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Abstract

For a Poisson point process X , Itô’s famous chaos expansion implies that ev-
ery square integrable regression function r with covariate X can be decom-
posed as a sum of multiple stochastic integrals called chaos. In this paper,
we consider the case where r can be decomposed as a sum of δ chaos. In
the spirit of Cadre and Truquet (2015), we introduce a semiparametric esti-
mate of r based on i.i.d. copies of the data. We investigate the asymptotic
minimax properties of our estimator when δ is known. We also propose an
adaptive procedure when δ is unknown.
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1 Introduction

1.1 Regression estimation
Regression estimation is a central problem in statistics. It is widely used and
studied in the litterature. Among all the methods explored to deal with the re-
gression problem, nonparametric statistics have been widely investigated (see the
monographies by Tsybakov, 2009 for a full introduction to nonparametric estima-
tion and Györfi et al, 2002 for a clear account on nonparametric regression). A
more recent challenge regarding this statistical problem is the regression onto a
functional covariate (see the books by Ramsay and Silverman, 2005 and Horváth
and Kokozska, 2012 for more precision on functional data analysis). Although
very challenging, the functional regression problem in the minimax setting has
little coverage up to our knowledge. In the kernel estimation setting, Mas (2012)
studied the small ball probabilities over some Hilbert spaces to derive minimax
lower bounds at fixed points. More recently, Chagny and Roche (2016) derived
minimax lower bounds at fixed points for adaptive nonparametric estimation of
the regression under some Wiener measure domination assumptions on the small
ball probabilities. Based on the k-nearest neighbor approach, Biau, Cérou and
Guyader (2010) used compact embedding theory to get bounds on the minimax
risk. See also the references therein for a more complete overview.

1.2 Minimax regression for Poisson coprocess
In this paper, we focus on a regression problem for which the covariate is a Poisson
point process. In the spirit of Cadre and Truquet (2015), we use a method based
on the chaotic decomposition of Poisson functionals.

Let X be a Poisson point process on a compact domain X⊂Rd equipped with
its Borel σ -algebra X . Letting δx the Dirac measure on x ∈ X, the state space
is identified to S = {s = ∑

m
i=1 δxi : m ∈ N∗,xi ∈ X} equipped with the smallest

σ -algebra making the mappings s 7→ s(B) measurable for all Borel set B in X .
We denote by PX the distribution of X whereas L2(PX) denotes the space of all
measurable functions g : S → R such that

‖g‖2
L2(PX )

= Eg(X)2 <+∞.

Let P be a distribution on S ×R and (X ,Y ) with law P. Provided E|Y | < +∞

where E is the expectation with respect to P, we consider the regression function
r : S → R defined by r(s) = E(Y | X = s).
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In this paper we assume that r belongs to L2(PX) and we aim at estimating r
on the basis of an i.i.d. sample randomly drawn from the distribution P of (X ,Y ).
In this context, any measurable map r̃ : (S ×R)n→ L2(PX) is an estimator, the
accuracy of which is measured by the risk

Rn(r̃,r) = En‖r̃− r‖2
L2(PX )

,

where En denotes the expectation with respect to the distribution P⊗n. Follow-
ing the minimax approach, we define the maximal risk of r̃ over a class P of
distributions for the random pair (X ,Y ) by

Rn(r̃,P) = sup
P∈P

Rn(r̃,r).

We are interested in finding an estimator r̂ such that

Rn(r̂,P)� inf
r̃

Rn(r̃,P),

where the infimum is taken over all possible estimates of r and un � vn stands for
0 < liminfn unv−1

n ≤ limsupn unv−1
n < +∞. Such an estimate is called asymptoti-

cally minimax over P .

1.3 Chaotic decomposition in the Poisson space
Roughly, Itô’s famous chaos expansion (see Itô, 1956 and Nualart and Vives, 1990
for technical details) says that every square integrable and σ(X)-measurable ran-
dom variable can be decomposed as a sum of multiple stochastic integrals, called
chaos.

To be more precise, we now recall some basic facts about chaos decomposition
in the Poisson space. Let µ be the mean measure of the Poisson point Process X ,
defined by µ(A) = EX(A) for A ∈X , whenever X(A) is the number of points of
X lying in A. Fix k≥ 1. Provided g ∈ L2(µ⊗k), we can define the k-th chaos Ik(g)
associated with g, namely

Ik(g) =
∫

∆k

gd
(
X−µ)⊗k, (1.1)

where ∆k = {x ∈ Xk : xi 6= x j for all i 6= j}. In Nualart and Vives (1990), it is
proved that every square integrable σ(X)-measurable random variable can be de-
composed as an infinite sum of chaos. Applied to our regression problem, this
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statement writes as

r(X) = EY + ∑
k≥1

1
k!

Ik( fk), (1.2)

where equality holds in L2(PX), provided EY 2 < ∞. In the above formula, each
fk is an element of L2

sym(µ
⊗k) –the subset of symmetric functions in L2(µ⊗k)–,

and the decomposition is defined in a unique way.

1.4 Organization of the paper
In this paper we introduce a new estimator of the regression function r based on
independent copies of (X ,Y ) and we study its minimax properties. Section 2 is
devoted to the definition of a semiparametric model i.e. the construction of the
family P of distributions of (X ,Y ). In particular, we assume that r is a sum
of δ chaos. In Section 3, we provide a lower bound for the minimax risk over
P . When δ is known, we prove that our estimator achieves this bound up to a
logarithmic term. Finally, in Section 4, we define an adaptive procedure when δ is
unknown, the risk of which is also proved to be optimal up to a logarithmic term.
Last sections contain proofs.

2 Model
In the rest of the paper, we let Θ ⊂ Rp. For each θ ∈ Θ , ϕθ : X→ R+ is a
Borel function. The family {ϕθ}θ∈Θ contains the constant function 1X/λ (X),
and is such that there exists three positive constants ϕ , ϕ and γ1 satisfying, for all
x,y ∈ X and θ ,θ ′ ∈Θ ,

ϕ ≤ ϕθ (x)≤ ϕ, (2.1)

|ϕθ (x)−ϕθ ′(x)| ≤ ϕ|θ −θ
′|, (2.2)

|ϕθ (x)−ϕθ (y)| ≤ γ1|x− y|, (2.3)

where, here and in the following, | · | stands for the euclidean norm.

Let (X ,Y ) be a pair of random variables taking values in S ×R with distribu-
tion P, where S is the Poisson space over the compact domain X⊂ Rd . Here, X
is a Poisson point process on X with intensity ϕθ , i.e. for all Borel set A ∈X :

EX(A) =
∫

A
ϕθ dλ , (2.4)
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where λ is the Lebesgue measure and E is the expectation with respect to P. In
other words, the mean measure of X , say µ , has a Radon-Nikodỳm derivative ϕθ

with respect to λ . We assume that for all l ≥ 1, there exists an estimator

θ̃l :
(
S ×R)l →Θ ,

such that,

El|θ̃l−θ |2 ≤ κ

l +1
, (2.5)

where κ > 0 is an absolute constant that does not depend on l and El is the ex-
pectation with respect to P⊗l . As shown in Birgé (1983, Proposition 3.1), the
above property is satisfied by a wide class of models, provided θ̃l is a maximum
likelihood estimate.

Moreover, the real-valued random variable Y satisfies, for some u,M > 0, the
exponential moment condition:

EY 2eu|Y | ≤M, (2.6)

As seen in (1.2), the regression function r(s) = E(Y | X = s) has a chaotic decom-
position. In our model, we consider the case of a finite chaotic decomposition, i.e.
there exists a strictly positive integer δ and f1 ∈ L2

sym(µ), · · · , fδ ∈ L2
sym(µ

⊗δ )
such that

r(X) = EY +
δ

∑
k=1

1
k!

Ik( fk), (2.7)

where the Ik( fk)’s are defined in (1.1). The coefficients fk’s of the chaos lie in a
nonparametric family, for which there exists two strictly positive constants γ2 and
f̄ such that for all k = 1, . . . ,δ , and x,y ∈ Xk

| fk(x)− fk(y)| ≤ γ2|x− y|, (2.8)
| fk(x)| ≤ f̄ . (2.9)

In the rest of the paper, the constants ϕ,ϕ,γ1,u,M,δ ,γ2, f̄ and κ will be fixed,
and we shall denote by P the set of distributions P of (X ,Y ) such that the as-
sumptions (2.1)-(2.5) are satisfied. In this setting, θ implicitly denotes the true
value of the parameter, that is ϕθ is the intensity of X (with mean measure µ).
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3 Minimax properties for known δ

3.1 Chaos estimator
Our task is to construct an estimate of the regression function which achieves fast
rates over P . Let P ∈P and (X ,Y )∼ P where X has mean measure µ = ϕθ ·λ .

First recall some basic facts about chaos decomposition in the Poisson space.
If g ∈ L2(µ⊗k) and h ∈ L2(µ⊗l) for k, l ≥ 1, we have the so-called Itô Isometry
Formula:

EIk(g)Il( f ) = k!
∫
Xk

ghdµ
⊗k1{k=l} and EIk(g) = 0, (3.1)

where g and h are the symmetrizations of g and h, that is, for all (x1, . . . ,xk) ∈Xk:

g(x1, . . . ,xk) =
1
k! ∑

σ

g(xσ(1), . . . ,xσ(k)), (3.2)

the sum being taken over all permutations σ =
(
σ(1), . . . ,σ(k)

)
of {1, . . . ,k}, and

similarly for h.
Now let W be a strictly positive constant and W be a density on X such that

supXW ≤W . Furthermore, let hk = hk(n) > 0 a bandwidth to be tuned later on
and denote

Whk(·) =
1
hd

k
W
( ·

hk

)
.

One may easily deduce from relations (1.2) and (3.1) that

EY Ik
(
W⊗k

hk
(x−·)

)
=
∫
Xk

fkW⊗k
hk

(x−·)ϕ⊗k
θ

dλ
⊗k,

where, here and in the following, for any real-valued function g defined on X, the
notation g⊗k denotes the real-valued function on Xk such that

g⊗k(x) =
k

∏
i=1

g(xi), x = (x1, . . . ,xk) ∈ Xk.

Thus, under the smoothness assumptions (2.1) on ϕθ and (2.9) on fk, the right-
hand side converges to fk(x)ϕ⊗k

θ
(x), provided hk→ 0.
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Now let (X ,Y ),(X1,Y1), . . . ,(Xn,Yn) be i.i.d. with distribution P. Based on this
observation, a semiparametric estimate denoted Îk,hk(X) of the k-th chaos Ik( fk)
of (1.1) may be defined as follows:

1
n

n

∑
i=1

Yi1|Yi|≤Tn

∫
∆ 2

k

W⊗k
hk

(x− y)

ϕ
⊗k
θ̂i

(x)

(
Xi−ϕ

θ̂i
·λ
)⊗k

(dy)
(
X−ϕ

θ̂i
·λ
)⊗k

(dx), (3.3)

where Tn > 0 is a truncation parameter to be tuned later on and the θ̂i’s are the
leave-one-out estimates defined by θ̂i = θ̃n−1

(
(X j) j≤n, j 6=i

)
(see Section 2).

3.2 Results
Based on the estimate (3.3) of the k-th chaos, we may define the following em-
pirical mean type estimator of the regression function r for any strictly positive
integer l

r̂l(X) = Y n +
l

∑
k=1

1
k!

Îk,hk(X), (3.4)

where Y n is the empirical mean of Y1, . . . ,Yn.
In this subsection, we study the performance of the estimate r̂δ of the regres-

sion function from a minimax point of view when the number of chaos δ is known.

Theorem 3.1. Let ε > 0 and set Tn = (lnn)1+ε and hk = (T 2
n n−1)1/(2+dk). Then,

limsup
n→+∞

( n
(lnn)2+2ε

)2/(2+dδ )
sup
P∈P

Rn
(
r̂δ ,r)< ∞.

Remark – Thus, the optimal rate of convergence over P is upper bounded by(
(lnn)2+2εn−1)2/(2+dδ )

. Here it is noticeable that, up to a logarithmic factor, we
recover the optimal rate n−2/(2+dδ ) corresponding to the dδ -dimensional regres-
sion with a Lipschitz regression function (see, e.g., Theorem 1 in Kohler et al.
2009).

In our next result, we provide a lower bound for the optimal rate of conver-
gence over P in order to assess the tightness of the upper bound obtained in
Theorem 3.1.
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Theorem 3.2. We have,

liminf
n→+∞

n2/(2+dδ ) inf
r̃

sup
P∈P

Rn(r̃,r)> 0,

where the infimum is taken over all estimates r̃.

Remark – Theorem 3.2 indicates that the optimal rate of convergence over P is
lower bounded by n−2/(2+dδ ) which, up to a logarithmic factor, corresponds to the
upper bound found in Theorem 3.1. As a conclusion, up to a logarithmic factor,
the estimate r̂δ is asymptotically minimax on P .

4 Adaptive properties for unknown δ

We now consider the case of an unknown number of chaos δ . For m > 0, we set

P(m) = {P ∈P : ‖ fk‖ ≥ m; k ∈ 1, . . . ,δ},

where ‖·‖ stands for the L2-norm relatively to the Lebesgue measure. Thus, when-
ever P ∈P(m),

δ = min(k : ‖ fk‖= 0)−1.

Based on this observation, a natural estimate of δ may be obtained as follows. Let
we assume that the dataset is of size 2n, and let (X1,Y1), . . . ,(X2n,Y2n) be i.i.d. with
distribution P ∈P(m). For k ∈ 1, . . . ,δ , we introduce the empirical counterpart
of ϕθ fk defined by

ĝk(x) =
1
n

2n

∑
i=n+1

Yi

∫
∆k

W⊗k
bk

(x− y)
(
Xi−ϕ

θ̂
·λ
)⊗k

(dy), (4.1)

where θ̂ = θ̃n(Xn+1, . . . ,X2n) is defined in Section 2), and bk = bk(n) is a band-
width to be tuned later. The estimator δ̂ of δ is then defined by

δ̂ = min(k : ‖ĝk‖ ≤ ρk)−1, (4.2)

where ρk = ρk(n) is a vanishing sequence of positive numbers that we choose later
on. We may now define the adaptative estimator r̂ of r by

r̂ = r̂
δ̂
,

where r̂l is defined in (3.4) for all strictly positive integer l.
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Theorem 4.1. Let ε > dδ ≥ 2, α,β > 0 such that α + β < 1 and 2α + β >
1/(2+dδ ), and set Tn = (lnn)1+ε . Then, if we take for all integer k,

hk = (T 2
n n−1)1/(2+dk), ρk = ((2k)!)2n(α+β−1)/2 and bk = n−β/(2dk),

we obtain, for all m > 0,

limsup
n→+∞

( n
(lnn)2+2ε

)2/(2+dδ )
sup

P∈P(m)

Rn(r̂,r)<+∞.

Remark – Here it is noticeable that despite the estimation of the number of
chaos δ and up to a logarithmic factor, we recover the optimal rate n−2/(2+dδ ) of
Theorems 3.1 and 3.2.

5 Proof of Theorem 3.1
In this section, we assume without loss of generality that the constants ϕ , γ1, γ2,
f̄ , λ (X) and W are greater than 1 and that ϕ is smaller than 1. Moreover, C
denotes a positive number that only depends on the parameters of the model, i.e.
u,ϕ,ϕ,γ1,γ2, f̄ ,δ ,θ ,κ , λ (X),M and W , and whose value may change from line
to line.

We let P∈P and, for simplicity, we may denote E=En and var stands for the
variance relatively to P⊗n. Finally, let (X ,Y ),(X1,Y1), . . . ,(Xn,Yn) be i.i.d. with
distribution P.

5.1 Technical results
Let k ≥ 1 be fixed and denote for all x,y ∈ X and i = 1, . . . ,n:

gi(x,y) =
Whk(x− y)

ϕ
θ̂i
(x)

and g(x,y) =
Whk(x− y)

ϕθ (x)
. (5.1)

We also let

dX̂i = dXi−ϕ
θ̂i

dλ , dX̂ ′i = dX−ϕ
θ̂i

dλ , (5.2)

dX̃i = dXi−ϕθ dλ and dX̃ = dX−ϕθ dλ . (5.3)
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With this respect, we have (see (3.3)):

Îk,hk(X) =
1
n

n

∑
i=1

Yi1|Yi|≤Tn

∫
∆ 2

k

g⊗k
i (x,y)X̂⊗k

i (dy)X̂ ′⊗k
i (dx).

Furthermore, denote for all x ∈ Xk:

Zi,k(x) = Yi1|Yi|≤Tn

∫
∆k

g⊗k(x,y)X̃⊗k
i (dy). (5.4)

Lemma 5.1. Let i = 1, . . . ,n and k ≤ δ be fixed. Then for all x ∈ Xk:

var
(
Zi,k(x)

)
≤ T 2

n
k!Ck

hdk
k

, and

|EZi,k(x)− fk(x)| ≤Ck
(

φ
k!

hdk
k

)1/2
+Ckhk,

where φ = EY 21|Y |>Tn .

Proof. On the one hand, by the isometry formula (3.1) over the set P ,

var
(
Zi,k(x)

)
≤ T 2

n E
(∫

∆k

g⊗k(x,y)X̃⊗k(dy)
)2

≤ T 2
n k!

∫
Xk

g⊗k2
(x,y)ϕ⊗k

θ
(y)dy

≤ T 2
n

W k
ϕ

k

ϕ2k
k!

hdk
k
,

where g⊗k(x, ·) is the symmetrization –see (3.2)– of the function g⊗k(x, ·) defined
in (5.1). On the other hand, denote

Z̃i,k(x) = Yi

∫
∆k

g⊗k(x,y)X̃⊗k
i (dy),

then by the isometry formula (3.1):

EZ̃i,k(x) = Er(X)
∫

∆k

g⊗k(x,y)X̃⊗k(dy) =
∫
Xk

fk(y)g⊗k(x,y)ϕ⊗k
θ

(y)dy

=
1

ϕ
⊗k
θ

(x)

∫
Xk

fk(x−hkz)W⊗k(z)ϕ⊗k
θ

(x−hkz)dz.
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Furthermore, by assumptions (2.1), (2.3), (2.8) and (2.9) on the model, we have
for all x,y ∈ Xk:

| fk(x)ϕ⊗k
θ

(x)− fk(y)ϕ⊗k
θ

(y)| ≤ ϕ
k| fk(x)− fk(y)|+ f̄ |ϕ⊗k

θ
(x)−ϕ

⊗k
θ

(y)|
≤
(
ϕ

k
γ2 + k f̄ ϕ

k−1
γ1
)
|x− y|

≤ 2k f̄ ϕ
k
γ2γ1|x− y|.

Hence, letting ωk =
∫
Xk |z|W⊗k(z)dz,

|EZi,k(x)− fk(x)| ≤ |E
(
Zi,k(x)− Z̃i,k(x)

)
|+ |EZ̃i,k(x)− fk(x)|

≤
∣∣EY 1|Y |>Tn

∫
∆k

g⊗k(x,y)X̃⊗k(dy)
∣∣+ |EZ̃i,k(x)− fk(x)|

≤ φ
1/2
(
E
(∫

∆k

g⊗k(x,y)X̃⊗k(dy)
)2
)1/2

+2k f̄ ωk
ϕ

k
γ2γ1

ϕk hk.

One last application of the isometry formula (3.1) to the first term on the right-
hand side of above gives the Proposition. �

With the help of notations (5.1), (5.2) and (5.3), define

Ri
1k = E

(∫
∆ 2

k

g⊗k
i (x,y)X̂⊗k

i (dy)
[
X̂ ′⊗k

i (dx)− X̃⊗k(dx)
])2

, (5.5)

Ri
2k = E

(∫
∆ 2

k

g⊗k
i (x,y)

[
X̂⊗k

i (dy)− X̃⊗k
i (dy)

]
X̃⊗k(dx)

)2
. (5.6)

Lemma 5.2. Let i = 1, . . . ,n and k ≤ δ be fixed. Then, for j = 1 or 2:

Ri
jk ≤Ck (k!)2

nhdk
k
.

Proof. The proofs for the bounds for Ri
1k and Ri

2k being similar, we only prove the
one for Ri

1k. We have

Ri
1k = EE

[(∫
∆ 2

k

g⊗k
i (x,y)X̂⊗k

i (dy)
[
X̂ ′⊗k

i (dx)− X̃⊗k(dx)
])2∣∣∣(Xl)l≤n

]
,

Using the independence of X and (Xl)l≤n, we can apply Lemma 4.2 from Cadre
and Truquet (2015), which entails

Ri
1k ≤

k−1

∑
j=0

j!
(

k
j

)2

ϕ
j
∫
Xk

E
[
V k− j

i

(∫
∆k

g⊗k
i (x,y)X̂⊗k

i (dy)
)2
]

dx, (5.7)
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where Vi = ‖ϕθ̂i
−ϕθ‖2. Now let x ∈ Xk and j = 0, . . . ,k−1 be fixed. We have

EV k− j
i

(∫
∆k

g⊗k
i (x,y)X̂⊗k

i (dy)
)2
≤ 2EV k− j

i

(∫
∆k

g⊗k
i (x,y)

(
X̂⊗k

i (dy)− X̃⊗k
i (dy)

))2

+2EV k− j
i

(∫
∆k

g⊗k
i (x,y)X̃⊗k

i (dy)
)2

.

We proceed to bound the two terms on the right-hand side of above. As before, we
apply Lemma 4.2 from Cadre and Truquet (2015), but conditionally on (Xl)l≤n,l 6=i.
For notational simplicity, and since it does change the result anymore, we do
not specify the symmetrized version of the functions when using the isometry
formula. By (3.1) and assumption (2.1), we then get

EV k− j
i

(∫
∆k

g⊗k
i (x,y)X̂⊗k

i (dy)
)2
≤ 2

k−1

∑
l=0

l!
(

k
l

)2

ϕ
lEV 2k−l− j

i

∫
Xk

g⊗k
i (x,y)2dy

+2k!ϕkEV k− j
i

∫
Xk

g⊗k
i (x,y)2dy.

Note that for all m≥ 1, by (2.2), we have

V m
i ≤

(
ϕ

2
λ (X)

)m−1(sup
X
|ϕ

θ̂i
−ϕθ |

)2
λ (X)

≤
(
ϕ

2
λ (X)

)m|θ̂i−θ |2,
and ∫

Xk
g⊗k

i (x,y)2dy≤ W k

ϕ2khdk
k
.

Hence, since l!
(

k
l

)
≤ k!, we get with (2.5):

EV k− j
i

(∫
∆k

g⊗k
i (x,y)X̂⊗k

i (dy)
)2
≤ 2k!

W k

φ
2k

κ

nhdk
k

(
φ

2
λ (X)

)k− j(
ϕ +ϕ

2
λ (X)

)k
.

Finally, we deduce with similar arguments and inequality (5.7) that

Ri
1k ≤ 2(k!)2 W k

ϕ2k
κ

nhdk
k

(
ϕ +ϕ

2
λ (X)

)2k

≤ 2(k!)2 4kW k
ϕ

4k

ϕ2k
κ

nhdk
k

λ (X)2k,

because both ϕ and λ (X) are greater than 1. The Lemma is proved. �
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Lemma 5.3. Let ε > 0 be fixed and set Tn = (lnn)1+ε . Then, for all k ≤ δ :

E
(
Îk,hk(X)− Ik( fk)

)2 ≤Ck(k!)2((lnn)2+2ε

nhdk
k

+h2
k
)
.

Proof. With the help of notations (5.1), (5.2), (5.3), we let

J1 =
1
n

n

∑
i=1

Yi1|Yi|≤Tn

∫
∆ 2

k

g⊗k
i (x,y)X̃⊗k

i (dy)X̃⊗k(dx),

J2 =
1
n

n

∑
i=1

Yi1|Yi|≤Tn

∫
∆ 2

k

g⊗k(x,y)X̃⊗k
i (dy)X̃⊗k(dx).

Then, using notations of Lemma 5.2, by Jensen’s Inequality

E
(
Îk,hk(X)− J1

)2 ≤ 2
T 2

n
n

n

∑
i=1

(Ri
1k +Ri

2k),

Hence, by Lemma 5.2

E
(
Îk,hk(X)− J1

)2 ≤ T 2
n Ck (k!)2

nhdk
k
. (5.8)

Moreover, sequentially conditioning on (Xl)l≤n, then on (Xl)l≤n,l 6=i, and using
assumption (2.1), we find with two successive applications of the isometry for-
mula (3.1) that

E
(
J1− J2

)2 ≤ (k!)2T 2
n ϕ

2kE
∫
X2k

(
g⊗k

1 (x,y)−g⊗k(x,y)
)2dxdy.

Now let x,y ∈ Xk be fixed. We have

∣∣g⊗k
1 (x,y)−g⊗k(x,y)

∣∣≤ W⊗k
hk

(x− y)

ϕ
⊗k
θ

(x)
k

ϕ
k−1

ϕk sup
X
|ϕ

θ̂1
−ϕθ |,

so that (2.2) and (2.5) give

E
(
J1− J2

)2 ≤CkT 2
n
(k!)2

nhdk
k
. (5.9)

13



Finally, using notation (5.4), by the isometry formula (3.1), we have

E
(
J2− Ik( fk)

)2
= E

(∫
∆k

(1
n

n

∑
i=1

Zi,k(x)− fk(x)
)
X̃⊗k(dx)

)2

= k!
∫
Xk

E
(1

n

n

∑
i=1

Zi,k(x)− fk(x)
)2

ϕ
⊗k
θ

(x)dx

= k!
∫
Xk

(1
n

var
(
Z1,k(x)

)
+
(
EZ1,k(x)− fk(x)

)2
)

ϕ
⊗k
θ

(x)dx.

By Lemma 5.1, we thus get

E
(
J2− Ik( fk)

)2 ≤ T 2
n
(k!)2Ck

nhdk
k

+Ck(k!)2 φ 2

hdk
k

+Ckk!h2
k .

Moreover, given that (2.6) gives φ ≤ e−uTn EY 2eu|Y |. Consequently,

E
(
J2− Ik( fk)

)2 ≤Ck(k!)2
( T 2

n

nhdk
k

+
e−2uTn

hdk
k

+h2
k

)
.

Finally, combining inequalities (5.8), (5.9) and above, we deduce that with the
choice Tn = (lnn)1+ε :

E
(
Îk,hk(X)− Ik( fk)

)2 ≤Ck(k!)2
((lnn)2+2ε

nhdk
k

+h2
k

)
,

hence the Lemma. �

5.2 Proof of Theorem 3.1
According to Jensen Inequality and Lemma 5.3, we have by (3.4) and (2.7):

E
(
r̂δ (X)− r(X)

)2
= E

(
Ȳn−EY +

δ

∑
k=1

1
k!
(
Îk,hk(X)− Ik( fk)

))2

≤ 2var(Y )
n

+δ

δ

∑
k=1

Ck
(
(lnn)2+2ε

nhdk
k

+h2
k

)
.

Setting hk =
(
(lnn)2+εn−1)1/(2+dk), we deduce that, since var(Y )≤M:

E
(
r̂δ (X)− r(X)

)2 ≤ 2M
n

+C
((lnn)2+2ε

n

)2/(2+dδ )
,

hence the theorem. �
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6 Proof of Theorem 3.2
In this section we assume for simplicity that X contains the hypercube X0 =
[0,1]d .

6.1 Technical results
We introduce the set F = Fδ (γ2, f̄ ) of functions f : Xδ → R in L2

sym(λ
⊗δ ) for

which conditions (2.8) and (2.9) hold, and let R =Rδ (γ2, f̄ ) be the class of func-
tions r f : S → R with f ∈F such that

r f (·) =
1
δ !

∫
∆δ

f d(·−λ )⊗δ . (6.1)

Letting P the distribution of the Poisson point process on X with unit intensity, we
may define the following distance D on R by

D(r f0,r f1) = ‖r f0− r f1‖L2(P). (6.2)

Whenever P ∈P , we can associate the regression function r. To stress the den-
dendency on r, we now write Pr instead of P. Now let N > 0. We define the fol-
lowing three conditions for any sequence of size N + 1 of functions r(0), . . . ,r(N)

from S to R:

R1. r( j) ∈R, for j = 0, . . . ,N;

R2. D(r(i),r( j))≥ 2n−1/(2+dδ ), for 0≤ i < j ≤ N;

R3.
1
N

N

∑
j=1

K
(
P⊗n

r( j),P⊗n
r(0)
)
≤ α logN for some 0 < α < 1/8 where K is the

Kullback-Leibler divergence (see e.g. Tsybakov, 2009).

Lemma 6.1. Introduce f0 ≡ 0, f1, . . . , fN , N +1 functions from Xδ to R such that

F1. f j ∈F ;

F2. ‖ fi− f j‖ ≥ 2n−1/(2+dδ );

F3.
1
N

N

∑
i=1

n
2
‖ fi‖2 ≤ α logN for some 0 < α < 1/8.

15



Then, the sequence of functions r f0, . . . ,r fN defined by (6.1) verify conditions R1,
R2 and R3.

Proof. First of all, remark that since f j ∈F for j = 0, . . . ,N, by definition of the
r f j’s and the set R, we have r f j ∈R. Hence condition R1 is satisfied by the r f j’s.
Now remark that the Itô isometry (3.1) gives for any 0≤ i, j ≤ N

D(r f j ,r fi) = ‖ f j− fi‖.

This ensures that the r f j’s statisfy condition R2. Finally, for all j = 0, . . . ,N

K
(
P⊗n

r f j
,P⊗n

r f0

)
= nK (Pr f j

,Pr f0
)

= nEr f0

(
log

dPr f0

dPr f j

(X ,Y )
)

= nEr f0
Er f0

(
log

dPr f0

dPr f j

(X ,Y ) | X
)
,

where Er f0
is the expectation under Pr f0

. Denote by p the density of the N (0,1).
Then, since f0 ≡ 0

Er f0

(
log

dPr f0

dPr f j

(X ,Y ) | X
)
=
∫
R

log
(

p(u)
p
(
u− r f j(X)

))p(u)du.

Simple calculus then give

Er f0

(
log

dPr f0

dPr f j

(X ,Y ) | X
)
≤ 1

2
(
r f j(X)

)2
.

Thus, by the Itô Isometry,

K
(
P⊗n

r f j
,P⊗n

r f0

)
≤ n

2
‖ f j‖2,

hence the lemma. �

6.2 Proof of Theorem 3.2
Let P0 be the subset of distributions Pr of (X ,Y ) in P for which X is a Poisson
point process with unit intensity (recall that the unit function lies in {ϕθ}θ∈Θ , see
Section 2) and such that

Y = r(X)+ ε, (6.3)
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where r ∈R and ε is independent from X with distribution N (0,1). Since P0 ⊂
P , we have

inf
r̃

sup
Pr∈P0

Rn(r̃,r)≤ inf
r̃

sup
Pr∈P

Rn(r̃,r).

As a result, in order to prove Theorem 3.2, we need only to prove that

liminf
n→+∞

n2/(2+dδ ) inf
r̃

sup
Pr∈P0

Rn(r̃,r)> 0,

which accordingly to (6.2) may be written

liminf
n→+∞

n2/(2+dδ ) inf
r̃

sup
Pr∈P0

En
r D2(r̃,r)> 0, (6.4)

where En
r denotes expectation with respect to P⊗n

r . Then, according to Lemma 6.1
and Theorem 2.5 page 99 in the book by Tsybakov (2009), in order to prove
(6.4), we need only to prove the existence of a sequence of functions satisfying
conditions F1, F2 and F3 defined in the previous subsection. To this end, we
let ψ ∈ L2

sym(λ
⊗δ ) be a nonzero function such that Supp(ψ) = Xδ

0 and, for all
x,y ∈ Xδ

0 : ∣∣ψ(y)−ψ(x)
∣∣≤ γ2

2
|y− x| and |ψ(x)| ≤ f̄ . (6.5)

Let Q =
⌊
c0ndδ/(2+dδ )

⌋
≥ 8 where c0 > 0 and b·c is the integer part and let an =

(1/Q)1/(dδ ). One may easily prove that there exists t1, . . . , tQ in Xδ
0 such that the

functions

ψq(·) = anψ

(
·− tq

an

)
, for q = 1, . . . ,Q,

verify the following assumptions

(i) Supp(ψq)⊂ Xδ
0 , for q = 1, . . . ,Q;

(ii) Supp(ψq)∩Supp(ψ ′q) = /0, for q 6= q′;

(iii) λ⊗δ
(
Supp(ψq)

)
= Q−1.

17



Now let, for all ω ∈ {0,1}Q:

fω(·) =
Q

∑
q=1

ωqψq(·),

According to the Varshamov-Gilbert Lemma (see the book by Tsybakov, 2009,
Lemma 2.8 page 104), there exists a subset Ω = {ω(0), . . . ,ω(N)} of {0,1}Q such
that ω(0) = (0,0, · · ·), N ≥ 2Q/8, and for all j 6= k:

Q

∑
q=1
|ω( j)

q −ω
(k)
q | ≥

Q
8
.

Now fix 0 < α < 1/8 and set

c0 = (4‖ψ‖2
α
−1)dδ/(2+dδ ).

We may now prove that functions { f
ω( j) : j = 0, . . . ,N} satisfy conditions F1, F2

and F3. First of all, let j 6= k be fixed and remark that,

‖ f
ω( j)− f

ω(k)‖2 ≤
∫
Xδ

0

(
f
ω( j)(x)− f

ω(k)(x)
)2dx

=
∫
Xδ

0

( Q

∑
q=1

(
ω

( j)
q −ω

(k)
q
)
ψq(x)

)2
dx

=
Q

∑
q=1

∫
Supp(ψq)

(
ω

( j)
q −ω

(k)
q
)2a2

nψ
2

(
x− tq

an

)
dx,

=
a2

n
Q

Q

∑
q=1

∣∣ω( j)
q −ω

(k)
q
∣∣∫

Xδ
0

ψ
2(x)dx.

Furthermore, by definition of the set Ω , we have

Q
8
≤

Q

∑
q=1

∣∣ω( j)
q −ω

(k)
q
∣∣≤ Q,

so that

‖ψ‖2

8
a2

n ≤ ‖ f
ω( j)− f

ω(k)‖2 ≤‖ψ‖2a2
n. (6.6)
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Now let 0 ≤ j ≤ N. Since ψ ∈ L2
sym(λ

⊗δ ) it is clear that f
ω( j) inherits that prop-

erty. Then, using the first part of assumption (6.5) on ψ and assumption (ii) on
the ψq’s, one may easily prove that f

ω( j) is a Lipschitz function with constant
γ2. Finally, using the second part of assumption (6.5) on ψ and assumption (ii)
on the ψq’s, we get that for all x ∈ Xk, | f

ω( j)(x)| ≤ an f̄ with an ≤ 1 as soon as

n≥ c−(2+dδ )/(dδ )
0 . We conclude that f

ω( j) ∈F so that condition F1 is satisfied by
f
ω( j) . Now, taking k = 0 in (6.6) gives

1
N

N

∑
j=1

n
2
‖ f

ω( j)‖2 ≤ n‖ψ‖2

2
a2

n ≤
‖ψ‖2

2
c−(2+dδ )/(dδ )

0 Q.

Since N ≥ 2Q/8 and c0 ≥ (4‖ψ‖2α−1)dδ/(2+dδ ), we get

1
N

N

∑
j=1

n
2
‖ f

ω( j)‖2 ≤ 4‖ψ‖2c−(2+dδ )/(dδ )
0 logN ≤ α logN,

so that F3 is satisfied. Finally, according to (6.6), we have

‖ f
ω( j)− f

ω(k)‖ ≥
‖ψ‖
2
√

2
an =

‖ψ‖
2
√

2
(2c0)

−1/(dδ )n−1/(2+dδ ).

We can now conclude that conditions F1, F2 and F3 are satisfied so that according
to Theorem 2.5 page 99 from the book by Tsybakov (2009) and Lemma 6.1, (6.4)
is verified. Theorem follows. �

7 Proof of Theorem 4.1
In this section, we assume without loss of generality that the constants ϕ , γ1, γ2,
f̄ , λ (X) and W are greater than 1 and that ϕ and m are smaller than 1. Moreover,
C denotes a positive number that only depends on the parameters of the model,
i.e. m,u,ϕ,ϕ,δ ,γ1,γ2, f̄ ,θ ,κ , λ (X),M and W , and whose value may change from
line to line.

We let P ∈P(m), and for simplicity, we denote E= E2n the expectation with
respect to P⊗2n. Recall that (X ,Y ),(X1,Y1), . . . ,(X2n,Y2n) are i.i.d. with distribu-
tion P.
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7.1 Technical results
For k ≥ 1, denote for all x ∈ Xk:

gk(x) =
1
n

n

∑
i=1

Yi

∫
∆k

W⊗k
bk

(x− y)
(
Xi−ϕθ ·λ

)⊗k
(dy). (7.1)

We also let

Sk =
1
n

n

∑
i=1
|Yi|
(
Xi(X)+ϕλ (X)

)k
. (7.2)

Lemma 7.1. We have, for all k:

‖ĝk−gk‖ ≤CkSk
|θ̂ −θ |
bdk/2

k

.

Proof. Let µ̂ the signed measure

µ̂(dy) =
1
n

n

∑
i=1

Yi

[(
Xi−ϕ

θ̂
·λ
)⊗k

(dy)−
(
Xi−ϕθ ·λ

)⊗k
(dy)

]
=

1
n

n

∑
i=1

Yi

k−1

∑
l=0

(
k
l

)
(−1)k−l

l

∏
j=1

Xi(dy j)
[ k

∏
j=l+1

ϕ
θ̂
(y j)dy j−

k

∏
j=l+1

ϕθ (y j)dy j

]
.

Then,

‖ĝk−gk‖2 =
∫
Xk

(∫
∆k

W⊗k
bk

(x− y)µ̂(dy)
)2

dx

=
∫

∆ 2
k

[∫
Xk

W⊗k
bk

(x− y(1))W⊗k
bk

(x− y(2))dx
]

µ̂(dy(1))µ̂(dy(2)).

But, ∫
Xk

W⊗k
bk

(x− y(1))W⊗k
bk

(x− y(2))dx≤ W k

bdk
k
.

Furthermore, one gets by induction that for l = 0, . . . ,k−1:∣∣∣ k

∏
j=l+1

ϕ
θ̂
(y j)−

k

∏
j=l+1

ϕθ (y j)
∣∣∣≤ ϕ

k−l−1
k

∑
j=l+1

|ϕ
θ̂
(y j)−ϕθ (y j)|,
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and by assumptions (2.1) and (2.2),∫
Xk−l

k

∑
j=l+1
|ϕ

θ̂
(y j)−ϕθ (y j)|dyl+1 . . .dyk ≤ (k− l)λ (X)k−l−1

∫
X
|ϕ

θ̂
−ϕθ |dλ

≤ (k− l)λ (X)k−l
ϕ|θ̂ −θ |.

Puting all pieces together, we get

‖ĝk−gk‖2 ≤ W k

bdk
k

(
1
n

n

∑
i=1
|Yi|

k−1

∑
l=0

k
(

k−1
l

)
Xi(X)l

ϕ
k−l−1

λ (X)k−l|θ̂ −θ |
)2

.

We can then conclude

‖ĝk−gk‖2 ≤ W kk2λ (X)2

bdk
k

|θ̂ −θ |2
(1

n

n

∑
i=1
|Yi|
(
Xi(X)+ϕλ (X)

)k−1
)2

.

Lemma follows, since ϕλ (X)≥ 1. �

Denote for all i, j ≥ 0

si, j = E|Y |i
(
X(X)+ϕλ (X)

) j
. (7.3)

Moreover, (Vn)n is a sequence of real numbers, bigger than 1 and tending to infin-
ity, to be tuned latter.

Lemma 7.2. Let l ≥ 0 be fixed. Then for all x ∈ Xk,

E
∣∣∣Y ∫

∆k

W⊗k
bk

(x− y)X̃⊗k(dy)
∣∣∣l ≤ sl,lk

Clk

bldk
k

.

Moreover,

E
(

Y
∫

∆k

W⊗k
bk

(x− y)X̃⊗k(dy)
)2
≤Ck√s4,4k

(
k!

V 2
n

bdk
k

+
e−uVn/2

b2dk
k

)
.

Proof. First observe that∣∣∣∫
∆k

W⊗k
bk

(x− y)X̃⊗k(dy)
∣∣∣≤ W k

bdk
k

k

∑
l=0

(
k
l

)
ϕ

k−l
λ (X)k−lX(X)l

≤ W k

bdk
k

(
X(X)+ϕλ (X)

)k
.
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Hence,

E
∣∣∣Y ∫

∆k

W⊗k
bk

(x− y)X̃⊗k(dy)
∣∣∣l ≤ W lksl,lk

bldk
k

Regarding the second inequality, we observe that

E
(

Y
∫

∆k

W⊗k
bk

(x− y)X̃⊗k(dy)
)2
≤V 2

n E
(∫

∆k

W⊗k
bk

(x− y)X̃⊗k(dy)
)2

+E
(

Y 1|Y |>Vn

∫
∆k

W⊗k
bk

(x− y)X̃⊗k(dy)
)2

.

By (3.1),

E
(∫

∆k

W⊗k
bk

(x− y)X̃⊗k(dy)
)2
≤ k!

Ck

bdk
k
.

Moreover, by the Cauchy-Schwarz Inequality, (2.6) and above,[
E
(

Y 1|Y |>Vn

∫
∆k

W⊗k
bk

(x− y)X̃⊗k(dy)
)2]2

≤ P(|Y |>Vn)

+E
(

Y
∫

∆k

W⊗k
bk

(x− y)X̃⊗k(dy)
)4

≤Cks4,4k
e−uVn

b4dk
k

.

Puting all pieces together gives the result. �

Lemma 7.3. Let k > δ be fixed. Then,

P(δ̂ = k)≤Ck ((2k)!+ s1,k)
2

n(ρkbdk/2
k )2

+
s2,2k

n((2k)!)2

+
Ck

ρ8
k

s8,8k max
( n
(nbdk

k )8
,
(k!)4V 8

n

(nbdk
k )4

+
e−2uVn

(nb2dk
k )4

)
.

Proof. Since k > δ , we have with notation (7.1)

P(δ̂ = k)≤ P(‖ĝk‖> ρk)

≤ P(‖ĝk−gk‖+‖gk‖> ρk)

≤ P(2‖ĝk−gk‖> ρk)+P(2‖gk‖> ρk). (7.4)
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Regarding the first term on the right-hand side, we observe that by Lemma 7.1
and (2.5):

P(2‖ĝk−gk‖> ρk)≤ P
(

CkSk
|θ̂ −θ |
bdk/2

k

≥ ρk

)
≤ P

(
Ck((2k)!+ s1,k

)
|θ̂ −θ | ≥ ρkbdk/2

k

)
+P
(
|Sk− s1,k| ≥ (2k)!

)
≤Ck ((2k)!+ s1,k)

2

n(ρkbdk/2
k )2

+
E|Sk− s1,k|2

((2k)!)2 .

Regarding the latter term on the right-hand side of inequality (7.4), since k > δ ,
we have

EY
∫

∆k

W⊗k
bk

(x− y)X̃⊗k(dy) = 0,

by (3.1). Thus, according to the Rosenthal Inequality (e.g. see Ibragimov and
Sharakhmetov, 1999), we get

E‖gk‖8 ≤ λ (X)3kE
∫
Xk

g8
kdλ

≤Ck
∫
Xk

max
(

1
n7 Dk,8(x),

1
n4 (Dk,2)

4(x)
)

dx,

where for all j ≥ 0 and x ∈ Xk:

Dk, j(x) = E
∣∣∣Y ∫

∆k

W⊗k
bk

(x− y)X̃⊗k(dy)
∣∣∣ j
.

Finally, according to Lemma 7.2 and since s2
4,4k ≤ s8,8k, we obtain

E‖gk‖8 ≤Cks8,8k max
(

n(
nbdk

k

)8 ,
(k!)4V 8

n

(nbdk
k )4

+
e−2uVn

(nb2dk
k )4

)
.

Lemma follows. �

From now on, denote

E2
k+1 = 2(ϕk+1

γ2 + k f̄ ϕ
k)ωk+1λ (X)k+2 f̄ , (7.5)

where ωk+1 =
∫
Xk+1 |x|K⊗k+1(x)dx and the other constants are defined in assump-

tions (2.8)-(2.9) on the model.

23



Lemma 7.4. Let k < δ be fixed. Then,

‖Egk+1‖ ≥ m−Ek+1
√

bk+1, and

E‖gk+1−Egk+1‖2 ≤C
( V 2

n

nbd(k+1)
k+1

+
e−uVn/2

nb2d(k+1)
k+1

)
.

Proof. By (3.1), for all x ∈ Xk+1,

Egk+1(x) =
∫
Xk+1

fk+1(y)W⊗k+1
bk+1

(x− y)ϕ⊗k+1
θ

(y)dy

=
∫
Xk+1

( fk+1ϕ
⊗k+1
θ

)(x−bk+1z)W⊗k+1(z)dz.

By assumptions (2.1)-(2.8) on the model, we have

|( fk+1ϕ
⊗k+1
θ

)(x−bk+1z)− ( fk+1ϕ
⊗k+1
θ

)(x)| ≤ (ϕk+1
γ2 + k f̄ ϕ

k)bk+1|z|.

Hence, since
∫
XWdλ = 1,

Egk+1 ≥ fk+1(x)− (ϕk+1
γ2 + k f̄ ϕ

k)bk+1ωk+1.

Then,

‖Egk+1‖2 ≥
∫
Xk+1

(
fk+1(x)− (ϕk+1

γ2 + k f̄ ϕ
k)bk+1ωk+1

)2dx

≥ ‖ fk+1‖2−2(ϕk+1
γ2 + k f̄ ϕ

k)bk+1ωk+1

∫
Xk+1

fk+1dλ

≥ ‖ fk+1‖2−2(ϕk+1
γ2 + k f̄ ϕ

k)bk+1ωk+1λ (X)k+1‖ fk+1‖.

First part of the lemma follows, since ‖ fk+1‖ ≥ m and | fk+1| ≤ f̄ . Moreover, the
second part is straightforward from Lemma 7.2, since

E‖gk+1−Egk+1‖2 =
∫
Xk+1

var
(
gk+1(x)

)
dx

=
1
n

∫
Xk+1

var
(

Y
∫

∆k+1

W⊗k+1
bk+1

(x− y)X̃⊗k+1(dy)
)

dx

≤ 1
n

∫
Xk+1

E
(

Y
∫

∆k+1

W⊗k+1
bk+1

(x− y)X̃⊗k+1(dy)
)2

dx.

�
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Lemma 7.5. We have, for all k < δ :

P(δ̂ = k)≤C
( V 2

n

nbd(k+1)
k+1

+
e−uVn/2

nb2d(k+1)
k+1

)
.

Proof. Since ‖ fk+1‖ 6= 0,

P(δ̂ = k)≤ P(‖ĝk+1‖ ≤ ρk+1)

≤ P(‖ĝk+1−gk+1‖+‖gk+1−Egk+1‖ ≥ ‖Egk+1‖−ρk+1)

≤ P
(
‖ĝk+1−gk+1‖ ≥

‖Egk+1‖−ρk+1

2
)

+P
(
‖gk+1−Egk+1‖ ≥

‖Egk+1‖−ρk+1

2
)
. (7.6)

According to Lemma 7.1 and using the lower bound obtained in Lemma 7.4, we
find that the first term on the right-hand side of (7.6), denoted by p1, is upper
bounded by

P
(

CkSk+1
|θ̂ −θ |

bd(k+1)/2
k+1

≥ 1
2
(
m−Ek+1

√
bk+1−ρk+1

))
.

Since by assumption bk+1,ρk+1 tend to 0 as n tends to +∞, for all k < δ :

p1 ≤ P
(
Sk+1|θ̂ −θ | ≥ bd(k+1)/2

k+1 I
)
,

for some I > 0 that does not depend on n and k < δ . Thus, by the Markov In-
equality,

p1 ≤ P
(
(1+ s1,k+1)|θ̂ −θ | ≥ bd(k+1)/2

k+1 I
)
+P
(
|Sk+1− s1,k+1| ≥ 1

)
≤

(1+ s1,k+1)
2

I2
E|θ̂ −θ |2

bd(k+1)
k+1

+E(Sk+1− s1,k+1)
2

≤ C

nbd(k+1)
k+1

+
C
n
, (7.7)

by assumption (2.5) on the model, and since s2,2(k+1) ≤ C. In a similar fashion,
regarding the latter term on the right-hand side of (7.6), further denoted by p2, we
obtain with Lemma 7.4:

p2 ≤
4
I2E‖gk+1−Egk+1‖2 ≤C

( V 2
n

nbd(k+1)
k+1

+
e−uVn/2

nb2d(k+1)
k+1

)
.

We conclude the proof combining (7.6), (7.7) and above, since Vn ≥ 1. �
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7.2 Proof of Theorem 4.1
First observe that for all k ≥ 1, δ̂ is independent from r̂k, so that

E
(
r̂

δ̂
(X)− r(X)

)2 ≤ E
(
r̂δ (X)− r(X)

)2
+ ∑

k<δ

E
(
r̂k(X)− r(X)

)2P(δ̂ = k)

+ ∑
k>δ

E
(
r̂k(X)− r(X)

)2P(δ̂ = k). (7.8)

By Lemma 5.3, it is clear that for k < δ ,

E
(
r̂k(X)− r(X)

)2 ≤C.

Moreover, following the arguments of the proof of Theorem 3.1 (see Section 5.2),
we can prove that for all k ≥ δ (recall that C > 0 does not depend on k nor n):

E
(
r̂k(X)− r(X)

)2 ≤Ck
(T 2

n
n

)2/(2+dk)
.

Thus, by Theorem 3.1, (7.8) and above,

E
(
r̂

δ̂
(X)− r(X)

)2 ≤C
(T 2

n
n

)2/(2+dδ )
+C ∑

k<δ

P(δ̂ = k)

+ ∑
k>δ

CkP(δ̂ = k). (7.9)

Let ρk and bk be defined in Theorem 4.1, and let Vn = 2(lnn)ξ/u, where ξ > 1.
Then by Lemma 7.5, we get for k < δ :

P(δ̂ = k)≤C
(lnn)2ξ

n1−β/2 .

Provided ε > dδ , ξ ≤ (2+ ε)/(2+dδ ) and β ≤ 2dδ/(2+dδ ), we have

∑
k<δ

P(δ̂ = k)≤C
(T 2

n
n

)2/(2+dδ )
. (7.10)

Note that when β < 1, the previous condition on β holds if dδ ≥ 2. Our task now
is to bound P(δ̂ = k) when k > δ . First, we observe that for all i, j ≥ 0:

si, j ≤
(
EY 2i)1/2

[(
E
(
X(X)2 j))1/2

+ϕ
j
λ (X) j

]
≤
(
EY 2i)1/2

[
eϕλ (X)√(2 j)!+ϕ

j
λ (X) j

]
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according to the Cauchy-Schwarz Inequality. Consequently, by Lemma 7.3, if
k > δ :

P(δ̂ = k)≤ Ck

((2k)!)2nα+β/2 +
Ck
√
(4k)!

n((2k)!)2

+
Ck
√

(16k)!
((2k)!)16 max

( 1
n4α+3 ,

(k!)4V 8
n

n4α+2β
+

e−2uVn

n4α

)
.

Noticing that by the Stirling Formula,

∑
k≥1

Ck
(√(4k)!
((2k)!)2 +

(k!)4
√

(16k)!
((2k)!)16

)
< ∞,

we deduce, whenever 2α +β > 1/(2+dδ ):

∑
k>δ

P(δ̂ = k)≤C
(T 2

n
n

)2/(2+dδ )
.

Theorem is now a straightforward consequence of (7.9), (7.10) and above. �
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