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Abstract
This paper studies the extension of the multiway relay channel (introduced by Gündüz et al.) by adding intra-cluster
links. In this model, multiple clusters of users communicate with the help of one relay and the users within a cluster
wish to exchange messages among themselves. Restricted encoders are considered; thus, the encoded messages of
each user depend only on its own message, not on previously decoded ones. Cut-set bounds and achievable rates are
given for the Gaussian case with and without time-sharing between clusters. Depending on the protocol considered,
schemes based on random coding or nested lattice coding are proposed. The schemes are compared in terms of
exchange capacity, that is the equal rate point in the capacity region of a symmetric multiway relay channel. It is
shown that the gap between the cut-set bound and Compress-and-Forward, as well as Amplify-and-Forward, is
independent of the transmit power constraints when time-sharing is used.

Keywords: Relay channel, Relaying protocols, AWGN coding, Lattice coding

1 Introduction
The relay channel, introduced by van der Meulen [2] and
studied in depth by Cover and El Gamal [3] is one of the
major building blocks for wireless networks: one source
node wishes to transmit data to a destination node with
the help of a relay.
Information may thus flow along the direct or the

relayed link. The key question to approach capacity is
how should those two links cooperate. Many different
protocols have been proposed to communicate over the
Gaussian relay channel, such as Decode-and-Forward
(DF), Amplify-and-Forward (AF), and Compress-and-
Forward (CF)([4] Ch. 16, [5] and the references therein).
The Two-Way Relay Channel (TWRC), where two users

wish to exchange messages with the help of a relay [6], is a
natural extension of this three-node channel, and DF, AF,
and CF have been adapted to this channel. The TWRC
without direct links between the two users has been exten-
sively studied under half duplex ([7, 8]) and full-duplex
([4, Ch. 19], [9, 10] ). The TWRC with direct links [11–13]
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has also been studied. The Compute-and-Forward (CoF)
protocol proposed by Nazer et al. [14], for which the relay
decodes the sum of the messages instead of the individual
messages, has also been proposed for this channel [15].
The multiway relay channel (mRC) is an extension of

the TWRC that has been recently proposed by Gündüz
et al. in [16, 17]: they consider multiple clusters of users
that wish to exchange messages locally within each clus-
ter, with the help of a single relay. The achievable equal
rate point for DF, CF, AF, and CoF is given for the so-called
restricted model, in which the nodes’ channel inputs
depend only on their own messages, not on past symbols.
The finite field multiway relay channel has been studied
in [18].
The main difference between the multiway relay chan-

nel in [17], and themodel considered in this paper consists
in the inclusion of direct links between users of the same
cluster. When users are close to each other (for example,
in a sensor network), they can overhear signals sent by
neighboring nodes; thus, adding direct links gives a more
realistic model of that situation.
The multiway relay channel with direct links and one

cluster has recently been studied by Su et al. in [19].
The authors characterized the cut-set bound and the rate
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region using DF and CF based on random coding argu-
ments. A study of the gap between the cut-set bound and
CF or DF is proposed when a specific power constraint at
the relay applies.
The main differences with the work done by Su et al.

and the work presented in this paper are the following:
first of all, we concentrate on the Gaussian mRC and we
propose achievable schemes using either AWGN coding
or lattice coding. We also propose an achievable AF and
CoF scheme and a more general study of the gap between
the cut-set bound and CF or AF and of the gap between
CF and AF. Moreover, we also characterize the achievable
equal rate point when there are L clusters with intra-
cluster links without time-sharing at the relay, which is,
to our best knowledge, the first results obtained for this
model.
The focus of this paper is to provide rate limits for the

Gaussian mRC with intra-cluster links. Users in a cluster
broadcast their messages to both the relay and the other
users within the cluster. The relay receives incoming mes-
sages on a Multiple Access Channel (MAC) and sends a
function of its received message over a Gaussian broad-
cast channel to the users in order to help them decode the
messages they wish to recover.
This paper focuses on the equal-rate point in the capac-

ity region of the symmetric network setup. The per-user
rate is termed exchange rate, while the sum rate (the
total throughput over the channel) is called total exchange
rate [17].
In this setup, all users have the same power constraint

and the noise powers at all nodes are the same. Moreover,
the gain on the user-relay links is the same for all users
and is denoted by g, and all intra-cluster links have unit
gain. When g is small, the relay does not play a crucial
part in the network, whereas if g is large, which can be
obtained if the relay has a better antenna than the users
(or more power and less noise), the relay is useful since it
has a better observation than the users.
In this paper, we investigate two different setups: one

with and one without time-sharing between clusters. We
characterize the set of achievable symmetric rate tuples
such that all users canmulticast their messages to all other
users in their cluster.We propose extensions of some well-
known protocols for the Gaussian relay channel, namely
DF, CF, AF, and CoF based either on AWGNor lattice cod-
ing, as well as a cut-set bound. We also characterize gaps
between the cut-set and AF or CF and between CF and AF
for the multiway relay channel with time-sharing between
clusters.
The rest of this paper is organized as follows: the sys-

tem model is presented in Section 2. Lattices as a coding
tool are briefly presented in Section 3. Our main contri-
butions are given in Sections 4 and 5. Section 4 presents
the cut-set bound, the total exchange rate obtained with

AF, CF, and DF, as well as with CoF when time-sharing
is performed between clusters. The asymptotic limits for
large values of g are studied and compared with the results
obtained by Gündüz et al., since under proper power scal-
ing for large g, our model becomes equivalent to theirs.
A weakened cut-set bound that is used to bound the
gaps between proposed schemes and the cut-set bound is
also presented. The section will be concluded by results
obtained with our proposed protocols for selected exam-
ples. Section 5 presents the achievable total exchange rate
obtained with AF, CF, and DF and example results with-
out time-sharing among clusters. Section 6 gives some
conclusions on the presented model and achievable rates.

2 Systemmodel
This paper considers a Gaussian multiway relay channel
(mRC) in which N users, grouped into L clusters of K ≥ 2
users each (N = KL), exchange messages with the help of
one relay. The K users in each cluster want to recover the
messages of all other K − 1 users within the same clus-
ter. We suppose that clusters are built upon users that are
physically close, which can overhear the other users’ mes-
sage, and model this through direct links between users
of the same cluster (at the same time, cluster separation is
assumed large enough to avoid interference). All nodes are
full-duplex: they can receive and send at the same time.
This situation is depicted in Fig. 1.
The full-duplex Gaussian mRC is modeled as

Yl,k =
K∑

i=1,i�=k
Xl,i + gXR + Zl,k (1)

YR =
L∑

l=1

K∑

k=1
gXl,k + ZR, (2)

where Xl,k , which is of power Pl,k , is the signal sent by user
k of cluster l, XR, which is of power PR, is the relay output
signal, Yl,k is the received signal at user k of cluster l, YR is
the received signal at the relay, and ZR and Zl,k are zero-
mean, unit-variance Gaussian noises that are independent
of each other and of the channel inputs. The difference
with the model in [17] is the presence of the intra-cluster
signal in (1).
In this paper, we focus on a symmetric network with

equal power constraints, respectively noise variances, at
the users, i.e. Pl,k = P,∀l, k.
We investigate the average throughput for different

relaying schemes. We use the notation C(x) = 1
2 log2(1 +

x), x = 1 − x and x+ = max(0, x).

Definition 1 Total exchange rate Re, defined as the total
throughput over the channel, is achievable for the mRC
with L clusters of K users each if Re

KL is an achievable
average throughput per user. The total exchange rate is
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Fig. 1Model setup. L clusters of K users each, fully connected within a cluster, communicating over one relay; user-relay links (dashed lines) have
gain g

the total rate of all the data multicast over the network.
The exchange capacity is defined as the supremum of all
achievable total exchange rates.

With time-sharing between clusters, each user has a
codebook of rate Re

K (leading to an average throughput of
Re
KL ), whereas without time-sharing, the user codebooks
have rate Re

KL equal to the average throughput.
Some of the presented schemes are based on lattice cod-

ing; thus we present a brief overview on these techniques,
referring interested readers to [20] for more details.

3 Lattices
Themain advantage of lattice coding is its ability to exploit
the network topology: instead of decoding messages indi-
vidually, this construction allows the relay to directly com-
pute the modulo sum of the messages, which relaxes for
instance the decoding constraint of DF.
A lattice � ⊂ R

n is a discrete additive subgroup of Rn

closed under addition. In other words,

∀λ1, λ2 ∈ �, λ1 + λ2 ∈ �, λ1 − λ2 ∈ �.

The lattice quantizer Q� that maps any point x ∈
R
n to the closest lattice point is defined as Q�(x) =

argmin
λ∈�

||x − λ|| and the modulo � operation gives the
quantization error as [ x]mod� = x − Q�(x). The fun-
damental Voronoi region V0 of � is the set of points that
are closer to the origin than to any other lattice point:
V0 = {x|Q�(x) = 0}, which is of volume V = Vol(V0).

We briefly present some parameters that describe a
lattice. The covering radius rcov is the radius of the small-
est sphere that covers V0. The effective radius reff is the
radius of a sphere with the same volume as V0. The second
moment per dimension σ 2(�) defines the average power
of the lattice �: σ 2(�) = 1

nV
∫
V0

||x||2dx, where V is the
volume of V0. The normalized second moment of a lattice
� of dimension n is defined as G(�) = σ 2(�)

V 2/n . It measures
the efficiency of� as a shaping region: the normalized sec-
ond moment of a sphere in R

n is 1/2πe and the more V0
resembles a sphere, the closer to 1/2πe is G(�).
Let us now consider a sequence of n-dimensional

lattices �(n). The sequence is said Rogers-good [21]
if lim

n→∞
r(n)
cov
r(n)
eff

= 1, that is if the covering radius
approaches the effective radius. The sequence is said
Poltyrev-good [22] (good for AWGN coding) if, for
an n-dimensional vector Z ∼ N (0, σ 2In), Pr(Z /∈
V0) ≤ e−n(Ep(μ)−on(1)), where Ep(μ) is the Poltyrev expo-
nent and μ is the volume-to-noise ratio (see [20] for
details).
The sequence is said to be good for mean-square error
quantization if lim

n→∞G(�(n)) = 1
2πe . It can be shown

that if a lattice is Rogers-good, then it is also good for
mean-squared error quantization [23].
Good lattice codebooks are obtained with the help of a

coarse lattice �c and a fine lattice �f , such that �c ⊆ �f ,
with fundamental Voronoi region Vc of volume Vc and
Vf of volume Vf , respectively. These lattices are chosen
such that �f is Poltyrev-good and �c is both Rogers-
and Poltyrev-good. The codebook is given by {�f ∩ Vc}.
The second moment per dimension of �c is chosen to
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insure a power constraint. The rate of this codebook is
R = 1

n log2
Vc
Vf
.

4 Total exchange rate for the symmetric network
with time-sharing between clusters

We first focus on the model with time-sharing between
clusters, as studied by Gündüz et al. Each cluster only
transmits over a 1/L fraction of time which allows one to
increase the power of each user up to P′ = LP and still
satisfy the average user power constraint.
For notation simplicity, we drop the cluster index,

yielding

Yi =
K∑

k=1,k �=i
Xk + gXR + Zi

YR = g
K∑

k=1
Xk + ZR.

The remainder of the section presents the cut-set bound
as well as achievable average throughput per user using
CF, AF, DF, and CoF (only when K = 2). For each
lower/upper bound, we also study the limit when g grows
large, i.e., when the direct links become negligible com-
pared to the relayed links. This study allows a comparison
with the average throughput per user obtained by Gündüz
et al. In order to make a fair comparison, we must nor-
malize the transmitted powers (at the users and the relay)
by g2.

4.1 Cut-set bound (outer bound on the exchange
capacity of the symmetric Gaussian mRC)

Proposition 1 For a symmetric Gaussian mRC with
direct links, L clusters of K users each and time-sharing
between clusters, the cut-set bound (CSB) on the exchange
capacity is given by

RCSB = max
ρ∈[0,1]

K
K − 1

min
{
f1(ρ), f2(ρ)

}
,where

f1(ρ) = C
((

g2 + 1
)
LP(K − 1)

(
1 − Kρ2)

ρ2

)
(3)

f2(ρ)=C
(
(K−1)LP+g2PRρ2 + 2g

√
LPPR(K − 1)ρ

)

(4)

and ρ is a correlation parameter.

Proof The proof extensively uses the fact that the mean-
squared error of the linear MMSE estimate of Y given X is
greater than or equal to the expected conditional variance
E(Var(Y |X)), where E denotes the expectation operator.

The Xk and XR are zero-mean and jointly Gaussian (see
Appendix 16A of [4]).
A detailed proof can be found in [19].

Proposition 2 For a symmetric Gaussian mRC with
direct links, L clusters of K users each, time-sharing
between clusters and asymptotically large g, with powers P
and PR scaled by 1/g2, the cut-set bound on the exchange
capacity is given by

Rg→∞
CSB = K

K − 1
min {C ((K − 1)LP) ,C (PR)} .

Note that this is identical to the CSB for Gündüz et al.’s
model ([17] eq. (19)).

Proof By replacing P by P/g2 and PR by PR/g2 in (3) and
(4) and by taking the limit, we obtain

lim
g→∞ f1(ρ) = C

⎛

⎝
(K − 1)LP

(
ρ2 − (K − 1)ρ2

)

ρ2

⎞

⎠ and

lim
g→∞ f2(ρ) = C

(
PRρ2

)
.

We see that both limits are decreasing in ρ, thus the
optimum value is ρ = 0, which completes the proof.

4.2 Amplify-and-Forward
The easiest protocol to implement at the relay is Amplify-
and-Forward. In this scheme, the relay amplifies its
received signal within its power constraint and broadcasts
the resulting message to the receivers.
Within the time slot of each cluster, all users broadcast

their message both to the relay and to all other destina-
tions. The relay scales its received signal and broadcasts
it to all users in the next time slot. Thus, the AF protocol
transforms the channel into a unit-memory inter-symbol
interferenceMAC. This observation has been made in [5].
This part is inspired by [24], where an AF scheme has

been proposed for the Gaussian relay channel. Here we
extend the approach in [24] to multiple users grouped into
clusters.

Proposition 3 For a symmetric Gaussian mRC with
direct links, L clusters of K users each and time-sharing
between clusters, the total exchange rate (mRC throughput)
RAF is achievable with AF relaying

RAF = K
2(K − 1)

log2

(
α +√α2 − β2

2

)
,with
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α = 1 + (K − 1)LP
g2(KLP + g2PR) + 1
g2(KLP + PR) + 1

(5)

β = 2(K − 1)LPg2

√
PR
(
g2KLP + 1

)

g2(KLP + PR) + 1
. (6)

Proof We use a block Markov encoding scheme.
During block b, the relay sends

XR(b) =
√

PR
g2KLP + 1

(
g

K∑

k=1
Xk(b − 1) + ZR(b − 1)

)
.

User i receives

Yi(b) =g2
√

PR
g2KLP + 1

∑

k �=i
Xk(b − 1) +

∑

k �=i
Xk(b) + Zi(b)

+ g

√
PR

g2KLP + 1
ZR(b − 1).

The total noise power is Neq = g2(KLP+PR)+1
g2KLP+1 . We nor-

malize the noise power by dividing Yi(b) by
√
Neq yielding

Ỹi(b) =
√

g2KLP + 1
g2(KLP + PR) + 1

∑

k �=i
Xk(b)

+ g2
√

PR
g2(KLP + PR) + 1

∑

k �=i
Xk(b − 1) + Zeq(b),

where Zeq(b) is of unit power.
Thus, the AF protocol transforms the channel into

a unit-memory inter-symbol interference MAC whose
achievable sum rate (K − 1)rAF is given by [25, 26]:

(K − 1)rAF ≤ 1
L
1
2

1
2π

∫ 2π

0

log2
(
1 + (K − 1)LP|H(ω)|2) dω,

where H(ω) is the Fourier transform of

H =
[√

g2KLP+1
g2(KLP+PR)+1 g2

√
PR

g2(KLP+PR)+1

]
,

|H(ω)|2 =g2
(
KLP + g2PR

)+ 1
g2(KLP + PR) + 1

+ 2g2

√
PR
(
g2KLP + 1

)

g2(KLP + PR) + 1
cos(ω).

From the integral

∫ 2π

0
log2(x + y cos(z))dz = 2π log2

(
x +√x2 − y2

2

)

found in ([27] 4.224.9), we obtain thus

1
2π

∫ 2π

0
log2(1 + (K − 1)LP|H(ω)|2)dω

= log2

(
α +√α2 − β2

2

)

where α, resp. β , is given in (5), resp. (6).
Thus, the total throughput over the mRC, equal to

KLrAF , is given in Proposition 3.

Proposition 4 For a symmetric Gaussian mRC with
direct links, L clusters of K users each and asymptotically
large g, with powers P and PR scaled by 1/g2, the following
total exchange rate (mRC throughput) is achievable with
AF relaying:

Rg→∞
AF = K

K − 1
C
(

(K − 1)LPPR
KLP + PR + 1

)
.

Note that this is identical to the rate for Gündüz et al.’s
model ([17] eq. (20)).

Proof By replacing P by P/g2 and PR by PR/g2 in (5) and
(6) and taking the limit, we obtain lim

g→∞ α = 1+ (K−1)LPPR
1+PR+KLP .

It is straightforward that lim
g→∞ β = 0.

Thus,

lim
g→∞

α +√α2 − β2

2
= lim

g→∞ α = 1 + (K − 1)LPPR
1 + PR + KLP

.

4.3 Compress-and-Forward
In CF relaying, the relay sends a quantized version of
its received signal and transmits it to all destinations.
Since the destination knows its own message, which is
correlated with the relay received message, the relay can
use Wyner-Ziv compression [28] that exploits the desti-
nation’s own message and the messages received on the
direct links as side information. The destinations then
combine their received signal and the compressed version
sent by the relay to recover the source messages.
Here, we extend the lattice-based CF scheme proposed

in [29] to multiple nodes in a cluster.

Proposition 5 For a symmetric Gaussian mRC with
direct links, L clusters of K users each, relay link gain
g > 0, and time-sharing between clusters, the following
total exchange rate (mRC throughput) RCF is achievable
with CF relaying using lattice coding:
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RCF = K
K − 1

C
(

(K − 1)LP
(
1 + g2

1 + D

))
, (7)

with

D =
(
1 + g2

)
(K − 1)LP + 1
g2PR

.

Proof The encoding and decoding procedure is based on
block Markov techniques.

Encoding The codebook for all users is the same and
defined as CT = {�cT ∩ VT }, where �T ⊆ �cT are
nested lattices of dimension n and �T is both Rogers- and
Poltyrev-good and �cT is Poltyrev-good. To ensure power
constraints, we choose σ 2(�T ) = LP and �cT such that
1
n log2 |CT | = rCF , the user codebook rate.
In block b, user k sends codeword cTk ∈ CT as

Xk(b) =[ cTk(b) + UTk(b)] mod �T ,

where UTk(b) is a dither uniformly distributed over VT .
The quantization codebook at the relay is given by CQ =

{�cQ ∩VQ}, where �Q ⊆ �cQ are nested lattices of dimen-
sion n and �cQ is Rogers-good and �Q is Poltyrev-good.
We choose σ 2(�cQ) = D and σ 2(�Q) = 1+D+ g2(K−1)LP

1+(K−1)LP .

The compression rate is thus RQ = 1
L
1
2 log2

(
σ 2(�Q)

σ 2(�cQ )

)
.

The sending codebook for the relay is given by CR =
{�cR ∩ VR}, where �R ⊆ �cR are nested lattices of dimen-
sion n and �R is both Rogers- and Poltyrev-good and
�cR is Poltyrev-good. To ensure the power constraints, we
choose σ 2(�R) = PR. Each compression index i is mapped
to one codeword cR ∈ CR, that is �R is chosen such that
1
n log2 |CR| = RQ.
During block b, the relay sends XR(b) =[ cR(I(b − 1)) +

UR(b)] mod �R, where UR is a dither uniformly dis-
tributed over VR and I(b − 1) is the compression index of
the signal received during the previous block.

Decoding At block b, the relay receives

YR(b) = g
K∑

k=1
Xk(b) + ZR(b) and quantizes it to

I(b)=
[
QcQ

(
g

K∑

k=1
Xk(b)+ZR(b)

)
+UcQ(b)

]
mod �Q,

where UcQ is a quantization dither uniformly distributed
over VcQ . This can be rewritten as

I(b)=
[
g

K∑

k=1
Xk(b)+ZR(b)+UcQ(b)−EcQ(b)

]
mod �Q,

where EcQ is the quantization error.

During block b, user i receives

Yi(b) =
K∑

k �=i
Xk(b) + gXR(b) + Zi(b).

It starts by decoding the quantization index, considering
the signals received on the direct link as noise, which is
possible if ([15] Lemma 6)

RQ ≤ 1
L
1
2
log2

(
1 + g2PR

1 + (K − 1)LP

)
.

Then, it can remove the message sent by the relay, form-

ing Ỹi(b) =
K∑
k �=i

Xk(b)+Zi(b). The decoding of allXk(b−1)

is performed in Wyner-Ziv fashion using a MAC.
First, user i forms an estimate version of the signal

received at the relay during block b − 1. This is done in
a Wyner-Ziv fashion, using Ỹi(b − 1) as side information.
After this first step, user i has two noisy version of the sum
g
∑

k �=i Xk(b−1) that can be combined coherently in order
to decode all individual messages as over a MAC. During
the previous block, user i formed Ỹi(b−1)which is used in
block b as side information to estimate the received signal
at the relay in the previous block:

ŶR(b − 1) = αỸi(b − 1)

+
[
g

K∑

k=1
Xk(b − 1) + ZR(b − 1)+UcQ(b−1)−EcQ(b − 1)

−αỸi(b − 1) − UcQ(b − 1) − gXi(b − 1)
]

mod �Q

= α

⎛

⎝
K∑

k �=i
Xk(b − 1) + Zi(b − 1)

⎞

⎠

+
[
g

K∑

k=1
Xk(b − 1) + ZR(b − 1) − EcQ(b − 1)

−α

⎛

⎝
K∑

k �=i
Xk(b − 1)+Zi(b−1)

⎞

⎠−gXi(b−1)

⎤

⎦ mod �Q

= g
K∑

k �=i
Xk(b − 1) + ZR(b − 1) − EcQ(b − 1),

where the last equality is valid under perfect decoding,
requiring σ 2(�Q) ≥ (g − α)2(K − 1)LP + D + 1 + α2.

Since we estimate g
K∑
k �=i

Xk(b − 1) + ZR(b − 1) from

K∑
k �=i

Xk(b − 1) + Zi(b − 1), the linear MMSE orthogonal-

ity principle requires that α is chosen as α = g(K−1)LP
(K−1)LP+1 .

Thus, σ 2(�Q) = 1+D+ g2(K−1)LP
1+(K−1)LP . Combining this with
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the quantization rate constraint, the distortion is given by

D = (1 + g2)(K − 1)LP + 1
g2PR

.

In order to recover all messages, user i combines the two
noisy observations ŶR(b − 1) and Ỹi(b − 1) as

g
1 + D

ŶR(b−1)+Ỹi(b−1) =
(
1 + g2

1 + D

) K∑

k �=i
Xk(b − 1)

+ Zi(b − 1) + g
1 + D

(
ZR(b − 1) − EcQ(b − 1)

)
.

Thus, it can decode all messages if

(K − 1)rCF ≤ 1
L
C
(

(K − 1)LP
(
1 + g2

1 + D

))
.

Thus, the total throughput over the mRC, equal to
KLrCF , is given in Proposition 5.

Proposition 6 For a symmetric Gaussian mRC with
direct links, L clusters of K users each, time-sharing
between clusters and asymptotically large g, with powers
P and PR scaled by 1/g2, the following total exchange rate
(mRC throughput) is achievable with CF relaying using
lattice codes:

Rg→∞
CF = K

K − 1
C
(

(K − 1)LPPR
1 + (K − 1)LP + PR

)
.

Note that this is identical to the rate for Gündüz et al.’s
model ([17] eq. (22)).

Proof Replacing P by P/g2 and PR by PR/g2 in (7) and
taking the limit yields the result.

4.4 Decode-and-Forward
In DF relaying, users send the superposition of the mes-
sage from previous block and the current message. The
relay decodes all individual newmessages sent by the users
and broadcasts them back to all users.
Here, we extend the DF scheme using AWGN super-

position coding proposed in [30] to multiple users in a
cluster.

Proposition 7 For a symmetric Gaussian mRC with
direct links, L clusters of K users each and time-sharing
between clusters, the total exchange rate (mRC throughput)
RDF is achievable with DF relaying:

RDF = max
ρ∈[0,1]

min {R1(ρ),R2(ρ)} ,

where

R1(ρ) = C
(
g2ρ2KLP

)
(8)

R2(ρ)= K
K − 1

C
(

(K−1)
(
LP+g2

PR
K

+ 2gρ
√
LPPR
K

))
.

(9)

Proof The proof is based on sliding window encoding
and decoding to take advantage of both the direct and the
relayed links. During block b, the message wk,b ∈ 2nrDF
of user k is encoded into two codewords Xk1(wk,b), which
is of power PR/K and Xk2(wk,b), which is of power LP.
During block b, user k sends

Xk
(
wk,b,wk,b+1

) =
√

ρ2LP
PR/K

Xk1(wk,b) +
√

ρ2Xk2
(
wk,b+1

)
,

where wk,1 is predetermined for all users. At block b, the
relay receives

YR(b) = g

√
ρ2LP
PR/K

K∑

k=1
Xk1(wk,b)

+ g
√

ρ2
K∑

k=1
Xk2(wk,b+1) + ZR(b).

During the previous block, the relay has decoded allwk,b
for k ∈[ 1, . . . ,K ], so it can remove the first term from
YR(b) and decode all wk,b+1 for k ∈[ 1, . . . ,K ] if

KrDF ≤ 1
L
C
(
g2ρ2KLP

)
.

At block b, the relay sends XR(b) =
K∑

k=1
Xk1(wk,b). User i

receives at block b

Yi(b) =
⎛

⎝
√

ρ2LP
PR/K

+ g

⎞

⎠
K∑

k �=i
Xk1(wk,b)

+
√

ρ2
K∑

k �=i
Xk2(wk,b+1) + Zi(b).

User i decodes allwk,b using two noisy observations, one
ofXk2(wk,b) and one ofXk1(wk,b) using Yi(b−1) and Yi(b).
The first noisy observation of wk,b (through Xk2(wk,b)) is
obtained using Yi(b − 1). Indeed, since all wk,b−1 have
already been decoded, one can remove them and form

Ỹi(b − 1) =
√

ρ2∑K
k �=i Xk2(wk,b) + Zi(b − 1). The second

noisy observation of wk,b (through Xk1(wk,b)) is obtained
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using Yi(b) and considering all wk,b+1 as additional noise.
Thus, perfect decoding at user i is possible as long as

(K − 1)rDF ≤ 1
L
1
2
log2

(
1 + ρ2(K − 1)LP

)

+ 1
L
1
2
log2

⎛

⎜⎜⎜⎝1 +

(√
ρ2LP
PR/K + g

)2
(K − 1)PRK

ρ2(K − 1)LP + 1

⎞

⎟⎟⎟⎠

= 1
L
C
(
(K − 1)

(
LP + g2

PR
K

+ 2gρ
√
LPPR
K

))
.

Thus, the total throughput over the mRC, equal to
KLrDF , is given in Proposition 7.

Proposition 8 For a symmetric Gaussian mRC with
direct links, L clusters of K users each, time-sharing
between clusters and asymptotically large g, with powers
P and PR scaled by 1/g2, the following total exchange rate
(mRC throughput) is achievable with DF relaying:

Rg→∞
DF = min

{
C (KLP) ,

K
K − 1

C
(

(K − 1)PR
K

)}
.

The achievable total exchange rate with Gündüz et al.’s
mRC model and DF relaying is given by:

RGündüz et al.
DF = min

{
C (KLP) ,

K
K − 1

C (PR)
}
.

Proof By replacing P by P/g2 and PR by PR/g2 in (8) and
(9) and taking the limit, we obtain

lim
g→∞R1(ρ) = C(ρ2KLP) and

lim
g→∞R2(ρ) = K

K − 1
C
(

(K − 1)PR
K

)
.

Since R1(ρ) is a decreasing function and R2(ρ) is con-
stant in ρ, the optimum value of ρ is ρ∗ = 0, which
completes the proof.

Remark: Note that the two achievable rates Rg→∞
DF and

RGündüz et al.
DF differ only by the fraction K−1

K in the sec-
ond term of the min function. Nevertheless, this term
becomes negligible when the number of users becomes
large.

4.5 Partial Decode-and-Forward
The above loss with respect to Gündüz et al.’s mRC model
and DF scheme is due to the fact that they use Tuncel’s
“virtual binning” technique [31], in which the relay capac-
ity is de facto shared among only K − 1 streams, whereas
in the coherent DF scheme, the relay has to send all K
streams. Thus, we propose also a non-coherent partial
Decode-and-Forward (pDF) protocol, in which the relay
can use Tuncel’s scheme, as in [17].

Proposition 9 For a symmetric Gaussian mRC with
direct links, L clusters of K users each and time-sharing
between clusters, the total exchange rate (mRC throughput)
RpDF is achievable with pDF relaying:

RpDF = max
α∈[0,1]

min
{
C
(

αKg2LP
1 + αKg2LP

)
+ K

K − 1
C (α(K − 1)LP) ,

K
K − 1

C
(
(K − 1)LP + g2PR

)}
.

(10)

Proof The proof follows directly by extending the
TWRC scheme in [13], using Tuncel’s “virtual binning”
[31] at the decoder. The source uses a superposition code-
book with two parts, Xk,d of rate rd and power αLP, and
Xk,r of rate rr and power αLP. The relay only decodes Xk,r ,
k = 1, . . . ,K , which requires the MAC constraint

Krr ≤ 1
L
C
(

αKg2LP
1 + αKg2LP

)

to be satisfied. The protocol is block-based. Once the relay
has decoded block b, it uses a code of rate Krr to jointly
encode Xk,r(b), k = 1, . . . ,K , as in [17, 31], and sends the
joint codeword in block b+1 as Xr(b+1). Thanks to “vir-
tual binning,” this can be decoded as long as the channel
from relay to destination reliably carries rate (K − 1)rr .
Thus, the following MAC constraints have to be satis-

fied at the destination:

(K − 1)rd ≤ 1
L
C((K − 1)αLP),

(K − 1)(rd + rr) ≤ 1
L
C((K − 1)LP + g2PR).

Using the received signals from blocks b and b + 1, des-
tination i can decode (Xk,d(b),Xk,r(b)), k = 1, . . . , i −
1, i + 1, . . . ,K , if the above constraints are satisfied. The
proof is based on joint typicality decoding from codeword
lists formed using (Xi,d(b),Xi,r(b)) as side information, see
[12, 13, 31] for details.
Thus, the total throughput over the mRC, equal to

KL(rd + rr), is given in Proposition 9.

Proposition 10 For a symmetric Gaussian mRC with
direct links, L clusters of K users each, time-sharing
between clusters and asymptotically large g, with powers
P and PR scaled by 1/g2, the following total exchange rate
(mRC throughput) is achievable with pDF relaying:

Rg→∞
pDF = min

{
C(KLP),

K
K − 1

C(PR)
}
.

This equals the total exchange rate for Gündüz et al.’s
mRC model with DF relaying.
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Proof By replacing P by P/g2 and PR by PR/g2 in (10)
and taking the limit. The result follows by observing that
α = 1 maximizes the first term.

4.6 Compute-and-Forward
For this subsection, we assume that there are only two
users in each cluster. This part is based on [15], where a
combination of CoF and DF has been proposed for the
TWRC with unitary links between the relay and the two
destinations nodes.
The main advantage of CoF is the ability to compute

directly the sum of the messages at the relay instead of
decoding both messages individually.

Proposition 11 For a symmetric Gaussian mRC with
direct links, L clusters of K = 2 users each and time-
sharing between clusters, the total exchange rate (mRC
throughput) RCoF is achievable with CoF relaying:

RCoF = min
{
log+

2

(
1
2

+ g2LP
)
, log2(1 + LP + g2PR)

}
.

(11)

Proof The proof follows the one in [15].

Proposition 12 For a symmetric Gaussian mRC with
direct links, L clusters of K = 2 users and asymptotically
large g, with powers P and PR scaled by 1/g2, the following
total exchange rate (mRC throughput) is achievable with
CoF relaying using lattice codes:

Rg→∞
CoF = min

{
log+

2

(
1
2

+ LP
)
, log2(1 + PR)

}
.

Note that this is identical to the rate for Gündüz et al.’s
model ([17] eq. (31)).

Proof By replacing P by P/g2 and PR by PR/g2 in (11),
and taking the limit, the result is straightforward.

4.7 Weakening the cut-set bound
We derive an upper bound on the cut-set bound which
will be useful to analyze the performance of the proposed
protocols. The goal is to obtain a bound based only on the
system parameters and not on the optimization parameter
ρ.

Proposition 13 For a symmetric Gaussian mRC with
direct links, L clusters of K users each and time-sharing
between clusters, the cut-set bound on the exchange capac-
ity can be upper-bounded by:

RCSB ≤ K
K − 1

C
(
(g2 + 1)(K − 1)LP

)
. (12)

Proof Recall that RCSB = maxρ∈{0,1} K
K−1 min

{
f1(ρ),

f2(ρ)
}
, where f1(ρ), resp. f2(ρ), are given in (3), resp. (4).

The value f1(ρ) is an upper bound on the inner min-
imization. Since f1 is strictly decreasing, setting ρ = 0
yields the desired bound:

RCSB = max
ρ∈{0,1}

K
K − 1

min
{
f1(ρ), f2(ρ)

}

≤ max
ρ∈{0,1}

K
K − 1

f1(ρ)

= K
K − 1

C
(
(g2 + 1)(K − 1)LP

)
.

4.8 Comparison between cut-set and proposed schemes
In this section, we characterize the gaps to the cut-set
bound of the proposed schemes. In particular, we prove
that the proposed schemes can achieve a finite gap that is
independent of the transmit powers and number of clus-
ters of the system. Thanks to the upper bound on the
cut-set bound, the results in this section are more general
than those by Su et al. [19], which are restricted to certain
relay power regimes. We also prove that the AF protocol
achieves a finite gap to the CF protocol.

Proposition 14 For a symmetric Gaussian mRC with
direct links, L clusters of K users each and time-sharing
between clusters, the CF protocol achieves rates within

K
2(K−1) log2(1 + g2) bits of the exchange capacity.

Proof

RCF = K
2(K − 1)

log2
(
1 + (g2 + 1)(K − 1)LP

)

− K
2(K − 1)

log2

(
1 + (1 + g2)(K − 1)LP + g2PR

1 + (K − 1)LP + g2PR

)

(a)≥ RCSB − K
2(K − 1)

log2

(
1 + g2(K − 1)LP

1 + (K − 1)LP + g2PR

)

(b)≥ RCSB − K
2(K − 1)

log2(1 + g2),

where (a) follows from Proposition 13 and (b) from over-
bounding f (PR,P) = 1 + g2(K−1)LP

1+(K−1)LP+g2PR
by first setting

PR = 0, since f is decreasing in PR, then letting P → ∞.

Proposition 15 For a symmetric Gaussian mRC with
direct links, L clusters of K users each and time-sharing
between clusters, the AF protocol achieves rates within

K
2(K−1)

(
1 + log2(g2 + 1)

)
bits of the exchange capacity.
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Proof Recall that

RAF = K
2(K − 1)

log2

(
α +√α2 − β2

2

)
,

with

α = 1 + (K − 1)LP
g2(KLP + g2PR) + 1
g2(KLP + PR) + 1

β = 2(K − 1)LPg2
√
PR(g2KLP + 1)

g2(KLP + PR) + 1
.

It can be shown that α2 − β2 is a convex function of PR
and that ∀PR ≥ 0, 4g2γ

(g2+1)2 ≤ α2 − β2, with γ = LP(g2 + 1)
(K − 1) + 1.
Further, one can show that α is an increasing function of

PR and that ∀PR ≥ 0, 1 + (K − 1)LP ≤ α.
Thus, RAF ≥ K

2(K−1) log2
(

(1+(K−1)LP)(1+g2)+2g√γ

2(1+g2)

)
.

Using Proposition 13, we obtain

RAF ≥ RCSB − K
2(K − 1)

log2
(
2(1 + g2)γ
γ + 2g√γ

)

≥ RCSB − K
2(K − 1)

log2
(
2(1 + g2)

)
.

The second inequality is obtained by observing that γ is
strictly increasing in P and taking the limit P → ∞ of the
argument of the logarithm.

4.9 Comparison between Compress-and-Forward and
Amplify-and-Forward

Proposition 16 For a symmetric Gaussian mRC with
direct links, L clusters of K users each and time-sharing
between clusters, the AF protocol achieves rates within

K
2(K−1) log2(2(1 + g2)) bits of the CF protocol.

Proof We first study the achievable rate of CF as a func-
tion of PR. It can be shown that it is an increasing function
upper bounded by K

2(K−1) log2
(
1 + (g2 + 1)(K − 1)LP

)
.

Thus, RCF − RAF ≤ K
2(K−1) log2

(
2(g2 + 1)

)
.

The proof follows the same steps as for Proposition 15.

4.10 Examples
Let us first assume that the relay has a better observation
of the transmittedmessages than the users, thus we set the
gain g on links between the relay and the users to be larger
than 1 (this can be justified by more powerful hardware at
the relay such as better antennas and/or higher power and
less noise).
In Fig. 2, we plot the cut-set bound, the achievable

total exchange rate for the mRC with L = 1 cluster
and P = 30 dB as a function of K. We consider two
cases: either the relay has constant power PR = P, or
its power scales with the number of users as PR = KP.
In both cases, for a moderate number of users per clus-
ter, CF gives the best performance, within a finite gap to
the cut-set bound. When the number of users increases,

Fig. 2 Total exchange rate vs. K, P = 30 dB, g = 3, L = 1—comparison of two power allocation setups: either the relay scales its power with the
number K of users per clusters or not
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DF yields the best performance. For both power alloca-
tion setups, AF achieves rates within a finite gap to CF.
We also observe that DF approaches the cut-set bound
when the relay power doesn’t scale with the number of
users. Below 5 users, pDF outperforms DF, since it bet-
ter exploits the direct links. For 5-7 users, pDF and DF
perform equally. Above 7 users, pDF achieves lower rates
than DF for PR = P. This is due to the fact that DF uses
coherent signaling, which is beneficial in this “low relay
power for many users” regime.
In Fig. 3, we plot the cut-set bound, the achievable sym-

metric rate for themRCwith L = 8 clusters ofK = 2 users
as a function of P. We can note that for the chosen g, CoF
gives the best performance among the proposed schemes,
and that the gap between the cut-set bound and CoF van-
ishes for large power P. One can again note that DF yields
poor performance (K = 2) and that CF achieves rates
within a finite gap of the cut-set bound. For larger powers
P, pDF does better than DF by only using the direct links.
Figure 4 represents the total exchange rate as a function

of the gain g for a fixed power P = 30 dB and K = 4 users
per cluster, with and without power scaling at the relay. In
both cases, the total exchange rate increases with g. Note
that for DF, the total exchange rate is unaffected by relay
power scaling, since the rate is limited by the decoding at
the relay. For small gains g, pDF does better than DF by
only using the direct links.
Let us now compare the influence of the presence of the

direct links. To have a fair comparison with the schemes
proposed by Gündüz et al., let us assume that g = 1.
Figures 5 and 6 display the total exchange rate as a func-
tion of the number of users K per cluster for the multiway
relay channel with and without direct links for relay power
P and KP, respectively. First note that if the relay does
not scale its power with the number of users, adding the

Fig. 3 Total exchange rate vs. P, PR = 2LP, g = 5, K = 2, L = 8

direct links increases the achievable rate for all relaying
schemes (even for DF when the number of users K is large
enough to be efficient), see Fig. 5; whereas when the relay
scales its power with the number of users (Fig. 6), only CF
achieves higher rates for the model with direct links. (AF
and DF have performance close to the case without direct
links.) The pDF protocol needs direct links to operate and
achieves rates that match the CSB without direct links for
this choice of parameters.

5 mRCwithout time-sharing between clusters
In this section, we study the Gaussian mRC with direct
links, whenwe relax the assumption that clusters are oper-
ated in time-sharing fashion (as in [17]). In this case, the
received signals are

At user k of clusterl : Yl,k =
∑

i�=k
Xl,i + gXR + Zl,k

At the relay:YR =
L∑

l=1

K∑

k=1
gXl,k + ZR,

where all users have a power constraint P and the relay a
power constraint PR.
As in Section 4, we first derive an upper bound on

the capacity using a cut-set argument and then propose
various lower bounds using AF, DF or CF.

5.1 Cut-set bound
Proposition 17 For a symmetric Gaussian multiway

relay channel with direct links, L clusters of K users each,
with restricted encoders and without time-sharing, the CSB
on the exchange capacity is given by:

RCSB ≤ max
ρ∈[0,1]

KL
K − 1

min
(
f1(ρ), f2(ρ)

)

where

f1(ρ) = C
(

P̃
ρ2

)

f2(ρ) = C
(
(K − 1)P + g2PRρ2 + 2g

√
PPR(K − 1)ρ

)

and

P̃ = Pg2K(L − 1)PR(g − 1)2K(L − 1)ρ2ρ2

+P2g2K(K − 1)(L − 1)(1 − KLρ2)

+P
[
g2(KL − 1)(1 − KLρ2) + (K − 1)(1 − Kρ2)

]
.

Proof Along the lines of Proposition 1.

5.2 Decode-and-Forward
In the following, two versions of DF are proposed. In both
versions, the relay decodes all messages from all clusters,
before relaying them. In the first version, relayedmessages
from other clusters are treated as noise when recovering
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Fig. 4 Total exchange rate vs. g, P = 30 dB, K = 4, L = 1—comparison of two power allocation setups: either the relay scales its power with the
number K of users per clusters or not

the messages for a given cluster, whereas in the second
one, they are first decoded in order to remove them,
before decoding the messages for a given cluster.

Proposition 18 For a symmetric Gaussian multiway
relay channel with direct links, L clusters of K users each,
for restricted encoders and without time-sharing (relayed
messages from users in other clusters are treated as noise),

the following total exchange rate (mRC throughput) is
achievable with DF relaying:

RDF = max
ρ∈[0,1]

min
{
C
(
g2LKPρ2

)
,

KL
K − 1

C

⎛

⎜⎝(K − 1)
P + g2 PR

KL + 2gρ
√

PPR
KL

1 + g2 L−1
L PR

⎞

⎟⎠

⎫
⎪⎬

⎪⎭
.

Fig. 5 Total exchange rate vs. K, P = 30 dB, PR = P, g = 1, L = 1—comparison of the model with direct links and without direct links
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Fig. 6 Total exchange rate vs. K, P = 30 dB, PR = KP, g = 1, L = 1—comparison of the model with direct links and without direct links

Proof The proof follows along the lines of the proof of
Proposition 7. Themain differences are the powers of each
part of the codeword; here, Xl,k,1 is of power PR/(KL) and
Xl,k,2 is of power P. Relayed messages from users in other
clusters are treated as noise when decoding the K − 1
messages of a given cluster.

Proposition 19 For a symmetric Gaussian multiway
relay channel with direct links, L clusters of K users each,
for restricted encoders and without time-sharing (relayed
messages from users in other clusters are decoded first to
reduce the noise at each user), the following total exchange
rate (mRC throughput) is achievable with DF relaying:

RDF = max
ρ∈[0,1]

min
{
C
(
g2LKPρ2

)
,
KL
K−1

C
(
(K−1)ρ2P

)

+ min

⎧
⎪⎨

⎪⎩
L

L − 1
C

⎛

⎜⎝
g2K(L − 1) PRKL

(K − 1)(P + g2 PR
KL + 2gρ

√
PPR
KL ) + 1

⎞

⎟⎠ ,

KL
K − 1

C

⎛

⎜⎝(K − 1)
g2 PR

KL + ρ2P + 2gρ
√

PPR
KL

(K − 1)ρ2P + 1

⎞

⎟⎠

⎫
⎪⎬

⎪⎭
.

(13)

Proof The proof follows along the lines of the proof of
Proposition 7. The main differences are the power of each
part of the codeword; here, Xl,k,1 is of power PR/(KL) and
Xl,k,2 is of power P. The first rate constraint in (13) corre-
sponds to the MAC constraint at the relay, where all KL

codewords Xl,k,1 are decoded. The second rate constraint
corresponds to the decoding of the K −1 codewords Xl,k,2
after all Xl,k,1 have been removed (the first term in the min
corresponds to the decoding of all (L − 1)K codewords
Xl,k,1 and the second one to the decoding of theK−1 code-
words Xl,k,1 of a given cluster after having the (L − 1)K
codewords Xl,k,1 removed.

5.3 Amplify-and-Forward
In the following, the relay amplifies all received messages
from all clusters and relayed messages from other clusters
are either treated as noise when recovering the messages
for a given cluster or decoded first.

Proposition 20 For a symmetric Gaussian multiway
relay channel with direct links, L clusters of K users each,
for restricted encoders and without time-sharing (relayed
messages from users in other clusters are treated as noise),
the following total exchange rate (mRC throughput) is
achievable with AF relaying:

RAF = KL
2(K − 1)

log2

(
α +√α2 − β2

2

)
,

with

α=1+ (K − 1)P
g2(KLP + g2PR) + 1

g2(KLP + PR + g2(L − 1)KPPR) + 1

β =2(K − 1)Pg2
√
PR(g2KLP + 1)

g2(KLP + PR + g2(L − 1)KPPR) + 1
.
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Proof The proof follows along the lines of the proof of
Proposition 3 using a unit-memory inter-symbol MAC
of K − 1 users. The scaling factor at the relay equals√

PR
g2KLP+1 . Relayed messages from users in other clusters

are treated as noise when decoding the K − 1 messages of
a given cluster.

Proposition 21 For a symmetric Gaussian multiway
relay channel with direct links, L clusters of K users each,
for restricted encoders and without time-sharing (messages
from users in another cluster are decoded first to reduce the
noise at each user), the following total exchange rate (mRC
throughput) is achievable with AF relaying:

RAF = min
{

KL
2(K − 1)

log2

(
α +√α2 − β2

2

)

L
L−1C

(
g4K(L−1)PPR

1+g2(KLP+PR)+(K−1)P(1+g2KLP+g4PR)

)}

(14)

with

α = 1 + (K − 1)P
g2(KLP + g2PR) + 1
g2(KLP + PR) + 1

and

β = 2(K − 1)Pg2
√
PR(g2KLP + 1)

g2(KLP + PR) + 1
.

Proof The proof follows along the line of the proof of
Proposition 3 using a unit-memory inter-symbol MAC
of K − 1 users. The scaling factor at the relay equals√

PR
g2KLP+1 . Relayed messages from other clusters are first

decoded, yielding the second rate constraint in (14) and
then removed. (This can be seen as successive decoding:
even if users are not interested in these messages, they
can decode them in order not to treat them as additional
noise.) The K − 1 messages of a given cluster are then
decoded using the K − 1 user MAC, yielding the first rate
constraint in (14).

5.4 Compress-and-Forward
Proposition 22 For a symmetric Gaussian multiway

relay channel with direct links, L clusters of K users each,
relay link gain g > 0, for restricted encoders and without
time-sharing (relayed messages from users in other clusters
are treated as noise), the following total exchange rate
(mRC throughput) is achievable with CF relaying:

RCF = KL
(K − 1)

C
(

(K−1)P
(
1+ g2

1 + D + g2(L − 1)KP

))

with

D= 1+(K−1)P(1 + g2) + g2(L − 1)KP(1 + (K − 1)P)

g2PR
.

Fig. 7 Comparison of the proposed protocols without time-sharing (w/o TS) among the clusters, K = 4, L = 4, g = 3, PR = KLP, interference (IF) is
treated as noise or decoded
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Proof The proof follows along the lines of the proof
of Proposition 5. The main difference are the second
moment of the shaping lattice used for the quantization,
σ 2(�Q) = 1+D+ g2(K−1)P+g2(L−1)KP((K−1)P+1)

(K−1)P+1 . Messages
from users in another cluster are treated as noise when
decoding the K − 1 messages of a given cluster.

5.5 Comparison of mRC with and without time-sharing
One interesting question concerning the multiway relay
channel is whether it is more advantageous to perform
time-sharing among the clusters or not. Figures 7 and 8
present numerical results for L = 4, K = 4 and g = 3
when PR = KLP. Figure 7 presents the obtained total
exchange rate when no time-sharing is performed at the
relay, whereas Fig. 8 compares the obtained total exchange
rate with and without time-sharing.
The cut-set bound without time-sharing is much higher

than with time-sharing and one can note that for this
scenario only CF seems to perform better without time-
sharing, all other protocols perform either in the same
order of magnitude or worse. Note that CF without time-
sharing is better than any solution involving time-sharing,
since it operates above the cut-set bound with time-
sharing.
We can note that for this scenario DF, when PR =

KLP and additional signals are decoded first, gives results

close to the one obtained with time-sharing and clearly
outperforms the version where the additional signals are
treated as noise. For the two versions of AF, the same
observation can be made for this scenario: decoding the
additional signals first yields higher total exchange rate.
However, when PR = P, treating additional signals as
noise gives better results for bothDF andAF. Note that DF
with decoding of additional signals achieves the same total
exchange rate as DF with time-sharing if in both cases, the
decoding at the relay yields the bottleneck rate (the perfect
decoding constraint at the relay is the same in these two
cases).
CF seems to be best performing because with time-

sharing, it performs close to cut-set bound, while with-
out time-sharing, it is the only protocol to maintain a
constant—albeit large—gap to the cut-set bound.
Clearly, only CF seems to be able to achieve

rates close to the cut-set bound. All protocols have
difficulties dealing with the additional signals, directed
to other clusters and broadcast by the relay. The
major issue is that these signals have a higher power
than the signals that the users of a cluster want to
recover.

6 Discussion and conclusions
In this paper, we considered an extension of the multi-
way relay channel proposed by Gündüz et al. in [17]. In

Fig. 8 Comparison of the proposed protocols with (w/ TS) or without time-sharing (interference (IF) is treated as noise or decoded) among the
clusters, K = 4, L = 4, g = 3, PR = KLP
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the considered setup, multiple clusters of users with direct
intra-cluster links communicate with the help of a single
relay. Each user wishes to recover all messages within its
cluster. We extended standard schemes such as CF, DF,
and AF for this setup using results proposed for the Gaus-
sian relay channel based on lattices [14, 15, 29] or standard
AWGN coding/decoding [24, 30]. We characterized the
achievable total exchange rate for all these protocols with
or without time-sharing among the clusters. When there
are only two users per cluster and time-sharing is per-
formed, we have also proposed an extension of CoF. Under
the time-sharing assumption, we also studied the gaps to
the cut-set bound these protocols can achieve, and proved
that they only depend on the number of users K and on
the gain g of user-relay links, and not on the transmit
power. We also proved that AF performs at a finite gap
from CF.
For very large user-relay gain g, i.e., when the model

becomes that of [17] up to scaling, our results reduce to
the ones obtained by Gündüz et al.
We also noted that for the general case without

time-sharing, only CF performs clearly better than
with time-sharing. Other protocols perform either close
to the performance with time-sharing or worse. This
degradation is due to the interference caused by signals
directed to other clusters, that are broadcast to all clusters
by the relay.
So far, we only characterized the fully symmetric case.

First results based on random coding arguments have
been recently proposed for the asymmetric (in terms of
link gains and powers) multiway relay channel with one
cluster in [19]. The study of practical coding schemes
for asymmetric networks (in terms of link gains, pow-
ers, and number of users per cluster) remains an open
problem, as does the characterization of the entire
achievable rate region for the multiway relay channel
with L clusters. Another open issue regards full-duplex
with a single send/receive antenna: in some cases, results
obtained for full-duplex protocols can be translated to
half-duplex protocols [5]. Moreover, this work only con-
sidered single-antenna nodes; having multiple antennas at
the relay (and possibly the users) would achieve higher
rates.
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