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We present a formulation and implementation of the calculation of (orbital-unrelaxed) expectation
values at the 4-component relativistic coupled cluster level with spin-orbit coupling included from the
start. The Lagrangian-based analytical energy derivative technique constitutes the basic theoretical
framework of this work. The key algorithms for single reference relativistic coupled cluster have
been implemented using routines for general tensor contractions of up to rank-2 tensors in which
the direct product decomposition scheme is employed to benefit from double group symmetry. As a
sample application, we study the electric field gradient at the bismuth nucleus in the BiX (X = N, P)
series of molecules, where the effect of spin-orbit coupling is substantial. Our results clearly indicate
that the current reference value for the nuclear quadrupole moment of 2“Bi needs revision. We
also have applied our method to the calculation of the parity violating energy shift of chiral
molecules. The latter property is strictly zero in the absence of spin-orbit coupling. For the H,X,
(X = 0,5,Se,Te) series of molecules the effect of correlation is found to be quite small. Published by
AIP Publishing. [http://dx.doi.org/10.1063/1.4966643]
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Analytic one-electron properties at the 4-component relativistic coupled
cluster level with inclusion of spin-orbit coupling

. INTRODUCTION

Molecular properties are generally defined in terms
of the response of a molecule to perturbations, such as
electromagnetic fields or geometric displacements. The former
are introduced via scalar and vector potentials into the
electronic Hamiltonian through the principle of minimal
electromagnetic coupling,! which expresses a relativistic
coupling of particles and fields.> The resulting minimal
substitution is employed both in the nonrelativistic and
relativistic domains. This allows one, for instance, to study
magnetic properties in a nonrelativistic framework, although
one may argue that magnetic interactions, and in particular
magnetic induction, vanish in the nonrelativistic limit.3

An important manifestation of magnetic induction is spin-
orbit coupling (SOC),* which is often treated as a perturbation
for efficiency reasons. However, SOC has a profound impact
on various molecular properties and may thereby require a
non-perturbative treatment. An example is the g-tensor of
electron paramagnetic resonance (EPR) spectroscopy which
would be strictly twice the 3 x 3 identity matrix at the
nonrelativistic or scalar relativistic level® and would not show
the dependence on molecular electronic structure that makes
EPR such a useful technique. Another example is the parity
violation (PV) energy difference between enantiomers of
chiral molecules which vanishes if SOC is ignored.®® The
spin-orbit interaction may also have a sizable effect on NMR
shieldings.’1”

The heavy elements, which show the most pronounced
relativistic effects, also have many electrons, and electron
correlation may therefore also have a significant impact on
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properties of molecules containing such elements. The electric
field gradient (EFG) tensor at a nuclear position is an example;
it has been shown for several systems that the correlation effect
is almost equivalent to the total mean-field relativistic effect,'!
while the contribution of SOC can be equally significant.'?
This is due to the fact that this molecular property probes
the electronic wavefunction both in the valence region and
in the vicinity of nuclei. Other examples of properties that
sensitively depend on the electronic wave function near the
nuclei are the contact density, which has been used for the
study of Mossbauer isomer shift,'3 and hyperfine coupling
constants.'* Like the EFG these properties can be used to
study the chemical environment, as they primarily depend
on the core tails of valence orbitals. The involvement of
the valence region which is strongly influenced by electron
correlation warrants a careful treatment of correlation.

The above considerations suggest that we in many
situations need to consider scalar relativity, spin-orbit
coupling, and electron correlation in a combined way."> If
we restrict ourselves to wavefunction theory, then the second-
order Mgller-Plesset (MP2) gradient code, based on the 4-
component relativistic Dirac-Coulomb (DC) Hamiltonian, by
van Stralen et al.'® is one of the few efforts in which both
scalar and SOC relativistic effects are included from the
outset. Technically easier is to only include scalar relativity
in the mean field calculation and then introduce SOC in the
subsequent correlation stage. Such a two-step procedure is
more efficient in a coupled cluster (CC) framework than a
Configuration Interaction (CI) one, since the former method
is more efficient at recovering spin-orbit polarization.'” Wang
et al.'® have reported a two-step procedure where an effective

Published by AIP Publishing.
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one-electron spin-orbit operator is added at the CC level
following a scalar relativistic Hartree—Fock (HF) calculation.
An analytic gradient formulation and implementation of
that approach has been reported by Wang and Gauss.'® An
alternative approach is to perform scalar relativistic CC energy
calculations and then add SOC as an additional perturbation
in response theory. Cheng and Gauss have accordingly
recently reported CC analytic gradients based on the
4-component spinfree (SF) DC Hamiltonian or the spinfree
exact 2-component relativistic Hamiltonian (SF-1sX2C).2!?2
However, for heavy elements the valence electronic structure
may be qualitatively altered by SOC and a response theory
treatment will need to go through higher orders and can
even fail dramatically in a valence-only treatment of electron
correlation.”?

Until now, where the DC coupled cluster based property
calculations were deemed to be necessary, a numerical
differentiation route was taken.!>?*2> However, finite-field
calculations are plagued by higher computational cost,
are more sensitive to numerical noise, and cannot be
straightforwardly extended to time-dependent properties.
They are, therefore, better replaced by an analytical
implementation. The major goal of this work is to provide a
fully DC Hamiltonian based CC analytic gradient code that
allows us to capture all the essential physics in a consistent
way.

The formulation we have used is largely inspired
by corresponding nonrelativistic theories. However, due to
the very nature of the Dirac equation there are some
differences, namely, in the treatment of symmetry and the
nature of the orbital relaxation. They will be clarified in
Section II. The method has been implemented in the DIRAC
quantum chemistry package.’® All the pertinent details of
this implementation will be discussed in Section III. Sample
applications of the present method are reported in Section I'V.
Finally, a summary of our work as well as future prospects
will be given in Section V.

Il. THEORY

Coupled cluster theory is (in practice) a non-variational
theory based on a non-unitary exponential parametrization of

the wave function
T=>ut, ()
=1

where t; and 7; denote cluster amplitudes and excitation
operators, respectively. The reference @ typically, and in
this work, refers to the Hartree—-Fock (HF) determinant.
Furthermore, in the present work 7' is restricted to single
and double excitations,

ICC) = exp(T) |Dy),

b
T=T+T, T = Zt alai, =7 Zt“ a'ahaja,

ijab
2

Here and in the following indices i, j, . . . , n, o refer to occupied
(hole) orbitals, indices a,b,. .., f,g refer to virtual (particle)
orbitals, and p, g, r, s are general orbital indices. A troublesome
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aspect of 4-component relativistic theory is the presence
of negative-energy orbitals which in turn implies that the
electronic Hamiltonian, here taken as the Dirac-Coulomb
Hamiltonian (see below), has no bound solutions.?” A solution
is provided by the no-pair approximation,?®?° in which the
electronic Hamiltonian is embedded by operators projecting
out negative-energy orbitals. In practice, molecular orbitals
{¢,} are optimized at the HF level and then the negative-
energy orbitals are eliminated from the correlated level. The
present work is based on this no-pair approximation, hence,
unless otherwise stated, orbital indices in the following refer
exclusively to positive-energy orbitals.

Equations for the energy and the cluster amplitudes are
conveniently given in terms of the similarity-transformed

Hamiltonian H = exp(-T), H exp(T),

(D|H|Do) = E, 3)
(O H|Do)y = 0,  |®;) = #,|D). (4)

We now consider the case where the -electronic
Hamiltonian is extended by perturbations, each characterized
by a perturbation strength £, collected in the vector &,

A=Hy+ Zaxﬂx. (5)
X

The zeroth-order Hamiltonian will be the 4-component
relativistic Dirac-Coulomb Hamiltonian. It has the same
generic form,

Ho = Van + Z hai) + 5 Z 8G.j), ©)

i£j

as the nonrelativistic electronic Hamiltonian, including the
electrostatic repulsion Vyp of clamped nuclei, but the one-
electron operator 4 is the Dirac Hamiltonian,

h = @)

c(o-p) Voy-2mc?

VeN c (O- : P) j|

where ¢ is the speed of light (¢ = 137.0359998 a.u.). The
electron—nucleus interaction V, y is expressed in terms of the
scalar potential ¢ 4 of each nucleus A,

pa(ra)
Ir| — 1y

Ven = —ez da, Pa(ry) = d’ra, (8)

471'8()

where we generally employ a Gaussian model for the nuclear
charge distribution.?” The electron-electron interaction g is the
instantaneous Coulomb interaction which is the zeroth-order
term in a perturbational expansion in ¢ 2 of the fully relativistic
interaction in Coulomb gauge.

Molecular properties may be defined in terms of
perturbation (Maclaurin) expansions of expectation values
in the framework of response theory.*' For fully variational
methods, static molecular properties are conveniently
expressed as derivatives of the energy with respect to
perturbational strengths at zero field (& = 0), where the
connection to expectation values is assured by the Hellmann-
Feynman theorem. Simplifications are then obtained due to
Wigner’s 2n + 1 rule.*®>3” Since CC theory is non-variational
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we instead consider the Lagrangian®33%

L&, t, 0k, K) = (Do|(1 + A)H| Do)

EHF EHF
+Z(?uiaa 70 ) )

ai %
Kai oK,

where A comprise the Lagrangian multipliers for the CC
amplitude equations (Eq. (4)), for which a 2n+2 rule
holds.’®**! The second term represents orbital relaxation
and the virtual index a here refers to virtual orbitals of
both positive and negative energies. We assume the use
of a unitary exponential parametrization of the HF trial
function, which assures orthonormality of orbitals throughout
optimization.“p‘5 kq; and k,; refer to the orbital rotation
parameters and the corresponding Lagrange multipliers,
respectively. These are elements of anti-Hermitian and
Hermitian matrices, respectively, and one may note that
only the virtual-occupied blocks are included since all other
elements are redundant.** In the 4-component relativistic
domain the orbital rotation parameters naturally split into
two classes: parameters {K;:“}, involving rotations between
the positive-energy occupied and virtual orbitals, and {7},
corresponding to rotations between positive-energy occupied
orbitals and negative-energy virtual orbitals. The HF energy
is minimized with respect to the former set, but maximized
with respect to the latter, in accordance with the minmax
principle of Talman.*®*” This corresponds to the implicit use
of projection operators embedding the electronic Hamiltonian
and reflects the use of the no-pair approximation.>’-?

In the above approach the redundant orbital rotations
are set to zero. This corresponds to an algorithm of least
change,*®* only assuring that the occupied-virtual blocks of
the Fock matrix are zero. For an explicit separation of orbitals
of positive and negative energy one may impose canonical
orbitals at all perturbation strengths. This can be realized by
extension of the CC Lagrangian, Eq. (9),

L€ [°C 4 Z Lpg (Fog = €p61g) (10)
rq

where {{ p q} constitutes a new set of Lagrange multipliers.*>->°

In this approach all orbital rotations come into play, including
rotations within orbital classes. The two approaches therefore
generally give different results when some orbitals are
selected as inactive, of which the no-pair approximation is
a special case. The canonical approach has the advantage
of adhering closer to the usual picture of the Dirac sea,
whereas the “minimal” approach allows the extension of the
no-pair approximation to situations where orbital energies
are not available. For instance, 4-component relativistic
MCSCEF calculations use second-order optimization based
on the Talman minmax principle,’'-? and allow the complete
relaxation of the no-pair projection operators at the correlated
level.?>*’ We intend to explore and compare these two
approaches in future work.

It may be noted that the Lagrangian formalism can also
be used in the case of perturbation-dependent orbitals, as
will be the case in geometry optimization or the use of
London orbitals®*>* (also known as gauge-including atomic
orbitals (GIAOs)),> provided a suitable orbital connection’®
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is employed to guarantee orthonormality. However, upon
taking derivatives of the Lagrangian, Eq. (9), with respect to
perturbations, as we do in the following, further contributions
will appear. In the present contribution we therefore limit
attention to perturbation-independent orbitals.

Since coupled cluster theory is very robust and usually
already provides adequate orbital relaxation through the T,
cluster amplitudes,’” it is reasonable to ignore it, as we do in
the present work. An exception is the calculation of magnetic
properties for which the negative-energy (NE) orbitals, which
are excluded from the excitation manifold, are essential to get
the diamagnetic contribution to magnetic properties.’*° For
other molecular properties the inclusion of orbital relaxation
at the CC level is a matter of debate—for some static first
order properties it certainly shows improvement,*®! and for
others it is not recommended,%? while for dynamic properties
problems arise due to the inaccurate Hartree-Fock poles.®
For calculations of heavy elements there is the additional
complication of the relaxation of core orbitals that are usually
left uncorrelated. We plan to come back to these issues in
future work. As of now we will work with the reduced
Lagrangian appropriate for orbital-unrelaxed calculations,

L(e,t,3) = (@glH|Dg) + Y (@A), (11)
=1

where we have used a linear parametrization of the Lagrangian
multiplier, that is,

A= Z P (12)
1

where “I” indicates the rank of different excited states.
Truncation of the A operator is dictated by the rank of
the T operators. For the coupled-cluster singles-and-doubles
(CCSD) analytic gradient method considered in this work,
we therefore take up to doubly de-excitation type As. In
passing, we may note that the appropriate Lagrangian for
the calculation of orbital-unrelaxed expectation values at the
4-component relativistic MP2 level is obtained from the
above Lagrangian by replacing the similarity-transformed
Hamiltonian H in the first and second term by its second-
and first-order component, respectively (assuming optimized
orbitals).*0-0.63

We apply two stationary conditions on the Lagrangian in
Equation (11),

oL

== 1
5 = O (13)
oL

—=0. 14
o (14)

Equation (14) is the already implemented equation to
determine the T-amplitudes, whereas Equation (13) defines
the A-equation used to determine the Lagrange multipliers.
Equations (13) and (14) can also be interpreted as equations
for the right and left eigenvectors, respectively, of the non-
Hermitian similarity-transformed Hamiltonian, %

(A-E) ) =0, [¥g) = Do),

P 15
Wl (f-F)=0. (wl=@lan.
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This means that the A-equation, Equation (13), defines a dual
vector of the coupled cluster ket vector, which enables the
calculation of molecular properties as an expectation value.
In fact, using the stationary conditions, Egs. (13) and (14), we
obtain

dL

oL
dSX

== = (Y1 |Hx|¥r), (16)
e=0 €x

&=0

which corresponds to the expectation value of the operator Hy.
Equation (16) thereby constitutes a generalized Hellmann-
Feynman theorem. Defining CC density matrices

v = (YLlexp(-T)a}a, exp(T)|¥r), (17)
I8 = (¥lexp(-T)alalaga, exp(T)|Wg),  (18)

the expectation value can be expressed as a trace between the
density and the operator matrix elements,

(Ax) =) ihxpg. (19)

pq

All the properties we will be dealing with in the present
work are of this expectation value type. The explicit working
equations for intermediates and A amplitude equations, as
well as density matrices, are given in Appendix A.

The size-extensivity of the evaluated properties follows
from the following argument: Taking the derivative of the
Lagrangian with respect to the amplitudes t in Equation (13)
means from a set of closed terms constructed by H, exp(T),
and A, we take out the amplitude part of 7. The operator part
of T acts on the ket side of the Lagrangian to generate an
excited function which is then connected to the bra side via
the de-excitation operators contained in A (see Equation (12)).
The stationarity condition tells us that the final result will be
zero. The total A-equation may be written in the following
algebraic form:%®

oL
g = (@olAIRy) + (@] [A. 7] @)
+ ) (Rl HIDNPLAIR,) =0, (20)
k#0

where the sum over the complete excitation manifold in
the final term is limited by the de-excitations contained in
A. The above equation can be analyzed by diagrammatic
techniques®”*® which reveals a connected quantity®*’ H, an
explicit connected quantity between FIA and A, and a third
disconnected term containing A and H. The evaluated As
are therefore not connected quantities. However, if we write
Equation (16) more explicitly as follows

S5 = (00l [Adix] + Fiion). e
we see that it contains an explicitly connected quantity
between A and H x, where Hyx is a connected quantity
since our converged T amplitudes are connected. Now the
completely contracted nature of Equation (21) ensures that
only the connected part of A can contribute to the final
property value, which in turn ascertains the size-extensivity
of the evaluated properties.
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lll. IMPLEMENTATION

The RELCCSD module in DIRAC?® provides 2- and
4-component relativistic CCSD, CCSD(T), and Fock-space
coupled cluster methods.””’? In the present work, we have
extended this module in such a way that it can handle any
arbitrary tensor contraction. Any implementation along this
line generally hinges on an efficient tensor contraction routine
where the tensor can be of arbitrary rank. Recently, there
has been considerable focus on the development of general
purpose tensor contraction routines, such as the “Tensor
Contraction Engine,””® Cyclops,”* SIAL,” libtensor,”® and
TiledArray.”” In this work, our target is to achieve almost
the same flexibility without yet focusing on the parallel
efficiency of the algorithm. By flexibility is meant that
we want to employ tensors of arbitrary operator structure
and rank. It will, in turn, facilitate the implementation
of the methods pertaining to both energy and molecular
properties at the Single Reference Coupled Cluster (SRCC)
level.

A. General structure of the implementation
The pivotal operation in the CC family of methods is the
binary tensor contraction,

=Kl (22)

K.
Aij Bk[ =Ygk

Following the Einstein summation convention whenever the
upper primed (bra) and lower unprimed (ket) indices are the
same, they define a contraction. For each contraction, the rank
of the product tensor is reduced by 1. All tensors — A,
B, and C — are anti-symmetrized tensors of arbitrary
rank.

There are no readily available library routines which
are able to perform such tensor operations. However, one
can take advantage of Basic Linear Algebra Subroutines
(BLAS)’® by conveniently mapping a tensor contraction onto
a matrix-matrix multiplication,

A(free,contractable) = B(contractable, free) — C(free, free).
(23)

In the present work we have generalized binary
tensor contractions by ‘“contraction_xyz” FORTRAN 90+
subroutines, where x and y are the ranks of the left and
right input tensors, respectively, and z is the rank of the
output tensor. For the theories which incorporate up to
singles and doubles excitation operators, we have written the
subroutines corresponding to contraction classes xyz = 222,
242, 422, 444, 244, and 424 to be able to carry out
every possible tensor contraction. These routines identify
the permutational and double group symmetry built into a
tensor and preserve the optimal symmetry structure after the
contraction. Reshaping of the tensors is implicit in these
routines from the placement of indices. Furthermore, we need
to provide information only from a diagrammatic expression,
therefore they can easily be coupled with an automatic
expression generator. We illustrate the use of these routines in
Appendix B.
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B. Sparsity and blocking of tensors by using double
group symmetry

Use of molecular symmetry provides dense and blocked
structure to the tensors used in a coupled cluster contraction.
This has been exploited most efficiently by Stanton et al.”
in their Direct Product Decomposition (DPD) scheme for the
spatial symmetry groups.

For the relativistic molecular Hamiltonian we cannot
work with simple spatial point group symmetry due to spin-
orbit coupling, which couples the spin and spatial degrees of
freedom. Rather we shall work with the corresponding double
groups, obtained by the introduction of a rotation 27 about
an arbitrary axis.®” These groups contain more irreps than the
regular single group, but not necessarily twice the number.
The extra irreps are called fermion irreps and the pre-existing
ones boson irreps. Spinors span fermion irreps, whereas spinor
products, operators, and integrands span boson irreps.

In the present work, we use double groups of D,;, and
its subgroups. However, not all of them are Abelian since the
direct product between the 27 rotation and other elements
of the point group may generate elements which belong
to the same class as some other element. In that case,
we consider the highest Abelian subgroup of that double
group. For example, the Dj, double group contains one
two-dimensional irrep, therefore we work with the Abelian
subgroup C3, instead. For linear systems we have exploited
the advantage of going beyond D, symmetry by using
double groups Cg, and Cj¢ for molecules with and without
inversion symmetry, respectively. For the spin-free cases, we
use the direct product group between the point group and
the SU(2) group. These extensions provide very significant
computational savings in realistic applications. This Abelian
double group scheme, which is analogous to DPD, builds
on the symmetry handling in the CCSD implementation by
Visscher et al.”' In Appendix C we present that scheme in
a bit more generalized perspective while recapitulating the
essential details from that work.

Further symmetry reductions are possible by exploiting
time reversal symmetry.”” However, in the present code
Kramers-restriction is not imposed at the CC level. On the
other hand, presently the initial HF calculations are carried
out using a quaternion symmetry scheme®! that exploits both
spatial and time reversal symmetry such that the input orbitals
for the CC module form a Kramers basis. As a consequence,
the input one- and two-electron integrals are real for certain
point groups, a feature that is exploited in our calculations
by defining an xGEMM subroutine that wraps around either
the DGEMM or ZGEMM BLAS primitives, depending on the
algebra of the point group (real or complex).

C. Construction of expectation values

The steps involved in a coupled cluster gradient
calculation can be written down succinctly as follows:

1. iterative HF solution to get the MO basis;

2. transforming integrals in AO basis to the MO basis;

3. iterative solution of the CCSD amplitude equation to get
the T and T, amplitudes;

J. Chem. Phys. 145, 184107 (2016)

4. construction of the fixed intermediates, Eqs. (A4)—(A14),
using V, F, T} and Ty;

5. iterative solution of the A-equations, Eqs. (A1) and (A2);

6. construction of one-particle density matrix, Eq. (A17),
at the CC level with the help of converged T- and A-
amplitudes;

7. back-transformation of the CC density matrix from the
MO basis to the AO basis;

8. tracing the density matrix with the AO derivative integrals
to get the desired property values.

Steps (4) and (5) use the contraction scheme described
in the Section III A. Some intermediates involve integrals
over four virtual orbital indices (VVVV). Because of the very
high memory scaling of those terms, we have implemented
them in a distributed fashion. The RELCCSD module in
DIRAC distributes the VOVYV (three virtual and one occupied)
and VVVV type integrals on several nodes. In the present
work, we gather all the distributed VOVV integrals on each
node and continue with the distributed VVVV integrals. The
intermediate which contains four virtual orbitals, that is, W;I{
in Equation (A11) is calculated only with the locally available
integrals on each node. Furthermore, when those intermediates
are used in Equations (A10) and (A2) we use only the local
contribution on each node. At the end we synchronise the 6Zb
and Wﬁfﬁi arrays to the master.

Step (6) in the above scheme needs careful consideration
since the AO property matrices are generated in the framework
of the quaternion symmetry scheme®! operating at the SCF
level in the DIRAC program. Presently the input MOs to the
CC module form a Kramer’s basis, such that the 1-particle CC
density matrix (M©%y) is expressed in terms of Kramer’s pairs,

A B Apg = Vpa> Byg = Ypgs 24)
C D|’ Cpq =

= Ypa Dpg = vpg-

In the closed-shell case, this matrix has a time-symmetric

structure
A B
_p* a* (25)
and can be block-diagonalized by quaternion unitary
transformation®!
I JI
U=|. , (26)
gL I

where I is the 2 X 2 unit matrix. One then proceeds with the
upper block of the quaternion block-diagonalized matrix, with
elements

2ypo = Re(ypg) +iIm(ypg) + JRe(vpg) + kIm(y,pg).  (27)

Based on spatial symmetry the matrix may be further
compressed to complex or real form.

The 2y density matrix is next back-transformed to the
AO basis

2y = Y Ceur®yro®ciy. (28)
PQ

In the final step the resulting AO CC density matrix is traced
with the appropriate AO property matrix.
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As mentioned the RELCCSD module of DIRAC does
not exploit time reversal symmetry and can also be invoked
to handle a single open shell (one unpaired electron). In that
case the CC density matrix can be separated into a time
symmetric and a time antisymmetric part, the latter allowing
the calculation of expectation values of time antisymmetric
operators such as the magnetic dipole or the hyperfine operator.
This will be exploited in future work.

IV. SAMPLE APPLICATIONS

In this section we will show two pilot applications
of the DC-CCSD analytic gradient code. We first consider
parity violation (PV) of chiral molecules which, as already
mentioned, is a property that is strictly zero in the absence
of SOC and for which we would like to benchmark a
currently employed computational protocol based on density
functional theory (DFT).}? Presently we have studied PV
in the HyX; (X =0,S,Se, Te) series of molecules. For the
first two members of that series orbital-relaxed finite-field
4-component relativistic CC calculations are available.’? We
next consider the electric field gradient (EFG) at nuclear
positions in the BiN and BiP diatomic molecules, which were
already studied by Teodoro and Haiduke®* using a finite-field
CC approach.

A. Parity violation

Upon extension of the conventional electromagnetic
formulation of quantum chemistry to the electroweak regime
a minute energy difference,

AEpy = Epy(L) — Epy(R) = 2Epy(L), (29)

is induced between the left (L)- and right (R)-handed
enantiomers of chiral molecules.®3338 At the 4-component
relativistic level the iterapairs violating (PV) energy Epy
can be calculated as an expectation value of the nuclear
spin-independent P-odd operator®’

\/_

where Gp=1.16637 x 10711 MeV™2=2.22255%x 107"
Ehag is the Fermi coupling constant. The summation runs
over the nuclei, A, and electrons, i. The weak charge
Ow.a=-Na+Zs(1 — 4sin%0,), where N, and Z4 is the
number of neutrons and protons on each nucleus. 6, is the
Weinberg mixing angle; we have chosen a fixed value of
0.2319 for sind,,. p4 is the normalized nucleon density. y° is
the 4 x 4 chirality operator, which is given by

s [0 1 .
Y \1 ol (31)

The nuclear spin-dependent PV contribution has been
neglected since it is zero for a closed-shell system.?’

There is at present no experimental observation of the
effect of parity violation in chiral molecules, but several
experiments are in preparation.”$3% The present role of

G
HPV = Z HPV;A’ HPV;A = ﬁQW,AZ'y?pA(ri)s (30)
A i
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theory is to guide experiment towards suitable candidate
molecules, but a successful observation would call for a direct
confrontation between theory and experiment and allow to
probe the standard model of the universe in the low-energy
regime.”’ Most present-day molecular PV calculations are
carried out using DFT. As a first step towards benchmarking
of this computational protocol we have investigated the
HyX, (X = 0,S,Se,Te) series of molecules using our newly
implemented CC gradient code. These are not ideal candidate
molecules for actual experiments, but have been widely
employed for calibration and analysis.®338792-197 In our study
with the first candidate of that series, that is, H,O,, the O-0O,
and H-O bond lengths as well as the O—O-H angles have
been kept fixed, and the dihedral angle 7, has been varied
from 0° to 180° with a grid of 20° to generate an Epy Vs T,
curve. The fixed structure parameters for HyO, and the heavier
homologues have been taken from the article by Laerdahl and
Schwerdtfeger.” We have considered a series of basis sets
to estimate the minimal size which provides good accuracy.
The smallest basis set has been taken from the work by
Laerdahl and Schwerdtfeger,}” who considered several basis
sets in their work. From these we have chosen the basis
typel, which is slightly better than double zeta quality. Then
we systematically improved the size by using the Dyall-type
all-electron basis sets, that is, dyall.ae3z and dyall.ae4z108
(a higher cardinal number is presently not available). We will
employ the optimal cardinal number obtained form this study
to the other molecules of this series. The Gaussian model
of nuclei has been employed for all the molecules in this
series.>® We have chosen an approximate version of the DC
Hamiltonian, with the (SS|SS) class of integrals neglected.
Our choice of correlation space consists of all the occupied
orbitals, but the virtual orbital space has been truncated by
choosing an energy threshold of 100 Ej,.

In Figure 1 Epy is traced as a function of dihedral angle
at both the HF and CCSD levels of theory, using the cc-
pVDZ+3p basis set,?’ to demonstrate the effect of correlation.
The curve we obtained is of sinusoidal type, in agreement
with previous studies.393-9397.98.100 The effect of correlation
gives a negative vertical shift to the Epy value throughout the

8x10™"

T
CCSD —+—
HF
6x10™L
4x10"7L
2x10™
&
& 0
2x10™°
-4x10°
-6x107
8107 L
o 20 40 60 80 100 120 140 160 180

dihedral angle

FIG. 1. Total parity violating energy E py as a function of torsional angle
curve for HyO; at the HF and CCSD level of theory using the cc-pVDZ+3p
basis set.8’
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TABLE 1. Parity violating energies Epy for P enantiomers of H>X»
molecules at various levels of theory. We have considered 45° torsional angle
for all the molecules. Finite-field results (orbital-relaxed) are marked as ff; all
other numbers are analytical.

Molecule Hamiltonian Method Basis set for X  Epy/1072E,,
H,0, DC CCSD?* cc-pVDZ+3p -61.26
dyall.ae3z -53.23
dyall.ae4z -55.83
HF? cc-pVDZ+3p -67.90
dyall.ae3z -60.51
dyall.aedz —-63.76
CCSD(ff)®  cc-pVDZ+3p -61.80
MP2¢ cc-pVDZ+3p -57.88
NR ccsp cc-pVQZ -51.69
H,S, DC CCSD? cc-pCVTZ —-1821.03
cc-pVDZ+2p —2088.76
HF* cc-pCVTZ —-1825.86
cc-pVDZ+2p -2078.20
CCSD(f))*  cc-pVDZ+2p° -2165.23
MP2¢ cc-pVDZ+2p -2112.0
NR ccspd cc-pvVQZ —2248.6
2This study.

bThyssen et al.®

Cvan Stralen et al.'®

9Horny and Quack.'"’

€The authors report cc-pVDZ+3p, but this appears to be incorrect.

curve. We have obtained a maximum correlation contribution
at 60° torsional angle, and minimum is at 160° torsional angle.
Table I gives CCSD and HF values of Epy at 45° torsional
angle and indicates the convergence of Epy with respect to
the basis set. Clearly, there is a significant difference in values
when the double-zeta basis is compared with the triple-zeta
one, whereas the effect of further increasing the cardinal
number is quite small. We will prefer triple zeta quality basis
set for our calculations on the heavier homologues of H,0,.
We have also compared our findings with previous studies in
Table I. Our analytical number matches very well the orbital-
relaxed finite-field numbers reported by Thyssen et al.®3 when
the basis set is exactly the same.'” The slight discrepancy in
value may be attributed to orbital relaxation in the latter case,
which is accordingly quite small. The difference with the MP2
value, when we use the same basis set, is not very large, as
has been seen earlier.®

For the next candidate in this series, that is, H,S,, we
apply the cc-pCVTZ basis. Here we freeze the 1s2s orbitals
of the sulfur atoms, as motivated by the MP2 study by van
Stralen et al.'® For the virtual orbital space we again choose
100 Ej, as the energy threshold. We vary the torsional angle
from 0° to 180° with a fixed grid size of 15°. We observe the
same sinusoidal behaviour of the Epy vs 7, curve (Figure 2)
as seen for H,O,. However, the effect of correlation is less
dominant for this molecule, and correlation contributions have
both negative and positive signs along the curve.

When we compare our cc-pCVTZ results at 45° torsional
angle for H,S, with previous findings in Table I, we see a
significant difference in values. In order to directly compare
with the CCSD orbital-relaxed finite field number of Thyssen
et al.,%® we calculated the parity violating energy in the

J. Chem. Phys. 145, 184107 (2016)
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FIG. 2. Total parity violating energy E py as a function of torsional angle
curve for H,S, at the HF and CCSD level of theory using the cc-pCVTZ
basis.

cc-pVDZ+2p basis with all electrons correlated. The
discrepancy is now reduced to 76 x 1072° E;, (3.5%), which
is essentially due to orbital relaxation. At the orbital-
unrelaxed MP2 level, switching off orbital relaxation in
the implementation of van Stralen et al.,' we obtain
—2013.89 x 10720 E},, whereas using the orbital-relaxed MP2
code'® the result is —2113.83 x 10720 E;,. The effect of orbital
relaxation at the MP2 level is thus more important. The latter
number agrees well with that reported by van Stralen et al.,'®
with the 1s2s2p orbitals of sulfur frozen.

In Table I we also included recent CCSD results reported
by Horny and Quack.'”” However, direct comparison with
our values is less straightforward. Not only are basis sets and
geometries different, but the parity-violating energy has been
calculated as a linear response function by introducing a one-
electron spin-orbit operator with effective nuclear charge as
a perturbation in an otherwise nonrelativistic calculation. We
note, however, that with the triple zeta basis set we obtain very
good agreement with the value reported for HyO, by Horny
and Quack, whereas a more significant discrepancy is observed
for H,S,, probably mostly due to scalar relativistic effects.

For H,Se; and H,Te, we have chosen (n-1)dnsnp as
the active occupied orbital space, where n is the principal
quantum number of the valence shell. The energy cutoff for
the virtual orbitals was set to 40 Ej,. In Table II, we report our
calculated Epy values at 45° torsional angle for the complete
series HyX, (X =0,S,Se,Te) of molecules. An interesting
observation is that the correlation contribution is on the order
of 10% for H,O,, but is reduced by one order of magnitude or

TABLE II. Total parity violating energy shift (in Ej) at the CCSD level
for the HyXs (X=0,S, Se, Te) molecules at 45° dihedral angle. Basis sets
employed (both atoms): dyall.ae3z (H,0;), cc-pCVTZ (H,S,) and dyall.cv3z
(HaSep, HoTep). AEEY, corresponds to the energy shift (in Ej,) at the CCSD
level with respect to the HF method.

Hy0, HS» HsSe» H,Te,

Epy -53.23x10720 —1821 x 10718 —21.15%x1071® -32.89 x 1015
AEGY 74x10720  48x 1072 24x 10717 2.8 x 10716
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more for the heavier homologues. There has been a previous
analysis for that by Berger et al.,'’! where they have compared
the ZORA-DFT numbers of theirs with the DC Hamiltonian
based MP2 numbers by van Stralen et al.'® Their conclusion
was that while MP2 numbers underestimate the correlation
contribution of a DFT calculation, it overestimates that of a
CCSD(T) calculation. Our numbers also corroborate with the
overestimation of correlation by MP2, for which we have not
carried out any calculation, but have observed the qualitative
trend in the work by van Stralen ez al. 16 However, it should be
pointed out that it is possible to provide a definite benchmark
number only when an analytic CCSD(T) energy gradient
implementation will be available.

B. Electric field gradient

We next consider the interplay between SOC and electron
correlation by calculating the electric field gradient (EFG)
at the 2%Bi nucleus (nuclear spin I=9/2) in the BiX
(X =N,P) series of molecules, for which spin-orbit effects
may be expected to be prominent. The corresponding nuclear
quadrupole coupling constant (NQCC; in MHz) may be
expressed as

NQCC(*™BiX) = 234.9647 x Q(*®Bi)q,,(Bi), (32)

where Q is the nuclear quadrupole moment of 2Bi in barns (b)
and g, is the electric field gradient (in atomic units Ej,/ ea(z))
along the molecular axis at the position of the bismuth nucleus.

The basis set for Bi has been taken from the work
by Teodoro and Haiduke,®* where they have incremented the
Relativistic Adapted Gaussian Basis Set (RAGBS), previously
developed by Haiduke and Da Silva.!'” For the lighter atom
in those molecules, that is, for N and P, we have chosen the
cc-pVTZ basis set.!'!'> An approximate version of the DC
Hamiltonian was used, where the (SS|SS) class of integrals
is neglected and a simple Coulombic correction added to
the energy.!'® To estimate the contribution from SOC, we
have also employed the Spin-Free (SF)-DC Hamiltonian?>!!4
which allows us to define the SOC contribution as the
difference between the results obtained with the full DC
Hamiltonian and with the SF Hamiltonian. The correlating
orbital space has been restricted by selecting all the orbitals
between —6 and 20 Ej, following the suggestion by Teodoro
and Haiduke.®*

We have summarized our results in Table III. For the BiN
molecule at the SF level, electron correlation gives a 16.31%
negative shift to the absolute value of g,,. At the DC level,
on the other hand, we get a huge positive shift of 57.2% to
the absolute value of g.,. This immediately shows that the
SOC and correlation cannot be treated independently and that
both are important to obtain a quantitatively correct total EFG
value. With further analysis we can see that SOC reduces the
absolute value of ¢,, by 7.01 E},/ ea(z) at the mean-field level, in
line with other previous studies of different molecules.!'”-!!8
The extent of coupling between SOC and correlation can be
singled out by subtracting the mean field ASOC contribution
from that at the CCSD level, which is a significantly large
value —5.62 Eh/eag. For BiP the role of SOC is less dramatic,
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TABLE III. Calculated electric field gradient g, at the Bi nucleus of the
BiN and BiP molecules. Only electronic contributions are given in the table.
The nuclear contribution is 0.2864 and 0.3685 Eh/eag for BiN and BiP,
respectively. Bond lengths for BiN and BiP are chosen as 1.9349 A5 and
2.2934 A" respectively. We used a 31s24p18d12f2g basis set for Bi and
cc-pVTZ for N and P. ASOC refers to the spin-orbit coupling contribution at
the indicated level of theory.

qzz
Molecule Hamiltonian Method (in Eh/eaé) Ycorrelation ASOC
BiN SF-DC HF —13.0961 -16.31 7.0121
CCSD -10.9596 1.3958
DC HF -6.0840 +57.20
CCSD -9.5638
BiP SF-DC HF —13.6345 -21.06 3.5969
CCSD -10.7626 1.1318
DC HF -10.0376 -4.05
CCSD -9.6308

and our simple analysis tells us that the role of coupling
between correlation and SOC is 2.47 Ej,/ eag in that case.

If we combine our DC-CCSD EFG value with the NQCC
data from Cooke et al.,**!'® we obtain a nuclear quadrupole
moment of —415.1 mb for 2“Bi, in line with Teodoro and
Haiduke (CCSD: —420(8) mb).%* This clearly indicates that the
present literature value of —516(15) mb!"%120 peeds revision,
in particular since the triples contribution to the EFG is rather
modest, on the order of 5 mb.3* One further interesting point is
that if we compare our orbital unrelaxed analytical NQM value
with the relaxed numerical value by Teodoro and Haiduke,?*
we see a difference of 5 mb. Therefore, for this particular case
the effect of orbital relaxation is minor.

V. SUMMARY AND FUTURE OUTLOOK

In this article we have reported the first formulation
and implementation of 4-component DC Hamiltonian
based coupled cluster analytic derivative technique. The
present implementation allows first-order energy derivative
calculations of one-electron properties. We have used full
permutational and double group symmetry of the integrals
in the coupled cluster contraction section. This method has
been applied to the calculation of zz-component of EFG
tensors at the Bi centre of BiN and BiP molecules. We have
demonstrated a strong coupling between SOC and correlation
for those molecules. In future work we plan to investigate
the spin-orbit effect on the EFG in more detail. We have
also calculated the total parity violating energy contribution
for HyX;, (X = O,S,Se, Te) molecules and compared that with
the previous studies. For the selected molecules the effect of
electron correlation on the parity-violating energy is rather
modest, but we would like to extend our benchmark study
to more realistic candidate molecules where for instance the
difference between HF and DFT results are more prominent
(see for instance Ref. 82).

In the present implementation we have not included
the (T) correction to the calculated molecular properties.
The main bottleneck of that implementation is the high
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memory requirements, which becomes particularly severe
in the relativistic case due to the large prefactor caused by
spin-orbit coupling. A viable implementation should include
parallelization techniques. We are presently exploring suitable
algorithms in that direction. In this implementation we have
so far avoided the consideration of orbital relaxation via
the Z-vector technique. For the calculation of geometrical
derivatives and magnetic properties it is, however, mandatory
to incorporate that contribution. The main bottleneck for
the relativistic case arises because of the rotation between
positive energy and negative energy orbitals, which will
possibly require transformed negative energy MO integrals.
Nevertheless, in view of the theoretical importance of that
technique we are planning to implement it as well.

This work provides a generalized framework for tensor
contraction in the relativistic single reference coupled cluster
regime. We therefore plan to use this framework for the
implementation of coupled cluster linear response. The
response implementation will allow the calculation of excited
state energies and higher-order molecular properties, most
notably the NMR shielding tensor and indirect spin-spin
coupling tensor.

An open-shell extension of this work will increase the
scope of this work for magnetic properties such as the EPR
g-tensor. In the spinor-based coupled cluster implementation

J. Chem. Phys. 145, 184107 (2016)
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APPENDIX A: WORKING EQUATIONS
FOR A EQUATIONS, INTERMEDIATES,
AND DENSITY MATRICES

The A amplitudes have been expressed in terms of a
limited number of intermediates, where we have largely
followed the work of Gauss et al.'?! The A; amplitude equation

is given by
0=F,+y AF, ZamF AW,
e m,e<f

—ZG’;*WJ?;—ZG’,’”*W,’ZL’

one can calculate relaxed density matrix for simple open-shell + Z A Wis, Z Aex W, (A1)
systems. We are planning to use that benefit as outlined in m>n,e
Section III C. whereas the A,-equation is
0= Vij + P(ab) Z /lij « Fy — P(ij) Z /l * F + Z A W,l,{n + P(ij)p(ab) Z A Wé;
m>n
+P(ab)Zv,;g *GS — Zam s W~ P(z])ZViZ’ « Gl +P(z])Zv”” (AL %1%)
+ P(if) Z AL« VI 4 P(ij)P(ab) AT + Z AWl (A2)
e e>f
(
where the permutation operator whereas the two-body fixed intermediates are
P(pg)f(p.q) = f(p,q) = f(g:p), (A3) WY =V + P(mn) Z Vit + = Z Vst (A7)
e>f
appears. Most of the intermediates are constructed from the . . , .
known Hamiltonian matrix elements and the already solved T Wy = + Z Vo = ff - Z Vit
amplitudes; we will hence call them fixed intermediates. The I n
i fixed i .
one-body fixed intermediates are N Z Ve,;n . ( t;r;l, 3 t]f.tﬁ), (AS)
Fp=fl+ > fhste + > Vit stew S Vitsril, "
e en n,e>f Wllnen V’;f; + F *t Wto f
(A4) Z f mn Z
—e
Fuzf,f— fa * 1, — Vn;e an*Tmn’ ie —ie
; ;f: m>znf +ZVfg*T,{,gn+P(mn)Zan*rfn
(A5) f>g f
F, = fi'+ ) vl s, (A6) + P(mn) Z vie w1, (A9)
nf
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wel = Vel + Plef) Z Ver s sl + Z Wel w8,

+ZF « 1o ZV""*TM

=

—Plef) Y Wan 15, (A10)

W = Vi - P(ef)z Vil > VIl an
mh

Wo = v - Z v, (A12)

W =y Z ] w v, (A13)

W = yam - Z VI 1. (A14)

n
To avoid higher than two-body intermediates we
furthermore define two intermediates of mixed A and T
type,

Go== > A sth, (A15)
m>n,f

G = Z Al e, (A16)
m,e>f

The density matrices are evaluated by using the converged
T and A as follows:

J
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Z (o Al - Zt « AL, (A17)
m,e>f
DA Z 4 AT, (Al18)
m>n,e
=1 +Z/l'"(t“e — 115,
- Z M w18 18w 05h), (A19)
m>n,e>f
yi= A, (A20)

1 ’ ’
=500 +74)-

APPENDIX B: USE OF THE TENSOR
CONTRACTION ROUTINES

As an illustration of the use of our implemented tensor
contraction routines we consider a representative term from
the A-equation,

52U, + P(ij)P(ab) Y Al = W)e — 82, (B1)

In the above equation, we are contracting a rank-4 tensor A%7
with a rank-4 tensor W;fn to generate another rank-4 tensor
6/12;,. Therefore, it belongs to the contraction class 444. In
the code the corresponding subroutine is called as

call Contraction 444((/"01" , ll03|l , l'plll , l'p3|l/) (/"02” , llp3|l , llpzll "03"/) &
& (/"ol","02","p1","p2"/),ResL2, 1.0d0,1.0d0,nrep,RightTensor=w_voov, &

& LeftTensor=L2).

The first three arguments to the subroutine are orbital
strings for the input and output tensors in the order they
appear from a diagram. Indices are numbered with “o” and
“p” referring to occupied (hole) and virtual (particle) orbltals
respectlvely. Then, we provide the name of the output tensor
(or arrays), the diagram factor, the scaling factor of the product
tensor, the number of irreducible representations (nrep), and
finally the names of the input tensors (or arrays). In this
example (Eq. (B1)) the input tensors would be reshaped to

Ai,m,a,e) —» A'(i,a,e,m), (B2)
W(j,e,b,m) — W'(j,b,e,m). (B3)

Thereafter the BLAS matrix-matrix multiplication routine is
employed to the tensors mapped onto matrices, e.g.,

A'(ia,em) « W (em, jb) = 61'(ia, jb) — 6A(i, j,a,b), (B4)

followed by a reshaping (sort) of the resultant tensor, as
above. When explicit anti-symmetrization of the final tensors
is needed (as it is in the present example), we first generate

J

AT eIy,..

(

the full product tensor, and then perform the explicit anti-
symmetrization and pack them in triangular fashion. Again,
this is also implicit in the placement of the orbital indices.

APPENDIX C: USE OF DOUBLE GROUP SYMMETRY
IN TENSOR CONTRACTION

The DPD scheme is applicable to all possible contractions
in coupled cluster theory and entails nested loops over
irreps to skip contributions that are zero by symmetry. A
particular challenge in the relativistic framework is that the
irrep of the complex conjugate of a quantity, e.g., an orbital
appearing in the bra position of an two-electron integral, is
typically not equal to the irrep of the original quantity. This
is symbolically indicated by I', # I', and may occur for both
fermion and boson irreps. An example are the irreps of the
groups C;; (n > 1).

Using the equation for generic tensor contraction
(Equation (22)), we get

Je[;el.)=Ty)B(I;eI})® [l®TI.) =T

= C((l"j;{}_ ® 1";‘}) ® (', ® k) = Tp) (CDH



184107-11 Shee, Visscher, and Saue

when the explicit symmetry label of each index is considered.
In that equation K/ represents a set of uncontracted or free
indices coming from the (k’,/’..) orbital set and I';, is the

direct product of all these indices. Likewise, 1 } standg for all
the free indices from the (i’,j’..) set, I is for the (i, ]..) set,
and Ky is for the (k,[..) set. I'y is the totally symmetric irrep.
The remaining orbitals which do not belong to the sets K Jﬁ.,
1 JQ, Ir, and Ky are contracted, and the direct product irreps of
them within A and B are the same.

As we have already mentioned, every contraction is
mapped onto Equation (23). For this case the symmetry
restrictions entails that

A— A (F;;} ol ey, ol,) =Tl =T, (C2)
B — B (Fj(,y_ QTk.)® (1";‘} ®I'k,) = I, ® 1"}2 =T, (C3)
CeC: (F;} ® F,f) ® (F}*}_ ® FKf) = F}l ® F}z =TIy (C4)

where the subscript “f” stands for free indices and subscript “c”
stands for contractable indices. Equations (C2)—(C4) define
the symmetry structure of the tensors after employing the
sorting step. We have introduced a new symmetry label I
to indicate that the sorted indices can originate from the ket
(that is, I') or bra (that is, I'*) position or from both of them.
Consequently, multiplication tables have been set up for the
direct products (T, ® I';) and (Fp ® 1":;), where T, and T,
may refer to both fermion and boson irreps.

Now, with a specific example as in Equation (B1), the
input tensor A appears as an array (i,m,a,e,[',.) containing
only elements for which

rerl;)eT,el,) =TI}, ®, =T, (C5)

where I is the totally symmetric irrep. Upon sorting it will
be reshaped to an array (i,a,e,m,I',, ), whereI',, =T, ®1I7,.
The arrays W and 64 will undergo similar treatment.

Finally, one contraction with explicit symmetry labelling
can be written as

AT} T.) ® B/(IL,.T7) = C'(T.T)). (C6)

In this step we make sure that I'; =T and all other
symmetry restrictions follow from Equations (C2)—(C4). In
our specific example, we multiply 4 and W in the matrix
form A(ia,em : T',,,) and W(jb,em : I',,,) by using a BLAS
matrix-matrix multiplication routine. Notice that we need to
transpose the array W for carrying out the multiplication.
Finally the product array 6A(ia : I}, jb : I“J’.b) is reshaped to
6A(i, j,a,b), where Fl’.‘j =T,p.

These sorting steps are at most of order N* (with N the
number of orbitals) and should be insignificant relative to the
N order contractions. Due to the higher speed of the latter it is
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