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A Direct Solver for Time Parallelization

Martin J. Gander, Laurence Halpern, Juliet Ryan, and Thuy Thi Bich Tran

1 Introduction

Using the time direction in evolution problems for parallelization is an active field of

research. Most of these methods are iterative, see for example the parareal algorithm

analyzed in [3], a variant that became known under the name PFASST [10], and

waveform relaxation methods based on domain decomposition [4, 5], see also [1]

for a method called RIDC. Direct time parallel solvers are much more rare, see

for example [2]. We present here a mathematical analysis of a different direct

time parallel solver, proposed in [9]. We consider as our model partial differential

equation (PDE) the heat equation on a rectangular domain ˝ ,

@u

@t
� �u D f in ˝ � .0; T/, u D g on @˝ , and u.�; 0/ D u0 in ˝: (1)

Using a Backward Euler discretization on the time mesh 0 D t0 < t1 < t2 <

� � � < tN D T, kn D tn � tn�1, and a finite difference approximation �h of � over a
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rectangular grid of size J D J1J2, we obtain the discrete problem

1

kn

.un � un�1/ � �hun D fn: (2)

Let It be the N � N identity matrix associated with the time domain and Ix be the

J � J identity matrix associated with the spatial domain. Setting u WD .u1; : : : ; uN/,

f WD .f1 C 1
k1

u0; f2; : : : ; fN/ and using the Kronecker symbol, (2) becomes

.B ˝ Ix � It ˝ �h/u D f; B WD

0

B

B

B

B

@

1
k1

� 1
k2

1
k2

0

0
: : :

: : :

� 1
kN

1
kN

1

C

C

C

C

A

: (3)

If B is diagonalizable, B D SDS�1, then (3) can be solved in 3 steps:

.a/ .S ˝ Ix/g D f;

.b/ . 1
kn

� �h/wn D gn; 1 � n � N;

.c/ .S�1 ˝ Ix/u D w:

(4)

The N equations in space in step (b) can now be solved in parallel. This interesting

idea comes from [9], but its application requires some care: first, B is only diago-

nalizable if the time steps are all different, and this leads to a larger discretization

error compared to using equidistant time steps, as we will see. Second, the condition

number of S increases exponentially with N, which leads to inaccurate results in step

.a/ and .c/ because of roundoff error. We accurately estimate these two errors, and

then determine for a user tolerance the maximum N and optimal time step sequence

of the form knC1 D qkn, which guarantees that errors stay below the user tolerance.

2 Error Estimate for Variable Time-Steps

We start by studying for a > 0 the ordinary differential equation (ODE)

du

dt
C au D 0; t 2 .0; T/; u.0/ D u0 H) u.t/ D u0ae�aT : (5)

For Backward Euler, un D .1 C akn/
�1 un�1 with time steps from the division T D

.k1; : : : ; kN/ satisfying T D
PN

1 kn, we define the error propagator by

Err.T I a; T; N/ WD
N

Y

nD1

.1 C akn/�1 � e�aT ; (6)
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such that the error at time T equals Err.T I a; T; N/u0. We also define the equidistant

division T WD .k; : : : ; k/, where k D T=N.

Theorem 1 (Equidistant Partition Minimizes Error) For any a; T and N, and

any division T , the error propagator is positive, and for the equidistant division

T , the error is globally minimized.

Proof Rewriting Err.T I a; T; N/ D
N
Q

nD1

.1 C akn/�1 �
N
Q

nD1

.eakn/�1, we see that the

error propagator is positive, since for all positive x, ex > 1 C x. To minimize the

error, we thus have to minimize ˚.T / WD
N
Q

nD1

.1Cakn/�1 as a function of T 2 R
N ,

with N inequality constraints kn � 0, and one equality constraint
PN

nD1 kn D T. We

compute the derivatives

@˚

@ki

.T / D � a

1 C aki

˚.T /;
@2˚

@kikj

.T / D .1 C ıij/a
2

.1 C aki/.1 C akj/
˚.T /;

and to show that ˚ is convex, we evaluate for an arbitrary vector x D .x1; : : : ; xN/

N
X

i;jD1

@2˚

@kikj

.T /xixj D
�

X

i¤j

a2

.1 C aki/.1 C akj/
xixj C

X

i

a2

.1 C aki/2
x2

i

�

˚.T /

D
�

�

N
X

iD1

axi

1 C aki

�2 C
N

X

iD1

� axi

1 C aki

�2
�

˚.T / > 0:

Therefore the Kuhn Tucker theorem applies, and the only minimum is given by the

existence of a Lagrange multiplier p with ˚ 0.T / C p1 D 0, 1 the vector of all ones,

whose only solution is T D T , p D a.1 C ak/�N�1.

We now consider a division Tq of geometric time steps kn WD qn�1k1 for n D
1; : : : ; N as it was suggested in [8]. The constraint

PN
nD1 kn D

PN
nD1 qn�1k1 D T

fixes k1, and using this we get

kn D qn

PN
jD1 qj

T: (7)

Since according to Theorem 1 the error is minimized for q D 1, one should not

choose q very different from 1, and we now study the case q D 1C" asymptotically.

Theorem 2 (Asymptotic Truncation Error Estimate) Let uN.q/ WD ˚.Tq/u0 be

the approximate solution obtained with the division Tq for q D 1 C ". Then, for

fixed a; T and N, the difference between the geometric mesh and fixed step mesh

3



approximations satisfies for " small

uN.q/ � uN.1/ D ˛.aT; N/u0"2 C o."2/; with

˛.x; N/ D N.N2 � 1/

24

�

x=N

1 C x=N

�2

.1 C x=N/�N :

(8)

Proof Using a second order Taylor expansion, we obtain in the following two

lemmas an expansion of ˚.T1C"/ for small ".

Lemma 1 The time step kn in (7) has for " small the expansion kn D k.1 C ˛n" C
ˇn"2 C o."2//, with ˛n D n � NC1

2
and ˇn D n.n � N � 2/ C .NC1/.NC5/

6
. These

coefficients satisfy the relations
P

n ˛n D
P

n ˇn D 0,
P

n ˛2
n D N.N�1/.NC1/

12
.

Lemma 2 For " small, we have the expansion

N
Y

nD1

.1 C akn/ D .1 C ak/N.1 � b2

2

N
X

nD1

˛2
n"2 C o."2//; with b D ak

1Cak
.

We can now apply Lemma 2 to obtain ˚.T1C"/ D ˚.T1/.1 C b2

2

PN
nD1 ˛2

n"2 C
o."2//, and replacing ˚ in the definition of uN concludes the proof.

3 Error Estimate for the Diagonalization of B

The matrix B is diagonalizable if and only if all time steps kn are different. The

eigenvalues are then 1
kn

, and the eigenvectors form a basis of R
N . We will see

below that the matrix of eigenvectors is lower triangular. It can be chosen with unit

diagonal, in which case it belongs to a special class of Toeplitz matrices:

Definition 1 A unipotent lower triangular Toeplitz matrix of size N is of the form

T.x1; : : : ; xN�1/ D

0

B

B

B

B

@

1

x1

: : :
:::

: : :
: : :

xN�1 : : : x1 1

1

C

C

C

C

A

: (9)

Theorem 3 (Eigendecomposition of B) If kn D qn�1k1 as in (7), then B has the

eigendecomposition B D VDV�1, with D WD diag. 1
kn

/, and V and its inverse are
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unipotent lower triangular Toeplitz matrices given by

V D T.p1; : : : ; pN�1/; with pn WD
1

Qn
jD1.1 � qj/

; (10)

V�1 D T.q1; : : : ; qN�1/; with qn WD .�1/nq.n
2/pn: (11)

Proof Let v.n/ be the eigenvector with eigenvalue 1
kn

. Since B is a lower bidiagonal

matrix, a simple recursive argument shows that v
.n/
j D 0 for j < n. One may choose

v
.n/
n D 1, which implies that for j > n we have v

.n/
j D .

Qn�j

iD1.1 � knCi

kn
//�1, and the

matrix V D .v.1/; : : : ; v.N// is lower triangular with unit diagonal. Furthermore, if

kn D qn�1k1, we obtain for j D 1; 2; : : : ; N � n that v
.n/
nCj D .

Qj

iD1.1 � qi//�1 which

is independent of n and thus proves the Toeplitz structure in (10).

Consider now the inverse of V . First, it is easy to see that it is also unipotent

Toeplitz. To establish (11) is equivalent to prove that

for 1 � n � N �1;

n
X

jD0

pn�jqj D 0; with the convention that p0 D q0 D 1: (12)

This result can be obtained using the q�analogue of the binomial formula, see [7]:

Theorem 4 (Simplified q�Binomial Theorem) For any q > 0, q ¤ 1, and for

any n 2 N,

n
X

jD0

.�1/jq
j.j�1/

2
.1 � qn�jC1/ � � � .1 � qn/

.1 � q/ � � � .1 � qj/
D 0: (13)

Multiplying (13) by pn then leads to (12).

In the steps (a) and (c) of the direct time parallel solver (4), the condition number

of the eigenvector matrix S has a strong influence on the accuracy of the results.

Normalizing the eigenvectors with respect to the `2 norm, S WD V QD, with QD D
diag. 1p

1C
PN�n

iD1 jpi j2
/, leads to an asymptotically better condition number:

Theorem 5 (Asymptotic Condition Number Estimate) For q D 1 C ", we have

cond1.V/ �
�

.N � 1/Š"N�1
��2

; (14)

cond1.S/ � N

�.N/
"�.N�1/; �.N/ D

(

N
2
Š. N

2
� 1/Š if N is even;

. N�1
2

Š/2 if N is odd:
(15)

Proof Note first that jqnj � jpnj � .nŠ "n/�1. Therefore

kVk1 D 1 C jp1j C jp2j C � � � C jpN�1j � jpN�1j �
�

.N � 1/Š"N�1
��1

:
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The same holds for V�1, and gives the first result. We next define n WD
q

1 C
PN�n

jD1 jpjj2, Qdn WD 1
n

, which implies QD D diag.Qdn/. Then n � jpN�nj,
and we obtain

kSk1 D sup
n

n
X

jD1

jpn�jj
j

� sup
n

n
X

jD1

jpn�jj
jpN�nj � sup

n

n
X

jD1

.N � j/Š

.n � j/Š
"N�n � N:

By definition S�1 D QD�1V�1 D QD�1T.q1; � � � ; qN�1/, that is the line n of

T.q1; � � � ; qN�1/ is multiplied by n. Therefore

kS�1k1 D supn n

Pn�1
jD0 jqjj � supn njqn�1j � supn njpn�1j � supn jpN�njjpn�1j

� "�.N�1/ supn
1

.n�1/Š.N�n/Š
� 1

�.N/
"�.N�1/:

4 Relative Error Estimates for ODEs and PDEs

We first give an error estimate for the ODE (5):

Theorem 6 (Asymptotic Roundoff Error Estimate for ODEs) Let u be the exact

solution of Bu D f, and Ou be the computed solution from the direct time parallel

solver (4) applied to (5), and u denote the machine precision. Then

ku � Ouk1

kuk1

. u
N2.2N C 1/.N C aT/

�.N/
"�.N�1/: (16)

Proof In the ODE case, D D diag. 1
kn

C a/ and kDk1 D 1=k1 C a. Using backward

error analysis [6], the computed solution satisfies the perturbed systems

.S C ıS1/Og D f; .D C ıD/ Ow D Og; .S�1 C ıS2/ Ou D Ow;

and since S and S�1 are triangular and D is diagonal we get (see [6])

kıS1k � NukSkCO.u2/; kıS2k � NukS�1kCO.u2/; kıDk � ukDkCO.u2/:

Using Algorithm (4) to solve Bu D f by decomposition is equivalent to solving

.S C ıS1/.D C ıD/.S�1 C ıS2/ Ou D f, which is of the form

.B C ıB/ Ou D f; kıBk � .2N C 1/ukSkkS�1kkDk C O.u2/:

The relative error then satisfies (see [6])

ku � Ouk
kuk � cond.B/

kıBk
kBk � .2N C 1/u kB�1k kSk kS�1k kDk:

6



By a direct computation, we obtain for the inverse of B

B�1 D k1

0

B

B

B

B

B

B

@

1

1 q

1
::: q2

:::
:::

:::
: : :

1 q q2 : : : qN�1

1

C

C

C

C

C

C

A

;

and hence kB�1k1 D k1.1 C q C : : : qN�1/ � Nk1. Since k1 � k D T=N, (16) is

proved.

The error of the direct time parallel solver at time T can be estimated by

je�aTu0 � OuN j
ju0j

� je�aTu0 � uN.1/j
ju0j

C juN.1/ � uN.q/j
ju0j

C juN.q/ � OuN j
ju0j

: (17)

The first term on the right is the truncation error of the sequential method using

equal time steps. The second term is due to the geometric mesh and was estimated

asymptotically in Theorem 2 to be ˛"2. The last term can be estimated by ku.q/ �
Ouk1=ju0j and thus Theorem 6, since a > 0 which implies ju0j D kuk1. Because

the second term is decreasing in " and the last term is growing in ", we equilibrate

them asymptotically:

Theorem 7 (Optimized Geometric Time Mesh) Suppose the time steps are

geometric, kn D qn�1k1, and q D 1C" with " small. Let u be the machine precision.

For " D "0.aT; N/ with

"0.aT; N/ D
�

u
N2.2N C 1/.N C aT/

�.N/˛.aT; N/

�

1
NC1

; (18)

where ˛.aT; N/ is defined in (8) and �.N/ in (15), the error due to time paralleliza-

tion is asymptotically comparable to the one produced by the geometric mesh.

Proof This is a direct consequence of Theorem 6.

We show in Fig. 1 on the left the optimized value "0.aT; N/ from Theorem 7.

Choosing " D "0.aT; N/, the ratio between the additional errors due to paralleliza-

tion to the truncation error of the fixed time step method is shown in Fig. 1 on the

right.

In order to obtain a PDE error estimate for the heat equation (1), one can argue as

follows: expanding the solution in eigenfunctions of the Laplacian, we can apply our

results for the ODE with a D �`, �` for ` D 1; 2; : : : the eigenvalues of the negative

Laplacian. One can show for all N � 1 and machine precision u small enough

(single precision suffices in practice) that our error estimate (17) has its maximum

for aT < a�
T D 2:5129, and thus if �min and T are such that �minT > a�

T , one can
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Fig. 1 Optimized choice "0.aT; N/ from Theorem 7 (left). Ratio of the additional errors due to

parallelization to the truncation error of the fixed step method (17) with this choice of "0.aT; N/

(right)
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Fig. 2 Discretization and parallelization errors, and condition number of the eigenvector matrix,

together with our theoretical bounds, left for the ODE, right for the PDE

read off the optimal choice "0 and resulting error estimate in Fig. 1 at aT D �minT

for a given number of processors N. Similarly, if we have N processors and do not

want to increase the error compared to a sequential computation by more than a

given factor, we can read in Fig. 1 on the right the size of the time window T to use

(knowing a D �min), and the corresponding optimized "0 on the left.

5 Numerical Experiments

We first perform a numerical experiment for the scalar model problem (5) with

a D 1, T D 1 and N D 10. We show in Fig. 2 on the left how the discretization error

increases and the parallelization error decreases as a function of ", together with

our theoretical estimates, and also the condition number of the eigenvector matrix,
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and our theoretical bound. We can see that the theoretically predicted optimized "

marked by a rhombus is a good estimate, and on the safe side, of the optimal choice

a bit to the left, where the dashed lines meet.

We next show an experiment for the heat equation in two dimensions on the unit

square, with homogeneous Dirichlet boundary conditions and an initial condition

u0.x; y/ D sin.�x/ sin.�y/. We discretize with a standard five point finite difference

method in space with mesh size h1 D h2 D 1
10

, and a Backward Euler discretization

in time on the time interval .0; 1
5
/ using N D 30 time steps. In Fig. 2 on the right we

show again the measured discretization and parallelization errors compared to our

theoretical bounds. As one can see from the graph, in this example, one could solve

the problem using 30 processors, and would obtain an error which is within a factor

two of the sequential computation.

References

1. A.J. Christlieb, C.B. Macdonald, B.W. Ong, Parallel high-order integrators. SIAM J. Sci.

Comput. 32(2), 818–835 (2010)

2. M.J. Gander, S. Güttel, Paraexp: a parallel integrator for linear initial-value problems. SIAM

J. Sci. Comput. 35(2), C123–C142 (2013)

3. M.J. Gander, E. Hairer, Nonlinear convergence analysis for the parareal algorithm, in Domain

Decomposition Methods in Science and Engineering XVII, ed. by O.B. Widlund, D.E. Keyes,

vol. 60 (Springer, Berlin, 2008), pp. 45–56

4. M.J. Gander, L. Halpern, Absorbing boundary conditions for the wave equation and parallel

computing. Math. Comput. 74, 153–176 (2005)

5. M.J. Gander, L. Halpern, Optimized Schwarz waveform relaxation methods for advection

reaction diffusion problems. SIAM J. Numer. Anal. 45(2), 666–697 (2007)

6. G.H. Golub, C.F. Van Loan, Matrix Computations, 4th edn. Johns Hopkins Studies in the

Mathematical Sciences (Johns Hopkins University Press, Baltimore, 2013)

7. J. Haglund, The q,t-Catalan Numbers and the Space of Diagonal Harmonics. University

Lecture Series, vol. 41 (American Mathematical Society, Providence, 2008)

8. Y. Maday, E.M. Rønquist, Fast tensor product solvers. Part II: spectral discretization in space

and time. Technical report 7–9, Laboratoire Jacques-Louis Lions (2007)

9. Y. Maday, E.M. Rønquist, Parallelization in time through tensor-product space-time solvers.

C. R. Math. Acad. Sci. Paris 346(1–2), 113–118 (2008)

10. M.L. Minion, A hybrid parareal spectral deferred corrections method. Commun. Appl. Math.

Comput. Sci. 5(2), 265–301 (2010)

9


	A Direct Solver for Time Parallelization
	1 Introduction
	2 Error Estimate for Variable Time-Steps
	3 Error Estimate for the Diagonalization of B
	4 Relative Error Estimates for ODEs and PDEs
	5 Numerical Experiments
	References


