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Abstract—Geo-located social media provide a wealth of infor-
mation that describes urban areas based on user descriptions
and comments. Such data makes possible to identify meaningful
city neighborhoods on the basis of the footprints left by a large
and diverse population that uses this type of media. In this
paper, we present some methods to exhibit the predominant
activities and their associated urban areas to automatically
describe a whole city. Based on a suitable attributed graph model,
our approach identifies neighborhoods with homogeneous and
exceptional characteristics. We introduce the novel problem of
exceptional sub-graph mining in attributed graphs and propose
a complete algorithm that takes benefits from new upper bounds
and pruning properties. We also propose an approach to sample
the space of exceptional sub-graphs within a given time-budget.
Experiments performed on 10 real datasets are reported and
demonstrate the relevancy and the limits of both approaches.

I. INTRODUCTION

In today’s increasingly global and interconnected world,
people have opportunities to live abroad of their country,
generally in urban areas. They face the challenge of making
decisions about where to live, how to find appropriate areas
to go out or a place to visit. Thanks to the current numerical
development, numerous sources of collected data can help to
make better decisions. Nevertheless, such geo-enabled social
data must be processed with efficient methods to take into
account the heterogeneity and the complexity of urban areas
by the discovery of useful and understandable insights. Such
questions have recently raised the interests of researchers such
as discovering similar neighborhoods across several cities [5]
or matching social attributes with geographic spaces [19].

Using social and urban data of a city (such as the ones
provided by social networks as FOURSQUARE or GOOGLE-
PLACE), we aim to identify neighborhoods with homogeneous
and exceptional characteristics: Areas are described by their
associated characteristics that distinguish them from the rest
of the city. To this end, we propose a suitable attributed
graph model (as illustrated in Fig. 1) that results from the
combination of social and urban data, and we achieve the
task by applying a constraint-based graph pattern mining
approach. The devised algorithm identifies connected sub-
graphs associated to some characteristics that discriminate the
subgraphs from the rest of the graph.

Attributed graph analysis has received much attention in
the past decade. For example, [14] designed a method to find
dense homogeneous sub-graphs, where vertices are described

by categorical attributes and [7] proposes subspace clustering
approach using numerical vertex attributes. However, all these
works focus their attention on the similarity inside the sub-
graphs, while underestimate exceptionality of the sub-graph
characteristics with respect to the whole graph.

Fig. 1: Example of a graph modeling a city.

We design two algorithms to solve this problem. The first
one is an exact algorithm that uses original and efficient upper
bounds and some other techniques to reduce the search space.
We also propose a method that reduces the number of output
patterns by providing a concise summary of the complete
result set while limiting the overlap between patterns. This
summary represents the whole set of solutions, while being
faster to compute. The second algorithm mines exceptional
sub-graphs by sampling the space of patterns in a similar way
as [2], [8], [17].

Our main contributions are manifold: First, we propose a
new kind of graph analysis that exploits both of the contrasts of
vertices attributes and the graph structure with a connectivity
constraint. Second, to solve the defined problem, we present
an efficient algorithm based on new upper bounds and pruning
properties. We also propose a method to summarize the output
set. Third, we design a probabilistic approach that samples
the output space of patterns within a time budget specified
by end-users. Forth, we provide a thorough empirical study
that includes (1) a demonstration of the efficiency of the used
pruning techniques, (2) the impact of the parameters and the
input graph dimensions on the performance of the algorithms,
and (3) the relevancy of the discovered results.

The rest of the paper is organized as follows. Section II
formally introduces the problem. The proposed solutions are
presented in Section III. Section IV reports on the empirical
study on both synthetic and real-world datasets. Section V
discusses related work and section VI concludes.



II. PROBLEM FORMULATION

Data describing geographic venues are numerous, ranging
from census data to collaborative data produced through
social-media platforms. To describe a city, nearby venues are
grouped into small areas (geographers generally use tiles of
200 meters) over which venue characteristics are aggregated
into count data. These areas are hereafter considered as the
vertices V of a graph G = (V,E,C,D) whose edges E
connect adjacent areas (that share a part of their borders), C =

{ci, i 2 J1, pK} is a set of p categories and the vertices of V
are described by D = {ci(v) 2 N, with ci 2 C and v 2 V },
the counts of venues of each category in the area associated
to each vertex.

The values of D can be aggregated over a set of vertices
K ✓ V and a set of categories L ✓ C: sum(L,K) =P

v2K

P
ci2L ci(v). To simplify the notation, we use sum(K)

to denote sum(C,K).
As an example, Fig. 1 presents a graph derived from the

division of a city into 6 areas (from v1 to v6). The area
represented by v1 is adjacent to the ones represented by
v2 and v4, and consequently an edge connects v1 to v2
and another one v1 to v4. The number of venues of each
category in a given area composed a vector associated to
the corresponding vertex. The distribution of venue categories
C = (Health, Tourism, Store, Food) is detailed in Fig. 2.
sum(health, {v1}) = 1 as there is one venue with the category
health in the area associated to v1. We can also observe that
sum({Health, Tourism, Store, Food}, {v1}) = 22, and for
the set K = {v2, v5}, sum(K) = 49.

Fig. 2: Example of the distribution of venues in areas.

Our objective is to identify neighborhoods whose charac-
teristics distinguish them from the rest of the city. Therefore,
we propose to discover connected sub-graphs associated to
exceptional categories. A category is exceptional for a sub-
graph if it is more frequent in its vertices than in the remaining
of the graph. The scarcity of a category can also be a relevant
descriptive element of a neighborhood. In Fig. 2, vertices v2
and v5 have a surplus on the category Health compared to the
rest of the graph, while having a loss on category Tourism.
Thus, we associate to a sub-graph a characteristic defined as
a pair S = (S+, S�

), with S+ and S� two disjoint subsets
of C. In order to assess the relevancy of the characteristics S
with respect to the sub-graph induced by K ✓ V , noted G(K),
we define the measure WRAcc(S,K), an adaptation of the

weighted relative accuracy measure widely used in Subgroup
Discovery [9].

A set of categories L is discriminant to G(K) if it is more
or, on the contrary, less frequent in G(K) than in G. This is
evaluated by the gain function:

gain(L,K) =

sum(L,K)

sum(K)

� sum(L, V )

sum(V )

The validity of a characteristic S = (S+, S�
) with respect to

G(K) is given by

valid(S,K) ⌘
^

v2K

✓⇣ ^

ci2S+

�gain(ci,v)>0

⌘^⇣ ^

ci2S�
�gain(ci,v)<0

⌘◆

valid(S,K) means that each vertex v 2 K has a positive
gain for each category ci 2 S+, and a negative gain for
each category ci 2 S�. The quality of characteristic S can
be globally measured by the numerical function A:

A(S,K) = gain(S+,K)� gain(S�,K)

However, a major drawback of the gain is that it is easy
to obtain high value with highly specific characteristics [9],
more precisely characteristics associated to a small set of
vertices. Weighted relative accuracy makes a trade-off between
generality and gain by considering the relative size of the sub-
graph:

WRAcc(S,K) =

(
A(S,K)⇥ |K|

|V | if valid(S,K)

0 otherwise

The main differences with the WRAcc used in Subgroup
Discovery [9] are (1) our adapted WRAcc considers both
the positive and the negative contrasts in an unsupervised
setting, (2) it takes into account the homogeneity of elements
of K, using the predicate valid(S,K). We can now define the
pattern domain we consider:

Definition 1 (Exceptional sub-graph). Given a graph G =

(V,E,C,D) and two thresholds � and �, an exceptional sub-
graph (S,K) is such that (1) |K| � �, (2) G(K) is connected,
and (3) WRAcc(S,K) � �. E(G) denotes the whole set of
exceptional sub-graphs in G.

The computation of the complete set of exceptional sub-
graphs requires to search into two combinatorial search spaces,
with constraints that cannot be used according to the usual
techniques of search space pruning. Thus, a naive approach
cannot achieve this task for large graphs or large number of
categories. In the following we propose several enumeration
strategies that takes benefit from computation of tight upper-
bounds on WRAcc(S,K).

III. COMPUTING EXCEPTIONAL SUB-GRAPHS

This section introduces three distinct approaches to extract
exceptional sub-graphs. First, we present an exact algorithm
that aims at discovering the complete set of exceptional sub-
graphs. Second, we propose to only compute a summary of
this set by controlling the overlap between patterns. Third,
we devise a heuristic algorithm that samples the space of



exceptional sub-graphs within a user-defined time-budget. This
approach makes possible to obtain instant results and to
successfully scales up to a large number of attributes.

A. The complete approach

To compute all exceptional sub-graphs, two search spaces
have to be explored: The space of characteristics S =

(S+, S�
) is first traveled, and then, for each promising char-

acteristic, the sub-graphs G(K), K ✓ V , are considered.
1) Characteristic enumeration: We explore the search

space of characteristics recursively. We start from the empty
characteristic (S+, S�

) = (;, ;) and consider the candidate
categories that can be used to expand S: (X+, X�

) = (C,C).
X+ contains the categories that can be added to S+, and X�

the ones that can be added to S�.
However, if the size of the category set C is large, it is

unrealistic to explore all the combinations. To early discard
unpromising candidates, we exploit two properties: The anti-
monotony of the predicate valid and an upper-bound on the
WRAcc measure.

The predicate valid is anti-monotone with respect to the
inclusion of characteristics: Considering two characteristics
S1, S2 such that S+

1 ✓ S+
2 and S�

1 ✓ S�
2 , denoted S1 ✓ S2,

we have 8K ✓ V , valid(S2,K) ) valid(S1,K). Let
V (S) = {v 2 V | valid(S, v)}, if V (S) has a size smaller
than �, then it is unnecessary to explore the children of S.
To quickly obtain a small-sized set V (S), we expand S+ with
the candidate c 2 X+ that has the smallest number of vertices
v 2 V with gain(c, v) > 0 (a.k.a. fail-first principle), and
to expand S� with the candidate c 2 X� that has similar
property for gain(c, v) < 0 (lines 1 and 2 of Algorithm 1).

Let us now define an upper bound on the WRAcc mea-
sure. Let ⌦(S,X) be the exploration tree rooted in (S,X)

that contains all the characteristics T obtained from the
characteristic S extended with some categories of X . An
upper bound UB1 on WRAcc with respect to a connected
component CC ✓ V (S) is defined as: UB1(S,X,CC) =

maxS2⌦(S,X),v2CC A(S, v)⇥ |CC|
|V | .

Property 1. WRAcc(T,K)  UB1(S,X,CC), 8T 2
⌦(S,X) and K ✓ CC

Proof. From the definition of the function A, we have
A(S,K) =

P
v2K

sum(v)
sum(K)⇥A(S, v). Thus, A(S,K) is simply

a weighted average of A(S, v). Furthermore, as A(S, v) 
A(S?, v) with S?

= argmaxS2⌦(S,X)A(S, v), from the prop-
erties of the average, we can infer that A(S,K)  A(S?, v).
Thus, we can conclude that A(S,K)

|K|
|V |  A(S?, v) |CC|

|V | .

The computation of UB1 can be done in ⇥(|CC| ⇥ |X|).
Algorithm 1 presents the pseudo-code of ENERGETICS1 that
computes the exceptional sub-graphs. Line 3 stops the algo-
rithm when there is no more candidate. The loop in line 4
discards unpromising connected components using the afore-
mentioned upper bound. The four recursive calls consider the

1ENERGETICS: ENumERatinG ExcepTIonal Connected Sub-graphs

four possible extensions of S by a category c. The function
SUB-GRAPH is detailed below.

Algorithm 1: ENERGETICS(S, X , Y , R, �, �)
Input: S = (S+, S�

) the current explored
characteristic, X = (X+, X�

) the candidate sets,
Y = {v 2 V | valid(S, v)}

Output: R the result set under construction
1 Sort c 2 X

+ in ascending order of |{v 2 V | gain(c, v) > 0}|
2 Sort c 2 X

� in ascending order of |{v 2 V | gain(c, v) < 0}|
3 if X 6= (;, ;) then
4 for CC ✓ G(Y ) do
5 if UB1(S,X,CC) < � or |CC| < � then
6 Y  Y \ CC

7 if X+ 6= ; then
8 c pop(X+)
9 Y

0  {v 2 Y | valid((S+ [ {c}, S�), v)}
10 if Y 0 6= ; then
11 ENERGETICS((S+ [ {c}, S�),

(X+ \ {c}, X� \ {c}), Y 0, R, �, �)
12 SUB-GRAPH((S+ [ {c}, S�), Y 0, �, �, R)
13 ENERGETICS(S,(X+ \ {c}, X�),Y ,R, �, �)
14 else
15 c pop(X�)
16 Y

0  {v 2 Y | valid((S+
, S

� [ {c}), v)}
17 if Y 0 6= ; then
18 ENERGETICS((S+

, S

� [ {c}), (X+
, X

� \ {c}),
Y

0, R, �, �)
19 SUB-GRAPH((S+

, S

� [ {c}), Y 0, �, �, R)
20 ENERGETICS(S,(X+

, X

� \ {c}),Y , R, �, �)

2) Sub-graph exploration: Once the characteristic S is
fixed, its associated set of vertices V (S) has to be processed to
identify subsets K 0 that (1) have a size greater or equal to �,
(2) satisfy WRAcc(S,K 0

) � � and (3) K 0 are connected.
To compute them efficiently, we propose an approach that
combines reverse search [20] and upper-bounds. It is based
on the loose anti-monotonicity of the constraint A(S,K) � ⌧ .

Property 2 (Loose anti-monotone). A(S,K) � ⌧ is a loose
anti-monotone constraint. This implies that if A(S,K) � ⌧ ,
then it exists v 2 K such that A(S,K \ {v}) � ⌧ .

Proof. Let v� = argminu2KA(S, u) and K = K 0 [ {v�}.
By construction, 8u 2 K, A(S, u) � A(S, v�).
Thus, the weighted average

P
u2K0 sum(u)A(S,u)P

u2K0 sum(u) �
A(S, v�) that is to say A(S,K 0

) � A(S, v�). As
A(S,K) =

P
v2K

sum(v)
sum(K)A(S, v), we can derive that

A(S,K) =

sum(K0)
sum(K) A(S,K 0

) +

sum(v�)
sum(K)A(S, v�) 

A(S,K 0
)

sum(K0)+sum(v�)
sum(K) = A(S,K 0

) = A(S,K \
{v�}).

To exploit this property, we enumerate the vertex sets K in
a way such that A(S,K) decreases during the enumeration.
Starting from a sub-graph K = ; and a set of candidates ver-
tices Y , K is expanded by adding vertices from Y according
to the following order.

Definition 2 (Vertex order ⌫K). Let K ✓ V and vi, vj 2 V \
K. We say that vi ⌫K vj iff A(S,K[{vi}) � A(S,K[{vj})



From the loose anti-monotonicity of A(S,K), we can derive
an upper bound of the WRAcc constraint.

Definition 3 (UB2). Let K be the current set of vertices and
Y the set of candidates. The function UB2 is defined as:

UB2(S,K, Y ) = A(S,K)⇥ |K [ Y |
|V |

Property 3. For all G(K 0
) with K 0

= K [K 00 and K 00 ✓ Y ,
we have

WRAcc(S,K 0
)  UB2(S,K, Y )

Proof. Let K 0
= K [ K 00. By generalizing the result of

proof 2, we have A(S,K 0
)  A(S,K). Moreover, as K 0 ✓

K [ Y , we have |K0|
|V |  |K[Y |

|V | . By multiplying these results
we can conclude the proof.

Therefore, if UB2(S,K, Y ) < �, we are sure that there is
no set K 0 ✓ K [ Y such that WRAcc(S,K 0

) � � and we
can stop the enumeration.

We can derive a tighter upper-bound constructed re-
cursively on the size of the set of vertices Z ✓ Y
added to K in the enumeration process. Considering the
vertex order ⌫K used during the enumeration, we have
A(S,K) � A(S, v), 8v 2 Y . Thus, the second term
in the following weighthed average A(S,K [ {v}) =

sum(K)
sum(K)+sum(v)A(S,K) +

sum(v)
sum(K)+sum(v)A(S, v) tends to

decrease A(S,K [ {v}). To tightly upper bound A(S,K [
{v}), we have to give a high value to sum(K)

sum(K)+sum(v) ,
while minimizing sum(v)

sum(K)+sum(v) . This is achieved by d1 =

minv2Y sum(v):

A(S,K [ {v})  sum(K)
sum(K) + d1

A(S,K) +
d1

sum(K) + d1
A(S, v)

Then, by choosing a1 = maxv2Y A(S, v), the above expres-
sion is upper bounded. We just have defined A(S,K, Y, 1),
the upper bound for K extended by a single vertex from Y .

Let us now suppose there is an upper bound
A(S,K, Y, i) of A(S,K [ Z) with |Z| = i. To
define A(S,K, Y, i + 1) for |Z| = i + 1, we consider
A(S,K [Z [ {v}) = sum(K)+sum(Z)

sum(K)+sum(Z)+sum(v)A(S,K [Z) +

sum(v)
sum(K)+sum(Z)+sum(v)A(S, v). A(S, v) tends to decreases
the weighted sum, thus (1) sum(K)+sum(Z)

sum(K)+sum(Z)+sum(v) has to be
maximized and (2) sum(v)

sum(K)+sum(Z)+sum(v) has to be mini-
mized. Let |Y | = t and {d1, . . . , dt} = {sum(v) | v 2 Y }
such that 8i, j 2 J1, tK, di  dj . (1) is obtained by

sum(K)+
Pt

j=t�i+1 dj

sum(K)+
Pt

j=t�i+1 dj+d1
, and (2) by d1

sum(K)+
Pt

j=t�i+1 dj+d1
.

The upper bound is achieved by replacing A(S, v) by
ai+1 = maxv2Y \Z A(S, v) and A(S,K [ Z) by A(S,K, i).
This is synthesized in the following definition.

Definition 4 (UB3). Let (K,Y ) be the current enumerated
sub-graph induced by K, and Y the candidate vertices such
that |Y | = t. Let {d1, . . . , dt} = {sum(v) | v 2 Y } such
that 8i, j 2 J1, tK with i  j, di  dj , and {a1, . . . , at} =

{A(S, v) | v 2 Y } such that 8i, j 2 J1, tK with i  j, ai � aj .
The upper bound UB3 is

UB3(S,K, Y ) = maxi2J0,tK
⇣
¯A(S,K, Y, i)⇥ |K|+i

|V |

⌘
with

¯A(S,K, Y, 0) = A(S,K)

¯A(S,K, Y, i) =

sum(K)+
Pt

j=t�i+2 dj

sum(K)+
Pt

j=t�i+2 dj+d1

¯A(S,K, Y, i� 1)

+

d1

sum(K)+
Pt

j=t�i+2 dj+d1
⇥ ai, i � 1

A last pruning technique is obtained by observing that if a
branch of the sub-graph enumeration tree does not lead to any
valid pattern, then its right sibling cannot neither contain any
valid patterns.

Property 4 (Sibling-based upper bound). In the enumeration
tree, let �(K,Y ) be the set of K 0 ✓ K [ Y such that
WRAcc(S,K 0

) � � and K 0 is generated from (K,Y ). Let
v1, v2 2 Y be such that v1 ⌫K v2 and A(S, v1) � A(S, v2).
If �(K[{v1}, Y \{v1}) is empty then �(K[{v2}, Y \{v1, v2})
is also empty.

Proof sketch. We prove the contraposed: �(K2, Y2) 6= ; )
�(K1, Y1) 6= ;, with K1 = K [ {v1} and K2 = K [ {v2}.
By considering a valid pattern F 2 �(K2, Y2), we de-
rive another pattern by removing from F the vertex v� =

argminu2F\Y A(S, u) and adding the vertex v1. This pattern
(1) has the same size than F , (2) belongs to �(K1, Y1) and (3)
is such that A(S, F \{v�}[{v1}) � A(S, F ). This concludes
the sketch of the proof.

Algorithm 2 presents the implementation of SUB-GRAPH
that calls the function SUB-CC on each maximal connected
component CC of G(V (S)). SUB-CC returns TRUE if it
finds in the explored sub-tree a sub-graph G(K) such that
WRAcc(S,K) � �. When FALSE, the set of candidate
vertices is reduced based on property 4. The algorithm SUB-
CC begins by checking the upper bounds UB2 and UB3

(lines 4 and 6). Then, in the while loop (line 9) it enumerates
a new candidate that is recursively expanded through the
recursive call of SUB-CC. If the last call in line 12 returns
FALSE, which means that �(K[{v?}, Y ) = ;, all the vertices
v such that A(S, v)  A(S, v?) are pruned (line 15).

B. Reducing the redundancy among patterns
For the same characteristic S = (S+, S�

), E(G) can
contain several patterns which may be very similar. This has
two main disadvantages: (1) the size of the result set may
be uselessly very large and redundant, and (2) the method
performance may degrade due to the size of the output.

We tackle this problem in a similar way as [22] that
proposes an approach to reduce the output set of maximal
cliques. The idea consists in returning a concise subset of
E(G), denoted E 0

(G), that represents the whole set of patterns.
More precisely, for each pattern (S,K1) 2 E(G) there is a
pattern (S,K2) 2 E 0

(G) such that K1 is included in K2 or
K2 covers the majority of K1. This is formally defined below.

Definition 5 (Coverage measure). Let K1 ✓ V and K2 ✓
V . The coverage measure cov is defined by cov(K1,K2) =

|K1\K2|
|K1| . This function measures how much K2 covers K1.



Algorithm 2: SUB-GRAPH(S,validV ,�,�,R)
Input: S, validV = {v 2 V | valid(S, v)}
Output: R the set of result patterns under construction

1 for each maximal connected component CC ✓ validV do
2 SUB-CC(S,(;, CC),R,�,�)
3 SUB-CC(S,(K,Y ),R,�,�)

Input: S, K the explored sub-graph, Y the set of candidates
vertices

Output: R the set of result patterns under construction
4 if UB2(S,K, Y ) < � then
5 return False
6 if UB3(S,K, Y ) < � then
7 return False
8 existsPattern  False
9 while |K [ Y | � � and Y 6= ; do

10 v

? = argmaxu2Y A(S,K [ {u})
11 Y  Y \ {v⇤}
12 if SUB-CC(S, (K [ {v?}, Y ), R,�,�) then
13 existsPattern  True
14 else
15 Y  {v 2 Y | A(S, v) > A(S, v?)}
16 if WRAcc(S,K) � � and |K| � � then
17 existsPattern  True
18 if GK is connected then
19 R R [ {(S,K)}
20 return existsPattern

Hence, the problem we consider in this section is
how to compute E 0

(G) ✓ E(G) such that 8(S,K) 2
E(G), 9(S,K 0

) 2 E 0
(G) with cov(K,K 0

) � mincov and
E 0
(G) as small as possible.
The problem of finding the set E 0

(G) of minimum size is
NP hard. Thus, we adapt an efficient heuristic approach that
consists in constructing E 0

(G) during the enumeration process
and to use the coverage measure to prune large parts of the
sub-graph search space. We use the following lower bound
to stop the enumeration process of a candidate (K,Y ), as it
guarantees that all the patterns generated from it are covered
by another already found pattern.

Definition 6 (LB). Let K be the current enumerated set of
vertices, Y the set of candidate vertices, R a set of solutions
(R ✓ E(G)), and (S,H) 2 R. Let n and cov be:

n = d� ⇥ |V |
A(S,K)

e � |K|

cov(K,Y,H) =

|K \H|+max(0, n� |Y \H|)
|K|+max(n, |Y \H|)

The lower bound function LB is thus defined by:

LB(K,Y,R) = max

(S,H)2R
(cov(K,Y,H))

This lower bound is used to prune the exploration of
�(K,Y ) as explained below.

Property 5. For each candidate (K 0, Y 0
) 2 �(K,Y ) such

that WRAcc(S,K 0
) � �, there exists at least one pattern

(S,H) 2 R that satisfies cov(K 0, H) � LB(K,Y,R).

Proof. (Sketch) Considering that A(S,K 0
)  A(S,K), we

can derive a bound on the minimal number of vertices that

have to be added to K to obtain WRAcc(S,K 0
) � �. This

is the value n. If n  |Y \ H|, we can prove that cov is
lower bounded by |K\H|

|K|+|Y \H| . If n > |Y \ H|, there will
be necessarily vertices in the intersection and cov is lower
bounded by |K\H|+n�|Y \H|

|K|+n .

Consequently, the exploration of a sub-tree �(K,Y ) is
stopped if LB(K,Y,R) � mincov, because all the candidates
(K 0, Y 0

) of �(K,Y ) with WRAcc(S,K 0
) � � are covered by

an already found solution.

C. The exceptional sub-graph space sampling approach

In practice, the end-user wants to obtain high quality pat-
terns in a short amount of time, especially in interactive data
mining processes. This can be achieved by using the solution
presented in the previous section. However, this approach does
not scale very well with the cardinality of the category set. To
overcome this issue, we propose an approach that computes
a sampling of the exceptional sub-graphs that respects the
distribution of the WRAcc measure within a user-given time-
budget.

We adapt the randomized pattern mining technique of [2]
to exceptional sub-graphs discovery. This so called Controlled
Direct Pattern Sampling enables the user to specify a time
budget and computes a set of high quality patterns whose
size directly depends on the specified amount of time. The
idea consists of sampling the patterns based on a probabil-
ity distribution that rewards high quality patterns. In a first
attempt, we proposed to first sample the characteristics and
then derive the associated sub-graphs. But this strategy failed
in computing patterns with high WRAcc values because the
graph structure was neglicted. Thus, we adopted the reverse
approach that consists in randomly generating connected sub-
graphs and then deriving the most relevant characteristic
S?

(K) that fulfills the constraint WRAcc(S?
(K),K) � �.

We choose S?
(K) as the characteristic that contains all the

characteristics S valid for K: 8S such that valid(S,K), S ✓
S?

(K). We can easily demonstrate that S?
(K) is the most

relevant characteristic for K, that is 8S such that valid(S,K),
WRAcc(S?

(K),K) � WRAcc(S,K).
The sub-graph generation process is based on a random

walk on a graph whose vertices are sub-graphs of G and edges
(transitions) are chosen following a probability measure that
favors high quality patterns (S?

(K),K). The random walk
starts from an empty set (K = ;) that is expanded by adding
vertices in the neighborhood of K drawn randomly: (1) The
random walk starts by drawing a first vertex. Considering
the weight distribution w1(v) = A(S?

(v), v), the probability
distribution is computed by P({v}) =

w1({v})P
u2V w1({u}) . Thus,

the more contrasted is the vertex, the greater is its probability.
After drawing this first vertex v, the current sub-graph is
K = {v}. (2) The random walk continues by considering the
vertices in the neighborhood of the current sub-graph G(K).
Let N(K) be the set of neighbors of K: N(K) = {v 2 V \K |
9v0 2 K, (v, v0) 2 E}. Then, the sub-graph generation is
either stopped, or a vertex v 2 N(K) is drawn and added to K.



Algorithm 3: EXPRESS
1 Output: K the generated sub-graph
2 begin
3 for v 2 V do
4 w1(v) WRAcc(S?(v), v)
5 draw v ⇠ w1(v)
6 K  {v}
7 continue True
8 while continue do
9 // Calculate the probability of drawing K [ {v} for

10 // each neighbor v:
11 for v 2 N(K) do
12 K

0  K [ {v}
13 w2(K

0
,K) 

WRAcc(S?(K0),K0)�WRAcc

�(K)
14 // Calculate the probability of drawing K:
15 w2(K,K) WRAcc(S?(K),K)�WRAcc

�(K)
16 draw K

0 ⇠ w2(K
0
,K)

17 if K0 = K then
18 continue False
19 else
20 K  K

0

21 return K

The choice of the action is taken randomly using a weighted
distribution that favors the vertex (and possibly none) whose
addition to K leads to the largest increase of the WRAcc
measure. Let K 0

= K [ {v}. We define WRAcc�(K) as
the lowest score that can be achieved by the current possible
actions:

WRAcc�(K) = min(minv2N(K) WRAcc(S?
(K 0

),K 0
),

WRAcc(S?
(K),K))

From the weight w2(K
0,K), defined as w2(K

0,K) =

WRAcc(S?
(K 0

),K 0
) � WRAcc�(K), we derive the prob-

ability to reach the connected sub-graph G(K [ {v}) from
G(K) by P(K [ {v}) =

w2(K[{v},K)P
u2N(K) w2(K[{u},K)+w2(K,K) .

This distribution of probabilities rewards transitions towards
connected sub-graphs K 0 with large WRAcc(S?

(K 0
),K 0

)

value. The algorithm EXPRESS2 is repetitively called until
the specified execution time is consumed. For each generated
sub-graph K, if WRAcc(S?

(K),K) � �, then the pattern
(S?

(K),K) is added to the output result set.

IV. EXPERIMENTS

In this section, we report on experimental results to illustrate
the interest of the proposed approach. We start by describ-
ing the different real-world datasets we use, as well as the
questions we aim to answer. Then, we provide a performance
study and give some qualitative results. The implementation
of the method is in Java and the experiments run on machines
equipped with i7-2600 CPUs @ 3.40GHz, and 16GB main
memory, running Ubuntu 12.04, and Java Version 1.6. The
code and the data are available3.

2EXPRESS stands for EXcePtionnal Subgraph Sampler.
3https://github.com/AnesBendimerad/Exceptional-Sub-graph-Mining

A. Datasets and aims
We considered 10 real-world datasets whose characteristics

are given in Table I. Eight of them come from [5] and depict
Foursquare venues over 4 US and 4 EU important cities.
The venues are described by a hierarchy4. We consider the
first level (10 attributes) in the first series of experiments and
the second level (around 300 attributes) for the second ones.
SF. Crimes data5 are provided by a Kaggle challenge and
describe the criminal activity in San Francisco. Finally, San
Francisco C&V is the combination – after normalization –
of SF. Crimes and Foursquare data over San Francisco. Each
city is divided into rectangular zones in such a way that each
rectangle contains a minimal number of venues.

dataset |V | |E| |C| #objects
New York 292 647 10 (356) 71954 venues

Los Angeles 159 348 10 (325) 34504 venues
San Francisco 124 256 10 (328) 21654 venues
Washington 106 216 10 (316) 19190 venues

London 118 241 10 (318) 25029 venues
Paris 115 231 10 (305) 27443 venues
Rome 90 177 10 (279) 13166 venues

Barcelona 109 218 10 (304) 19668 venues
S.F. Crimes 898 2172 39 878049 crimes
S.F. C&V 342 767 49 (328) 878049 cr. + 21654 ven.

TABLE I: Description of the real-world datasets

ENERGETICS and EXPRESS are evaluated regarding the
following questions: What is the efficiency of ENERGETICS
with regard to the graph characteristics that may affect its
execution time? How effective are ENERGETICS’ pruning
properties? Does ENERGETICS scale? Does EXPRESS pro-
vide a good sample of Exceptional sub-graphs? What about
the relevancy of Exceptional sub-graphs?

B. Quantitative study
First, we devised a synthetic generator to evaluate how

effective ENERGETICS’ upper bounds are, while varying the
attributed graph properties |V |, |E| and |C|. A baseline al-
gorithm is obtained by deactivating the upper bounds and
the pruning abilities of ENERGETICS. Thus, the baseline only
pushes monotonic constraints. We also ran ENERGETICS using
each upper-bound in turn. Results are given in Fig. 3. As the
baseline only works with very small graphs, we report on
ENERGETICS’ behavior with much more larger characteris-
tics in the last column. In most of the cases, ENERGETICS
algorithm outperforms the baseline and the versions with a
single upper-bound by several orders of magnitude. The use
of a single upper-bound takes in some cases more time than
the baseline computation. This is due to the upper-bound
verification that can be expensive while ineffective if not used
in conjunction to other upper-bounds. There is no upper bound
that outperforms the others. The efficiency of our algorithm
is due to the conjunctive use of all the upper-bounds. We can
observe that ENERGETICS scales well on the synthetic data
according to the number of vertices and the number of edges
while its execution time increases exponentially w.r.t. to the
number of attributes.

4https://developer.foursquare.com/categorytree
5https://www.kaggle.com/c/sf-crime



Fig. 3: Impact of the upper bounds on runtime (1st column), search space size – characteristics (2nd column), and subgraph
(3rd column) w.r.t. the number of attributes (1st row), edges (2nd row), and vertices (3rd row). Broader parameter values are
explored for ENERGETICS in the 4th column. Experiments carried out on synthetic data with � = 0.015,� = 1,mincov = 0.8.

Fig. 4 reports the behavior (runtime, number of patterns,
and number of explored subgraphs) of ENERGETICS on real-
world datasets when varying the input parameters (mincov,
� and �). Notice that ENERGETICS fails on the real-world
data when the constraint on mincov is desactivated. We can
observe that the behavior of ENERGETICS remains unchanged
when varying mincov. This is due to the fact that most of
redundant subgraphs are strictly included in other ones and
they are discarded with mincov = 1. Results for the two
other parameters � and � are as expected: The execution time
increases when either the thresholds � and � become less
stringent. S.F. C&V is the dataset whose execution times are
the most important. It confirms the fact that the number of
attributes is the most influential data parameter.

We also studied the behavior of our algorithm w.r.t. the
replication factor. For a replication factor equal to n, the
attributed graphs are duplicated n times, so the initial vertices
are repeated n times with the same attributes values and the
same connections with the corresponding duplicated vertices.
Fig. 5 presents the ratio of the execution time divided by
the execution time on the original dataset. Thus, the ratio
is equal to 1 for n = 1. We can observe that ENERGETICS
performances does not degrade too much when the dataset size
increases.

These first experiments demonstrate that ENERGETICS is
only efficient for graphs whose number of attributes is small.
EXPRESS has been designed especially to perform on graphs
with hundreds of attributes, using a time budget to control

the execution time and the number of computed patterns.
To evaluate the ability of EXPRESS to compute exceptional
sub-graphs of high WRAcc values, we report on Fig. 6 the
distributions of the WRAcc measure on both the complete set
of exceptional sub-graphs returned by ENERGETICS and the
sample set provided by EXPRESS. Several time budgets are
used and are all much lower than the execution time required
by ENERGETICS. We can observe that the two distributions are
similar and thus the sampling approach succeeds in fostering
patterns with high WRAcc measure. Also, the higher the
time budget, the better the distribution. Fig. 7 reports similar
distributions for the real-world datasets with hundreds number
of attributes for which an exhaustive search is not possible. The
distributions are similar. Thus, EXPRESS makes it possible to
discover high quality patterns within a time-budget.

C. Qualitative study
ENERGETICS was applied on Barcelona graph with 10

attributes. Fig. 8 (left) displays 5 patterns discovered. Pattern
P1 depicts neighborhoods with a high concentration of venues
of type Outdoors & Recreation. Most of these zones are near
the sea with the Olympic harbor and the main beaches of
Barcelona. This pattern overlaps with two other patterns, P3

and P4. Notice that the ICDM’16 conference venue is covered
by both P1 and P3. The attendees can take benefits of the high
concentration of Outdoors & Recreation places as well as the
nightlife spots and the food places. However, the concentration
of shops in this areas is lower than in the rest of the city.
Pattern P2 depicts zones with a high concentration of places



Fig. 4: Behavior of ENERGETICS (runtime in 1st column, #patterns in 2nd column and, #explored subgraphs in 3rd column)
according to mincov (1st row), � (2nd row) and � (3rd row) for the 10 real-world datasets ( � = 0.001,� = 1,mincov = 0.8).

Fig. 5: Runtime ratio w.r.t. the replication factor for real world
datasets (� = 0.001 except SF Crimes and SF C&V (0.007
and 0.03), � = 1,mincov = 0.8.

of the type Outdoors & Recreation or College & Universities
while the concentration of food places is low. This pattern is
sensible since it contains the famous camp nou stadium as
well as several universities and colleges.

We also applied EXPRESS on Barcelona graph with 304
attributes. Some patterns are reported in Fig. 8 (right). Pattern
P6 identifies an area with a high concentration of metro
stations and state and municipalities as well as Home (private)
in the North of the city. P7 depicts an area with a high
concentration of bars and typical Mediterranean restaurants
while P8 highlights areas with a larger variety of restaurants
(e.g., Salad Place, Asian and Italian Restaurants). P9 contains
a high concentration of hotels and bars. Notice that P7, P8 and

P9 are closed to ICDM’16 conference venue which attendees
could take advantage of these patterns to prepare their venue
according to their preferences.

Besides, we mined exceptional sub-graphs on the different
cities. In most of them (e.g., Barcelona, Paris, Rome, Los
Angeles, London), the nightlife spots are mainly located in the
city center. For New York, they are in the south of Manhattan
and the west of Brooklyn. The higher concentration of outdoor
& recreation places is surrounding for London. For seaside
towns, they are concentrated on the coasts.

V. RELATED WORK

Several approaches have been designed to discover new
insights in vertex attributed graphs. The pioneering work of
Moser et al. [14] presents a method to mine dense homo-
geneous sub-graphs, i.e., sub-graphs whose vertices share a
large set of attributes. Similar to that work, Günnemann et
al. [7] introduce a method based on subspace clustering and
dense sub-graph mining to extract non redundant sub-graphs
that are homogeneous with respect to the vertex attributes.
Silva et al. [18] extract pairs made of a dense sub-graph and
a Boolean attribute set such that the Boolean attributes are
strongly associated with the dense sub-graphs. In [16], the
authors propose to mine the graph topology of a large at-
tributed graph by finding regularities among numerical vertex
descriptors. The main objective of all these approaches is to
find regularities instead of peculiarities within a large graph,



Fig. 6: Distributions of the patterns from ENERGETICS and
EXPRESS with different time budgets (� = 0.001).

whereas Exceptional Sub-graph Mining computes sub-graphs
with their distinguishing characteristics.

Interestingly, a recent work [1] proposes to mine descrip-
tions of communities from vertex attributes, with a Subgroup
Discovery approach. In this supervised setting, each com-
munity is treated as a target that can be assessed by well-
established measures, as the WRAcc measure used in this
paper. More generally, Subgroup Discovery [9], [15] aims to
find descriptions of subpopulations for which the distribution
of a predefined target value is significantly different from
the distribution in the whole data. When there are multiple
targets, Subgroup Discovery consists in finding descriptions
that significantly change the joint distribution of the target
attributes – a task that has been introduced as Exceptional
Model Mining [10], [3]. A variety of measures of changes

Fig. 7: Distribution of the output space sampling with different
time budgets for datasets with larger number of attributes.

have been used: pairwise correlation and entropy measures
[10], Bayesian networks [4], Kullback-Leibler Divergence and
encoding difference based on Minimum Description Length
[21]. The common point to all these approaches is that the
combination of large target space and non-monotonic measures
leads to the use of heuristic search methods, i.e., beam search.
Furthermore, these methods are supervised since the target
attributes are given. The algorithms proposed in this paper
extend many of these results to the unsupervised setting.

Motivated by both scalability issue and user interaction
needs, sampling the output space of patterns has received
much attention in the past decade. Many approaches have
been proposed in the context of transactional data [2], [13],
[12], [6], [11]. Some researchers have tackled the problem
of sampling the output space of frequent sub-graphs in a
collection of graphs [8], [17]. These methods are based on
random walks. In particular, [17] aims at returning the top k
frequent graphs of a specified size. The problem we tackle
is different on several points: We consider a single graph
and a discriminative measure instead of a frequency measure.
Beside, these methods aim at sampling frequent sub-graphs
while we address the problem of exceptional attributed sub-



Id S+ S� WRAcc size
P1 Outdoors & Recreation Shop & Service, Professional &

Other Places
0.0186 11

P2 Outdoors &
Recreation, College &
University

Food 0.0223 11

P3 Nightlife Spot, Food Professional & Other Places 0.0268 14
P4 Outdoors &

Recreation, Events,
Art & Entertainment

Shop & Service, College & Uni-
versity, Travel & Transport, Food

0.0158 2

P5 Shop & Service,
Professional & Other
Places

Outdoors & Recreation, Event,
Nightlife Spot, Art & Entertain-
ment, Food

0.0179 2

P6 Metro Station, Home
(private), States & Mu-
nicipalities

0.0056 11

P7 Mediterranean Restau-
rant, Bar

0.0055 9

P8 Salad Place, Office,
Asian Restaurant,
Italian Restaurant

0.0043 5

P9 Hotel, Bar 0.006 8

Fig. 8: Patterns discovered in Barcelona datasets: by ENER-
GETICS with 10 attributes (patterns P1 to P5 plotted on the
left-hand side map) and by EXPRESS with 304 attributes
(patterns P6 to P9 plotted on the right-hand side map).

graph sampling which is much more challenging since we have
to deal simultaneously with two dimensions: sub-graphs and
characteristics. Our approach is based on a random walk over
sub-graphs that fosters patterns with a high WRAcc measure.

VI. CONCLUSION

We introduced the exceptional sub-graph mining problem to
discover homogenous areas that differ from the rest of the city.
We defined an efficient algorithm that computes the complete
set of exceptional sub-graphs by taking advantage of several
tight upper bounds and other pruning properties. We also
introduced an additional constraint to avoid redundancy. Even-
tually, we designed an algorithm to sample the output space of
patterns to enable time-budget analysis. We reported a exten-
sive empirical study over 10 real-world datasets that demon-
strates the relevancy of our proposal. Whereas we demonstrate
the efficiency of the pruning techniques, ENERGETICS still
has difficulties to scale with the number of attributes. This
problem is fixed by EXPRESS that has capabilities to mine
graphs described by hundreds of attributes while preserving
the WRAcc distribution. We also illustrated the relevancy of
the discovered patterns thanks to a qualitative analysis. Our
proposal can be extended to take into account other graph
topological properties (e.g., diameter). Other quality measure
can be investigated to assess the quality of the characteristics
in the city areas and highlight some specific phenomena.
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