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Background and Objective: Pseudoxanthoma elasticum (PXE) is an inherited and systemic metabolic dis- 

order that affects the skin, leading among other things to a peau d’orange appearance. Unfortunately,

PXE is still poorly understood and there is no existing therapy to treat the disease. Because the skin

is the first organ to be affected in PXE, we propose herein a study of skin microvascular perfusion. By

means of this analysis, our goal is to increase knowledge of PXE. Methods: For this purpose, microvas- 

cular data from patients suffering from PXE and from healthy control subjects were recorded using the

laser speckle contrast imaging (LSCI) modality. These data were processed using the recent 2D version

of the unconstrained optimization approach to empirical mode decomposition (UOA-EMD). Our work

therefore corresponds to the first time this algorithm has been applied to biomedical data. Results: Our

study shows that the 2D-UOA-EMD is able to reveal spatial patterns on local textures of LSCI data. More- 

over, these spatial patterns differ between PXE patients and control subjects. Quantification measure of

these spatial patterns reveals statistical significant differences between PXE and control subjects, in the

neck ( p = 0 . 0 0 04 ) and in the back ( p = 0 . 0 052 ). Conclusions: For the first time, alterations in microvas- 

cular perfusion in PXE patients have been revealed. Our findings open new avenues for our understanding

of pathophysiologic skin changes in PXE.

1. Introduction

Pseudoxanthoma elasticum (PXE) is a heritable systemic 

metabolic disorder that leads to ectopic calcification of soft con- 

nective tissue [2,7,26] . Alterations in the ABCC6 gene have been 

associated with the disease (see, e.g., [3] ). The organs that are 

primarily affected by PXE are the skin and the eyes [17] . Cu- 

taneous lesions in PXE are asymptomatic yellow-white papules. 

These papules usually have a diameter of 2 to 5 mm and are 

“dome-shaped”. The skin thus resembles an orange peel (peau 

d’orange), see Fig. 1 . These papules are mainly found in the flexor 

areas: neck, axillae, and inguinal folds [17] . Moreover, the cardio- 

vascular system may also be affected in PXE patients. Cardiovas- 
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cular manifestations include, but are not limited to, arterial hyper- 

tension, angina pectoris, and reduced pulse amplitude. One study 

reported a relationship between the degree of cardiovascular in- 

volvement and severity of skin and mucous membrane lesions in 

PXE [50] . Recent studies estimate a prevalence of PXE as high as 

1:25,0 0 0 [7,16,29,45] . 

Unfortunately, PXE is still a poorly understood condition and no 

definitive therapy exists. We noticed – in several instances – that 

the skin in PXE may be altered by presenting striking redness (so- 

called erythema). This prompted us to hypothesize that cutaneous 

PXE lesions could be associated with vascular changes. Hence our 

desire to study skin microvascular perfusion in PXE patients; such 

a study has not yet been conducted in the literature. The impor- 

tant questions to answer are: Is skin perfusion with lesions in PXE 

patients similar to that of control subjects? Is there any differ- 

ence between skin perfusion presenting lesions and skin perfusion 
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Fig. 1. “Orange peel” skin (peau d’orange) in the neck of a patient suffering from

PXE.
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Fig. 2. Laser speckle contrast images recorded in the neck and back in a patient

suffering from PXE and in a healthy subject. The size of the images is 60 × 60 

pixels (see the text for details). The colorbar unit is APU LSCI . (For interpretation of

the references to colour in this figure legend, the reader is referred to the web

version of this article.)

without lesions? Does the systemic aspect in PXE pathology affect 

skin perfusion in regions where no papules are found? Finding an- 

swers to all of these questions would help in understanding the 

PXE disorder and might provide keys to possible therapy. 

Skin microvascular perfusion can be assessed using the recently 

commercialized laser speckle contrast imaging (LSCI) modality [4–

6,23] . LSCI provides perfusion images with high temporal and spa- 

tial resolution and requires only low-cost devices [44] . Moreover, 

LSCI has the advantage of being contactless and the data are highly 

reproducible [46] . However, interpretation of LSCI data (nonsta- 

tionary data) recorded from the skin is not an easy task since the 

images resemble noise (see examples in Fig. 2 ). It is therefore of- 

ten necessary to use image/signal processing procedures to extract 

underlying physiological phenomena, which are useful for medical 

doctors [22,24] . 

In the present work we propose a better understanding of the 

PXE pathophysiology through the processing of LSCI data recorded 

both in patients suffering from PXE and in control subjects. To this 

purpose, the task of image processing was performed by applying 

the new bidimensional version of the unconstrained optimization 

approach to EMD (2D-UOA-EMD, see below) algorithm to these 

LSCI data. Our study therefore presents two novelties: i) it is the 

first to propose an analysis of skin microvascular perfusion in PXE 

patients; ii) it is the first to propose a biomedical application of 

the recent 2D-UOA-EMD algorithm. 

The paper is organized as follows. In Section 2 , “Materials and 

Methods”, we present the acquisition procedure as well as the 1D 

and 2D versions of the unconstrained optimization approach used 

to process the data. In Section 3 , the results are detailed. They are 

discussed in Section 4 . Conclusions are proposed in Section 5 . 

2. Materials and methods

2.1. Acquisition procedure 

For this first application of the bidimensional version of the 

UOA-EMD, 2200 laser speckle contrast images were processed. The 

latter were recorded in 22 Caucasian subjects recruited from a ref- 

erence center for PXE. The subjects were divided into two groups: 

eleven control subjects (7 men, 4 women, 31.09 years ± 8.29) 

and eleven subjects with PXE (6 men, 5 women, 37.36 years ±

7.70). The 22 subjects provided written, informed consent prior to 

participation and the study was carried out in accordance with 

the Declaration of Helsinki. The study was approved by the local 

ethics committee (composed of medical doctors, philosophers, psy- 

chologists, a jurist) under the number 2012/193. The control sub- 

jects were voluntary subjects working at the University hospital 

of Angers, France. They had normal skin (no papules). In the pa- 

tients, the diagnosis of PXE was based on a combination of estab- 

lished criteria for indisputable PXE (clinically suggestive skin le- 

sions, angioid streaks on fundoscopy, histological demonstration of 

fragmented and calcified elastic fibers on skin biopsy) as well as 

ABCC6 gene mutations. 

For the perfusion image acquisition, the laser speckle contrast 

imager PeriCam PSI System (Perimed, Sweden) was used. The sys- 

tem consists of a linearly polarized laser emitting at a wavelength 

of 785 nm and using a camera with an exposure time of 6 ms. The 

camera includes a polarizer aligned to remove specular reflection. 

During acquisition, the subjects were placed supine in a quiet, 

temperature-controlled room with no air movement [34] . The dis- 

tance from laser head to skin was set at 15 cm which gave images 

with a resolution of around 0.4 mm (see examples in Fig. 2 ). In 

each of the 22 subjects, two areas were imaged: the neck (area 

known for presenting papules in PXE patients) and the back (area 

known for absence of papules in PXE patients). LSCI perfusion data 

were acquired in laser speckle perfusion units (APU LSCI , arbitrary 

units provided by the manufacturer), for 10 s in each site (neck and 

back) and stored with a sampling frequency of 5 Hz on a computer 

for off-line analysis. In each subject (11 healthy controls and 11 pa- 

tients with PXE), fifty images recorded in the neck and fifty images 

recorded in the back were therefore taken into account. Before pro- 

cessing, the data were validated by experts (medical doctors rec- 

ognized worldwide as experts in the field of LSCI or PXE – see our 

previous papers). In each of these images, a rectangular area was 

selected – mentioned below as a region of interest (ROI). The size 

of the ROI was approximately 576 mm 2 (maximum area that can 

be chosen in the neck with the presence of papules; the same sur- 

face was therefore chosen in the back). In the back, the placement 

of the ROI was selected arbitrarily in each LSCI image. In the neck, 

the ROI was selected so as to show a region with papules. Each 

ROI was processed with the 2D-UOA-EMD framework (see below). 

In the healthy group, we therefore had 550 ROI in the neck (50 ×

11 ROI) and 550 ROI in the back; in the PXE group, we also had 

550 ROI in the neck and 550 ROI in the back. A total of 2200 ROI 

were therefore processed. 
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2.2. Image processing framework 

2.2.1. Empirical mode decomposition algorithm 

Empirical mode decomposition (EMD) leads to intrinsic mode 

functions (IMFs). The latter are functions directly conveying the 

amplitude and frequency modulations of the signal. An IMF sat- 

isfies two conditions [20] : (i) it contains the same number of ex- 

trema and zero crossings (or differs at most by one); (ii) the two 

IMF envelopes defined by its local maxima and local minima are 

symmetric with respect to zero. EMD relies on an iterative algo- 

rithm that uses a so-called sifting process to extract the IMFs [20] : 

1. for a signal X = h 0 , the mean m 0 of its upper and lower en- 

velopes is determined from cubic-spline interpolation of local

maxima and minima

2. m 0 is removed from the signal, giving the first component h 1 =

h 0 − m 0

3. the sifting process is iterated (here h 1 takes the place of h 0 ),

leading to a new local mean m 1 . Then h 2 is computed as h 2 =

h 1 − m 1

4. the procedure is repeated k times until h k = h k −1 − m k −1 is an

IMF, see the two conditions above (sifting process)

5. this first IMF is noted c 1 = h k and contains the components

with the highest local frequencies. We compute r 1 = X − c 1 and

then steps 1 to 4 are repeated on the residual signal r 1 leading

to IMFs c j and residuals r j = r j−1 − c j , for j varying from 1 to n

6. the process stops when residual r n contains no more than three

extrema.

EMD (and its variants) have been applied in a variety of 

fields (see, e.g., [1,21,33,39] ). However, EMD has some drawbacks: 

mode mixing, or more generally, scale mixing [52,53] . Scale mixing 

corresponds to the presence of signals of widely disparate scales 

in a single IMF or as a signal of a given scale residing in several 

IMFs. Mode mixing is due to signal intermittency. Due to these 

drawbacks, the ensemble EMD (EEMD) was proposed in 2009 [52] . 

EEMD performs EMD over an ensemble of the signal under study 

plus Gaussian white noise. The 2D-version of EEMD has also been 

published in order to enable the processing of images [53] . How- 

ever, EEMD itself has some drawbacks: residual noise is present 

in the reconstructed data and the mode mixing problem still re- 

sides in most cases for real applications (see, e.g., [49] ). This is 

why other (numerous) algorithms have been proposed to overcome 

EMD and EEMD drawbacks: improved EMD [56] , modified EEMD 

[58] , complementary EEMD (CEEMD) [57] , improved CEEMD [31] , 

adaptively fast EEMD (AFEEMD) [55] , partly EEMD (PEEMD) [59] , 

complete EEMD with adaptive noise (CEEMDAN) [9,49] , to cite only 

a few. In some cases, an n -dimensional version has also been pro- 

posed to process multidimensional data such as images [25] . 

2.2.2. Unconstrained optimization approach to EMD 

Recently, Colominas et al. proposed an unconstrained optimiza- 

tion approach to EMD (UOA–EMD) [10] . The latter approach has 

the advantage of being simple and having an analytical solution. 

Moreover, due to the absence of envelope computation, drawbacks 

of EMD such as under- and overshoot are avoided. The UOA–

EMD algorithm relies on the following convex optimization prob- 

lem (Tikhonov regularization) to find the local mean a ∈ R N of a 

given signal x ∈ R N [10] : 

( P ) min 
a

|| P x (x − a ) || 22 + λ|| La || 2 2 , (1) 

where matrix P x ∈ R N×N is a linear operator, depending only on 

the locations of local extrema of x , which models the penalization 

imposed on the mode d = x − a at each extrema, matrix L ∈ R N×N 

is a second-order difference matrix, a and x are considered col- 

umn vectors, and || ·|| 2 stands for the ℓ 2 -norm. This problem has a 

unique solution [10] : 

a ∗ = (P T x P x + λL T L ) −1 P T x P x x. (2) 

The matrix P x is a key element to finding the local extrema of x : 

it has as many non-zero rows as local extrema of the signal x [10] . 

Let p l ∈ R N be the t l th row of matrix P x . It has non-zeros elements 

only on the t l−1 , t l , t l+1 th positions: 

p l = [ . . . 
t l+1 − t l 
t l+1 − t l−1 

. . . 1 . . . 
t l − t l−1 

t l+1 − t l−1 
. . . ] . (3) 

Eq. (3) can therefore be used to construct matrix P x . Using the lat- 

ter, decomposition of signal x becomes possible, as described in the 

algorithmic-based version shown in [8] . 

2.2.3. Bidimensional extension of UOA–EMD 

A bidimensional extension of UOA–EMD (2D-UOA-EMD) has 

also been proposed recently [8] . When considering a function of 

two real variables X = X(x, y ) , where X ∈ R N 1 ×N 2 is the image, the 

bidimensional version is based on the 1D algorithmic-based ver- 

sion, where the 2D extension of the convex optimization problem 

is written as [8] 

( P-2D ) min 
â

|| ̂  P X ( ̂  x − ˆ a ) || 22 + λ|| ̂ L ̂  a || 2 2 , (4) 

ˆ x ∈ R N 1 N 2 = vec (X ) , ˆ a ∈ R N 1 N 2 = vec (A ) ( A ∈ R N 1 ×N 2 is an approx- 

imation such that penalization on every local extrema of the 

mode D = X − A is minimized). The matrix ˆ P X ∈ R N 1 N 2 ×N 1 N 2 con- 

tains (vec( P l )) 
T as rows and ˆ L ∈ R N 1 N 2 ×N 1 N 2 contains (vec( L i, j )) 

T as

rows. P l ∈ R N 1 ×N 2 is a matrix with P l (z i ) = c i , i = 1 , 2 , 3 , and the co- 

efficients c i are those necessary to compare the function D ( z l ) with 

the plane intersecting D ( z i ) ( z l is a local maximum (resp. mini- 

mum), and z i , i = 1 , 2 , 3 , are the three closest non-colineal local 

minima (resp. maxima)). The c i are defined as [8] 

c 2 = 
(x l − x 1 )(y 3 − y 1 ) − (x 3 − x 1 )(y l − y 1 )

(x 2 − x 1 )(y 3 − y 1 ) − (x 3 − x 1 )(y 2 − y 1 ) 
, (5) 

c 3 = 
(x 2 − x 1 )(y l − y 1 ) − (x l − x 1 )(y 2 − y 1 )

(x 2 − x 1 )(y 3 − y 1 ) − (x 3 − x 1 )(y 2 − y 1 ) 
, (6) 

c 1 = 1 − c 2 − c 3 . (7) 

L i, j ∈ R N 1 ×N 2 is a discrete approximation of the Laplacian operator

which consists of a matrix of the same size as X with all zeros ex- 

cept for the kernel. Here, vec( ·) is the classical vectorization opera- 

tion, in which the columns of a matrix are vertically concatenated 

to form a vector. 

Problem (P-2D) paves the way for n D extensions, simply by 

defining the penalization tensor for all local extrema, and a rough- 

ening tensor on n D. It also constitutes a true genuine-2D approach. 

The corresponding 2D algorithm is shown herein. We revealed that 

such an approach overperforms the existing bidimensional algo- 

rithms, namely Image EMD [32] , Prox-EMD [48] in its pseudo-2D 

implementation, and TV-G texture-geometry decomposition [15] . 

Indeed, UOA–EMD is orientation-independent, shows lower tem- 

poral complexity, and performs better in decomposing AM-FM im- 

ages [8] . 

In all that follows, and based on previous work [10] , λ was cho- 

sen equal to 1 in the image processing framework. 

3. Results

3.1. Comparison of perfusion mean values 

We first compared the mean perfusion value of the neck be- 

tween the two groups. To this purpose, the mean of the pixel val- 

ues inside the ROI for each subject was computed in each image, 

and the average for the 50 images was then determined. The same 
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Algorithm Algorithm for the 2D version of UOA-EMD. 

1: Given X ∈ R N 1 ×N 2 (image), assign A 0 = X and ˆ a 0 = vec (X ) ∈ 

R N 1 N 2 . 

2: Define the sparse roughening matrix ˆ L ∈ R N 1 N 2 ×N 1 N 2 

3: for k = 1 , 2 , . . . do 

4: Determine the set L k of local extrema of A k . 

5: Define the sparse matrix ˆ P A 0 ∈ R N 1 N 2 ×N 1 N 2 . 

6: for l = 1 , 2 , . . . , |L k | do

7: Define the sparse matrix P l ∈ R N 1 ×N 2 and the coefficients

P (z l ) = 1 and P (z i ) = c i . 

8: ˆ P A 0 (N 1 (y l − 1) + x l , ·) ← vec (P l ) 
T . 

9: end for 

10: Calculate the local mean ˆ a k for a λk > 0 . 

ˆ a k = ( ̂  P T A k 
ˆ P A k + λk ̂

 L T ̂  L ) −1 ̂  P T A k 
ˆ P A k ̂  a k −1 . 

11: Construct A k from ˆ a k and calculate the mode D k = A k −1 − A k . 

12: end for 

Notations : we used the notation M(n, ·) to denote the n th row of 

matrix M. 

Table 1

Detailed results for two subjects: one healthy and one suffering from

PXE.

Subject Perfusion Lacunarity

(APU LSCI ) IMF1 IMF2 Residue

Healthy subject Neck 114 .7 0 .04 0 .04 0 .07

Back 63 .2 0 .03 0 .04 0 .06

PXE patient Neck 139 .9 0 .04 0 .04 0 .13

Back 66 .0 0 .03 0 .04 0 .11

Table 2

Statistical results obtained from the Mann-Whitney test

between the two groups of subjects (PXE patients and

healthy subjects). ns stands for non significantly differ- 

ent between the two groups of subjects. p < 0.05 cor- 

responds to significant statistical differences.

Neck Back

Perfusion ns ns

Lacunarity for IMF1 ns ns

Lacunarity for IMF2 ns ns

Lacunarity for residue p = 0 . 0 0 04 p = 0 . 0052 

procedure was performed in ROI of the back. The results show that, 

in the neck, the mean perfusion value is higher in the PXE group 

than in the control group (133.7 APU LSCI in the PXE group and 

125.2 APU LSCI in the control group). The same conclusion is drawn 

in the back (72.4 APU LSCI in the PXE group and 64.2 APU LSCI in 

the control group). Detailed results from two subjects (one healthy 

subject and one PXE patient) are presented in Table 1 . However, 

with only 11 subjects in each group, we do not observe any statis- 

tical difference between the two groups, neither in the neck, nor 

in the back (see Table 2 ). We also note that the standard deviation 

values are greater in the PXE group, for data recorded in the neck, 

than in the control group (94.4 APU LSCI in the PXE group and 88.0 

APU LSCI in the control group). 

3.2. Patterns revealed by 2D-UOA-EMD on LSCI data 

Figs. 3 and 4 show the results of 2D-UOA-EMD on LSCI data, in 

the neck and back respectively, both in PXE patients and in healthy 

subjects. According to these figures we observe that patterns be- 

come visible as the number of IMFs increases. The size of these 

patterns grows with the number of IMFs and is the largest on the 

residue. This is true both in the images recorded in the neck and in 

the back, in PXE patients and healthy subjects. We also note that 

the patterns from the images recorded in the neck are much more 

visible than those from the images recorded in the back. 

3.3. Quantification of the spatial patterns 

In order to quantify these spatial patterns, we computed the la- 

cunarity of the fractal dimension image of each IMF and residue, 

in each ROI. We then computed an average value for each sub- 

ject and for each site [25] . Lacunarity was proposed to differentiate 

patterns of spatial dispersion [41] : lacunarity is a fractal property 

that is used to describe the texture of a fractal. More precisely, la- 

cunarity measures the “lumpiness” of the fractal data, providing 

meta-information about the computed fractal dimension values of 

the image. The higher the lacunarity, the more inhomogeneous the 

examined fractal area and vice versa. Lacunarity is defined in terms 

of the ratio of the variance over the mean value of the function as 

L = 
1 / (MN)

∑ M−1 
m =0

∑ N−1 
n =0 I(m, n ) 2 

[ 

1 / (MN) 
∑ M−1 

k =0

∑ N−1 
l=0 I(k, l) 

] 2 
− 1 , (8) 

where M and N are the sizes of the fractal dimension image I [40] . 

In our work, fractal dimension was computed using a differential 

box counting algorithm [25] . 

The fractal dimension obtained from each IMF and residue, in 

both groups and in both sites, is shown in Fig. 5 . Moreover, the 

mean lacunarity values obtained from each IMF and residue, in 

both groups and in both sites, are shown in Fig. 6 . Detailed re- 

sults from two subjects (one healthy subject and one PXE patient) 

are presented in Table 1 . Figs. 5 and 6 reveal that mean lacunar- 

ity (resp. fractal dimension) is higher (resp. lower) in residue than 

in IMFs, both in the neck and the back. Moreover, mean lacunarity 

(resp. fractal dimension) is higher (resp. lower) in PXE than in con- 

trol subjects, in IMFs and residue. This is true both for the images 

recorded in both the neck and back areas. 

The Mann-Whitney test shows that the differences between the 

lacunarity values computed from the residue in the two groups 

are statistically significant in the neck ( p = 0 . 0 0 04 ), but also in 

the back ( p = 0 . 0052 ) (see Table 2 ). No statistical differences were 

found for the lacunarity values computed from the IMFs, neither 

in the neck, nor in the back (see Table 2 ). The same statistical con- 

clusions were obtained for the fractal dimension (statistical differ- 

ences for the residue between the two groups, in the neck and in 

the back). 

4. Discussion

The skin is the organ that is first affected in PXE and we no- 

ticed that the skin in PXE sometimes presents with erythema. This 

is why we proposed in this document to study skin microvascu- 

lar perfusion. This was performed through the processing of LSCI 

images recorded in the neck and back of healthy subjects and PXE 

patients. Our image processing framework relies on the recent 2D 

version of UOA–EMD. We show that the 2D-UOA-EMD is able to 

reveal hidden patterns in LSCI data reflecting microvascular skin 

perfusion. These patterns are herein quantified by lacunarity val- 

ues. From these patterns (in residue) we report statistical differ- 

ences between patients suffering from PXE and healthy controls, in 

the back, but most of all in the neck. We also noticed differences in 

perfusion between the two groups, but no statistical difference was 

obtained with 11 × 2 subjects. The 2D-UOA-EMD framework is able 

to underline such differences and reveals that microvascular perfu- 

sion is altered in PXE patients. The IMFs computed from the frame- 

work are features of the original data and reveal local textures 
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Fig. 3. UOA-EMD for two LSCI images recorded in the neck in a patient suffering from PXE (upper panels) and in a healthy subject (lower panels). Two IMFs, from fine to

large scale, and residue (left to right) are shown. The computation was performed with λ = 1 . The original LSCI images (60 × 60 pixels) are shown in Fig. 2 , left column. 

The colorbar unit is APU LSCI . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Same as Fig. 3 , but in the back . The original LSCI images (60 × 60 pixels) are shown in Fig. 2 , right column. The colorbar unit is APU LSCI . (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.)

with characteristic spatial frequencies. The first IMF represents the 

smallest scale (the finest textural), possibly background noise. As 

the number of IMFs increases, larger scales are discovered. The 

residue gives only the largest scale of the overall mean trend in in- 

tensity of the image. This explains why lacunarity presents larger 

values in residue than in IMFs. These findings are consistent with 

another recent study [25] . 

The Mann-Whitney test shows that the differences between the 

lacunarity values computed from the residue in the two groups are 

statistically significant in the neck, but also in the back. However, 

no statistical differences are found for the lacunarity values com- 

puted from the IMFs, neither in the neck, nor in the back. The 

same statistical conclusions are obtained for the fractal dimen- 

sion. Since the residue captures higher spatially-changing perfu- 

sion trends, these results support the idea that microvascular blood 

flow is altered in PXE patients compared to control subjects. More- 

over, in relation to a previous study [25] , our results (higher la- 

cunarity values for residue in PXE patients compared to control 

subjects) may mean that PXE patients present higher microvascu- 

lar perfusion than control subjects (in the back but most of all in 

the neck). The exact physiological link with the pathology remains 

to be elucidated but the presence of infraclinical inflammatory 

changes may be hypothesized. As mentioned previously, the car- 

diovascular system may also be affected in PXE patients. The fact 

that the lacunarity values for residue are higher in PXE patients 

than in control subjects not only in the region of the neck (area 

known as presenting papules in PXE patients) but also in the re- 

gion of the back (area known as being without papules in PXE pa- 

tients) may reveal the systemic nature of the condition. 
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Fig. 5. Mean and standard deviation values for fractal dimension of IMFs and

residue obtained with 2D-UOA-EMD. The results were computed from 550 LSCI data

recorded in 11 patients suffering from PXE and 550 LSCI data recorded in 11 healthy

subjects, at the neck and back; see text for details.
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Fig. 6. Same as Fig. 5 but for lacunarity values of fractal dimension images.

Several kinds of algorithms can be used to process images 

such as LSCI data. Among them, EMD has the advantage of being 

designed as a fully data-adaptive method [20] : it is fully data- 

driven and does not need any a priori defined basis system, such as 

wavelet-based techniques. EMD decomposes non linear and non- 

stationary data into a set of oscillatory components: IMFs [20] . 

However, one of the major drawbacks of EMD is the lack of a 

mathematical framework, even if mathematical foundations have 

been proposed [11,12,18,19,37,42,43,51,54] . This is why Colominas 

et al. recently reported a new approach for EMD, based on opti- 

mization [10] . The advantages of this approach, compared to oth- 

ers, are the following: i) the explicit computation of envelopes to 

find the local mean is not needed; ii) there is no use of explicit 

spline interpolation; iii) the proposed method provides an analyt- 

ical solution. Moreover, the computational cost of this new ap- 

proach is similar to that of EMD and only one parameter needs 

to be set [10] . A two-dimensional version of this algorithm has 

recently been published [8] . By processing synthetic and real im- 

ages, the superiority of this 2D version of the unconstrained op- 

timization approach to EMD (2D-UOA-EMD) – compared to other 

bidimensional versions of EMD-derived algorithms – has been re- 

ported [8] . 

Our work also has some limitations. From a measurement point 

of view: (i) we processed a small group of subjects (22 subjects). 

Our results now need to be confirmed using data acquired from 

a larger population; (ii) the LSCI technique is sensitive to exper- 

imental conditions [35] . Therefore, studies such as this necessi- 

tate a very well defined measurement protocol; (iii) the data pro- 

cessed in the neck of the subjects may be altered by skin move- 

ments. Indeed, LSCI is sensitive to any movement: movement of 

the skin, voluntary or involuntary movement of the subjects, etc. 

Since the carotid artery is close to the regions where PXE papules 

are present in the neck, the pulsed passage of blood into the 

carotid artery may lead to artefacts in the data recorded in the 

neck. To avoid this, we could use an adhesive opaque surface ap- 

plied on the skin [36,38] . With reference to image processing: 2D- 

UOA-EMD requires a parameter to be set ( λ value). In the present 

work, the value of λ was chosen equal to 1 based on previous work 

[10] . Further investigation would be necessary to choose the opti- 

mal value for λ. 
In the future, other approaches could be used to continue the 

work. From a medical point of view: with data acquired from 

many more subjects, we may be able to separate the population 

into true positive, false positive, true negative, and false negative. 

Furthermore, it could be interesting to validate the method pro- 

posed herein as a noninvasive method to study the possible ac- 

tions of a future therapy. Moreover, it could be interesting to study 

how lesions evolve with age, and also compare the results pro- 

vided by active lesions (lesions that evolve) with those of inac- 

tive lesions. With reference to image processing: some variations 

of 2D-UOA-EMD could be proposed. Thus, for more uniform scales 

in each mode, noise-assisted variations could be explored. Adding 

white noise to the image would focus the method on specific 

scales, from fine scales to coarse scales. Moreover, other multireso- 

lution image processing frameworks could be proposed. Variational 

mode decomposition (VMD) and its variants could be of interest 

for this purpose [13,14,47] . VMD overcomes the drawback of re- 

cursive decomposition algorithms such as EMD: VMD does not re- 

quire a mode sifting process. All modes are determined simulta- 

neously. This is why VMD is currently drawing increased attention 

[27,28,30] . This algorithm deserves attention in future studies. 

5. Conclusion

To date no study on skin perfusion in PXE patients has been 

conducted, in spite of cutaneous lesions noted in the pathology. 

This is why we proposed an analysis of the local texture of skin 

perfusion images (LSCI data) in patients suffering from PXE and 

a comparison of the results with those observed in healthy control 

subjects. Using a two-dimensional version of the recently proposed 

UOA–EMD, we have revealed for the first time that microvascular 

perfusion is altered in PXE patients. These new findings provide 

valuable information in the study of pathophysiologic changes to 

the skin in PXE. 
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