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Bearing fault Detection in Synchronous Machine based on the Statistical Analysis of Stator Current

In this paper, an original method to compute an indicator for efficient detection of bearing defaults in high speed synchronous machines is presented. This indicator is based on the statistical analysis of the stator current spectrum. The principle of the method is to compare the current spectrum to a healthy reference spectrum. The reference spectrum is used to center and reduce the current spectrum and provides an indication on its difference from the reference spectrum. A statistical based indicator is then constructed as the sum of the contributions of the centered reduced spectrum for different interesting frequency bands. This indicator has been tested on 2 different test campaigns, for 4 different speeds and compared a vibratory indicator. Results show that the proposed indicator evolves the same way than the vibratory indicator and provides with an efficient detection of bearing fault with only very few false alarms.

I. INTRODUCTION

Over the past few years, monitoring has become an important industrial research area in order to assess safety and reliability of electrical machines. There are a lot of different failure causes in electrical machines (overview in [START_REF] Tavner | Review of condition monitoring of rotating electrical machines[END_REF]). Among them, ball bearing defects are responsible for 40% of machine failures, as shown in [START_REF] Jeevanand | State of art on condition monitoring of induction motors[END_REF]. Bearing faults can lead to critical events such as abnormal temperature or vibration level, rotor locking, stator friction, etc. Manufacturers show therefore more and more concerns about monitoring the state of health of bearings in order to guarantee the availability and the predictive maintenance in machine elements like actuators for example.

Vibration analysis has first been used to detect bearing faults ( [START_REF] Mcinerny | Basic vibration signal processing for bearing fault detection[END_REF], [START_REF] Sadoughi | A new approach for induction motor broken bar diagnosis by using vibration spectrum[END_REF], [START_REF] Zhaoxia | Motor fault diagnosis based on the vibration signal testing and analysis[END_REF]). The characteristic frequencies of the vibration spectrum can indeed be used to detect specific bearing damages. Nevertheless, this solution is often expensive due to the price of vibration sensors (such as piezoelectric accelerometers). Consequently, several studies ( [START_REF] Henao | Analytical approach of the stator current frequency harmonics computation for detection of induction machine rotor faults[END_REF], [START_REF] Blodt | Mechanical load fault detection in induction motors by stator current time-frequency analysis[END_REF], [START_REF] Trajin | Comparison between vibration and stator current analysis for the detection of bearing faults in asynchronous drives[END_REF]) have successfully suggested to process the stator current signal, which is often available for control purposes. Specific signatures linked to bearing faults appear indeed on the stator current spectrum. A review of the different techniques used based on the stator current spectrum analysis is presented in [START_REF] Zhou | Stator current-based bearing fault detection techniques: A general review[END_REF]. These techniques mainly concern the induction machine. However, a few work deals with bearing fault detection in permanent magnet machines ( [START_REF] Rosero | Fault detection of eccentricity and bearing damage in a pmsm by means of wavelet transforms decomposition of the stator current[END_REF], [START_REF] Ebrahimi | Static-, dynamic-, and mixedeccentricity fault diagnoses in permanent-magnet synchronous motors[END_REF]). This paper focuses on bearing fault detection for a high speed permanent magnet synchronous machine (PMSM) belonging to an air conditioning fan used in aeronautic. The classical stator current signatures related to the vibration bearing frequencies are not suitable for such applications due to their low level. However, some frequencies multiple of the rotation frequency in the stator current spectrum have been proved to be sensitive to the considered faults [START_REF] Obeid | Stator current based indicators for bearing fault detection in synchronous machine by statistical frequency selection[END_REF]. A novel detection method based on a statistical process of the stator current spectrum is presented here. This method build indicators based on the deviation from reference distributions computed at the beginning of the recording for different harmonics families in order to enlighten changes in the stator current spectrum.

The outline of this paper is the following. Section II starts with a short description of the studied system and describes the experimental protocol and data used in this work. The bearing fault detection method is then detailed in section III. The process of the stator current is first presented. A brief analysis of the experimental data is then achieved. This section ends with a description of the indicator construction. Results are presented and discussed in section IV along with the strategy of evaluation.

II. MATERIAL A. System description

As previously mentioned, the studied system is an air conditioning fan based (Technofan LP2) with a high-speed permanent magnet synchronous machine. It is used in civil aeronautic to provide air conditioning and renewing. The whole fan is showed in Fig. 1. Its power is 5kV A and its maximum speed V max is 14100rpm (rotations per minutes).

This machine has sinusoidal back electromotive forces but is supplied by a pulse width modulation (PWM) inverter operating sequentially to provide 120˚square wave currents in the three phases of the machine. This kind of control avoids using an accurate position sensor such as resolver. The block diagram of the whole system is depicted in Fig. 2 where I bus , I inv , I 1,2,3 are respectively the bus current, the inverter current and the the stator current for the 3 phases and I c , V e are the capacity current and the inverter speed used for the system regulation. The PWM is synchronized thanks to three Hall effect sensors. C r is the resistant couple of the machine. The Fourier transform of the square wave form of the stator current I s can be expressed as

I s = ∞ n=1 4π n (sin πn 2 sin πn 3 )sin(2πntf s ) (1) 
with f s the supply frequency. The study of eq. ( 1) leads to the identification of the (6k ± 1)f s harmonic family. This family can be modulated around the switching frequency f swi because of the PWM. This is expressed by the f swi ±(6k±1)f s harmonic family in current spectrum. Some harmonics linked to the rotor speed can also appear in the current spectrum at the frequencies kf r . The rotor mechanical frequency f r can be expressed as f r = fs Np where N p is the number of pole pairs in the machine. The studied machine in this paper has 3 pole pairs. This is resumed in table I.

B. Experimental protocol and data

The experimental protocol consists in two parts measurement campaign. The first part is performed with a healthy bearing, and the second one with a faulty bearing. The faulty bearing is artificially aged by a burning grease process at 200˚C during 60 hours and a broken cage. This type of degradation is suitable because it guarantees a vibrational level very close to the healthy level for several hours of operation before the first signs of failure. Two test campaigns have been conducted with bearings having followed the same degradation protocol. The experimental bench is presented in Fig. 3.

The measurement of the stator current has been performed using a 18 bits acquisition board with a sampling frequency of 200kHz. Data are recorded every hour with a 5s duration. The measurements have been performed for 4 different mechanical rotation speeds: 8000, 10000, 12000 and 14100rpm. Table II shows the characteristic frequencies f s and f r for the different speeds.

For the first campaign, the whole dataset represents 84 recordings in the healthy case and 487 recordings in the faulty case. For the second campaign, the whole dataset represents 160 recordings in the healthy case and 902 recordings in the faulty case. Moreover, a vibration sensor has been inserted close to the bearing. A vibration indicator is automatically computed through a FFT by using the RMS (Root Mean Square) value of the signal in a frequency range from 1 to 19 kHz. A vibration indicator example is given in Fig. 4 for campaign 1 (a) and 2 (b) at 12000rpm. In both cases, the bearing was changed around the 40 th recordings. It can be seen in this figure that the vibration indicator is only reacting at the end of the dataset which confirms the fact that the degradation guarantees a vibrational level very close to the healthy level for several hours of operation before the first signs of failure. 

A. Stator current processing

First, the spectrum of the stator current signal I s is computed using a Fast Fourier Transform (FFT). It is computed on every recording using Welch's periodogram method ( [START_REF] Welch | The use of fast fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms[END_REF]) with a 1s Hamming window with 50% overlapping. The principle of this method is to compute the FFT of a signal as the average of FFT computed on overlapping segments of this signal. This principle is depicted in Fig. 5. This method has been chosen in order to reduce the noise of the spectrum.

The next step is to center and reduce the spectrum of every recording. For this purpose, the average µ and the standard deviation σ are calculated on the first recordings for each frequency bin f according (2) and (3). These measures are considered to be a reference of the healthy machine. The length of the reference is noted n ref .

µ(f ) = n ref i=1 F F T (f ) n ref (2) σ(f ) = E[(F F T (f ) -µ(f )) 2 ] (3) 
The centered reduced spectrum CR F F T is then computed for every recordings as the difference between the spectrum F F T and the average reference µ divided by the standard deviation σ according (4).

CR F F T (f ) = F F T (f ) -µ(f ) σ(f ) (4) 
To center and to reduce the current spectrum comes to perform a Student t-test to evaluate if the FFT values are close to those of the reference. As the reference is computed with the first healthy recordings, for a specific frequency, small values means that the frequency behavior is close to the healthy one. Otherwise, the more faulty the recording, the higher the It can be seen in Fig. 6 that although no evident change appears in the FFT representation (a), the centered reduced representation (b) shows that the stator current spectrum moves away from the reference over time, which seems to match with the bearing deterioration.

B. Experimental data analysis

The stator current signals recorded during experimental campaigns 1 and 2 are processed using the method presented in III-A. The centered reduced data are then summed for every frequency bin in order to locate the frequency f max where there are the most changes from the reference. It is computed according [START_REF] Zhaoxia | Motor fault diagnosis based on the vibration signal testing and analysis[END_REF]. Table III presents the result for each speed.

f max = max f ( recordings CR F F T (f )) (5) 
The analysis of the different frequencies presented in table III shows that they are all f s and f r multiples (cf table II) except for 10000rpm in campaign 1. It seems indeed that f max = 3f s = 9f r for campaign 1 and f max = f s = 3f r for campaign 2. The same frequencies are not reacting in campaign 1 and 2. It can be explained by the fact that the bearing is not deteriorating the same way in both campaigns, as shown by the vibration sensor in both cases (cf Fig. 4 (a) and (b) in section II-B). Nevertheless, they are all linked to the same frequency and with the same ratio for the same campaign (i.e. for the same default). When these frequencies are compared the theoretical harmonic families presented in table I (section II-A), it appears that the only harmonic family linked to the found frequencies f max is the one due to the rotor speed kf r . The one linked to the current form is indeed not possible because f max = 3f s is not part of the family (6k ± 1)f s . This result is not absurd as it seems logical that if there is a bearing fault, it will have an impact at every turn and so be linked the rotor speed.

C. Indicator construction

It is decided to monitor the kf r family as the analysis processed in section III-B demonstrates that changes appear for frequencies in this family. The bearing fault indicator BF I is then computed in the following way. For each recording r, the FFT of the stator current is computed, centered and reduced as described in section III-A. The indicator is calculated as the sum of the centered reduced FFT amplitude around the frequencies kf r with a tolerance ±∆f according [START_REF] Henao | Analytical approach of the stator current frequency harmonics computation for detection of induction machine rotor faults[END_REF]. It is normalised by the number of frequency bins n bins used in the calculation. The principle of the method is depicted in Fig. 7.

BF I(r) = k CR F F T (kf r ± ∆f ) n bins (6) 
The indicator is computed for every 5s recording. The tolerance used was ∆f = 10Hz. The kf r frequencies were computed till k = 12 in order to have the same number of The time when the bearing has been replaced by a faulty one has also been marked during the campaign. Nevertheless, when the bearing is changed, its behavior is still close to healthy for one hundred hours or so and becomes really faulty only during the last working hours. Two instants are then defined on the vibration indicator: the one when the bearing is changed by a faulty one T Change and the one when the vibration indicator starts highly to react T Def ault . These two instants are depicted in Fig. 8.

The statistic based indicator is evaluated on is ability to separate healthy, faulty and very faulty cases. For faulty and very faulty cases, the true positive rate T P rate or sensibility can be defined as the ratio between the number of correct faulty or (very faulty) detections and the total number of faulty (or very faulty) cases to detect, according [START_REF] Blodt | Mechanical load fault detection in induction motors by stator current time-frequency analysis[END_REF]. The false positive rate F P rate or false alarms rate can also be defined as the ratio between the number of false detections and the number of healthy cases, according [START_REF] Trajin | Comparison between vibration and stator current analysis for the detection of bearing faults in asynchronous drives[END_REF]. The closer to 1 the T P rate and the closer to 0 the F P rate , the more accurate the detection.

T P rate = N umber of correct detections T otal number of cases to detect (7) F P rate = N umber of f alse detections T otal number of healthy cases

B. Results

The statistic based indicator has been computed on data from campaigns 1 and 2 (presented in II-B). The indicator is computed on every 5s recording. The indicator was computed using the first 15 recordings as a reference. The recording is considered to be a "faulty" case if the indicator is greater than a threshold s f = 0.3 and to be a "very faulty" case if greater than s vf = 0.8. The same thresholds were used for every campaign and every speed. These thresholds were empirically chosen as they seem satisfying thresholds for correct "faulty" and "very faulty" detections. The results obtained on campaign 1 are presented in table IV and the ones obtained on campaign 2 in table V. Table VI presents the overall results on both campaigns 1 and 2.

C. Discussion

First, it can be seen in table VI that the overall correlation between statistic based and vibratory indicators is high with r = 0.784. A detailed analysis of correlation results presented in tables IV and VI shows that the correlation is always strong whatever the machine speed as the correlation rate is fluctuating between r = 0.680 and r = 0.881. This means that the proposed indicator evolves the same way than the vibratory indicator. Nevertheless, a close look at the results obtained for the indicator with the lowest correlation rate (campaign 2, speed = 12000rpm, r = 0.680) indicates that the detection of "faulty" and "very faulty" cases is relevant with about 80% of correct detections for both. Table VI shows also that the proposed method has very few false alarms with an overall rate of F P rate = 2.7% . The detailed results of tables IV and V confirm this very good result and shows that there is besides no false alarms in half cases (speed = 8000rpm and speed = 10000rpm in campaign 1 and speed = 10000rpm and speed = 12000rpm in campaign 2). The very low false alarms rate is really interesting because this is often required for industrial applications. Here again, tables IV and V show that there are only few variations of the false alarms rate whatever the campaign and the speed.

According table VI, the detection rate of "faulty" cases is good with the overall T P rate (f aulty) = 72%. The rate of correct "faulty " detections is as good for both campaigns. However, the detailed scores in table IV and V show some disparity between the T P rate (f aulty) for the different speed. Concerning the low "faulty" detection rates, the fact that a faulty bearing works almost as a healthy one at the beginning may explain why it is sometimes difficult to detect the "faulty" cases. Moreover, we mainly want to be able to detect "very faulty" cases which are linked to the last hours before the bearing breaks. So this issue should not be that big of a deal.

The analysis of the correct detections rate of "very faulty" cases shows that the method reach good detection performance for campaign 1 (T P rate (very f aulty) = 76.3) but the results drop down to T P rate (very f aulty) = 56.2 in campaign 2. However, a detailed analysis of the difference between the vibratory indicator and the proposed one enlightens that the "very faulty" cases are correctly detected, but a bit later than with the vibratory indicator, which explains the decrease of the T P rate (very f aulty) in campaign 2. An example is given in Fig. 9 for speed = 8000rpm in campaign 2. The vibratory indicator is pictured by the dotted line and the statistical based indicator by the plain line. The vertical lines correspond to instants T Change and T Def ault . A linear transformation has been applied on the vibratory indicator so it evolves in the same values range than the proposed indicator.

It can be seen Fig. 9 that the indicators evolve almost the same way (which is confirmed by the high correlation rate (r = 0.770)) except for the first abrupt change of the vibratory indicator at the limit between the "faulty" and the "very faulty" parts. However, the statistic based indicator reacts a few recordings later and makes it possible to detect the bearing default soon enough before the bearing breaks (30 recordings before, that is about 20 hours of working). So, even if the T P rate might seem a bit low, the bearing default is perfectly detected using the proposed indicator.

Finally, the fact that all these results were obtained with the same thresholds is a really important point. This is an expected result as the operation that centers and reduces the stator current spectrum can be seen as a normalization operation. Once the spectrum is centered and reduced, the amplitudes for the different frequency bins evolve in the same range of values. That explains why the statistic based indicators evolves in the same range of values. This is interesting because this means the method does not need to be tuned. The tuning is indeed done by itself when computing the reference spectrum with the first recordings.

As the reference spectrum is computed on-line during the first hours of working, industrial applications seem possible as the healthy spectrum will be particular to every machine. In the case of a running-in period, the healthy spectrum might have to be computed a bit later. This methodology can also be applied to induction machine but probably on different monitoring frequencies which would require another experimental data analysis.

The apparition of harmonics due to other non-fault related phenoma should not disturb the proposed indicator as long as they do not appear in the monitored frequency bands.

V. CONCLUSION

An original method for bearing fault detection has been presented in this paper. This method proposes to center and reduce the stator current spectrum with a reference spectrum computed with the first recordings. This reference is considered as a "healthy" reference. The centered reduced spectrum gives an indication on how much the stator current spectrum changed from the reference, similar to a t-student statistical test. An indicator is then computed by summing the centered reduced spectrum contributions on the kf r frequency family as it has been found to be a the most reacting family to bearing fault. This statistical based indicator has been tested on 2 different test campaigns for 4 different speeds. It provides with an accurate estimation of bearing state of health and evolves the same way than the vibratory indicator (overall correlation rate of r = 0.784), often used as a reference. Moreover, this indicator is normalized and provides with an accurate detection rate of "very faulty" bearing but sometimes a bi later than with the vibratory indicator. The proposed method has a very low false alarms rate (overall F P rate = 2.7%) and use the same threshold on the 2 different test campaigns whatever the speed.

Further studies needs to be done to better understand and explain the variations of the detection accuracy of "faulty" and "very faulty" cases. The choice of the frequency family could also be improved using faulty bearing model to predict the frequencies likely to react to bearing faults. This approach could also be used to detect and classify different kinds of bearing faults, supposing they have different frequency signatures or it can be applied to other type of machines such as induction machines. Finally, it will be really interesting to compare this method to other indicators constructed from the stator current such as [START_REF] Obeid | Stator current based indicators for bearing fault detection in synchronous machine by statistical frequency selection[END_REF].
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Figure 9 .

 9 Figure 9. Statistic based (plain) and vibratory (dotted) indicators at 8000rpm in campaign 2

Table I HARMONIC

 I FAMILIES OF THE STATOR CURRENT SPECTRUM

	Type	Rank
	Current	(6k ± 1)fs
	PWM	f

swi ± (6k ± 1)fs Rotor kfr

Table II CHARACTERISTIC

 II FREQUENCIES ACCORDING TO MACHINE SPEED

	Machine speed	fs	fr
	8000rpm	400Hz	133.33Hz
	10000rpm	500Hz	166.66Hz
	12000rpm	600Hz	200Hz
	14100rpm	705Hz	235Hz
	a)		b)

Table III FREQUENCIES

 III WHERE THE MOST CHANGES ARE DETECTED OVER TIME

	Campaign	Speed	Frequency
		8000rpm	1206Hz
	1	10000rpm 12000rpm	1715Hz 1812Hz
		14100rpm	2130Hz
		8000rpm	402Hz
	2	10000rpm 12000rpm	506Hz 604Hz
		14100rpm	708Hz

Figure 7. Principle of the proposed method

Table IV RESULTS

 IV OF THE STATISTIC BASED INDICATOR ON CAMPAIGN 1

	Speed (rpm)	8000	10000	12000	14100
	Correlation	0.748	0.789	0.766	0.756
	T Prate(f aulty)	94.6%	50.8%	51.4%	91.4%
	T Prate(very f aulty)	96.0%	70.2%	82.7%	56.4%
	F Prate	0%		0%	5.7%	7.9%
		Table V			
	RESULTS OF THE STATISTIC BASED INDICATOR ON CAMPAIGN 2
	Speed (rpm)	8000	10000	12000	14100
	Correlation	0.770	0.718	0.527	0.849
	T Prate(f aulty)	90.7%	42.1%	82.6%	71.8%
	T Prate(very f aulty)	63.3%	50.1%	48.7%	62.7%
	F Prate	2.5%		0%	0%	4.8%
		Table VI			
	OVERALL RESULTS OF THE STATISTIC BASED INDICATOR
		Campaign 1	Campaign 2	Overall
	Correlation	0.765			0.716	0.731
	T Prate(f aulty)	72.1%			71.8%	72.0%
	T Prate(very f aulty)	76.3%			56.2%	66.3%
	F Prate	3.4%			1.9%	2.7%

Powered by TCPDF (www.tcpdf.org)

ACKNOWLEDGMENT

This work is part of the French national project PREMEP [14] (PRojEt Moteur Electronique de Pilotage), labelled by the Aerospace Valley cluster and involving the LAPLACE and Airbus suppliers such as Technofan, Liebherr Aerospace, CIRTEM, DELTY and ADN.