Quantitative 3D electromagnetic field determination of 1D nanostructures from single projection - Archive ouverte HAL
Article Dans Une Revue Ultramicroscopy Année : 2016

Quantitative 3D electromagnetic field determination of 1D nanostructures from single projection

Résumé

One-dimensional (1D) nanostructures have been regarded as the most promising building blocks for nanoelectronics and nanocomposite material systems as well as for alternative energy applications. Although they result in confinement of a material, their properties and interactions with other nanostructures are still very much three-dimensional (3D) in nature. In this work, we present a novel method for quantitative determination of the 3D electromagnetic fields in and around 1D nanostructures using a single electron wave phase image, thereby eliminating the cumbersome acquisition of tomographic data. Using symmetry arguments, we have reconstructed the 3D magnetic field of a nickel nanowire as well as the 3D electric field around a carbon nanotube field emitter, from one single projection. The accuracy of quantitative values determined here is shown to be a better fit to the physics at play than the value obtained by conventional analysis. Moreover the 3D reconstructions can then directly be visualized and used in the design of functional 3D architectures built using 1D nanostructures.no abstract
Fichier principal
Vignette du fichier
VFET_cylindrical_3DEM_revise.pdf (3.35 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01430579 , version 1 (19-01-2017)

Licence

Identifiants

Citer

Charudatta Phatak, Ludvig de Knoop, Florent Houdellier, Christophe Gatel, Martin Hÿtch, et al.. Quantitative 3D electromagnetic field determination of 1D nanostructures from single projection. Ultramicroscopy, 2016, 164, pp.24--30. ⟨10.1016/j.ultramic.2016.03.005⟩. ⟨hal-01430579⟩
146 Consultations
241 Téléchargements

Altmetric

Partager

More