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Coherent manipulation of dipolar coupled spins in an anisotropic environment

Introduction

It is well-known that localized electron spins in a solid are potential qubits for quantum information processing [1] since they provide opportunities for scaling and have long coherence times (up to several ms). Among possible implementations are quantum dots [2], NV centers in diamond [3], single-molecule magnets [4][5][6][7], and paramagnetic ions diluted in single crystals [8][9][10][11][12][13].

If the number of paramagnetic particles is large enough (>10 12 ), the spin manipulations necessary for quantum computing can be achieved with the standard instrumentation of pulsed electron paramagnetic resonance (EPR) spectroscopy. The crystal sample is placed inside the microwave (mw) cavity of EPR spectrometer. Static magnetic field 0 B creates the gap 0  between the energy levels of the spin ½. The spin states are controlled using a pulsed mw field 1 B of resonant frequency 0  . Each pulse induces nutations of the spin vector over the Bloch sphere, resulting in oscillating projection of its magnetic moment called Rabi oscillations (ROs [14,15]). If the pulse duration is long enough, a number of oscillations can be recorded. A successful demonstration of long-living ROs is a necessary step before one can implement a given type of spin qubits as a part of a working quantum computer. Note that one should not mix the decay time of the ROs R  (that we further call

Rabi time [16]) with the phase memory time 2 T , since the last one reflects the spin coherence maintained in the absence of the driving mw field.

The ROs that are acquired from the paramagnetic centers diluted in solids decay due to numerous reasons. As follows from our previous research [9,17], the most influential are: (i) dispersion of 0  (inhomogeneous broadening of the EPR line), (ii) spatial distribution of 1 B in mw resonator, and (iii) magnetic dipole interactions between the paramagnetic centers. The first two result in distribution of nutation frequencies inside the spin ensemble, so that the decay of ROs is caused by the dephasing of the Bloch vectors belonging to different spin packets. In this case, the decay rate is linear in the frequency of ROs R  (Rabi frequency), which itself is linear in 1 B .

Dipolar interactions, on the one hand, provide entanglement of the states of different spins, which is a vital part of quantum computation process. On the other hand, since these interactions are longranged, a given paramagnetic center is coupled simultaneously to a considerable number of other centers in the solid, and the local magnetic field thus produced has random-like character [18].

Because of a reasonable simplicity of the experimental procedure and the ability to control various parameters (intensity of mw field, the spin frequency and concentration, etc.), paramagnetic ions diluted in a solid matrix represent a very convenient system to study decoherence inside the spin ensemble driven by the microwaves.

Until recently, the existing theoretical models accounting for the role of dipolar interactions in the decay of ROs were all based on certain modifications of conventional Bloch equations [18,19], with an attempt to justify the empirical dependence of R  on R  obtained for 1 E  centers in silica and [AlO 4 ] 0 centers in quartz [20]:

1 R R        . (1) 
In our recent paper [17], we presented a microscopic model that contained no phenomenological parameters and allowed ab-initio calculation of spin dynamics of dipolar coupled spin ensemble in the microwave-driven regime. It was assumed that the ensemble consisted of the spin particles with isotropic g factor [17][18][19]. Such assumption is valid if the spins are dispersed in an amorphous medium or in a crystal of cubic symmetry. To the best of our knowledge, no attempt to study theoretically the dependence of R  on the directions of vectors 0 B and 1 B in the case when the background symmetry is lower than cubic has ever been made. In most cases, the crystal anisotropy does not contribute much to the g factor of a paramagnetic center which is close to that of a single electron. A well-known exception is a rare earth (RE) ion: it has valuable contribution to its magnetic moment from the orbital motion of its electrons due to the presence of strong spin-orbit coupling [START_REF] Abragam | Electron paramagnetic resonance of transition ions[END_REF]. As a result, effective g factors of several RE ions under certain conditions exceed 10.

Spin qubits based on RE ions [11][12][13] are advantageous as they would allow spin manipulations in low driving fields. Since the presence of magnetic anisotropy increases the number of experimentally controllable parameters that could in principle influence the decoherence times (namely, the directions of vectors 0 B and 1 B ), an appropriate choice of these parameters would enable one to increase the number of one-qubit operations.

In general, there are three non-equivalent directions related to the eigenvectors of anisotropic g tensor. In the present work, we consider the simplest case of axially symmetric background encountered when the local symmetry of the site occupied by the RE ion is tetragonal, trigonal or hexagonal. However, it is straightforward to modify the results for the case of lower symmetry (orthorhombic, monoclinic or triclinic crystal system). This paper is organized as follows: in Section I we develop a microscopic model of dipolar relaxation in transient regime and axially anisotropic crystal field. In Section II we illustrate our model by studying ROs in the concentration series of CaWO 4 :Nd 3+ crystal.

Section I. Driven dipolar relaxation in axially anisotropic crystal field

Let us consider an ensemble of N spins interacting with the external magnetic field

0 1 0 2 cos t    B B
B and with each other:

1 1 1 , , , N j jk j k B j j k x y z H d S S               gBS . (2) 
In the above Hamiltonian, j S is the spin operator of the particle j , B  is the Bohr magneton, and ĝ is the axially symmetric g tensor written in its principal axes , ,

x y z || 0 0 ˆ0 0 0 0 g g g              g . (3) 
Generally, the directions of 0 B and 1 B fields with respect to the axes , , x y z are arbitrary.

We choose the axes x and y so that 0 B is in the xz plane and at angle  from the z axis. The direction of 1 B is given by the direction cosines 

                                     (6) 
is aimed at the interaction with the mw field, so that 

  1 1 0 1 1 1 , , , 2 cos N j j jk j k j z R x j j k x y z H S S t D S S                  , ( 7 
)
where

0 j B g B    
is the Larmor frequency of the spin j and

1 1 R B g B   
is the Rabi frequency

( 1  
). Defects of the crystal lattice bring random contributions to the crystal field resulting in the distribution of g  and || g . We assume here that the frequencies j  are distributed within the EPR line centered at 0  and with the half-width 0    . Usually 1 0 B B  , and  can be as high as several R  . The Hamiltonian (7) now has the same form as in the isotropic case [17], except that jk D  are certain linear combinations of the initial dipolar parameters jk d  . The Hamiltonian written in the rotating reference frame (RRF) defined by the unitary transformation

0 1 1 exp N j z j R i t S           is     1 1 1 1 1 1 1 1 2 jk jk xx yy j j jk j k j k j k j z R x zz z z x x y y j j k D D H S S D S S S S S S                     , ( 8 
)
where

0 j j     
is the detuning of the spin j from resonance frequency, and we have neglected time dependent terms of dipolar interaction not in resonance with any possible transition. Let us introduce local coordinate system , , j j j

x y z    in RRF associated with a given spin j (see Fig. 1). The new spin operators that we will further mark with tilde are

    2 2 1 1 1 1 1 , , , j j j j j j j j j x j z R x j y y z R z j x j j R S S S S S S S S                    , (9) 
where j  is the nutation frequency of the spin j (note that j R    ). The Hamiltonian (8) takes the following form:

j jk j k j x j j k H S D S S                . ( 10 
)
It is clear that in the absence of dipolar couplings (

0 jk D   
) the interaction of a given spin j with the steady and mw magnetic fields would result in its precession with frequency j  around the j x  axis of RRF. The dipolar interactions introduce the correlations between the spin states, so that the dynamics of the spin j would depend on positions and directions of the nearby spins k , which, in turn, are also influenced by their local spin background. The average strength of dipolar coupling in the dilute spin ensemble is determined by the dipolar half-width d   [START_REF] Mims | Phase memory in electron spin echoes, lattice relaxation effects in CaWO 4 : Er, Ce[END_REF] which is linear in the spin concentration C . In the case of axially symmetric crystal field, one obtains [23] 

4 2 4 2 2 2 2 || 2 2 2 2 2 || sin cos 4 , sin cos 9 3 d B d d g g g C g g g                . ( 11 
)
Usually, C is small enough (<10 20 spins/cc), so that the condition ,  or  . If 0 t  is the moment the mw field was switched on, then, at any time 0 t  , the magnetic moment of the spin ensemble is given by  

ˆTr iH t iH t j B j t e e              g M S . (12) 
The initial density matrix  can be written in the high-temperature approximation 0 T  

generally valid even at liquid helium temperatures

0 1 1 1 2 j z N j S T            . ( 13 
)
The calculation of the trace in Eq. ( 12) is best done in the basis 

  1 2 2 2 0 || 2 , , 1 
1 cos 2 2 jk B R j j xx k N j m m k g M t D m t T                                , (14) 
where the time-independent part of || M is neglected, and the prime symbol in the last sum indicates that the term with k j  is omitted. The argument of the cosine function has simple interpretation:

the secular part of the interaction with the spin k shifts the nutation frequency of the spin j by

2 jk xx k D m 
. Summation over all possible spin directions yields

    2 2 0 || cos cos 2 jk R j j xx j k M M t t D t N          , ( 15 
)
where

0 0 4 B M Ng T      is the longitudinal magnetic moment at 0 t  . The dipolar factor   cos 2 jk xx k D t   
is responsible for the decay of ROs. As seen from Eq. ( 15), not all spins contribute equally to the ROs. Spins with large detuning ( j R    ) have negligible impact since  and k  . These assumptions are the basics of the statistical method of line broadening [24] and are reasonable in the case of the spin concentrations less than 1 at. %. Thus, the averaging procedure starts as follows

      1 3 , 1 cos 2 cos 2 k k N jk jk xx k k k xx k V D t d f d r D t V                r   . ( 16 
)
In the macroscopic limit ,

N V   , while keeping const C N V   , one obtains       3 , cos 2 exp 1 cos 2 k k jk jk xx k k jk xx k D t C d f d r D t                      r   . ( 17 
)
Integration over jk r gives (see Appendix A)

  2 2 2 3 2 1 cos 2 9 3 jk B R jk xx k g t d r D t                . ( 18 
)
This result has the same form as in the isotropic case [17], except that the isotropic g-factor is now substituted for the modified g-factor g  that depends on the ratio || g g  and on the angle  (i.e. the direction of 0 B )

2 2 2 || || 2 2 || 2 2 || 2 || 2 , , , . g g g G g g g g g g g G g g g                                   ( 19 
)
Function   G  is shown in Fig. 2. Combining this result with Eq. ( 15), we obtain the longitudinal magnetization

      2 2 2 || 0 2 2 cos exp R R d R t M t M t d f             , (20) 
or, in much the same way, the transverse (along the 1 y axis) component of the magnetization

      2 2 1 2 2 sin exp R R d R t M t M t d f              , ( 21 
)
where 1 0 4 B M Ng T      , and d  is the dipolar-induced decay rate   2 2 1 2 d d R R f d             . ( 22 
)
The modified dipolar half-width d    has the same form as in Eq. ( 11), but with g  instead of d g . Function   G  can be replaced by unity in approximate calculation since

  0.82 1 G    .
A certain choice of  would minimize 2 g  that enters the decay rate d  and, consequently, increase the number of coherent oscillations 2

R d n     .
This increase is considerable only when || g is larger than g  . In this case, the favorable direction of the static magnetic field would be close to z axis ( 0   ), with min g g   

. In the case when || g g   , only a small deviation of g  from the in-plane g-factor g  is expected. Thus, min g g    regardless of the ratio || g g  . Note that n indirectly depends on the direction and strength of the mw field 1 B since the latter determines the Rabi frequency R  . The integration over  in Eqs. (20), ( 22) is straightforward if one knows the exact EPR lineshape function   f  . There are, however, two important limiting cases when the final result can be expressed in general form: 

    2 || 0 2 1 2, cos , sin . d d d d t R t R M t M e t M t M e t                   (23) 
The decay rate reaches its highest value (a half of the modified dipolar half-width) and does not depend on the Rabi frequency. 

                2 2 || 0 0 1 0 0 ln , 0 , 0 1 . d d R d d R R t R R t R R f M t M f e j t M t M f e J t t                          (24) 
Here,   0 J  is the Bessel function of the first kind, and    

0 0 j J d       
. In most cases, these functions can be approximated by the slowly decaying cosine

          1/ 4 2 0 0 1 2 2 1 cos 4 j J              . ( 25 
)
While the above asymptotic relations are valid for arbitrary symmetric   f  , exact results can be derived irrespective of R   ratio in the two frequently encountered cases of Gaussian

      1/ 2 2 2 2 2 exp 2 G f            and Lorentzian       2 2 L f            lineshapes:     2 2 0 2 2 2 2 2 2 exp , 2 2 2 2 ln , 1, arccos , 1, G R d R R d R R d R R L R d R d R R R K                                                                                      ( 26 
)
where   0 K  is the modified Bessel function of the second kind. As shown in Fig. 3,d  grows monotonously with the ratio R   and tends to its limiting value 2 d    at high Rabi frequencies.

Let us now draw comparison between our results and the predictions of the phenomenological models [18,19]. If the range of R   is small enough, the relaxation rate can indeed be approximated by the linear dependence (1) (see the dashed line in Fig. 3). However, this dependence is not universal since the coefficients ,   depend on the point of the curve through which a tangent line is drawn. The measurements described below were taken at the central peak and at certain 143 Nd and 145 Nd satellites (see the arrows in Fig. 4). The orientation of the crystal sample in the mw resonator was chosen to be 0 c  B , 1 || c B , with the exception of the sample no. 4, where both 0 B and 1 B

were perpendicular to the crystal c axis. First of all, spin-lattice relaxation times 1 T and phase memory times 2 T were obtained for each sample in the concentration series (see Table I). The length of 2

 pulse was 8 ns in all 1 T and 2 T measurements. Because of the role of random electric fields,  depended on the exact orientation of 0 B in ab plane, with minima and maxima of  at certain angles [27][28]. For comparison reasons, all the data presented below were recorded at the minima of  . At the maxima, 2

T and R  were several percent longer, while 1 T showed no visible variation. As for the Rabi times, this result is much expected since in the latter case the mw pulse affects less number of Nd ions. Similar increase of 2 T times and their dependence on the isotopic concentration are in accordance with the theoretical estimations that indicate instantaneous diffusion and spectral diffusion as dominant contributions into the phase relaxation in CaWO 4 :Nd 3+

crystal [29]. The spin-lattice relaxation times for the first three samples were in the range 1 15 25 T   ms and did not vary with the isotopic concentration; these results are consistent with the literature data [30,31], where direct and Raman processes are singled out as being the dominant contributions. However, we cannot give a direct account of the abrupt decrease of 1 T in the last sample with the highest neodymium concentration. This change may arise as the result of local deformation of the crystal lattice near the paramagnetic impurity and subsequent perturbation of the vibrational spectrum of the crystal, which is more pronounced at higher C.

Each data point of the ROs was obtained after the pulse sequence shown in Fig. 5, where the transient pulse was followed by the spin-echo detection sequence which finally gave the longitudinal component of the magnetization || M . Some of the recorded ROs are presented in Fig. 6 and Fig. 7.

 

|| M t were calculated in the most general way according to the Section I as

              || 3 4 2 2 1 cos , ~1 1 exp . R B R R d M t A t t A t t t t                         (27) 
A decay factor

  3 4 2 1 1 B R t        
was added to the amplitude   A t in order to account for the spatial distribution of 1 B in the mw resonator [9]. The corresponding decay rate is linear in R  : , so this effect can be neglected in 1 T and 2 T measurements, where short pulses with the lengths less than the Rabi period are used. For a small sample with the dimensions x y z l l l   placed at the center of TE 011 cylindrical resonant cavity of radius R and length L [9]   

l l R l L         . ( 28 
)
The parameters 1 B  that were found best to describe the experimental data in the samples no. 1-4 are presented in Table I. They are very close to the value 1 0.05 B  

for the 3 mm sample that was estimated according to Eq. ( 28). The two other parameters, 0 4

    and 0 1 4    ,
are determined by the ratio R   . As follows from Eqs. ( 23) and ( 24),

    0, 0 1 , 4, 1 4 1 . R R                (29) 
The parameter  that was introduced into the exponent in Eq. ( 27) is the ratio of neodymium ions corresponding to the given EPR line to the total number of Nd 3+ ions in the crystal sample:  = 0.795, 0.015 and 0.01 for the central line, 143 Nd and 145 Nd satellites, respectively.

Rabi rates 

  1 R R    was almost linear,
meaning that the dominant contribution came from 1 B inhomogeneity. This also accounts for the fact that there is only a small difference between the nutation signal of different neodymium isotopes in these samples. On the contrary,

  1 R R
   of the sample no. 4 was nonlinear, indicating the domination of dipolar contribution; the decay rates of 143 Nd and 145 Nd isotopes were much smaller than the ones of the central line (see Fig. 7 and the dashed line in Fig. 8). Note that in our As was expected, the longest coherence times were obtained for the sample no. 1. There we Here we calculate the integral in the left part of the Eq. ( 18)

  3 1 cos 2 jk jk xx J d r D t          . ( 30 
)
First of all, we need to express the effective dipolar coupling jk xx D  through the initial dipolar parameters jk d  . This can be done using Eqs. ( 2)- (10), and jk d  are defined by the following relation

     2 3 2 , , , ˆ3 ˆˆj k jk jk jk j k j k B x y z jk jk d S S r r                        g g g g S r S r S S  . ( 31 
)
Thus we obtain

  2 2 2 2 2 2 || || 2 2 2 3 2 2 || 1 3cos 3 sin cos 2 4 B R jk xx k g g g g g D g r g g                               , (32) 
where , , r   are spherical coordinates of the vector jk r . Integration over r yields 

    2 2 2 2 / 2 1 || 2 2 2 0 0 1 3 3 1 cos 2 6 B R k g g g t J d d g                       (33) where   2 2 2 2 || || g g g g       ,
                                         (34)
Function   G  (Fig. 2) is expressed through the complete elliptic integrals  

K  and   E  as           2 2 1 2 1 3 1 , 0 , 2 1 2 1 2 1 1 , 1. 2 E K G G                                                        (35) Appendix B.

An account of the hyperfine interaction

The hyperfine interaction (hfi) that is present in the case of 143 Nd and 145 Nd ions was not included into the Hamiltonian (2). Let us now estimate if it has any influence on R  under our experimental conditions. The hfi of a given neodymium ion j with its nuclear spin I (index j is omitted below for simplicity) is respectively [START_REF] Abragam | Electron paramagnetic resonance of transition ions[END_REF]. In the electronic coordinate system (6) the above interaction takes the form

  || hfi z z x x y y H A S I A S I S I     , (36) where 
1 2 , , , hfi x y z H A S I         , ( 37 
)
where A  are certain linear combinations of || A and A  . Index "2" in the operator 2 I  denotes a specific rotation of the nuclear coordinate system that is applied in order to exclude the terms with zx A and zy A . Since (i) the relaxation time of the nuclear states in magnetically diluted crystals is usually much longer than R  , (ii) 0 A   , and (iii) the interaction energy of the nuclear spin with the external magnetic field is negligible with respect to A , the projection I m of the nuclear spin along the 2 z axis represents a good quantum number. Indeed, the terns of the hfi  

1 1 1 hfi zz z I xz x yz y I H A S m A S A S m    . ( 38 
)
This interaction should be added to each j term of the Hamiltonian (7). The first part in the right-hand side of Eq. ( 38) gives a shift zz I A m of the spin Larmor frequency  that results in the complex hyperfine structure which is clearly visible in the EPR spectrum (see Fig. 4). 

  can neglect all terms in dipolar coupling except jk j e. leave only a secular part with respect to the first term of Eq.(10). Indeed, the terms jk j transition of the spin k with respect to kx  axis would change the total energy by k transitions of the spins j and k would change the energy by j k    which are, on average, of the same order as either R

  For example, the longitudinal (along the 1 z axis) component of the magnetization is

  . Spins with moderate detuning ( j R   ) represent valuable contribution during, roughly, the first period of oscillations, but after that they become dephased with respect to the resonant part of the ensemble. Since jk xx R D    , the decay of ROs that is caused by the dipolar interactions reveals itself long after the first period, and we will further focus on the resonant spins ( j R    ). The subsequent calculations involve integration over random spin positions k r within the crystal sample volume V and over their frequency detunings k  within the EPR line weighted with the spectral density   k f  . We make the following assumptions: (a) the spin coordinates can be treated in the framework of the continuum approximation, i.e. regardless of the discrete periodic structure of the crystal lattice; (b) relative positions of any two spins, jk j k   r r r , do not correlate with their detunings j

  . The lineshape function can be approximated by Dirac deltafunction     f    , all spins have their nutation frequencies equal to R  , and we obtain

  (b) Broad line R    . Since now only the central part of the EPR line is exited, the lineshape function can be replaced by its resonance value   0 f , and

  calculations we did not account for the dynamics of the nuclear spin of Nd ion. The hyperfine interaction would result in the renormalization of R  and of the dipolar interaction parameter jk xx D  , thus changing the decay rate, especially in the case when the Larmor frequency of the hyperfine satellite differs substantially from that of the central line. The corresponding corrections are of order 0 I Am  , where A is the hyperfine coupling parameter, I m is the nuclear spin projection (see Appendix B). Our experimental data were obtained at the closest 143 Nd and 145

.

  up to 1 μs and over 50 visible periods of ROs. That long-lasting transient coherence permitted us to detect an interesting phenomenon. In Fig. 9 one can see the amplitude modulation resulting from the interference of the signals that come from different parts of the crystal sample. The arrow shows the dip at 0 0.55 t  μs which is the first point of destructive interference. Roughly, one expects this dip to occur when the phases of the oscillations at the center ( c  ) and at the edge ( e  ) of the sample differ by  . It follows from the calculations presented in our previous paper [reasonable agreement with the experimental one. Conclusions To the best of our knowledge, this work represents the first quantitative description of ROs of paramagnetic impurity ions in the anisotropic crystal field. We developed a microscopic theory of dipolar relaxation in transient regime that contained no phenomenological parameters and, in contrast to existing phenomenological models, predicted nonlinear dependence of the decay rate on the Rabi frequency. In addition, we accomplished the first experimental study of ROs in the concentration series of Nd:CaWO 4 single crystals. The obtained experimental data for the whole range of spin concentrations, the strengths of the mw field and isotopic numbers of Nd ions are in excellent agreement with our ab initio calculations. At last, let us discuss the relation between the spin coherence times 2 T and R  . In quantum computation processing, it is advantageous to increase both these quantities in order to obtain higher number of qubit operations. Generally, the ratio 2 R T  depends on the spin concentration, on the field inhomogeneity inside the crystal sample, and on the strength of the mw field during the transient pulse and the spin-echo sequence. Under our experimental conditions, The longest R  ~ 1 μs were observed in the sample with the lowest spin concentration. It was possible to increase the Rabi times by using smaller crystal samples in order to reduce the inhomogeneity of 1 B , but with the substantial loss of the signal intensity. E.I.B. acknowledges the support of Dynasty foundation and the Russian Government Program of Competitive Growth of Kazan Federal University. Appendix A. Calculation of the dipolar factor

  MHz represent the hyperfine coupling constants for the isotopes 143 Nd and 145 Nd,



  , etc. that are responsible for the nuclear transitions are ineffective since they also change the electron spin energy by 0 different nuclear spin states:
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  MHz) hfi would definitely play an important role. The theory in this specific case cannot be based on the perturbation approach and lies beyond the scope of the present work.
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