherence 

times (up to several ms). Among possible implementations are quantum dots [2], NV centers in 

diamond [3], single-molecule magnets [4-7], and paramagnetic ions diluted in single crystals [8-13]. 

If the number of paramagnetic particles is large enough (>1012), the spin manipulations necessary 

for quantum computing can be achieved with the standard instrumentation of pulsed electron 

paramagnetic resonance (EPR) spectroscopy. The crystal sample is placed inside the microwave 

(mw) cavity of EPR spectrometer. Static magnetic field 0B  creates the gap 0  between the energy 

levels of the spin ½. The spin states are controlled using a pulsed mw field 1B  of resonant frequency 
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0 . Each pulse induces nutations of the spin vector over the Bloch sphere, resulting in oscillating 

projection of its magnetic moment called Rabi oscillations (ROs [14,15]). If the pulse duration is 

long enough, a number of oscillations can be recorded. A successful demonstration of long-living 

ROs is a necessary step before one can implement a given type of spin qubits as a part of a working 

quantum computer. Note that one should not mix the decay time of the ROs R  (that we further call 

Rabi time [16]) with the phase memory time 2T , since the last one reflects the spin coherence 

maintained in the absence of the driving mw field. 

The ROs that are acquired from the paramagnetic centers diluted in solids decay due to 

numerous reasons. As follows from our previous research [9,17], the most influential are: (i) 

dispersion of 0  (inhomogeneous broadening of the EPR line), (ii) spatial distribution of 1B  in mw 

resonator, and (iii) magnetic dipole interactions between the paramagnetic centers. The first two 

result in distribution of nutation frequencies inside the spin ensemble, so that the decay of ROs is 

caused by the dephasing of the Bloch vectors belonging to different spin packets. In this case, the 

decay rate is linear in the frequency of ROs R  (Rabi frequency), which itself is linear in 1B . 

Dipolar interactions, on the one hand, provide entanglement of the states of different spins, which is 

a vital part of quantum computation process. On the other hand, since these interactions are long-

ranged, a given paramagnetic center is coupled simultaneously to a considerable number of other 

centers in the solid, and the local magnetic field thus produced has random-like character [18]. 

Because of a reasonable simplicity of the experimental procedure and the ability to control various 

parameters (intensity of mw field, the spin frequency and concentration, etc.), paramagnetic ions 

diluted in a solid matrix represent a very convenient system to study decoherence inside the spin 

ensemble driven by the microwaves. 

Until recently, the existing theoretical models accounting for the role of dipolar interactions 

in the decay of ROs were all based on certain modifications of conventional Bloch equations 

[18,19], with an attempt to justify the empirical dependence of R  on R  obtained for 1E   centers 

in silica and [AlO4]
0 centers in quartz [20]: 

 1
R R      . (1) 

In our recent paper [17], we presented a microscopic model that contained no 

phenomenological parameters and allowed ab-initio calculation of spin dynamics of dipolar coupled 

spin ensemble in the microwave-driven regime. It was assumed that the ensemble consisted of the 

spin particles with isotropic g factor [17-19]. Such assumption is valid if the spins are dispersed in 

an amorphous medium or in a crystal of cubic symmetry. To the best of our knowledge, no attempt 

to study theoretically the dependence of R  on the directions of vectors 0B  and 1B  in the case when 
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the background symmetry is lower than cubic has ever been made. In most cases, the crystal 

anisotropy does not contribute much to the g factor of a paramagnetic center which is close to that 

of a single electron. A well-known exception is a rare earth (RE) ion: it has valuable contribution to 

its magnetic moment from the orbital motion of its electrons due to the presence of strong spin-orbit 

coupling [21]. As a result, effective g factors of several RE ions under certain conditions exceed 10. 

Spin qubits based on RE ions [11-13] are advantageous as they would allow spin manipulations in 

low driving fields. Since the presence of magnetic anisotropy increases the number of 

experimentally controllable parameters that could in principle influence the decoherence times 

(namely, the directions of vectors 0B  and 1B ), an appropriate choice of these parameters would 

enable one to increase the number of one-qubit operations. 

In general, there are three non-equivalent directions related to the eigenvectors of 

anisotropic g tensor. In the present work, we consider the simplest case of axially symmetric 

background encountered when the local symmetry of the site occupied by the RE ion is tetragonal, 

trigonal or hexagonal. However, it is straightforward to modify the results for the case of lower 

symmetry (orthorhombic, monoclinic or triclinic crystal system). This paper is organized as 

follows: in Section I we develop a microscopic model of dipolar relaxation in transient regime and 

axially anisotropic crystal field. In Section II we illustrate our model by studying ROs in the 

concentration series of CaWO4:Nd3+ crystal. 

 

Section I. Driven dipolar relaxation in axially anisotropic crystal field 

Let us consider an ensemble of N  spins interacting with the external magnetic field 

0 1 02 cos t B B B  and with each other: 

 1 1
1 , , ,

ˆ
N

j jk j k
B

j j k x y z

H d S S  
 


  

   gBS . (2) 

 In the above Hamiltonian, jS  is the spin operator of the particle j , B  is the Bohr 

magneton, and ĝ  is the axially symmetric g tensor written in its principal axes , ,x y z  

 

||

0 0

ˆ 0 0

0 0

g

g

g





 
 

  
 
 

g . (3) 

Generally, the directions of 0B  and 1B  fields with respect to the axes , ,x y z  are arbitrary. 

We choose the axes x  and y  so that 0B  is in the xz  plane and at angle   from the z  axis. The 

direction of  1B  is given by the direction cosines , ,x y zh h h : 

    0 0 1 1sin cos ,x z x x y y z zB h h h B      B e e B e e e . (4) 
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We are going to apply two transformations in order to simplify the first term of the 

Hamiltonian (2). By the first transformation 

 

 

 

0 ||

0

0 ||

cos sin ,

,

cos sin ,

j j j
x x z

j j
y y

j j j
z z x

S g S g S g

S S

S g S g S g

 

 

   



   

 (5) 

where    
2 2

|| cos sing g g     , we diagonalize the interaction with the static field, 

0 0 0
ˆ j j

zg B SgB S . Second transformation 

 

 

 

 

||

1 0 0 1

||
1 0 0 1

22 2 2
1 0 1 ||

cos sin ,

cos sin ,

, cos sin

j j j
x x z x y y

j j j
y x z y y x

j j
z z x z y

g g
S h h S g h S g

g

g g
S h h S g h S g

g

g
S S g g h h g h

g

















 
     
 

 
     
 

     

 (6) 

is aimed at the interaction with the mw field, so that 1 1 1 1
ˆ j j

xg B SgB S . We have neglected the term 

of the interaction 1 1~ j
zB S  since it does not induce spin transitions. The Hamiltonian (2) can now be 

written as 

  1 1 0 1 1
1 , , ,

2 cos
N

j j jk j k
j z R x

j j k x y z

H S S t D S S  
 

 
  

      , (7) 

where 0j B g B    is the Larmor frequency of the spin j  and 1 1R B g B   is the Rabi frequency 

( 1 ). Defects of the crystal lattice bring random contributions to the crystal field resulting in the 

distribution of g  and ||g . We assume here that the frequencies j  are distributed within the EPR 

line centered at 0  and with the half-width 0  . Usually 1 0B B , and   can be as high as 

several R . The Hamiltonian (7) now has the same form as in the isotropic case [17], except that 

jkD  are certain linear combinations of the initial dipolar parameters jkd . The Hamiltonian written 

in the rotating reference frame (RRF) defined by the unitary transformation 0 1
1

exp
N

j
z

j

R i t S


 
  

 
  is 

    1 1 1 1 1 1 1 1
2

jk jk
xx yyj j jk j k j k j k

j z R x zz z z x x y y
j j k

D D
H S S D S S S S S S



 
      

  
  , (8) 

where 0j j     is the detuning of the spin j  from resonance frequency, and we have neglected 

time dependent terms of dipolar interaction not in resonance with any possible transition. Let us 
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introduce local coordinate system , ,j j jx y z    in RRF associated with a given spin j  (see Fig. 1). The 

new spin operators that we will further mark with tilde are 

     2 2
1 1 1 1 1, , , j

j j j j j j j j
x j z R x j y y z R z j x j j RS S S S S S S S                , (9) 

where j  is the nutation frequency of the spin j  (note that j R   ). The Hamiltonian (8) takes 

the following form: 

 j jk j k
j x

j j k

H S D S S  




       . (10) 

It is clear that in the absence of dipolar couplings ( 0jkD 
 ) the interaction of a given spin j  

with the steady and mw magnetic fields would result in its precession with frequency j  around 

the jx  axis of RRF. The dipolar interactions introduce the correlations between the spin states, so 

that the dynamics of the spin j  would depend on positions and directions of the nearby spins k , 

which, in turn, are also influenced by their local spin background. The average strength of dipolar 

coupling in the dilute spin ensemble is determined by the dipolar half-width d  [22] which is 

linear in the spin concentration C . In the case of axially symmetric crystal field, one obtains [23] 

 
4 2 4 22 2 2

||2

2 2 2 2
||

sin cos4
,

sin cos9 3
d B

d d

g gg C
g

g g

 
 



  
  

  
. (11) 

Usually, C  is small enough (<1020 spins/cc), so that the condition ,d R     is 

satisfied. We can neglect all terms in dipolar coupling except jk j k
xx x xD S S  , i.e. leave only a secular part 

with respect to the first term of Eq. (10). Indeed, the terms jk j k
xy x yD S S   and jk j k

xz x zD S S   that cause the 

transition of the spin k  with respect to kx  axis would change the total energy by k  and are 

unfavorable since jk
RD  

 . The terms jk j k
yy y yD S S   and jk j k

yz y zD S S   related to mutual transitions of the 

spins j  and k  would change the energy by j k   which are, on average, of the same order as 

either R  or  . If 0t   is the moment the mw field was switched on, then, at any time 0t  , the 

magnetic moment of the spin ensemble is given by   

   ˆ Tr iH t iH t j
B

j

t e e   
  

 
gM S . (12) 

The initial density matrix   can be written in the high-temperature approximation 0 T   

generally valid even at liquid helium temperatures 

 0 11
1

2

j
z

N
j

S

T




 
  

 
 . (13) 
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The calculation of the trace in Eq. (12) is best done in the basis jm , where 1jm    are 

related to the eigenvalues 1 2  of the spin operator j
xS . Depending on the experimental pulse 

sequence, a certain projection of  tM  is detected. For example, the longitudinal (along the 1z  

axis) component of the magnetization is 

  
1 2

2
20

|| 2
, , 1

1
cos

2 2
jkB R

j j xx kN
j m m k

g
M t D m t

T

  




         
  

  


 , (14) 

where the time-independent part of ||M  is neglected, and the prime symbol in the last sum indicates 

that the term with k j  is omitted. The argument of the cosine function has simple interpretation: 

the secular part of the interaction with the spin k  shifts the nutation frequency of the spin j  by 

2jk
xx kD m . Summation over all possible spin directions yields 

    
2

20
|| cos cos 2jkR

j j xx
j k

M
M t t D t

N
      , (15) 

where 0 0 4BM Ng T    is the longitudinal magnetic moment at 0t  . The dipolar factor 

 cos 2jk
xx

k

D t   is responsible for the decay of ROs. As seen from Eq. (15), not all spins 

contribute equally to the ROs. Spins with large detuning ( j R   ) have negligible impact since 

2 2 1R j   . Spins with moderate detuning ( ~j R  ) represent valuable contribution during, 

roughly, the first period of oscillations, but after that they become dephased with respect to the 

resonant part of the ensemble. Since jk
xx RD   , the decay of ROs that is caused by the dipolar 

interactions reveals itself long after the first period, and we will further focus on the resonant spins 

( j R   ). The subsequent calculations involve integration over random spin positions kr  within 

the crystal sample volume V  and over their frequency detunings k  within the EPR line weighted 

with the spectral density  kf  . We make the following assumptions: (a) the spin coordinates can 

be treated in the framework of the continuum approximation, i.e. regardless of the discrete periodic 

structure of the crystal lattice; (b) relative positions of any two spins, jk j k r r r , do not correlate 

with their detunings j  and k . These assumptions are the basics of the statistical method of line 

broadening [24] and are reasonable in the case of the spin concentrations less than 1 at. %. Thus, the 

averaging procedure starts as follows 

      
1

3

,

1
cos 2 cos 2

k k

N

jk jk
xx k k k xx

k V

D t d f d r D t
V

 


 

   
 

  r

  . (16) 

In the macroscopic limit ,N V  , while keeping constC N V  , one obtains 
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      3

,
cos 2 exp 1 cos 2

k k

jk jk
xx k k jk xx

k

D t C d f d r D t


 


 
      

 
  r

  . (17) 

Integration over jkr  gives (see Appendix A) 

  
2 2 2

3 2
1 cos 2

9 3

jk B R
jk xx

k

g t
d r D t

 



  
  





. (18) 

This result has the same form as in the isotropic case [17], except that the isotropic g-factor 

is now substituted for the modified g-factor g  that depends on the ratio ||g g  and on the angle   

(i.e. the direction of 0B ) 

 

2 2 2
||

||2 2
||2

2
||2

||2

, ,

, .

g g g
G g g

g g
g

g
g G g g

g

 




 



  
     

 
 

   
 

  (19) 

Function  G   is shown in Fig. 2. Combining this result with Eq. (15), we obtain the 

longitudinal magnetization 

      
2 2

2
|| 0 2 2

cos
exp R

R d

R

t
M t M t d f


 



 
  

  , (20) 

or, in much the same way, the transverse (along the 1y  axis) component of the magnetization 

      
2 2

1 2 2

sin
exp R

R d

R

t
M t M t d f


 




 
  

 
 , (21) 

where 1 0 4BM Ng T   , and d  is the dipolar-induced decay rate 

 
 

2 2

1

2
d d R

R

f d 



   

 
 . (22) 

The modified dipolar half-width d   has the same form as in Eq. (11), but with g  instead 

of dg . Function  G   can be replaced by unity in approximate calculation since  0.82 1G   . 

A certain choice of   would minimize 2g  that enters the decay rate d  and, consequently, 

increase the number of coherent oscillations 2R dn    . This increase is considerable only when 

||g  is larger than g . In this case, the favorable direction of the static magnetic field would be close 

to z axis ( 0  ), with ming g . In the case when ||g g , only a small deviation of g  from the 

in-plane g-factor g  is expected. Thus, ming g  regardless of the ratio ||g g . Note that n  

indirectly depends on the direction and strength of the mw field 1B  since the latter determines the 
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Rabi frequency R . The integration over   in Eqs. (20), (22) is straightforward if one knows the 

exact EPR lineshape function  f  . There are, however, two important limiting cases when the 

final result can be expressed in general form: 

(a) Narrow line R   . The lineshape function can be approximated by Dirac delta 

function    f    , all spins have their nutation frequencies equal to R , and we obtain 

  

 

2
|| 0

2
1

2,

cos ,

sin .

d

d

d d

t
R

t
R

M t M e t

M t M e t











  

 

 







 (23) 

The decay rate reaches its highest value (a half of the modified dipolar half-width) and does 

not depend on the Rabi frequency. 

(b) Broad line R   . Since now only the central part of the EPR line is exited, the 

lineshape function can be replaced by its resonance value  0f , and 

 

 

     

       

2 2

|| 0 0

1 0

0 ln ,

0 ,

0 1 .

d

d

R
d d R

R

t
R R

t
R R

f

M t M f e j t

M t M f e J t t

 




 






 
   



  

   



 (24) 

Here,  0J   is the Bessel function of the first kind, and    0 0j J d


  


  . In most cases, 

these functions can be approximated by the slowly decaying cosine 

         
1/ 42

0 01 2 2 1 cos 4j J     


      . (25) 

While the above asymptotic relations are valid for arbitrary symmetric  f  , exact results 

can be derived irrespective of R   ratio in the two frequently encountered cases of Gaussian 

     
1/ 22 2 22 exp 2Gf    


     and Lorentzian      2 2Lf          lineshapes: 

 

 

 

2 2

0

2 2

2 2

2 2

exp ,
2 22 2

ln , 1,

arccos , 1,

G R d R R
d

RR d R

RL R

d

R d R

RR

K


  

 

 

 

 

         
        

         

    
 

 
  

   
     







 (26) 
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where  0K   is the modified Bessel function of the second kind. As shown in Fig. 3, d  grows 

monotonously with the ratio R   and tends to its limiting value 2d   at high Rabi frequencies. 

Let us now draw comparison between our results and the predictions of the phenomenological 

models [18, 19]. If the range of R   is small enough, the relaxation rate can indeed be 

approximated by the linear dependence (1) (see the dashed line in Fig. 3). However, this 

dependence is not universal since the coefficients ,   depend on the point of the curve through 

which a tangent line is drawn. It is clear that on a wider range of Rabi frequencies the 

approximation (1) becomes incorrect. Our experimental results presented in Sec. II confirm the 

nonlinearity of  d R  . 

 

Section II. Rabi oscillations in CaWO4:Nd3+ crystal 

CaWO4 single crystal has scheelite structure with lattice constants a = 5.243 Å, c = 11.374 Å 

[25]. Nd3+ ions substitute for Ca2+ ions in the host crystal at sites with S4 point symmetry. The 

samples of Nd-doped CaWO4 single crystal were grown by Czochralski method in Magnetic 

Resonance Laboratory of Kazan Federal University by N. A. Karpov. Experimental data were 

acquired by means of Bruker Elexsys 580/680 X-band spectrometer working at mw frequency 

0 2  =9.7 GHz and at temperature T = 6 K. Actual concentration of neodymium ions in each 

sample (C = 4.00·1017÷1.04·1020 ions per cc, see Table I) was determined by comparative 

measurement of the EPR line intensities with respect to the reference sample of CaF2:Er3+ (0.28 at. 

%). Continuous-wave EPR spectrum shown in Fig. 4 contained an intense central peak arising from 

even Nd isotopes with nuclear spin I = 0 (natural abundance 79.5%), and a number of hyperfine 

satellites coming from 143Nd (I = 7/2, 12.2%) and 145Nd (I = 7/2, 8.3%). The lines had nearly 

Lorentzian lineshapes and almost equal  half-widths   that varied with C and the sample 

orientation. Our crystal field calculations, as well as the experimental data, are in agreement with 

the literature g-factor values ||g =2.034 and g =2.528 [26]. 

The measurements described below were taken at the central peak and at certain 143Nd and 

145Nd satellites (see the arrows in Fig. 4). The orientation of the crystal sample in the mw resonator 

was chosen to be 0 cB , 1 || cB , with the exception of the sample no. 4, where both 0B  and 1B  

were perpendicular to the crystal c axis. First of all, spin-lattice relaxation times 1T  and phase 

memory times 2T  were obtained for each sample in the concentration series (see Table I). The 

length of 2  pulse was 8 ns in all 1T  and 2T  measurements. Because of the role of random electric 

fields,   depended on the exact orientation of 0B  in ab plane, with minima and maxima of   at 
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certain angles [27-28]. For comparison reasons, all the data presented below were recorded at the 

minima of  . At the maxima, 2T  and R  were several percent longer, while 1T  showed no visible 

variation. As for the Rabi times, this result is much expected since in the latter case the mw pulse 

affects less number of Nd ions. Similar increase of 2T  times and their dependence on the isotopic 

concentration are in accordance with the theoretical estimations that indicate instantaneous 

diffusion and spectral diffusion as dominant contributions into the phase relaxation in CaWO4:Nd3+ 

crystal [29]. The spin-lattice relaxation times for the first three samples were in the range 

1 15 25T    ms and did not vary with the isotopic concentration; these results are consistent with 

the literature data [30, 31], where direct and Raman processes are singled out as being the dominant 

contributions. However, we cannot give a direct account of the abrupt decrease of 1T  in the last 

sample with the highest neodymium concentration. This change may arise as the result of local 

deformation of the crystal lattice near the paramagnetic impurity and subsequent perturbation of the 

vibrational spectrum of the crystal, which is more pronounced at higher C. 

Each data point of the ROs was obtained after the pulse sequence shown in Fig. 5, where the 

transient pulse was followed by the spin-echo detection sequence which finally gave the 

longitudinal component of the magnetization ||M . Some of the recorded ROs are presented in Fig. 6 

and Fig. 7.  ||M t  were calculated in the most general way according to the Section I as 

 
     

       

||

3 42 2

1

cos ,

~ 1 1 exp .

R

B R R d

M t A t t

A t t t t




  
 

  

        
   

 (27) 

A decay factor  
3 42

11 B Rt


  
 

 was added to the amplitude  A t  in order to account for 

the spatial distribution of 1B  in the mw resonator [9]. The corresponding decay rate is linear in R : 

1 1B B R   . However, in contrast to the dipolar contribution  exp dt  , the 1B -type decay is 

determined by the slowly reducing rational function. The inhomogeneity parameter 1B  represents 

relative decrease of  R r  at the sample edges with respect to its maximal value  0R R    at 

the center of the cavity. In most cases, 1 0.1B  , so this effect can be neglected in 1T  and 2T  

measurements, where short pulses with the lengths less than the Rabi period are used. For a small 

sample with the dimensions x y zl l l   placed at the center of TE011 cylindrical resonant cavity of 

radius R  and length L  [9] 

  2 2 2 2 2 2 2
1 01 0116 8 , 3.832B x y zl l R l L       . (28) 
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The parameters 1B  that were found best to describe the experimental data in the samples 

no. 1-4 are presented in Table I. They are very close to the value 1 0.05B   for the 3 mm sample 

that was estimated according to Eq. (28). The two other parameters, 0 4    and 0 1 4  , 

are determined by the ratio R  . As follows from Eqs. (23) and (24), 

 
 

 

0, 0 1 ,

4, 1 4 1 .

R

R

  

   

   

   
 (29) 

The parameter   that was introduced into the exponent in Eq. (27) is the ratio of 

neodymium ions corresponding to the given EPR line to the total number of Nd3+ ions in the crystal 

sample:   = 0.795, 0.015 and 0.01 for the central line, 143Nd and 145Nd satellites, respectively. 

Rabi rates 1
R
  as functions of R  collected from all four samples are represented by 

symbols in Fig. 8. They are in excellent agreement with the calculated dependences (solid and 

dashed lines). Rabi rates 1
R
  always grew monotonously with R , i.e. with the strength of mw 

field. For the samples no. 1 and no. 2 with lower C, the dependence  1
R R    was almost linear, 

meaning that the dominant contribution came from 1B  inhomogeneity. This also accounts for the 

fact that there is only a small difference between the nutation signal of different neodymium 

isotopes in these samples. On the contrary,  1
R R    of the sample no. 4 was nonlinear, indicating 

the domination of dipolar contribution; the decay rates of 143Nd and 145Nd isotopes were much 

smaller than the ones of the central line (see Fig. 7 and the dashed line in Fig. 8). Note that in our 

calculations we did not account for the dynamics of the nuclear spin of Nd ion. The hyperfine 

interaction would result in the renormalization of R  and of the dipolar interaction parameter jk
xxD , 

thus changing the decay rate, especially in the case when the Larmor frequency of the hyperfine 

satellite differs substantially from that of the central line. The corresponding corrections are of order 

0IAm  , where A is the hyperfine coupling parameter, Im  is the nuclear spin projection (see 

Appendix B). Our experimental data were obtained at the closest 143Nd and 145Nd satellites 

corresponding to 1 2Im   ; in this case, 0 ~ 0.01IAm  , and the hyperfine correction to R  is 

negligible. 

As was expected, the longest coherence times were obtained for the sample no. 1. There we 

observed R  up to 1 μs and over 50 visible periods of ROs. That long-lasting transient coherence 

permitted us to detect an interesting phenomenon. In Fig. 9 one can see the amplitude modulation 

resulting from the interference of the signals that come from different parts of the crystal sample. 

The arrow shows the dip at 0 0.55t   μs which is the first point of destructive interference. Roughly, 
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one expects this dip to occur when the phases of the oscillations at the center ( c ) and at the edge 

( e ) of the sample differ by  . It follows from the calculations presented in our previous paper [9] 

that c Rt    and  11e B Rt    . This gives us an estimated value 0 1 0.67B Rt      μs 

which is in reasonable agreement with the experimental one. 

 

Conclusions 

To the best of our knowledge, this work represents the first quantitative description of ROs 

of paramagnetic impurity ions in the anisotropic crystal field. We developed a microscopic theory 

of dipolar relaxation in transient regime that contained no phenomenological parameters and, in 

contrast to existing phenomenological models, predicted nonlinear dependence of the decay rate on 

the Rabi frequency. In addition, we accomplished the first experimental study of ROs in the 

concentration series of Nd:CaWO4 single crystals. The obtained experimental data for the whole 

range of spin concentrations, the strengths of the mw field and isotopic numbers of Nd ions are in 

excellent agreement with our ab initio calculations. 

At last, let us discuss the relation between the spin coherence times 2T  and R . In quantum 

computation processing, it is advantageous to increase both these quantities in order to obtain 

higher number of qubit operations. Generally, the ratio 2 RT   depends on the spin concentration, on 

the field inhomogeneity inside the crystal sample, and on the strength of the mw field during the 

transient pulse and the spin-echo sequence. Under our experimental conditions, we found 

2 1 300RT    . The longest R  ~ 1 μs were observed in the sample with the lowest spin 

concentration. It was possible to increase the Rabi times by using smaller crystal samples in order to 

reduce the inhomogeneity of 1B , but with the substantial loss of the signal intensity. 

E.I.B. acknowledges the support of Dynasty foundation and the Russian Government 

Program of Competitive Growth of Kazan Federal University. 

 

Appendix A. Calculation of the dipolar factor 

Here we calculate the integral in the left part of the Eq. (18) 

  3 1 cos 2jk
jk xxJ d r D t



     . (30) 

First of all, we need to express the effective dipolar coupling jk
xxD  through the initial dipolar 

parameters jkd . This can be done using Eqs. (2)-(10), and jkd  are defined by the following relation 

  
  2

3 2
, , ,

ˆ ˆ3
ˆ ˆ

j k
jk jkjk j k j kB

x y z jk jk

d S S
r r

  
 





   
   

  


g g
g g

S r S r
S S


. (31) 
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Thus we obtain 

 
 2 2 2 2 2 2

|| ||2 2

2 3 2 2
||

1 3cos 3 sin cos2
4

B Rjk
xx

k

g g g g g
D

g r g g


  

  

 

    
    

   




, (32) 

where , ,r    are spherical coordinates of the vector jkr . Integration over r  yields 

 
 

 
2 2 2 2 / 2 1
|| 2 2

2

0 0

1 3 3 1 cos2
6

B R

k

g g g t
J d d

g

 
     

 



 
   

  
 (33) 

where  2 2 2 2
|| ||g g g g     , and finally 

 

2 2 2
||

||2 22 2 2
||2

2
||2

||2

, ,
2

,
9 3

, .

B R

k

g g g
G g g

g gg t
J g

g
g G g g

g

 

 




 



  
     

  
  

   
 





 (34) 

Function  G   (Fig. 2) is expressed through the complete elliptic integrals  K   and 

 E   as 

  

 
 

 

 

2 21 2 1
3 1 , 0 ,

2 1 2 1 2

1
1 , 1.

2

E K

G

G

   
 

  


 

        
        

        


  

 (35) 

 

Appendix B. An account of the hyperfine interaction 

The hyperfine interaction (hfi) that is present in the case of 143Nd and 145Nd ions was not 

included into the Hamiltonian (2). Let us now estimate if it has any influence on R  under our 

experimental conditions. The hfi of a given neodymium ion j with its nuclear spin I  (index j is 

omitted below for simplicity) is 

  ||hfi z z x x y yH A S I A S I S I   , (36) 

where || || JA g A g  and JA g A g  , Jg  is the Lande g-factor, 2 220A     MHz and 

2 137A     MHz represent the hyperfine coupling constants for the isotopes 143Nd and 145Nd, 

respectively [21]. In the electronic coordinate system (6) the above interaction takes the form 

 1 2
, , ,

hfi
x y z

H A S I  
  

  , (37) 

where A  are certain linear combinations of ||A  and A . Index “2” in the operator 2I  denotes a 

specific rotation of the nuclear coordinate system that is applied in order to exclude the terms with 

zxA  and zyA . Since (i) the relaxation time of the nuclear states in magnetically diluted crystals is 
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usually much longer than R , (ii) 0A  , and (iii) the interaction energy of the nuclear spin with 

the external magnetic field is negligible with respect to A , the projection Im  of the nuclear spin 

along the 2z  axis represents a good quantum number. Indeed, the terns of the hfi 1 2xx x xA S I , 

1 2xy x yA S I , etc. that are responsible for the nuclear transitions are ineffective since they also change 

the electron spin energy by 0 . We can now replace 2zI  with Im  and neglect the terms with 2xI  

and 2yI  that mix different nuclear spin states: 

  1 1 1hfi zz z I xz x yz y IH A S m A S A S m   . (38) 

This interaction should be added to each j  term of the Hamiltonian (7). The first part in the 

right-hand side of Eq. (38) gives a shift zz IA m  of the spin Larmor frequency   that results in the 

complex hyperfine structure which is clearly visible in the EPR spectrum (see Fig. 4). Since the 

second part of Eq. (38) contains no time-dependent terms 0~ i te  , it does not shift R  directly. 

Instead, it slightly tilts the quantization axis of the electron spin from 1z  direction and finally yields 

rather small (~ a factor of 0IAm  ) corrections to  , R  and to the dipolar coupling parameters. 

The full expressions with explicit dependences on 0B  and 1B  direction cosines are rather 

cumbersome and need not be given here. Note that our experimental data were obtained at the 

central line ( 0I  ) and at the closest 143Nd and 145Nd satellites ( 7 2I  , 1 2Im   ); in the latter 

case, 0 ~ 0.01IAm  , and the hyperfine correction to R  is negligible. Even for the most distant 

satellites with 7 2Im    this correction is rather small. However, at radio frequencies 

( 0 2 ~ 300   MHz) hfi would definitely play an important role. The theory in this specific case 

cannot be based on the perturbation approach and lies beyond the scope of the present work. 
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Tables 

 

TABLE I. Concentration C of Nd3+ ions, half-width  , inhomogeneity parameter 1B  and 

relaxation times 1T  and 2T  in the crystal samples no. 1-4. 

 

Sample no. 1 2 3 4 

ions per cc 4.00·1017 1.29·1018 6.64·1018 1.04·1020 
C 

atomic % 0.0031 0.010 0.052 0.81 

2  , MHz 3.5 3.4 5.0 47 

1B  0.05 0.05 0.05 0.06 

Central line 23 23 15 0.1 

143Nd 23 24 16 - 1T , ms 

145Nd 23 25 15 - 

Central line 2.5 1.0 0.4 0.14 

143Nd 80 25 3.5 0.25 2T , μs 

145Nd 100 29 4.2 0.16 
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Figure captions 

 

FIG. 1. (Color online) Local coordinates in the rotating reference frame associated with a given spin 

j  (see text). 

FIG. 2. (Color online) Function  G   that enters the modified g-factor g  (19). 

FIG. 3. (Color online) The dipolar-induced decay rate expressed in units of d   as function of the 

ratio R  . Two thick lines represent the cases of Gaussian and Lorentzian lineshapes (26), while 

two thin lines are their asymptotic approximations calculated according to Eq. (24). Dashed line 

represents linear approximation (1) in the range 0.05 0.3R    . 

FIG. 4. (Color online) EPR spectrum of the sample no. 1. 0 cB , T = 15 K. 

FIG. 5. (Color online) The pulse sequence that was used for acquisition of ROs. 

FIG. 6. (Color online) ROs in the sample no. 3 recorded at different strengths of mw field (circles). 

Longitudinal magnetization  ||M t  (solid line) and its envelope (dashed line) were calculated 

according to Eq. (27). (a) 2R   1.8 MHz; (b) 2R   4.5 MHz; (c) 2R   8.2 MHz. 

FIG. 7. (Color online) ROs in the sample no. 4 (circles). Longitudinal magnetization  ||M t  (solid 

line) and its envelope (dashed line) were calculated according to Eq. (27). 2R   6 MHz. (a) 

central line; (b) 143Nd. 

FIG. 8. (Color online) Measured (symbols) and calculated (curves) decay rates of ROs 1
R
  as 

functions of Rabi frequencies 2R  in the samples no. 1-4. Squares, triangles and circles 

correspond to the data recorded at the central line, 143Nd and 145Nd satellites, respectively. 

FIG. 9. (Color online) Amplitude modulation of ROs resulting from the interference of the signals 

coming from different parts of the sample no. 1. The arrow points on the dip located near the time 

point 1B Rt    . 
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