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Abstract—In this paper, an original method to compute an
indicator for efficient detection of bearing defaults in high speed
synchronous machines is presented. This indicator is based
on the statistical analysis of the stator current spectrum. The
principle of the method is to compare the current spectrum
to a healthy reference spectrum. The reference spectrum is
used to center and reduce the current spectrum and provides
an indication on its difference from the reference spectrum.
A statistical based indicator is then constructed as the sum of
the contributions of the centered reduced spectrum for different
interesting frequency bands. This indicator has been tested on
2 different test campaigns, for 4 different speeds and compared
a vibratory indicator. Results show that the proposed indicator
evolves the same way than the vibratory indicator and provides
with an efficient detection of bearing fault with only very few
false alarms.

I. INTRODUCTION

Over the past few years, monitoring has become an im-
portant industrial research area in order to assess safety and
reliability of electrical machines. There are a lot of different
failure causes in electrical machines (overview in [1]). Among
them, ball bearing defects are responsible for 40% of machine
failures, as shown in [2]. Bearing faults can lead to critical
events such as abnormal temperature or vibration level, rotor
locking, stator friction, etc. Manufacturers show therefore
more and more concerns about monitoring the state of health
of bearings in order to guarantee the availability and the
predictive maintenance in machine elements like actuators for
example.

Vibration analysis has first been used to detect bearing
faults ([3], [4], [5]). The characteristic frequencies of the
vibration spectrum can indeed be used to detect specific
bearing damages. Nevertheless, this solution is often expensive
due to the price of vibration sensors (such as piezoelectric
accelerometers). Consequently, several studies ([6], [7], [8])
have successfully suggested to process the stator current
signal, which is often available for control purposes. Specific
signatures linked to bearing faults appear indeed on the stator
current spectrum. A review of the different techniques used
based on the stator current spectrum analysis is presented in
[9]. These techniques mainly concern the induction machine.
However, a few work deals with bearing fault detection in
permanent magnet machines ([10], [11]).

This paper focuses on bearing fault detection for a high
speed permanent magnet synchronous machine (PMSM) be-
longing to an air conditioning fan used in aeronautic. The clas-
sical stator current signatures related to the vibration bearing
frequencies are not suitable for such applications due to their
low level. However, some frequencies multiple of the rotation
frequency in the stator current spectrum have been proved to
be sensitive to the considered faults [12]. A novel detection
method based on a statistical process of the stator current
spectrum is presented here. This method build indicators based
on the deviation from reference distributions computed at the
beginning of the recording for different harmonics families in
order to enlighten changes in the stator current spectrum.

The outline of this paper is the following. Section II starts
with a short description of the studied system and describes the
experimental protocol and data used in this work. The bearing
fault detection method is then detailed in section III. The
process of the stator current is first presented. A brief analysis
of the experimental data is then achieved. This section ends
with a description of the indicator construction. Results are
presented and discussed in section IV along with the strategy
of evaluation.

II. MATERIAL

A. System description

As previously mentioned, the studied system is an air
conditioning fan based (Technofan LP2) with a high-speed
permanent magnet synchronous machine. It is used in civil
aeronautic to provide air conditioning and renewing. The
whole fan is showed in Fig. 1. Its power is 5kV A and its
maximum speed Vmax is 14100rpm (rotations per minutes).

This machine has sinusoidal back electromotive forces but
is supplied by a pulse width modulation (PWM) inverter
operating sequentially to provide 120˚ square wave currents in
the three phases of the machine. This kind of control avoids
using an accurate position sensor such as resolver. The block
diagram of the whole system is depicted in Fig. 2 where
Ibus, Iinv, I1,2,3 are respectively the bus current, the inverter
current and the the stator current for the 3 phases and Ic, Ve
are the capacity current and the inverter speed used for the
system regulation. The PWM is synchronized thanks to three
Hall effect sensors. Cr is the resistant couple of the machine.



Figure 1. TECHNOFAN LP2 fan - 5kV A - Vmax = 14100rpm

Figure 2. Block diagram of the PMSM

Table I
HARMONIC FAMILIES OF THE STATOR CURRENT SPECTRUM

Type Rank

Current (6k ± 1)fs

PWM fswi ± (6k ± 1)fs

Rotor kfr

The Fourier transform of the square wave form of the stator
current Is can be expressed as

Is =

∞∑
n=1

4π

n
(sin

πn

2
sin

πn

3
)sin(2πntfs) (1)

with fs the supply frequency. The study of eq. (1) leads to
the identification of the (6k ± 1)fs harmonic family. This
family can be modulated around the switching frequency fswi

because of the PWM. This is expressed by the fswi±(6k±1)fs
harmonic family in current spectrum. Some harmonics linked
to the rotor speed can also appear in the current spectrum at
the frequencies kfr. The rotor mechanical frequency fr can
be expressed as fr = fs

Np
where Np is the number of pole

pairs in the machine. The studied machine in this paper has 3
pole pairs. This is resumed in table I.

B. Experimental protocol and data

The experimental protocol consists in two parts measure-
ment campaign. The first part is performed with a healthy
bearing, and the second one with a faulty bearing. The faulty
bearing is artificially aged by a burning grease process at
200˚C during 60 hours and a broken cage. This type of
degradation is suitable because it guarantees a vibrational level
very close to the healthy level for several hours of operation

Figure 3. Bearing fault diagnostic experimental bench

Table II
CHARACTERISTIC FREQUENCIES ACCORDING TO MACHINE SPEED

Machine
fs frspeed

8000rpm 400Hz 133.33Hz
10000rpm 500Hz 166.66Hz
12000rpm 600Hz 200Hz
14100rpm 705Hz 235Hz

a) b)

Figure 4. Vibration indicator for campaign 1 (a) and 2 (b) at 12000rpm

before the first signs of failure. Two test campaigns have been
conducted with bearings having followed the same degradation
protocol. The experimental bench is presented in Fig. 3.

The measurement of the stator current has been performed
using a 18 bits acquisition board with a sampling frequency of
200kHz. Data are recorded every hour with a 5s duration. The
measurements have been performed for 4 different mechanical
rotation speeds: 8000, 10000, 12000 and 14100rpm. Table II
shows the characteristic frequencies fs and fr for the different
speeds.

For the first campaign, the whole dataset represents 84
recordings in the healthy case and 487 recordings in the faulty
case. For the second campaign, the whole dataset represents
160 recordings in the healthy case and 902 recordings in the
faulty case. Moreover, a vibration sensor has been inserted
close to the bearing. A vibration indicator is automatically
computed through a FFT by using the RMS (Root Mean
Square) value of the signal in a frequency range from 1 to
19 kHz. A vibration indicator example is given in Fig. 4 for
campaign 1 (a) and 2 (b) at 12000rpm. In both cases, the
bearing was changed around the 40th recordings. It can be seen
in this figure that the vibration indicator is only reacting at the
end of the dataset which confirms the fact that the degradation
guarantees a vibrational level very close to the healthy level
for several hours of operation before the first signs of failure.



Figure 5. Principle of the FFT computation using Welch’s method

III. BEARING FAULT DETECTION METHOD

A. Stator current processing

First, the spectrum of the stator current signal Is is com-
puted using a Fast Fourier Transform (FFT). It is computed
on every recording using Welch’s periodogram method ([13])
with a 1s Hamming window with 50% overlapping. The
principle of this method is to compute the FFT of a signal
as the average of FFT computed on overlapping segments of
this signal. This principle is depicted in Fig. 5. This method
has been chosen in order to reduce the noise of the spectrum.

The next step is to center and reduce the spectrum of every
recording. For this purpose, the average µ and the standard
deviation σ are calculated on the first recordings for each
frequency bin f according (2) and (3). These measures are
considered to be a reference of the healthy machine. The
length of the reference is noted nref .

µ(f) =

nref∑
i=1

FFT (f)

nref
(2)

σ(f) =
√
E[(FFT (f) − µ(f))2] (3)

The centered reduced spectrum CRFFT is then computed
for every recordings as the difference between the spectrum
FFT and the average reference µ divided by the standard
deviation σ according (4).

CRFFT (f) =
FFT (f) − µ(f)

σ(f)
(4)

To center and to reduce the current spectrum comes to
perform a Student t-test to evaluate if the FFT values are close
to those of the reference. As the reference is computed with the
first healthy recordings, for a specific frequency, small values
means that the frequency behavior is close to the healthy
one. Otherwise, the more faulty the recording, the higher the

Figure 6. Examples of FFT (a) and centered reduced FFT (b)

value. One advantage of this technique is that the Student t-
test is normalized. The same range of values is then obtained
whatever the frequency.

Examples of FFT (a) and centered reduced FFT (b) are
given in Fig. 6. The reference was computed on nref = 15
recordings. Values shorter than 3 on the centered reduced FFTs
have been put to 0 as they can be considered as really close
to the heathy values according the Student t-test table.

It can be seen in Fig. 6 that although no evident change
appears in the FFT representation (a), the centered reduced
representation (b) shows that the stator current spectrum moves
away from the reference over time, which seems to match with
the bearing deterioration.

B. Experimental data analysis

The stator current signals recorded during experimental
campaigns 1 and 2 are processed using the method presented in
III-A. The centered reduced data are then summed for every
frequency bin in order to locate the frequency fmax where
there are the most changes from the reference. It is computed
according (5). Table III presents the result for each speed.

fmax = max
f

(
∑

recordings

CRFFT (f)) (5)

The analysis of the different frequencies presented in table
III shows that they are all fs and fr multiples (cf table II)
except for 10000rpm in campaign 1. It seems indeed that
fmax = 3fs = 9fr for campaign 1 and fmax = fs = 3fr
for campaign 2. The same frequencies are not reacting in
campaign 1 and 2. It can be explained by the fact that the
bearing is not deteriorating the same way in both campaigns,



Table III
FREQUENCIES WHERE THE MOST CHANGES ARE DETECTED OVER TIME

Campaign Speed Frequency

1

8000rpm 1206Hz
10000rpm 1715Hz
12000rpm 1812Hz
14100rpm 2130Hz

2

8000rpm 402Hz
10000rpm 506Hz
12000rpm 604Hz
14100rpm 708Hz

Figure 7. Principle of the proposed method

as shown by the vibration sensor in both cases (cf Fig. 4
(a) and (b) in section II-B). Nevertheless, they are all linked
to the same frequency and with the same ratio for the same
campaign (i.e. for the same default). When these frequencies
are compared the theoretical harmonic families presented in
table I (section II-A), it appears that the only harmonic family
linked to the found frequencies fmax is the one due to the
rotor speed kfr. The one linked to the current form is indeed
not possible because fmax = 3fs is not part of the family
(6k ± 1)fs.

This result is not absurd as it seems logical that if there is
a bearing fault, it will have an impact at every turn and so be
linked the rotor speed.

C. Indicator construction

It is decided to monitor the kfr family as the analysis pro-
cessed in section III-B demonstrates that changes appear for
frequencies in this family. The bearing fault indicator BFI is
then computed in the following way. For each recording r, the
FFT of the stator current is computed, centered and reduced
as described in section III-A. The indicator is calculated as
the sum of the centered reduced FFT amplitude around the
frequencies kfr with a tolerance ±∆f according (6). It is
normalised by the number of frequency bins nbins used in the
calculation. The principle of the method is depicted in Fig. 7.

BFI(r) =
∑
k

CRFFT (kfr ± ∆f)

nbins
(6)

The indicator is computed for every 5s recording. The
tolerance used was ∆f = 10Hz. The kfr frequencies were
computed till k = 12 in order to have the same number of

Figure 8. Example of the instant TChange when the bearing is changed
by a faulty one and the instant TDefault when the vibration indicator starts
reacting

frequency bins at each speed and to restrain the indicator to
frequencies lower than (6 − 1)fs.

IV. RESULTS AND DISCUSSION

A. Evaluation protocol

Vibration indicators are traditionally used to monitor bear-
ing state of health. So, the proposed indicator is compared to
the vibration indicator recorded during test campaigns 1 and
2. The correlation coefficient r between indicators obtained
with the present method and vibration indicators is computed
to evaluate if they are reacting the same way. Correlation
coefficients measure the extent to which two variables are cor-
related. The absolute value of this coefficient varies between
0 and 1. The closer to 1 the absolute value is, the stronger the
linear relationship is between the two variables. Correlation
was chosen because the indicators have different natures so it
was not possible to directly compare the values obtained.

The time when the bearing has been replaced by a faulty one
has also been marked during the campaign. Nevertheless, when
the bearing is changed, its behavior is still close to healthy for
one hundred hours or so and becomes really faulty only during
the last working hours. Two instants are then defined on the
vibration indicator: the one when the bearing is changed by a
faulty one TChange and the one when the vibration indicator
starts highly to react TDefault. These two instants are depicted
in Fig. 8.

The statistic based indicator is evaluated on is ability to
separate healthy, faulty and very faulty cases. For faulty and
very faulty cases, the true positive rate TPrate or sensibility
can be defined as the ratio between the number of correct
faulty or (very faulty) detections and the total number of
faulty (or very faulty) cases to detect, according (7). The false
positive rate FPrate or false alarms rate can also be defined
as the ratio between the number of false detections and the
number of healthy cases, according (8). The closer to 1 the
TPrate and the closer to 0 the FPrate, the more accurate the
detection.

TPrate =
Number of correct detections

Total number of cases to detect
(7)



Table IV
RESULTS OF THE STATISTIC BASED INDICATOR ON CAMPAIGN 1

Speed (rpm) 8000 10000 12000 14100
Correlation 0.748 0.789 0.766 0.756

TPrate(faulty) 94.6% 50.8% 51.4% 91.4%
TPrate(very faulty) 96.0% 70.2% 82.7% 56.4%

FPrate 0% 0% 5.7% 7.9%

Table V
RESULTS OF THE STATISTIC BASED INDICATOR ON CAMPAIGN 2

Speed (rpm) 8000 10000 12000 14100

Correlation 0.770 0.718 0.527 0.849
TPrate(faulty) 90.7% 42.1% 82.6% 71.8%

TPrate(very faulty) 63.3% 50.1% 48.7% 62.7%
FPrate 2.5% 0% 0% 4.8%

Table VI
OVERALL RESULTS OF THE STATISTIC BASED INDICATOR

Campaign 1 Campaign 2 Overall

Correlation 0.765 0.716 0.731
TPrate(faulty) 72.1% 71.8% 72.0%

TPrate(very faulty) 76.3% 56.2% 66.3%
FPrate 3.4% 1.9% 2.7%

FPrate =
Number of false detections

Total number of healthy cases
(8)

B. Results

The statistic based indicator has been computed on data
from campaigns 1 and 2 (presented in II-B). The indicator is
computed on every 5s recording. The indicator was computed
using the first 15 recordings as a reference. The recording is
considered to be a “faulty” case if the indicator is greater than
a threshold sf = 0.3 and to be a “very faulty” case if greater
than svf = 0.8. The same thresholds were used for every
campaign and every speed. These thresholds were empirically
chosen as they seem satisfying thresholds for correct “faulty”
and “very faulty” detections. The results obtained on campaign
1 are presented in table IV and the ones obtained on campaign
2 in table V. Table VI presents the overall results on both
campaigns 1 and 2.

C. Discussion

First, it can be seen in table VI that the overall correlation
between statistic based and vibratory indicators is high with
r = 0.784. A detailed analysis of correlation results presented
in tables IV and VI shows that the correlation is always
strong whatever the machine speed as the correlation rate is
fluctuating between r = 0.680 and r = 0.881. This means that
the proposed indicator evolves the same way than the vibratory
indicator. Nevertheless, a close look at the results obtained
for the indicator with the lowest correlation rate (campaign 2,
speed = 12000rpm, r = 0.680) indicates that the detection
of “faulty” and “very faulty” cases is relevant with about 80%
of correct detections for both.

Figure 9. Statistic based (plain) and vibratory (dotted) indicators at 8000rpm
in campaign 2

Table VI shows also that the proposed method has very few
false alarms with an overall rate of FPrate = 2.7% . The de-
tailed results of tables IV and V confirm this very good result
and shows that there is besides no false alarms in half cases
(speed = 8000rpm and speed = 10000rpm in campaign 1
and speed = 10000rpm and speed = 12000rpm in campaign
2). The very low false alarms rate is really interesting because
this is often required for industrial applications. Here again,
tables IV and V show that there are only few variations of the
false alarms rate whatever the campaign and the speed.

According table VI, the detection rate of “faulty” cases is
good with the overall TPrate(faulty) = 72%. The rate of
correct “faulty ” detections is as good for both campaigns.
However, the detailed scores in table IV and V show some
disparity between the TPrate(faulty) for the different speed.
Concerning the low “faulty” detection rates, the fact that a
faulty bearing works almost as a healthy one at the beginning
may explain why it is sometimes difficult to detect the “faulty”
cases. Moreover, we mainly want to be able to detect “very
faulty” cases which are linked to the last hours before the
bearing breaks. So this issue should not be that big of a deal.

The analysis of the correct detections rate of “very faulty”
cases shows that the method reach good detection performance
for campaign 1 (TPrate(very faulty) = 76.3) but the results
drop down to TPrate(very faulty) = 56.2 in campaign 2.
However, a detailed analysis of the difference between the
vibratory indicator and the proposed one enlightens that the
“very faulty” cases are correctly detected, but a bit later than
with the vibratory indicator, which explains the decrease of
the TPrate(very faulty) in campaign 2. An example is given
in Fig. 9 for speed = 8000rpm in campaign 2. The vibratory
indicator is pictured by the dotted line and the statistical based
indicator by the plain line. The vertical lines correspond to
instants TChange and TDefault. A linear transformation has
been applied on the vibratory indicator so it evolves in the
same values range than the proposed indicator.

It can be seen Fig. 9 that the indicators evolve almost the
same way (which is confirmed by the high correlation rate
(r = 0.770)) except for the first abrupt change of the vibratory



indicator at the limit between the “faulty” and the “very
faulty” parts. However, the statistic based indicator reacts a
few recordings later and makes it possible to detect the bearing
default soon enough before the bearing breaks (30 recordings
before, that is about 20 hours of working). So, even if the
TPrate might seem a bit low, the bearing default is perfectly
detected using the proposed indicator.

Finally, the fact that all these results were obtained with the
same thresholds is a really important point. This is an expected
result as the operation that centers and reduces the stator
current spectrum can be seen as a normalization operation.
Once the spectrum is centered and reduced, the amplitudes
for the different frequency bins evolve in the same range of
values. That explains why the statistic based indicators evolves
in the same range of values. This is interesting because this
means the method does not need to be tuned. The tuning is
indeed done by itself when computing the reference spectrum
with the first recordings.

As the reference spectrum is computed on-line during the
first hours of working, industrial applications seem possible as
the healthy spectrum will be particular to every machine. In the
case of a running-in period, the healthy spectrum might have to
be computed a bit later. This methodology can also be applied
to induction machine but probably on different monitoring
frequencies which would require another experimental data
analysis.

The apparition of harmonics due to other non-fault related
phenoma should not disturb the proposed indicator as long as
they do not appear in the monitored frequency bands.

V. CONCLUSION

An original method for bearing fault detection has been
presented in this paper. This method proposes to center and
reduce the stator current spectrum with a reference spectrum
computed with the first recordings. This reference is consid-
ered as a "healthy" reference. The centered reduced spectrum
gives an indication on how much the stator current spectrum
changed from the reference, similar to a t-student statistical
test. An indicator is then computed by summing the centered
reduced spectrum contributions on the kfr frequency family
as it has been found to be a the most reacting family to bearing
fault. This statistical based indicator has been tested on 2
different test campaigns for 4 different speeds. It provides with
an accurate estimation of bearing state of health and evolves
the same way than the vibratory indicator (overall correlation
rate of r = 0.784), often used as a reference. Moreover, this
indicator is normalized and provides with an accurate detection
rate of “very faulty” bearing but sometimes a bi later than with
the vibratory indicator. The proposed method has a very low
false alarms rate (overall FPrate = 2.7%) and use the same
threshold on the 2 different test campaigns whatever the speed.

Further studies needs to be done to better understand and
explain the variations of the detection accuracy of “faulty” and
“very faulty” cases. The choice of the frequency family could
also be improved using faulty bearing model to predict the
frequencies likely to react to bearing faults. This approach

could also be used to detect and classify different kinds
of bearing faults, supposing they have different frequency
signatures or it can be applied to other type of machines such
as induction machines. Finally, it will be really interesting to
compare this method to other indicators constructed from the
stator current such as [12].
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