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Abstract. Edge-preserving image filtering is an important pre-processing
step in many filtering applications. In this article, we analyse the basis
of edge-preserving filters and also provide theoretical links between the
MST filter [1], which is a recent state-of-art edge-preserving filter, and fil-
ters based on geodesics. We define shortest path filters, which are closely
related to adaptive kernel based filters [11] [15], and show that MST fil-
ter is an approximation to the Γ−limit of the shortest path filters. We
also propose a different approximation for the Γ−limit that is based on
union of all MSTs and show that it yields better results than that of
MST approximation by reducing the leaks across object boundaries. We
demonstrate the effectiveness of the proposed filter in edge-preserving
smoothing by comparing it with the tree filter.

1 Introduction

Image filtering is a prominent problem in computer vision which has been stud-
ied for several years. Along with the relevant information, images often contain
noise as well as irrelevant information such as texture. Image filtering is usu-
ally the first step of several applications such as image abstraction, texture re-
moval, texture editing, stereo matching, optical flow etc. One needs to make sure
that relevant information does not get ‘smoothed’ out during the filtering step,
and thus edge preserving filters were developed. There exists several filters for
edge-preserving smoothing such as bilateral filter (BF) [16], guided filter (GF)
[10], weighted least squares filter (WLS) [7] and L0 smoothing [17]. Among the
other noted techniques are propagated image filter [2] and relative total variation
(RTV) filter [18].

Minimum Spanning Tree (MST) filters are one of the edge preserving filters
which have been proved to be effective in applications such as scene simpli-
fication, texture editing and stereo matching. To the best of our knowledge,
Stawiaski et. al [15] first used a MST for filtering. Later, tree filter (TF) [1] was
developed as a non-local weighted-average filter on similar idea. The TF can be
implemented in linear time [19] (linear in number of pixels) and yields promis-
ing results. Although the TF yields good results, it admits a drawback (termed



as leak problem) due to the fact that any MST has some higher weight edges
leading to high collaboration across the object boundaries. As a result, the edges
across these boundaries are not well preserved in the filtered image and cause a
leakage. Also, these filters are based on heuristics and exploring theoretical links
with other existing filters sheds more light on why these work well.

In this article, we aim to provide a theoretical justification for the MST
filtering as described in [1] using the concept of Γ−limit (defined in Sec. 3).
Loosely speaking, we show that the MST filtering is an approximate solution
to the Γ−limit of the shortest path filters which are morphological amoeba-
like filters. We also describe another approximation, which reduces the ‘leak’
problem.

2 Background

2.1 Tree Filter

In this section we describe the MST filtering as in [1]. Let I be a given image
and let S denote the filtered image. Let Ii denote the intensity or color of pixel
i in the image. Note that given an image I, one can construct a 4-adjacency
graph, with weights between adjacent pixels reflecting the absolute difference of
intensities or color. More formally, for adjacent pixels i and j, with intensities Ii
and Ij respectively, we can define

wij = 1 + ‖Ii − Ij‖ (1)

Note that adding a positive constant is for our convenience and the MSTs
of the graph are invariant. With slight abuse of notation, we refer to this graph
by I as well. One can then construct an MST on this graph, say IMST . Note
that on any given MST, there exists a unique path between any two pixels. Let
D(i, j) denote the number of edges on the path between the pixels i and j on
IMST . Define ti(j) by

ti(j) =
exp(−D(i,j)

σ )∑
q exp(−

D(i,q)
σ )

(2)

Then tree filter is defined as, for each pixel i

Si =
∑
j

ti(j)Ij , (3)

where ti(j) denotes the collaborative weights between pixels i and pixel j, and
the summation is over all the pixels.

The main advantage of the tree filter is the edge preserving property. Intu-
itively, any MST includes only a few high weighted edges and thus reduces the
collaborations across most of the object boundaries. However, as any MST is
connected, the existence of at least one edge on the boundary of every object is
guaranteed. These edges lead to high collaborative weights and the ‘leaks’ arise.



Apart from the ‘leak’ problem, the above method does not have a theoretical
justification for its working. Another drawback of this method is: since MST of
a graph is not unique, the filtering results depends on the choice of MST which
is not desired.

2.2 Gamma Convergence

The main idea of Γ−convergence [12] is to calculate a limit of minimizers of a
family of minimum problems. This limit is referred to as a Γ−limit. The main
advantages of such a calculation are - 1) Γ−limits share a few properties with
the minimizers and are sometimes easier to calculate 2) Γ−limits also exhibit
interesting ‘new’ properties and usually result in novel methods. For instance,
Γ−limit of methods described in [4] [5] [13] [9] was calculated in [3] and is shown
to have interesting properties. In Sec. 3, we show that the MST filter described
above can be seen as an approximation to the Γ−limit of shortest path filters.
This then would provide theoretical links to justify the edge-preserving capability
of the MST filter.

3 Power Tree Filter

Let G = (V,E,W ) be an edge-weighted graph, where V denotes the set of pixels,
E denotes the set of edges given by the 4-adjacency relation and wij indicates the
weight on the edge between pixels i and j. Let W (p) denote the exponentiated
weights, {wpij}. The graph G(p) = (V,E,W (p)) is called an exponentiated graph.
We also assume that there are k distinct weights 0 < w1 < w2 < · · · < wk.

Note that to every path between pixels i and j, P (i, j), one can assign a tuple
(p1, p2, · · · , pk), where pi denotes the number of edges of weight wi. We denote
this tuple as the edge-weight distribution of the path. Let (p1, p2, · · · , pk) and
(q1, q2, · · · , qk) be edge-weight distributions of two paths P and Q respectively.
Let A = {1 ≤ i ≤ k : pi 6= qi}, We say that

P ≥ Q⇔ if A = ∅ or psup(A) > qsup(A) (4)

This is referred to as the dictionary ordering. Note that this induces a complete
ordering on the set of paths. We call P (i, j) = (p1, p2, · · · , pk) a shortest path
if
∑
wlpl is smallest for P compared to any other path Q(i, j). Let Π(P (i, j))

denote the number of edges on the path P (i, j).

The overview of the rest of the section is - We first define shortest path
filters, and give a heuristic explanation as to their advantage. We then explore
their relation to morphological amoeba filters and show that these filters can be
seen as minimizers to a cost function. We then calculate the Γ−limit of these
minimizers, and show that it is the shortest path filter on the union of minimum
spanning trees (UMST).



3.1 Shortest Path Filters

Let i and j be any two pixels. Define

Θ(i, j) = inf{Π(P (i, j)) where P (i, j) is a shortest path.} (5)

Note that Θ(i, j) is well defined. Now, consider the cost function

Qi(x) =
∑
j

exp

(
−Θ(i, j)

σ

)
(x− Ij)2 (6)

Then the filtered value at pixel i is given by the minimizer of Qi(x). From Eq.
(6), it can easily be seen that

Si = arg minQi(x) =
∑
j

exp
(
−Θ(i,j)

σ

)
∑
k exp

(
−Θ(i,k)

σ

)Ij , (7)

where S denotes the filtered image. Shortest path filters can be seen as an edge
aware extension to the gaussian convolution. Note that gaussian filter considers
exponential decay over spatial distances without considering the edge weights.
To adapt the gaussian filter to be edge aware, one might consider taking number
of edges on a shortest path instead of spatial distances. In the special case of
all pixel values being equal in the image, shortest path filter is exactly gaussian
filter with l1 metric. Shortest path filters are also related to the adaptive kernel
filter such as morphological amoebas [11], as discussed below.

Relation to Morphological Amoebas In [11] the authors introduced mor-
phological amoebas (adaptive kernels). The kernel is dictated by

κ(i, j) = min
P (i,j)

Lλ(P (i, j)) , (8)

where P (i, j) is a path between pixels i and j, < i = x0, x1, · · · , xn = j > and

Lλ(P (i, j)) =
n−1∑
i=0

(
1 + λ‖Ixi+1

− Ixi
‖
)

(9)

Then the kernel at pixel i is given by {j, κ(i, j) < r}, where r denotes the radius
of the kernel chosen according to the level of smoothing required. An alternative
to the the κ(., .) above is the smallest number of edges on a shortest path, denoted
by Θ(., .) as in Eq. (5). It is easy to see that

Θ(i, j) = minL0(P (i, j)) subject to P (i, j) ∈ arg minL1(P (i, j)) (10)

The results obtained by the shortest path filters are shown in Fig. 1. Observe
that, even though edges are better preserved in 1(c) and 1(d), compared to
gaussian filter Fig. 1(b), there is still a halo effect on the boundaries. Taking the
gamma limit would reduce these effects, as shown later. See Fig. 2 (b) and (c).



(a) (b) (c) (d)

Fig. 1. (a) Original Image, (b) Gaussian Convolution on (a), (c) Mean filter with
Shortest Path kernel on (a), and (d) Shortest path filter on (a)

Dictionary Ordering, Pass Values and Watershed Cuts Recall that we
are interested in calculating collaborative weights for every pair of pixels, and
have concluded that spatial distances alone are not sufficient. Thus for a given
pair of pixels, one has to consider the number of edges on a path between them.
However, there exists several paths and the choice dictates the filtering method.
The minimum of the l∞ norm over all the paths between a given pair of pixels is
called pass value of the pair. Thus, one of the choices is to consider a path with
its l∞ norm equal to the pass value. To the best of our knowledge, this measure
was first suggested for adaptive filtering in [15]. The number of edges on one
such path might differ from the other creating an ambiguity on which among
them to choose. On the other hand, a path with smallest dictionary ordering
between a given pair of pixels would also have its l∞ norm equal to pass value.
Moreover, any such path has the same number of edges. The dictionary ordering
thus reduces the ambiguity compared to the filters which choose a path with
respect to any other norm.

Pass values and shortest paths have also been used in the context of seeded
segmentation [5][6]. The authors in [4][5] have proved that given a set of seeds,
the segments generated by any watershed cut are also the segments generated by
minimum spanning forest cuts relative to the seeds and vice versa. Further, they
have proved that segments corresponding to watershed cuts have the optimality
property that they are connected components in some shortest path forest (SPF)
relative to the seeds. The converse does not hold true and the authors thus have
provided one way of choosing ‘good’ SPF cuts.

Now, if a non-seed pixel admits multiple shortest paths to different seeds,
to which seed would the pixel be associated? An obvious answer would be the
path which has lowest number of l∞ norm weighted edges. In case of a tie on the
number of such edges, the next choice would be to consider the second highest
weight, and so on. This exactly reflects the definition of the dictionary ordering
in Sec 3. Thus, in the segmentation aspect, the dictionary ordering provides
another way of selecting a SPF cut among all the SPF cuts.



3.2 Gamma Limit of Shortest Path Filters

Recall that G(p) = (V,E,W (p)) denotes the exponentiated graph. Let i and j
denote two pixels in the image. Let Θ(p)(i, j) denote the smallest number of edges
among all the shortest paths between i and j in the graph G(p). We say that a
path P (i, j) is a shortest path with respect to dictionary ordering if for any other
path Q(i, j) we have P ≤ Q, where the comparison is based on the dictionary
ordering defined in eqn. 4. Accordingly we define ∆(i, j) as the number of edges
on a shortest path with respect to the dictionary ordering. Note that ∆(i, j) is
well defined since if for any two paths, P and Q if P ≤ Q and Q ≤ P , then
pi = qi for all i and hence both the paths have same number of edges. The
following is the main theorem of this paper.

Theorem 1. As p → ∞, we have Θ(p)(i, j) → ∆(i, j) for all pairs i and j.
Moreover, any shortest path with respect to the dictionary ordering lies on a
MST.

The above theorem states that the shortest paths converge to the shortest
paths with respect to dictionary ordering in the limit. An important consequence
of the above theorem is that one can now calculate the Γ−limit of the shortest
path filters as described in the following proposition. The proof of the proposition
follows from theorem 1.

Proposition 1. As p→∞ the shortest path filter converges to

Si =
∑
j

exp
(
−∆(i,j)

σ

)
∑
k exp

(
−∆(i,k)

σ

)Ij (11)

We refer to the above limit as Power Tree Filter (PTF). As we shall soon see,
calculation of the above filter is computationally expensive and an approximation
is desired.

Recall that from Eqs. (2) and (3) we have D(i, j) that denotes the path
length on a minimum spanning tree, which can be seen as an approximation for
∆(i, j). This provides a justification for the MST filter - MST filter is nothing
but an approximation to the gamma limit of the shortest path filters.

3.3 Calculation of the Gamma limit

In this part, we provide an algorithm to calculate the Γ−limit and give an-
other approximation. Union minimum spanning tree (UMST) is defined as the
subgraph generated by the edges of all the minimum spanning trees. Theorem
1 states that any shortest path with respect to dictionary ordering lies on an
MST, and hence on UMST. Thus we need to only concern ourselves with UMST
instead of the whole graph. Thanks to the characterization of UMST in [12]
which is stated below, we develop an efficient algorithm based on the result.



Theorem 2. Let G = (V,E,W ) be an edge weighted graph. Let G≤w denote the
graph with the vertex set V and all the edges eij whose weight wij ≤ w, where
1 ≤ j ≤ k. Let Gumst denote the UMST of G. Then an edge e with weight w(e)
belongs to the UMST iff either w(e) = w1 or if the edge e joins two connected
components in G≤w(e).

Theorem 2 is equivalent to the cut property of the MST[14]. With a suitable
choice of the data structure, the above theorem gives an O(|E|) (which in our
case is O(|V |)) algorithm to calculate the UMST.

Note that the calculation of ∆(i, j) for each pair (i, j) takes O(|V |) and hence
the crudest algorithm takes O(|V |3) time. Using a slightly different version of
Floyd-Warshall [8] allows us to calculate the∆(i, j) for all pairs inO(|V |2), which
is still expensive. Thus, one needs an approximation to calculate the Power Tree
Filter.

Instead of considering UMST, if one considers a single MST as in MST
filter described above, the calculation can be made efficient using top-down and
bottom-up calculations in O(|V |) time [19]. The following steps give an overview
of the bottom-up algorithm as described in [19]. 1) Pick a root node i. 2) Starting
from the root nodes, update the values recursively using

Sp = Ip +
∑

q∈children of p

exp(
−1

σ
)Sq

At the end of these calculations we are ensured to get the filtered value at the
root node i. The top-down procedure is similar. For further details see [19]. This
justifies taking an MST as an approximation to UMST. A different method is
described below, based on a few observations.

Proposition 2. Given a pixel i, there exists an MST, M , such that the shortest
path with respect to dictionary ordering between pixels i and any other pixel j is
in M .

The MST in proposition 2 is referred to as Power MST. If one can calculate
the MST as in Proposition 2 for each pixel i, the bottom-up procedure as in [19]
can be followed for each pixel separately and we get the PTF filtered value at
that pixel. This however is still O(|V |2). The algorithm to calculate Power MST
is given in Alg. 1. dist(e, i,M) denotes the distance of the edge e from the vertex
i on the MST M , and is defined as the number of edges on the path between i
and the farthest node in e (from i) on the MST M .

Note that we can rewrite Eq. (11) as

Si =
1

NC

∑
l

exp(− l
σ

)
∑

j,∆(i,j)=l

Ij , (12)

where NC is the normalizing constant. In the above equation observe that the
exponential term quickly converges to 0 and hence one can approximate the



Algorithm 1 Approximate Algorithm to calculate MST at pixel

Input: An UMST of the graph, depth d and pixel i
Output: Power MST
1: Set X = {i} and an MST M = (i, ∅)
2: while True do
3: break = true
4: for e in shortest edges from X to Xc do
5: if dist(e, i,M) < d then
6: M ∪ e
7: break = false
8: end if
9: end for

10: if break = true then
11: return M .
12: end if
13: end while

Algorithm 2 Approximate Algorithm to calculate PTF

Input: A 4-adjancecy graph of the image I, G
Output: Filtered image S.
1: Construct the UMST of G
2: for all pixels i do
3: Construct Power MST Mi, using algorithm 1.
4: Use bottom-up to get the filtered value Si.
5: end for

above expression by

Si ≈
1

NC

D∑
l=1

exp(− l
σ

)
∑

j,∆(i,j)=l

Ij , (13)

where D is a parameter indicating a fixed depth. This approximation implies
that, theoretically the calculation of the PTF filtered value at each pixel reduces
to constant time and hence we get an approximate algorithm which is O(|V |).
The pseudocode is given in algorithm 2.

4 Analysis and Experiments

4.1 Comparison with MST filter

Before proceeding to the analysis of the Power Tree filter, we provide the results
of the Power Tree filter and compare with the MST filter. Note that in [1] the
MST filter results were post-processed with the bilateral filter as well. We provide
a visual comparison of the Power Tree filter and MST filter in Fig. 2 with and
without the usage of bilateral filter as a post-processing step. Note that the
‘leak’ issue is reduced in the Power Tree filter compared to the MST filter, as in



Figs. 2(b) and (d). Also in Fig 2 (q), (r), (s) and (t) the black border is better
preserved in the Power Tree filter compared to the MST filter, irrespective of
the usage of bilateral filtering. We further discuss the heuristic reason for this
behaviour in the next section.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Fig. 2. (a), (f), (k), (p) are the original noisy images. (b), (g), (l), (q) are obtained by
Power Tree filtering. (c), (h), (m), (r) are obtained by Power Tree filtering followed by
bilateral filtering. (d), (i), (n), (s) are obtained by MST filtering. (e), (j), (o), (t) are
obtained by MST filtering followed by bilateral filtering.

In general there would be a trade-off between the amount of smoothing and
the level of edge-preserving in an image. This also can be seen from various
examples in Fig. 2. The parameters used to generate Fig. 2 are σ = 10 for both
Power Tree filter and MST filter, and depth = 15 for the Power Tree filter.



4.2 Analysis of the Leak Problem
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Fig. 3. (a) 4-adjacency graph of a synthetic image, (b) An MST obtained from (a),
and (c) UMST obtained from (a)

Consider a synthetic grey scale image which has two objects (whose pixels
colored in red and green for easy identification, see figure 3(a)). Assume that the
pixel values within each of the objects are similar and different across objects.
The pixels are numbered 1 to 30 and the edge weights are displayed on the edges.
The edges corresponding to object boundaries are represented as dotted edges.
In order to illustrate that UMST filter yields better results, it should perform
at least as good as tree filter for - removing noise at pixel numbered 28 and
reducing the leak at object boundaries say at pixel numbered 13 and 14.

Figures 3(b) and 3(c) denote a MST and the UMST respectively. Consider
pixel numbered 28. One can see that both the edges of weights 100 incident
on this pixel are present in the UMST, the noise removal is enhanced due to
higher collaboration with the neighbouring pixels when compared to that of tree
filter where MST had only one of the edges with weight 100. Now consider the
pixel numbered 13. We see that although an extra boundary edge (edge 13−18)
appears in the UMST, the presence of an additional interior edge incident on
13 in the UMST nullifies the effect of the boundary edge collaboration. At pixel
numbered 14, the UMST filter performs better than tree filter due the presence
of the additional interior edge 13− 14.

4.3 Error Analysis of the approximation

In Eq. 13, we have considered an approximation of the PTF. In this section, we
analyze the appropriateness of the approximation. In particular we empirically
show that as the depth, D, increases the filtered value of the pixel remains
constant. In Fig. 4, several pixels are randomly chosen from an image and the
filtered values with varying depths are calculated. Then for each pixel, the first
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Fig. 4. First difference of the Power Tree filtered value as a function of depth for the 3
bands of RGB image. Each curve corresponds to a randomly chosen pixel in the image.
Note that the pixel values stabilize at a depth of 15.

differences of the filtered values with respect to the depth are plotted in Fig. 4,
for all the 3 bands. Observe that the first differences tend to 0, and hence the
filtered values are stabilized. From the figure, at a depth of 15, the filtered values
are more or less stable and hence this is taken for all the experiments in Fig. 2.

5 Conclusion and Future Work

We have shown that MST filter can be seen as an approximation to the Γ−limit
of shortest path filters, referred to as Power Tree filter, which provides theoretical
links between MST filter and geodesic based filters. Also, we have provided
an alternate approximation to Power Tree filter and have shown that it yields
better results. We further validated this approximation empirically. The Power
Tree filter being closely related to MST filter is expected to yield good results
in applications such as stereo-matching, optical-flow, image-abstraction, texture
removal and editing, depth up sampling etc.

Note that although algorithm 2 is theoretically linear time, the constant is
quite high and thus one might be able to find faster/better approximations to the
PTF. For example, algorithm 2 can be parallelized since each pixel is processed
independently of the other. This is a topic of further research.
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