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Abstract

We develop an algebraic approach, based on labelled-graph strategic rewrit-

ing, for the study of social networks, specifically network generation and prop-

agation mechanisms. This approach sheds a new light on these problems, and

leads to new or improved generation and propagation algorithms. We argue

that relevant concepts are provided by three ingredients: labelled graphs to

represent networks of data or users, rewrite rules to describe concurrent local

transformations, and strategies to express control. We show how these tech-

niques can be used to generate random networks that are suitable for social

network analysis, simulate different propagation mechanisms, and analyse and

compare propagation models by extracting common rules and differences, thus

leading to improved algorithms. We illustrate with examples the flexibility of

the approach.

Keywords: Labelled port graph, graph rewriting, strategies, strategic rewrite

programs, social networks, generation, propagation

1. Introduction

Social networks, representing connected users and their relationships, have

been intensively studied in the last years [1, 2, 3]. Their analysis raises several
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questions, in particular regarding their construction and evolution. Network

propagation mechanisms, replicating real-world social network phenomena, such5

as the relaying of information announcing events, have applications in various

domains, ranging from sociology [4] to epidemiology [5, 6] or even viral market-

ing and product placement [7].

To gain a better understanding of these phenomena, we need to model and

analyse such systems and deal with features that are complex (since they involve10

data that are massive and highly heterogeneous), dynamic (due to interactions,

time, external or internal evolutions), and distributed in networks. We argue

in this paper that relevant concepts to address these challenges are: Labelled

Graphs to represent networks of data or objects, Rules to deal with concurrent

local transformations, and Strategies to control the application of rules (includ-15

ing probabilistic application) and to focus on points of interest. Indeed, since we

have to deal with large networks, the ability to perform pattern-matching and

to define appropriate views (to focus on areas of interest) is essential. Since data

are often corrupted or imprecise, we also need to deal with uncertainty, which

implies that we need to be able to address probabilistic or stochastic issues in the20

models. The dynamic evolution of data is generally modelled by simple trans-

formations, applied in parallel and triggered by events or time. However, such

transformations may be controlled by some laws that induce a global behaviour.

Modelling may reveal conflicts, which can be detected by computing overlaps

of rules and solved, for instance, by using precedence (or other choices). Thus,25

the ability to define strategies is also essential, including mechanisms to deal

with backtracking and history through notions of derivations or traces. Last

but not least, visualisation is important at all levels: for data analysis, program

engineering, program debugging, tests and verification (for instance to provide

proof intuition).30

Preliminary results obtained by applying this approach to the study of net-

work propagation phenomena and network generation are described in [8, 9],

respectively. In this paper, we recall the main results and build on them to

develop more detailed analyses of network generation algorithms, and new and
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improved propagation algorithms.35

We start by presenting a framework, based on directed port graph rewrit-

ing, to define social network models and specify their dynamic behaviour. Port

graph rewriting systems have been used to model systems in other domains (e.g.,

biochemistry, interaction nets, games; see [8, 10, 11, 12]). Here, we adapt to

the specific domain of social network modelling the general port graph rewrit-40

ing notions given in [13], and enrich them to facilitate the implementation of

algorithms in this area. Most notably, here we use oriented edges and add a

primitive notion of conditional matching.

We use this framework to specify an algorithm to generate networks that

have the characteristics of real-world social networks, and to study the process45

of propagation (of actions such as relaying information, spreading gossip, etc.)

within a social network. For the latter, we consider three different propagation

algorithms: the independent cascade model IC [14], the linear threshold model

LT [15], and the Riposte model RP [16]. The first two propagation models were

specified using strategic rewriting in [8]. In this paper, we show that these two50

models are instances of the same strategic graph program, and we also develop

a strategic rewriting definition of RP. This latter model can be seen as an

improved version of IC, although with slight differences, where the propagation

process ensures that users’ opinions will not be disclosed to passive observers.

Based on this idea, we also develop a new propagation model: a privacy-aware55

version of LT, which we call RP-LT.

All algorithms have been implemented in Porgy, an interactive modelling

tool based on port graph rewriting; more details concerning the rewriting plat-

form can be found in [17]. Furthermore, since the instructions used in Porgy

have formal semantics, we are able to provide proofs of correctness for the dif-60

ferent algorithms implementation.

Related Work. Several definitions of graph rewriting are available, using differ-

ent kinds of graphs and rewrite rules (see, for instance, [18, 19, 20, 21, 22, 23,

24, 25]). To model social networks in this paper, we define directed port graphs
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with attributes and associated notions of strategic rewriting, based on the gen-65

eral notion of port graph rewriting presented in [13]. An alternative solution

using undirected edges and nodes with two ports called “In” and “Out” to sim-

ulate edge direction was previously developed and successfully applied in [8],

however, having oriented edges as a primitive concept makes it much easier to

represent social relationships that are naturally asymmetric. To facilitate the70

specification of network algorithms, we have also extended the concept of port

graph rewrite rule to incorporate conditional matching, reminiscent of similar

solutions found in Elan [26] and GP [27].

Although many data sets, extracted from various real-world social networks,

are publicly available1, in order to test new ideas, demonstrate the generality75

of a new technique, or design and experiment with stochastic algorithms on a

sufficiently large sample of network topologies, it is sometimes convenient to use

randomly generated networks as they can be fine-tuned to produce graphs with

specific properties (number of nodes, edge density, edge distribution. . . ). Several

generative models of random networks are available (e.g., [28, 29, 30, 31, 32]).80

Some, like the Erdös–Rényi (ER) model [28], do not guarantee any specific prop-

erty regarding their final topology, whereas others can show small-world charac-

teristics [29], distinctive (scale-free) edge distributions [30] or both at the same

time [31]. In this paper, we show how to generate such models using labelled

port graphs, rules and strategies. Moreover, we take advantage of the visual85

and statistical features available in Porgy to tune the algorithms: our experi-

mental results guide and validate the parameter choices made in the generation

algorithms, ensuring the generated networks satisfy the required properties.

Afterwards, we implement four propagation algorithms using the labelled

graphs, rules and strategies concepts mentioned above. While three of them90

are based on existing models described in previous work [14, 15, 16], the fourth

model is an original creation, specifically built to incorporate the privacy-preser-

ving features described in [16] to the propagation mechanism proposed in [15].

1For instance from http://snap.stanford.edu or http://konect.uni-koblenz.de/
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The paper is organised as follows. Section 2 introduces the modelling con-

cepts: labelled port graphs, rewriting, derivation tree, strategy and strategic95

graph programs. We develop social network generation algorithms in Section 3,

and propagation algorithms in Section 4. Section 5 briefly describes a frame-

work for designing and experimenting with social network models. In Section 6,

we conclude and give directions for future work.

2. Labelled Graph Rewriting for Social Networks100

A social network [33] is usually described as a graph where the nodes repre-

sent the users and the edges represent their relationships. Some real-world social

relations involve mutual recognition (e.g., friendship), whereas others present an

asymmetric model of acknowledgement (e.g., Twitter, where one of the users is

a follower while the other is a followee). It is thus natural to represent such105

relations using directed graphs. In this paper, we model social networks using

labelled directed port graphs, as defined below.

2.1. Directed Port Graphs for Social Networks

Roughly speaking, a port graph is a graph where edges are attached to nodes

at specific points, called ports. Nodes, ports and edges are labelled using records110

over a signature ∇ comprising pairwise disjoint sets ∇A of attributes, XA of

attribute variables, ∇V of values and XV of value variables. We assume ∇A

contains distinguished elements Name, (In/Out)Arity , Connect , Attach, and

Interface. Values in ∇V are assumed to be of basic data types such as strings,

integers, Booleans,. . . or to be well-typed computable expressions built using ∇115

and basic types.

A record r over ∇ is a set of pairs (attribute, value): {(a1, v1), . . . , (an, vn)},

where for 1 ≤ i ≤ n, ai ∈ ∇A ∪ XA , each ai occurs only once in r, and there is

one distinguished attribute Name, and vi ∈ ∇V for 1 ≤ i ≤ n.

The function Atts returns all the attributes in a given record: Atts(r) =120

{a1, . . . , an} if r = {(a1, v1), . . . , (an, vn)}. As usual, r.ai denotes the value vi

of the attribute ai in r.
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The attribute Name identifies the record in the following sense: for all r1,

r2, Atts(r1) = Atts(r2) if r1.Name = r2.Name.

Definition 1 (Directed port graph). Given sets N , P, E of nodes, ports125

and edges, a directed port graph (or simply port graph, since there will be no

ambiguity) G over a signature ∇ is a tuple (N,P,E,L) where

• N ⊆ N is a finite set of nodes; n, n′, n1, . . . range over nodes.

• P ⊆P is a finite set of ports; p, p′, p1, . . . range over ports.

• E ⊆ E is a finite set of edges between ports; e, e′, e1, . . . range over edges.130

Edges are directed and two ports may be connected by more than one edge.

• L is a labelling function that returns, for each element in N ∪ P ∪ E, a

record such that:

– for each edge e ∈ E, L(e) contains an attribute Connect whose value

is the ordered pair (p1, p2) of ports connected by e.135

– for each port p ∈ P , L(p) contains an attribute Attach whose value

is the node n which the port belongs to, and two attributes, InArity

and OutArity, whose values are the number of incoming and outgoing

edges connected to this port, respectively.

– For each node n ∈ N , L(n) contains an attribute Interface whose

value is the set of names of ports in the node:

{L(pi).Name | L(pi).Attach = n}

We assume that L satisfies the following constraint:

L(n1).Name = L(n2).Name ⇒ L(n1).Interface = L(n2).Interface.

We present in Figure 1 an example of a labelled directed port graph. In this140

example, nodes have attributes State, Marked, and Tau (used in the algorithms

given in the next sections), as well as an attribute Colour, for visual purposes.
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State = unaware
Tau = −1

State = unaware
Tau = −1

State = unaware
Tau = −1

State = informed

State = informed
Tau = −0.5

State = active
Tau = 1

State = active
Tau = 1

State = unaware
Tau = −1

State = informed
Tau = 0.2

@
@@

Marked = 0

�
��

Marked = 1

Figure 1: Example of port graph for a toy social network

According to definition 1, nodes with the same name (i.e., the same value for

their attribute Name) have the same set of port names (i.e., the same interface),

with similar attributes but with possibly different values. Variables, however,145

may be used to denote any value.

If an edge e ∈ E goes from n to n′, we say that n′ is adjacent to n (not

conversely) and thus that n′ is a neighbour of n. The set of nodes adjacent to

a subgraph F in G consists of all the nodes in G outside F and adjacent to any

node in F . Ngb(n) is used to denote the set of neighbours of the node n.150

The advantage of using port graphs rather than plain graphs is that they

allow us to express in a more structured and explicit way the properties of

the connections, since ports represent the connecting points between edges and

nodes. However, the counterpart is that the implementation, rules and matching

operations are more complex. So, whenever possible, it is simpler and more155

efficient to keep the number of ports for each node to a minimum.

In the social network models we use in this paper, nodes representing users

have only one port gathering directed connections. While this is sufficient in

many cases, when dealing with real social networks, multiple ports are useful,

either to connect users according to the nature of their relation (e.g., friend,160

parent, co-worker . . . ) or to model situations where a user is connected to friends

via different social networks. The full power of port graphs is indeed necessary in
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multi-layer networks [34] where edges are assigned to different layers and where

nodes are shared. In that case, different ports are related to different layers,

which can improve modularity of design, readability and matching efficiency165

through various heuristics. This is however a topic left for future work.

2.2. Located Rewriting

A port graph rewrite rule L ⇒ R is itself a port graph, consisting of two

subgraphs L and R and an arrow node that encodes in particular the corre-

spondence between ports in L and ports in R.170

Definition 2 (Port graph rewrite rule). A port graph rewrite rule is a port

graph consisting of:

• two directed port graphs L and R over the signature ∇, respectively called

left-hand side and right-hand side, such that all the variables in R occur

in L, and R may contain records with expressions;175

• an arrow node with a set of edges that each connect a port of the arrow

node to a port in L and a port in R. The arrow node has for Name ⇒. It

also has an optional attribute Where whose value is a Boolean expression

involving elements of L (edges, nodes, ports and their attributes).

The edges connecting L and R to the arrow node are used to rewire the180

graph when the rule is applied. See Figure 2 (top right-hand side corner) for an

example of port graph rewrite rule.

When modelling rumour propagation, the rules never suppress nor add new

nodes. Moreover, since there is only one port per node, there is no ambiguity

on the rewiring between left and right-hand sides. In that case, the structure185

and visualisation of the arrow node is much simpler. However, this only holds

when the network’s structure does not change.

The introduction of the Where attribute is inspired from the GP program-

ming system [27] (and from a more general definition given in Elan [26]), in

which a rule may have a condition introduced by the keyword where. The190
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Figure 2: A screenshot of Porgy in action.

Boolean expression introduced with the keyword where is in this paper used

to specify the absence of certain edges. For instance, a condition where not

Edge(n,n’) requires that no edge exists between the nodes n and n′. This

condition is checked at matching time.

Let us now recall the notion of port graph morphism [13]. Let G and H be195

two port graphs over the same signature ∇. A port graph morphism f : G 7→ H

maps nodes, ports and edges of G to those of H such that the attachment of

ports and the edge connections are preserved, and all attributes and values are

preserved except for variables in G, which must be instantiated in H. Variables

are useful to specify rules where some attributes of the left-hand side are not200

relevant for the application of the transformation. Intuitively, the morphism

identifies a subgraph of H that is equal to G except at positions where G has

variables (at those positions, H could have any instance).

Definition 3 (Match). Let L⇒ R be a port graph rewrite rule and G a port

graph. We say a match g(L) of the left-hand side (also called a redex) is found205

if: there is an injective port graph morphism g from L to G (hence g(L) is a

subgraph of G) such that if the arrow node has an attribute Where with value

C, then C is true of g(L), and for each port p in L that is not connected to the
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arrow node, g(p) is not connected with G− g(L).

This last point ensures that ports in L that are not connected to the arrow210

node are mapped to ports in g(L) that have no edges connecting them with

ports outside the redex, to avoid dangling edges in rewriting steps.

Several injective morphisms g from L to G may exist (leading to different

rewriting steps); they are computed as solutions of a matching problem from L

to (a subgraph of) G.215

Definition 4 (Rewriting step). A rewriting step on G using a rule L ⇒ R

and a match g(L), written G →g
L⇒R G′, transforms G into a new graph G′

obtained from G in three steps:

• In the build step, a copy Rc = g(R) (i.e., an instantiated copy of the port

graph R) is added to G.220

• The rewiring phase then redirects edges from G to Rc as follows:

For each port p in the arrow node:

If pL ∈ L is connected to p:

for each port piR ∈ R connected to p,

find all the ports pkG in G that are connected to g(pL) and are not in g(L),225

and redirect each edge connecting pkG and g(pL) to connect pkG and piRc
.

• The deletion phase simply deletes g(L). This creates the final graph G′.

Given a finite setR of rules, a port graph G rewrites to G′, denoted by G→R
G′, if there is a rule r in R and a morphism g such that G→g

r G
′. This induces

a reflexive and transitive relation on port graphs, called the rewriting relation,230

denoted by →∗R. A port graph on which no rule is applicable is irreducible.

To facilitate the specification of graph transformations, we use the concept

of located graph from [13].

Definition 5 (Located graph). A located graph GQ
P consists of a port graph

G and two distinguished subgraphs P and Q of G, called respectively the position235

subgraph, or simply position, and the banned subgraph.
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In a located graph GQ
P , P is the subgraph of G under study (the focus of

the transformations), and Q is a protected subgraph, where transformations are

forbidden.

When applying a port graph rewrite rule, not only the underlying graph G240

but also the position and banned subgraphs may change. A located rewrite rule,

defined below, specifies two disjoint subgraphs M and M ′ of the right-hand side

R that are respectively used to update the position and banned subgraphs. If M

(resp. M ′) is not specified, R (resp. the empty graph ∅) is used as default. Below,

we use the operators ∪,∩, \ to denote union, intersection and complement of245

port graphs. These operators are defined in the natural way on port graphs

considered as sets of nodes, ports and edges.

Definition 6 (Located rewrite rule). A located rewrite rule is given by a

port graph rewrite rule L⇒ R, with two disjoint subgraphs M and M ′ of R and

optionally, a subgraph W of L. It is denoted LW ⇒ RM ′

M .250

We write GQ
P →

g

LW⇒RM′
M

G′
Q′

P ′ and say that the located graph GQ
P rewrites

to G′
Q′

P ′ using LW ⇒ RM ′

M at position P avoiding Q, if G →L⇒R G′ with a

morphism g such that g(L) ∩ P = g(W ) or simply g(L) ∩ P 6= ∅ if W is not

provided, and g(L)∩Q = ∅. The new position subgraph P ′ and banned subgraph

Q′ are defined as P ′ = (P \ g(L))∪ g(M), Q′ = Q∪ g(M ′); if M (resp. M ′) are255

not provided then we assume M = R (resp. M ′ = ∅).

Example 7. In influence propagation, carefully managed position and banned

subgraphs are used to avoid several consecutive activations of the same neigh-

bours. Another usage is to select a specific community in the social network

where the propagation should take place.260

In general, for a given located rule LW ⇒ RM ′

M and located graph GQ
P ,

several rewriting steps at P avoiding Q may be possible. Thus, the application

of the rule at P avoiding Q may produce several located graphs. A derivation,

or computation, is a sequence of rewriting steps. If all the derivations are finite,

the system is said to be terminating. A derivation tree from G is made of all265
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possible computations (including possibly infinite ones). See Figure 2 (bottom

right-hand side corner) for an example of derivation tree. Strategies are used

to specify the rewriting steps of interest, by selecting branches in the derivation

tree.

2.3. Strategic graph programs270

A strategic graph program consists of a located graph, a set of located rewrite

rules, and a strategy expression that combines applications of located rules and

focusing constructs. In the context of social networks, the focusing primitives

are convenient to restrict the application of rules to specific parts of the graph.

Subgraphs of a given graph can be defined by specifying simple properties,275

expressed with attributes of nodes, edges and ports.

The most basic strategies are id, which always succeeds, and fail, which

always fails. More interesting strategies can be built by composition; a full

description of the strategy language can be found in [13]. We briefly explain

below the constructs used in this paper.280

The primary construct is a located rule, which can only be applied to a

located graph GQ
P if at least a part of the redex is in P , and does not involve

Q. When probabilities π1, . . . , πk ∈ [0, 1] are associated to rules T1, . . . , Tk such

that π1 + · · · + πk = 1, the strategy ppick(T1, π1, . . . , Tk, πk) picks one of the

rules for application, according to the given probabilities.285

all(T ) denotes all possible applications of the transformation T on the lo-

cated graph at the current position, creating a new located graph for each

application. In the derivation tree, this creates as many children as there are

possible applications.

one(T ) computes only one of the possible applications of the transformation290

and ignores the others; more precisely, it makes an equiprobable choice between

all possible applications.

Similar constructs exist for focusing expressions, which are used to define

positions for rewriting in a graph, or to define positions where rewriting is not

allowed: one(F ) returns one node in the subgraph defined by F and all(F )295
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returns the full F . When not specified, F stands for all(F ). In this paper, F

is defined using the following elements:

• crtGraph, crtPos and crtBan: applied to a located graph GQ
P , return

respectively the whole graph G, the position subgraph P and the banned

subgraph Q.300

• property(F, ρ) is used to select elements of a given graph that satisfy a

certain property, specified by ρ. It can be seen as a filtering construct:

if the expression F generates a subgraph G′ then property(F, ρ) returns

only the nodes and/or edges fromG that satisfy the decidable property ρ =

Elem,Expr. Depending on the value of Elem, the property is evaluated305

on nodes, ports, or edges.

• ngb(F, ρ) returns a subset of the neighbours (i.e., adjacent nodes) of F

according to ρ. Note that the edge direction is taken into account, to em-

phasise it, we also introduce ngbOut(F, ρ) and its counterpart ngbIn(F, ρ).

If edge is used, i.e., if we write ngb(F, edge, Expr), it returns all the neigh-310

bours of F connected to F via edges which satisfy the expression Expr.

• setPos(D) (resp. setBan(D)) sets the position subgraph P (resp. Q)

to be the graph resulting from the expression D. This operation always

succeeds (i.e., returns id).

• isEmpty(F ) returns id if F denotes the empty graph and fail otherwise.315

It is defined as F = ∅. This last focusing operation, although derivable,

facilitates the implementation.

The following constructs are used to build strategies.

• S;S′ represents sequential application of S followed by S′.

• if(S)then(S′)else(S′′) checks if the application of S on (a copy of) GQ
P320

returns id, in which case S′ is applied to (the original) GQ
P , otherwise S′′

is applied to the original GQ
P . The else(S′′) part is optional.

13



• repeat(S)[max n] simply iterates the application of S until it fails; if max n

is specified, then the number of repetitions cannot exceed n.

• (S)orelse(S′) applies S if possible, otherwise applies S′. It fails if both325

S and S′ fail.

• try(S) behaves like S if S succeeds, but will returns id if S fails. It is a

derived operation which is defined as (S)orelse(id).

• When probabilities π1, . . . , πk ∈ [0, 1] are associated to strategies S1, . . . , Sk

such that π1+· · ·+πk = 1, the strategy ppick(S1, π1, . . . , Sk, πk) picks one330

of the strategies for application, according to the given probabilities. This

construct generalises the probabilistic constructs on rules and positions.

Probabilistic features of the strategy language, through the use of the ppick()

construct, are illustrated in Section 3 for social network generation. The propa-

gation models in Section 4 illustrate how record expressions are used to compute335

attribute values and how these are updated through application of rules.

A more complete definition of strategic graph programs and their semantics

can be found in [13], where it is proved that the derivation tree in which each

rewrite step is performed according to the strategy –let us call it the strategic

derivation tree– is actually a subtree of the derivation tree of the rewrite system340

without strategy. The strategic derivation tree is a valuable concept because

it records the history of the transformations and provides access to generated

models. It is, by itself, a source of challenging questions, such as detecting

isomorphic models and folding the tree, finding equivalent paths and defining

the “best ones”, abstracting a sequence of steps by a composition strategy, or345

managing the complexity of the tree and its visualisation.

3. Social network generation

In this section we address the problem of generating graphs with a small-

world property as defined in [29]. Such graphs are characterised by a small

diameter –the average distance between any pair of nodes is short– and strong350
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local clustering –for any pair of connected nodes, both tend to be connected

to the same neighbouring nodes, thus creating densely linked groups of nodes

called communities. Popularised by Milgram in [35], small-world graphs are a

perfect case study for information propagation in social networks due to their

small diameter allowing a quick and efficient spreading of information.355

Our goal is to design an algorithm to generate small-world graphs of a given

size, that is, for which the number of nodes |N | and directed edges |E| are given

a priori. Moreover, the graphs generated should satisfy the following conditions:

they must have only one connected component, thus |E| ≥ |N | − 1; they should

be simple, that is, any ordered pair of nodes (n, n′) can only be linked once, thus360

the maximum number of edges is |E|max = |N | × (|N | − 1); finally, the number

of communities should be randomly decided during the generation process.

A few previous works have explored the idea of using rules to generate net-

works. In [36], the authors define and study probabilistic inductive classes

of graphs generated by rules which model spread of knowledge, dynamics of365

acquaintanceship and emergence of communities. Below we present a new al-

gorithm for social network generation that follows a similar approach, however,

we have adjusted its generative rules to cope with directed edges and ensure

the creation of a graph with a single connected component. This is achieved by

performing the generation through local additive transformations, each only cre-370

ating new elements connected to the sole component, thus increasingly making

the graph larger, more intricate and more interesting to study.

Starting from one node, the generation is divided into three phases imitating

the process followed by real-world social networks. Whenever new users first join

the social network, their number of connections is very limited, mostly to the375

other users who have introduced them to the social network (Sect. 3.1). During

the second phase, these new users can reach to the people they already know

personally, thus creating new connections within the network, which may seem

random for any spectator only aware of the present social network (Sect. 3.2).

Finally, the users get to know the people with whom they are sharing friends in380

the network, potentially leading to the creation of new connections (Sect. 3.3).

15



3.1. Generation of a directed acyclic port graph

The first step toward the construction of a directed port graphG = (N,E, P,L)

uses the two rules shown in Figures 3(a) and 3(b). Both rules apply to a single

node and generate two linked nodes (thus each application increases by one the385

number of nodes and also the number of edges). The difference between these

two rules lies in the edge orientation as Rule 3(a) creates an outgoing edge on

the initiating node, while Rule 3(b) creates an incoming edge.

(a) Rule GenerationNode1. (b) Rule GenerationNode2.

Figure 3: Rules used for generating and re-attaching nodes to pre-existing node with a directed

edge going from the pre-existing node to the newly added node in (a) or oriented in the opposite

direction in (b).

Strategy 1: Node generation: Creating a directed acyclic graph of size N

1 //equiprobabilistic application of the two rules used for generating nodes

2 repeat(

3 ppick(one(GenerationNode1), 0.5,

4 one(GenerationNode2), 0.5)

5 )(|N | − 1) // Generation of N nodes

The whole node generation is achieved during this first phase and managed

using Strategy 1. It repeatedly applies the generative rules |N |−1 times so that390

the graph reaches the appropriate number of nodes. As mentioned earlier, each

rule application also generates a new edge, which means that once executed,

Strategy 1 produces a graph with exactly |N | nodes and |N | − 1 edges. The

orientation of each edge varies depending of the rule applied (either 3(a) or 3(b)),
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moreover, their application using the ppick() construct ensures an equiprobable395

choice between the two rules.

3.2. Creating complementary connections

During this phase, we either create seemingly random connections between

the network users or reciprocate already existing single-sided connections.

We use two rules to link existing nodes, thus creating a new additional400

edge with each application. The first rule (Fig. 4(a)) simply considers two

nodes and adds an edge between them to emulate the creation of a (one-sided)

connection between two users. The second rule (Fig. 4(b)) reciprocates an

existing connection between a pair of users: for two nodes n, n′ ∈ N connected

with an oriented edge (n′, n), a new oriented edge (n, n′) is created; it is used405

to represent the mutual appreciation of users in the social network. Note that,

because each node is randomly chosen among the possible matches, we do not

need to create alternative versions of these rules with reversed oriented edges.

(a) Rule GenerationEdge. (b) Rule GenerationMirror.

Figure 4: Rules generating additional connections: (a) between two previously unrelated

nodes, (b) by reciprocating a pre-existing connection.

In both rules, the existence of edges between the nodes on which the rule

applies should be taken into account: the rules should not create an edge if410

a similar one already exists (since we aim at creating a simple graph rather

than a multi-graph). This can be achieved by adding a condition “where not

Edge(n,n’)” (see Definition 2), or by using position constructs to restrict the

elements to be considered during matching. We use the latter solution here.
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In Strategy 2, we first filter the elements to consider during the matching. We415

randomly select one node among the nodes whose outgoing arity (OutArity) is

lower than the maximal possible value (i.e., |N |−1), and we ban all its outgoing

neighbours as they cannot be considered as potential matching elements. Then,

Rule 4(a) or Rule 4(b) are equiprobably applied to add a new edge from the

selected node. By banning neighbours, we ensure that future applications of420

the rule will not use those nodes, that is, the rule will only apply on pairs of

nodes not already connected. This ensures that the graph is kept simple (i.e.,

only one edge per direction between two nodes).

Strategy 2: Edge generation: addition of |E′| edges if possible.

1 repeat(

2 //select one node with an appropriate number of neighbours

3 setPos(one(property(crtGraph, node,OutArity < |N | − 1)));

4 //for this node, forbid rule applications on its outgoing neighbours

5 setBan(all(ngbOut(crtPos, node, true)));

6 //equiprobable application of the edge generation rules

7 ppick((one(GenerationEdge))orelse(one(GenerationMirror)), 0.5,

8 (one(GenerationMirror))orelse(one(GenerationEdge)), 0.5);

9 )(|E′|)

In this phase, we create |E′| edges, where |E′| < (|E| − |N |+ 1) to keep the

number of edges below |E|. The use of the orelse construct allows testing all425

possible rule application combinations, thus, if one of the rules can be applied,

it is found. If no rule can be applied, the maximum number of edges in the

graph has been reached, i.e., the graph is complete. If the value of |E′| is not

too high, we are left with (|E| − |E′| − |N |+ 1) remaining edges to create in the

next step for enforcing communities within G.430
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3.3. Construction of communities

To create a realistic social network, we now add communities. For this, we

need to ensure that the links between users follow certain patterns. Based on

ideas advanced in several previous works (e.g., [37, 36, 38, 39]), we focus on

triad configurations (i.e., groups formed by three users linked together). Our435

community generation algorithm uses three rewrite rules, introduced in Figure 5.

(a) Rule CommunityLegacy.

(b) Rule CommunityDown. (c) Rule CommunityUp.

Figure 5: Generation of additional connections based on triads. Two distinctive edge types

are used: standard arrow edges for representing existing connections and cross-shaped headed

edges for indicating edges which should not exist during the matching phase.

The first triad rule (Fig. 5(a)) considers how a first user (A) influences a

second user (B) who influences in turn a third user (C)2. The second rule

(Fig. 5(b)) shows two users (B and C) being influenced by a third user (A)3.

The last rule (Fig. 5(c)) depicts one user (B) being influenced by two other440

2This situation can produce some sort of transitivity as “the idol of my idol is my idol”,

meaning that A is much likely to influence C. We use here the term “idol” instead of the

more classical “friend” because we only consider single-sided relations.
3When in this position, the users B and C might start exchanging (similar connections,

common interests. . . ), thus creating a link between the two of them.
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users (A and C)4.

The three rules use a where not Edge(n,n’) condition to forbid the exis-

tence of an edge between two matching nodes.

Strategy 3 is used to drive the three rules. Like the previous strategy, this

one aims at equiprobably testing all possible rule combinations.445

Strategy 3: Community generation: creating edges to strengthen com-

munities

1 repeat(

2 ppick(

3 (one(CommunityDown))orelse(

4 ppick(

5 (one(CommunityUp))orelse(one(CommunityLegacy)), 0.5,

6 (one(CommunityLegacy))orelse(one(CommunityUp)), 0.5)

7 ), 1/3,

8 (one(CommunityUp))orelse(

9 ppick(

10 (one(CommunityLegacy))orelse(one(CommunityDown)), 0.5,

11 (one(CommunityDown))orelse(one(CommunityLegacy)), 0.5)

12 ), 1/3,

13 (one(CommunityLegacy))orelse(

14 ppick(

15 (one(CommunityDown))orelse(one(CommunityUp)), 0.5,

16 (one(CommunityUp))orelse(one(CommunityDown)), 0.5)

17 ), 1/3)

18 )(|E| − |E′| − |N |+ 1)

4This case can happen when A and C are well-versed about a common subject of interest

which is of importance to B. A link is thus created between the two influential users.
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3.4. Resulting network generation

For the sake of simplicity, the strategies presented above make equiprobable

choices between rules. The probabilities may of course be modified to take

into account specific conditions present in the modelled system. Whatever the

chosen probabilities are, the following result holds.450

Proposition 8. Given three positive integer parameters |N |, |E|, |E′|, such

that |N | − 1 ≤ |E| ≤ |N | × (|N | − 1) and |E′| ≤ |E| − |N | + 1, let the strat-

egy S|N |,|E|,|E′| be the sequential composition of the strategies Node generation,

Edge generation and Community generation described above, and G0 be a port

graph composed of one node with one port. The strategic graph program [S,G0]455

terminates with a simple and weakly-connected directed port graph G with |N |

nodes and |E| edges.

Proof 9. The termination property is a consequence of the fact that the three

composed strategies have only one command which could generate an infinite

derivation (the repeat loop) but in the three cases, there is a limit on the number460

of iterations (i.e., it is a bounded repeat).

Since the program terminates, we can use induction on the number of rewrit-

ing steps to prove that the generated port graphs are directed, simple (at most

one edge in each direction between any two nodes) and weakly connected (con-

nected when direction of edges is ignored). This is trivially true for G0 and each465

rewrite step preserves these three properties, thanks to the positioning strategy

that controls the out degree in Edge generation (Strategy 2) and the forbidden

edges in the rules for Community generation (Figure 5). As the strategic pro-

gram never fails, since a repeat strategy cannot fail, this means that a finite

number of rules has been applied and the three properties hold by induction.470

It remains to prove that the number of nodes and edges is as stated. Observe

that by construction, the strategy Node generation creates a new node and a

new edge at each step of the repeat loop, exactly |N |−1, and is the only strategy

that creates new nodes. Hence, after applying the Node generation strategy, the

graph created has exactly |N | nodes and |N | − 1 edges. The strategies Edge475

21



generation and Community generation create a new edge at each step of the

repeat loop, so respectively |E′| and |E| − |E′| − |N |+ 1. As a result, when the

strategy S terminates, the number of edges created is equal to
(
|N |−1

)
+
(
|E′|

)
+(

|E| − |E′| − |N |+ 1
)

= |E|. �

The method presented above can easily be extended to create graphs with480

more than one component. One has to use a number of starting nodes equal to

the number of desired connected components and ensure that no edge is created

between nodes from different components. The generative rules and strategies

can then be applied on each component iteratively or in parallel (parallel appli-

cation of rules is possible but beyond the scope of this paper).485

3.5. Implementation and Experimental Validation

We use the Porgy system [17] to experiment with our generative model.

The latest version of the rewriting platform5 is available either as source code

or binaries for MacOS and Windows machines.

Figures 6 and 7 are two examples of social networks generated using a se-490

quential composition of the previous strategies. Although both graphs have the

same number of nodes and edges (|N | = 100 and |E| = 500), they have been

generated with different |E′|, respectively |E′| = 50 for Fig. 6 and |E′| = 0 for

Fig. 7. This changes the number of purely random edges created in the resulting

graph and explains why the first graph seems to visually present less structure495

than the other one. Conversely, a graph with only randomly assigned edges

could be generated with |E′| = |E| − |N |+ 1.

To ensure that our constructions present characteristics of real-world social

networks, we have performed several generations using different parameters and

measured the characteristic path length –the average number of edges in the500

shortest path between any two nodes in the graph– and the clustering coefficient

–how many neighbours of a node n are also connected with each other– as

defined in [29]. In a typical random graph, e.g., a graph generated using the

5Porgy website: http://porgy.labri.fr
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Figure 6: A generated social network. |N | = 100 nodes, |E| = 500 edges and |E′| = 50.

With these parameters, the average characteristic path length is L ' 2.563 and the average

clustering coefficient is C ' 0.426.

Erdös–Rényi model [28] or using our method with the parameters |N | = 100

nodes, |E| = 500 edges and |E′| = |E|−|N |+1 = 401, the average characteristic505

path length is very short (L ' 2.274), allowing information to go quickly from

one node to another, but the clustering coefficient is low (C ' 0.101), implying

the lack of well-developed communities. However, with the parameters used in

Figure 6 (respectively, Figure 7), we retain a short characteristic path length

L ' 2.563 (resp. L ' 3.372) while increasing the clustering coefficient C ' 0.426510

(resp. C ' 0.596), thus matching the characteristics of small-world graphs: a

small diameter and strong local clustering.

The graphs generated using our method can be subsequently used as any

randomly generated network. For instance, we have used such graphs in [8] to

study the evolution of different information propagation models. In the following515
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Figure 7: A generated social network. |N | = 100 nodes, |E| = 500 edges and |E′| = 0.

With these parameters, the average characteristic path length is L ' 3.372 and the average

clustering coefficient is C ' 0.596.

section, we recall these propagation models and introduce their translation as

strategic graph programs using directed located port graphs, located rewrite

rules and strategies.

4. Propagation in social networks

In social networks, propagation occurs when users perform a specific action520

(such as relaying information, announcing an event, spreading gossip, sharing

a video clip), thus becoming active. Their neighbours are then informed of

their state change, and are offered the possibility to become active themselves

if they perform the same action. The process then reiterates as newly active

neighbours share the information with their own neighbours, propagating the525
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activation from peer to peer throughout the whole network.

To replicate this phenomena, some propagation models opt for entirely prob-

abilistic activations (e.g., [14, 40, 41]), where the presence of only one active

neighbour is often enough to allow the propagation to occur, while others

(e.g., [15, 42, 43]) use threshold values, building up during the propagation.530

Such values represent the influence of one user on his neighbours or the toler-

ance towards performing a given action (the more solicited a user is, the more

inclined he becomes to either activate or utterly resist). In general, several

propagations may happen in one network at the same time, but most propaga-

tion models focus only on one action (e.g., relaying a specific information) as535

the other propagations are likely to be about entirely different subjects, thus

creating few if any interference.

In [8], two basic propagation models were specified using strategic rewriting:

the independent cascade model IC [14] and the linear threshold model LT [15].

In this section, we first recall the definition of these two models and show in540

which manner they can be described as instances of the same strategic graph

program. We then consider another propagation model, called Riposte (RP),

described in [16]. For this model, it is shown that an information deemed

interesting by a sufficiently large fraction of the population is more likely to

spread widely, whereas an information that only a few people consider interest-545

ing will not spread far beyond the set of users initially exposed to it. Moreover,

when observing the information propagation process (more precisely, the users’

re-posts), one cannot determine with sufficient confidence the opinion of any

single user concerning the information that is disseminated. We implement the

algorithm as a strategic graph program. Finally, we use the rules and strategies550

modularity to develop a new propagation model combining features of LT and

RP, which we also implement as a strategic graph program.

In the following implementations as strategic graph programs of the various

propagation models, several common ingredients are used:

- we assume that, at any given time, each node is in a precise state, which555

determines its involvement in the current spreading of information. States are
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represented by one of the following values: unaware for those who have not

(yet) heard of the action, informed to describe those who have been informed of

the action/influenced by their neighbours, or active to qualify those who have

been successfully influenced and decided to propagate the action themselves.560

We encode this information on each node using an attribute State, which can

take one of these three values as a string of characters: unaware, informed, or

active. For visualisation purposes, an attribute Colour is associated to State

to colour the nodes in red, blue, or green, respectively.

- the rules we use to express the models describe how the nodes’ states evolve.565

An unaware node becomes informed when at least one of its active neighbours

tries to influence it, and an informed node becomes active when its influence

level is sufficiently high. These two distinct steps correspond to the two basic

State transformations we need to represent using the rewrite rules. We name the

first step the influence trial, during which an active node n tries to influence570

an inactive neighbour n′ (where n′ is either unaware or just informed). The

following step is the activation of n′, where the node becomes active once it

has been successfully influenced.

- for each model, we use an attribute called Tau to store the influence level

of the informed nodes. Computed/updated during the Influence trial step, this575

attribute is by default initialised to −1 and can take a numerical value in [−1, 1].

These principles are carried out in the following examples of propagation

mechanisms. With each model, we introduce visual representations of the rules

applied to perform the rewriting operations. We mention in their left-hand sides

the attributes that are used in the matching process, and in their right-hand580

sides the attributes whose values are modified during the rewriting step. The

specifications are detailed hereafter.

4.1. The independent cascade model (IC)

We first describe a basic form of the IC model as introduced in [14]. This

model has several variations (e.g. [44, 43]) allowing, for instance, to simulate585

the propagation of diverging opinions in a social network [40].
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Definition 10 (Propagation process in IC). For each pair of adjacent nodes

(n, n′), let pn,n′ be the influence probability from n on n′ (0 ≤ pn,n′ ≤ 1). For

this model, pn,n′ is usually history independent –its value is fixed regardless of

the operations performed beforehand–, and non symmetric –so that pn,n′ does590

not have to be equal to pn′,n. The propagation model behaves as follows:

IC.1 Let N0 ⊂ N be the subset of nodes initially active, Nk be the set of active

nodes at step k, and ξ be the set of ordered pairs (n, n′) subjected to a

propagation from n (active) toward n′ (inactive). The set Nk of nodes is

computed from Nk−1, by adding nodes as follows.595

IC.2 We consider an active node n ∈ Nk−1 and an inactive node n′ (6∈ Nk−1)

adjacent to n but whom n has still not tried to influence yet: n′ ∈ Ngb(n)\

Nk−1, and (n, n′) 6∈ ξ. A given node n is only offered one chance to

influence each of its neighbours, and it succeeds with a probability pn,n′ ;

thus we add the pair (n, n′) to ξ to avoid repeating the same propagation.600

IC.3 If the adjacent node n′ is successfully activated, it is added to the set of

active nodes Nk.

IC.4 This process continues until no more activations can be performed, that is

when ξ contains all the possible pairs (n, n′) where n belongs to the current

set of active nodes and n′ is an inactive neighbour.605

The order used to choose the nodes n and their neighbours during the prop-

agation is arbitrary.

4.1.1. Attributes

To take into account the specificities of IC, we need additional attributes.

First, two attributes are needed for each edge going from n to n′: Influence,610

ranging on [0, 1], which gives the influence probability from n on n′ (i.e., pn,n′),

and Marked, taking for value 0 or 1, which is used to indicate whether the

given pair (n, n′) has already been considered, thus avoiding multiple influence

tentatives. Marked = 1 if (n, n′) ∈ ξ, 0 otherwise.
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The attribute Tau, ranging on [−1, 1], is used to measure how globally influ-615

enced a given node is. Initially, the few preset active nodes have their attribute

Tau = 1, while unaware ones see their attribute Tau set to −1. During the prop-

agation, the value of the attribute Tau is updated by the influence trial rewrite

rule in order to reflect the influence probability pn,n′ , stored in the Influence

attribute:620

Tau = Influence− random(0, 1) (1)

where random(0, 1) is a random number in [0, 1[. We design the Equation 1

so that when a node is successfully influenced and ready to become active,

the value of its attribute Tau is such that Tau ≥ 0. This is because n′ has

a probability pn,n′ of becoming active (where pn,n′ is given as the value of

the attribute Influence). A random number random(0, 1) is thus chosen in an625

equi-probabilistic way and compared to the value of Influence. As a result,

Influence is greater than or equal to random(0, 1) in pn,n′% of cases, so Tau =

Influence− random(0, 1) is greater or equal to 0 in pn,n′% of cases.

4.1.2. Rewrite rules

The rewrite rules used to represent the IC model are given in Figure 8. The630

first one, Rule IC influence trial (Fig. 8(a)), shows a pair of connected nodes

in the left-hand side and their corresponding replacements in the right-hand

side. The node n′, initially unaware (in red), or already informed (in blue) by

another neighbour, is influenced –successfully or not– in the left-hand side by an

active node n (in green) connected through an unmarked edge (its attribute635

Marked is equal to 0). In the right-hand side, n remains unchanged while n′

becomes –or stays– blue to visually indicate that it has been influenced by n

and informed of the propagation. The updated influence level Tau of n′ in the

right-hand side is set according to Equation 1. Furthermore, the directed edge

linking the two port nodes is marked, by setting to 1 the attribute Marked. This640

operation is performed to limit to one the number of influence attempt for each

pair of active-inactive neighbours. Inactive nodes can thus still be influenced

several times but only when visited by different active neighbours.
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State = active

Marked = 0

State 6= active

State = active

Marked = 1

State = informed

Tau = Eq. 1

(a) IC influence trial : influence from

an active neighbour on an inac-

tive node (either unaware or just

informed).

State = informed

Tau ≥ 0

State = active

(b) IC activate: an informed node

becomes active when sufficiently in-

fluenced.

Figure 8: Rules used to express the Independent Cascade model (IC): active nodes are

depicted in green, informed nodes in blue and unaware nodes in red. A bi-colour red/blue

node can be matched to either of the two corresponding states (unaware or informed).

Rule IC activate in Figure 8(b) is only applied on a single node n and

its objective is much more straightforward. If a node n has been sufficiently645

influenced, i.e., if its attribute Tau is greater than 0, then its state is changed,

going from informed (blue) to active (green).

4.1.3. Strategy

Application of the rules describing IC is controlled by Strategy 4.

Strategy 4: Strategy progressive IC propagation

1 repeat(

2 setPos(all(property(crtGraph, node, State == active)));

3 one(IC influence trial);

4 try(one(IC activate))

5 )

The first instruction in the body of the repeat command (line 2) exclusively650

selects all the nodes whose State is active and adds them to the position P .
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The second instruction then performs located rewriting (see Definition 6).6 An

active node will thus be used as a mandatory element from P when calling the

IC influence trial rule (line 3) to rewrite a pair of active/inactive neighbours.

At the end of the IC influence trial rule (Fig. 8(a)), the newly informed node655

is added to the position P .

The IC activate rule (Fig. 8(b)) is then immediately executed (line 4) to

activate the potentially successfully influenced node. As the position P only

contains the one informed node we have considered in the previous rule, we

can ensure that the informed node becomes active as soon as it qualifies660

(when Tau ≥ 0). The try instruction (line 4) is added to prevent any early

failure if the informed node is not sufficiently influenced (and thus no matching

informed node with Tau ≥ 0 can be found). The whole process is then repeated

until no more propagation can be performed (all edges are marked and all pos-

sible activations have been performed). For each rule application, the elements665

corresponding to the left-hand side are chosen arbitrarily among the matching

possibilities.

Proposition 11. The strategic rewrite program given by the rules in Figure 8

and Strategy 4 terminates and correctly implements the IC model.

Proof 12. If the initial set of active nodes is empty, the strategic program im-670

mediately terminates without changing the graph. Otherwise, at each completed

iteration of the repeat loop, the set ξ of marked pairs of nodes (active, inactive)

strictly increases, thanks to IC influence trial, and the set of active nodes Nk

increases or remain constant, thanks to IC activate.

Each iteration of the repeat implements a step of propagation in the model675

as specified in points IC.2 and IC.3 (Definition 10): when IC influence trial

applies, one pair of nodes (active, inactive) is chosen, the inactive node n′

is influenced and the pair (n, n′) is marked (i.e., added to ξ). Then the rule

6Recall that a rule can only be applied if the matching subgraph contains at least one node

belonging to the position P , and no element belonging to the banned set Q.
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IC activate is tried and when it applies, that is, if n′ is sufficiently informed

(Tau ≥ 0, which happens with probability pn,n′ , as explained in Section 4.1.1),680

n′ becomes active and Nk = Nk−1 ∪ {n′}. Otherwise Nk = Nk−1.

Recall that the semantics of repeat guarantees that if a command inside the

body fails, the loop is terminated. The command one(IC influence trial) fails

when no more unmarked pair of nodes (active, inactive) exists in the current

graph. Then the repeat loop stops and the propagation is complete.685

4.2. The linear threshold model (LT)

In the LT model, the node activation process takes into account the neigh-

bours’ combined influence and threshold values to determine whether an in-

formed node can become active or not (see [14] for some examples of publica-

tions describing models using activation thresholds). The model detailed below690

describes the first static model defined in [15].

The LT model seems more complicated than the IC model, but the approach

is very similar. Here again, two different operations are used to perform the

propagation: for each inactive node n′, we compute the joint influence of its

active neighbours, then, if the influence n′ is subjected to exceed a threshold695

value, the node becomes active.

Definition 13 (Propagation process in LT). Let pn,n′ be the influence prob-

ability of n on n′ (0 ≤ pn,n′ ≤ 1) and θn′ the threshold value of n′ –i.e., the

resistance of n′ to its neighbours’ influence– chosen independently from n′ and

randomly in [0, 1[. Let also Sn′(k) denote the set of nodes currently active at700

step k and adjacent to n′, and pn′
(
Sn′(k)

)
the joint influence on n′ of its active

neighbours at step k. The LT propagation model operates as follows:

LT.1 Let N0 ⊂ N be the subset of nodes initially active and let Nk be the set

of active nodes at step k. The set Nk of nodes is initialised from Nk−1,

and computed by adding nodes as follows.705

LT.2 An inactive node n 6∈ Nk−1 has its active neighbours’ joint influence value
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computed using the formula: pn′
(
Sn′(k)

)
= 1−

∏
n∈Sn′ (k)(1−pn,n′) where

Sn′(k) = Ngb(n′) ∩Nk−1.

LT.3 An inactive node n′ becomes active at step k when its neighbours’ joint

influence exceeds the threshold value, i.e., pn′
(
Sn′(k)

)
≥ θn′ , leading n′ to710

be added to Nk.

LT.4 This process continues until, for all the joint influences up-to-date, no

more activation can be performed.

To simplify the following expressions, we note Sn′ the set Sn′(k) being con-

sidered at the current step.715

Similarly to the IC model, one can see that the LT propagation takes place in

two phases: influence computation followed by activation. Before presenting the

corresponding rules, we need to specify more precisely the properties of the in-

tended propagation model from [15], as the authors present several propagation

models with multiple definitions of the influence and joint influence probability720

of n over n′ (i.e., pn,n′ and pn′(Sn′)). In this paper, we are implementing the

static propagation model where pn,n′ is expressed as a constant value. Because

the activation of a specific node n′ is dependent of the influence probabilities

coming from each of its active neighbours, we need to update their joint influ-

ence pn′(Sn′) whenever one of the previously inactive neighbours of n′ activates.725

This operation is performed using the formula pn′
(
Sn′ ∪{n}

)
, introduced in the

original paper.

pn′
(
Sn′ ∪ {n}

)
= pn′(Sn′) +

(
1− pn′(Sn′)

)
× pn,n′ (2)

This equation will add the influence of n among the other active nodes adjacent

to n′ (where n 6∈ Sn′).

4.2.1. Attributes730

In order to take into account these specificities, two new attributes are

needed in addition to the ones introduced earlier in IC (State and Colour –

to define the nodes states–, Influence –to store the probability pn,n′–, Marked
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–to mark edges connecting previously visited pairs of nodes–, and Tau –to store

the influence trial outcome). Each node is now also provided with a threshold735

value, stored in the attribute Theta, whose value is in [0, 1]. The joint influ-

ence probability, measuring the influence level an inactive node is subjected to,

is stored using the attribute JointInf. Initially, the active nodes have their

attributes JointInf = 1, while unaware ones have JointInf = 0. During the

influence step, the value of JointInf on the informed node is updated as speci-740

fied by Equation 2, which is translated to the following formula when using the

appropriate attributes:

JointInf = JointInf old + (1− JointInf old)× Influence (3)

We can then compare this updated joint influence value for a node n′ with its

threshold value, stored in Theta and assign the result to the attribute Tau:

Tau = JointInf− Theta (4)

If, for an informed node n′, Tau ≥ 0, then the joint influence of its neighbours745

(JointInf) exceeds its threshold value (Theta), thus leading n′ to endorse the

propagation subject and to activate to spread this very information to all of its

neighbours.

4.2.2. Rewrite rules

The rules are quite similar to those introduced in the IC model. The first750

rule LT influence trial (Figure 9(a)) is applied on a connected pair of active-

inactive nodes (respectively green and red/blue). During its application, the

rule transforms an inactive node n′ into an informed node as its active neigh-

bour n tries to influence it. Two computations are performed in order to update

the attributes of the inactive node n′. The attribute JointInf is changed during755

the rule LT influence trial by using the Influence value to update the previous

joint influence probability measure; this is given by Equation 3. The attribute

Tau then compares this value to the attribute Theta as described in Equation 4.

The edge between the two nodes is marked to avoid successive influence trials
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State = active

Marked = 0

State 6= active

State = active

Marked = 1

State = informed

JointInf = Eq. 3

Tau = Eq. 4

(a) LT influence trial : Joint influ-

ence computation from an active

neighbour on an inactive node (either

unaware or just informed).

State = informed

Tau ≥ 0
State = active

(b) LT activate: an informed node

becomes active when sufficiently in-

fluenced.

Figure 9: Rules used to express the Linear Threshold model LT. Colours have the same

meaning as previously: active nodes are green, informed nodes are blue and unaware nodes

are red. A bi-colour red/blue node can be in either of the two states unaware or informed.

from n to n′. As a result, n′ may be influenced by several active nodes before760

their joint influence is important enough to outweigh the threshold value of n′,

but each of its neighbours will only be able to influence n′ a single time.

The second rule, named LT activate (Figure 9(b)), is identical to the IC

activate rule shown in Figure 8(b). A successfully influenced node, identified by

the positive value of its Tau attribute, simply has its State attribute value set765

to active.

4.2.3. Strategy

We use the rewriting Strategy 5 to manage the rules application similarly to

the IC model. The two strategies (used for IC and LT) differ only in the rules

applied.770

As in the previous model, we use a repeat command (line 1) to compute

the propagation as many times as possible and start by defining a position P

which will gather all the active nodes (line 2). One of these nodes is considered

and we apply the LT influence trial rule (line 3) on it and one of its inactive

neighbours. For the active-inactive pair of nodes (resp. n and n′), we first775

update the JointInf attribute of n′ using Equation 3 and then compute its Tau
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Strategy 5: Strategy LT propagation

1 repeat(

2 setPos(all(property(crtGraph, node, State == active)));

3 one(LT influence trial);

4 try(one(LT activate))

5 )

attribute with Equation 4. The edge connecting the two nodes is finally marked

to avoid n′ being repeatedly influenced by the same active node n, and n′ is

added to the position set P .

We then try to apply the LT activate rule (line 4) on an informed node whose780

Tau attribute value exceeds or equals 0. Given that the node matching the left-

hand side must belong to position P , it can only be the sole informed node

added to P , that is the inactive node which became informed during the LT

influence trial rule application. If the node has not been successfully influenced

(its Tau attribute value is lower than 0), the previously informed node is not785

an appropriate match, and thus the LT activate rule is not applied.

Proposition 14. The strategic rewrite program given by the rules in Figure 9

and Strategy 5 terminates and correctly implements the LT model.

Proof 15. The proof is quite similar to the one proposed for IC (Proof 12).

Each iteration of the repeat loop implements a step of propagation in the790

model as specified in points LT.2 and LT.3 (see Definition 13): when LT influ-

ence trial applies, one pair (n, n′) of nodes (active, inactive) is chosen and the

joint influence on n′ of all its active neighbours is updated (as explained in Sec-

tion 4.2.1). If n′ is sufficiently informed (JointInf >= Theta, i.e., Tau ≥ 0),

n′ becomes active and Nk+1 = Nk ∪ {n}. Otherwise Nk+1 = Nk.795

As in the case of IC, termination is a consequence of the fact that one of

the commands in the repeat loop eventually fails: the rule LT influence trial

can only be applied a finite number of times due to the marking of edges, hence
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one(LT influence trial) ultimately fails, the repeat loop comes to an end, and

the propagation is complete.800

4.3. Riposte (RP): a privacy preserving propagation model

We propose in this section the translation of a more recent propagation

model, called Riposte, based on the ideas introduced in [16]. Although still fol-

lowing the characteristic principle of randomly driven activations encountered

in IC, RP differs from the two previous models on several key points. First805

of all, its activation and propagation mechanisms are not directly linked: both

active or inactive users can propagate information, and active users are not

automatically assumed to spread information to their neighbours. These fea-

tures confer to RP the property of plausible deniability, which is essential to

preserve the users’ privacy. Indeed, independently of the user’s opinions and810

consent concerning the propagated information, RP will sometimes propagate

information to the user’s neighbours. The user’s opinion influences the proba-

bility of sharing in order to favour interesting topics, but with this propagation

model, witnesses observing the exchanges within the network can now no longer

precisely pinpoint which users have supported the propagation and shared the815

information with their neighbours. In this sense, this model improves over the

previous two models. Finally, RP does not take into account the influence from

one user upon another, but considers the personal interest a given user has in

the information.

New parameters are needed to reflect these characteristics. First, let pn be820

the probability given for a specific information to be re-posted by the user n.

The value of pn can be seen as a measure of how interesting the information is

to n. Then, in order to prevent revealing the opinion of individual users, some

randomness concerning the information propagation is incorporated. Let δ and

λ be global parameters of the propagation model where 0 < δ < 1 < λ. We825

define Sn as the set of nodes currently unaware of the information and adjacent

to n. After being informed by one of its neighbours, two different behaviours are

possible. If n wishes to propagate the information (that is, n becomes active),
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then either all its neighbours or none will be informed of it with a probability

λ/Sn. Alternatively, if n does not wish to propagate the information (thus, n830

remains “simply” informed), then the information can still be passed to all its

neighbours, but this time with a weaker probability δ/Sn.

Definition 16 (Propagation process in RP). Let pn, λ, δ and Sn be de-

fined as above. The complete propagation process can be described as follows:

RP.1 Let N0 ⊂ N be the subset of nodes initially aware of the information and835

let Nk be the set of informed nodes at step k who did not try to pass on

the information to their neighbours yet. The set Nk of nodes is computed

from Nk−1 by adding and deleting nodes as follows.

RP.2 For a node n ∈ Nk−1, n tries to activate with a probability pn.

RP.3 If n activates successfully, then all its neighbours are added to Nk with840

a probability λ/Sn. Otherwise, for an inactive n, all its neighbours are

added to Nk with a probability δ/Sn.

RP.4 The node n is excluded from Nk.

RP.5 This process continues until Nk = ∅, that is, until all the nodes that are

aware of the information have been given a chance to pass the information845

on to their neighbours.

As one can see, the propagation decision depends on both the user’s opinion

concerning the information (pn) and the number of neighbours unaware of it

(Sn). In the original definition [16], the value Sn is an upper bound on the

number of n’s outgoing neighbours that have no knowledge yet of the informa-850

tion. However, a variant of the algorithm for systems where users are unable

to know whether their neighbours have already heard of the information or not

was also proposed. For such instance of application, which is our case, the prob-

ability is computed using the total number of n’s outgoing neighbours instead

of considering the upper bound of unaware neighbours.855
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4.3.1. Attributes

We naturally make use of the generic State and Colour node attributes as

described in the previous models, as well as Marked on directed edges. But here

we also need to flag nodes that have already attempted to spread the information

(regardless of their activation status). This information is reflected by a new860

node attribute called MarkedN.

In addition to these, we introduce new attributes to model the specificities of

RP. First, the attribute Interest records the node’s interest for an information,

namely the probability pn for an information to be re-posted by n. Then the

attribute Tau is used to store the result of the activation decision, computed as865

Tau = Interest− random(0, 1) (5)

where random(0, 1) is a number uniformly and randomly chosen in [0, 1[. An

informed node becomes active when Tau ≥ 0. By default, Tau is set to −1

on all the nodes before the propagation begins and, as in the previous models,

Tau is still the key attribute to enable node activation. This time however, Tau870

is computed using the Interest attribute instead of the Influence attribute as in

IC and LT.

To perform the propagation according to the given parameters λ and δ of

the RP model, an additional attribute Share is used to store the likeliness of

n to share (i.e., spread) the information. Its value is computed as follows:875

Share =
isActive(λ− δ) + δ

OutArity
(6)

where isActive is an integer set to 1 when the attribute State = active (and set

to 0 otherwise), and OutArity is the cardinality of the set of outgoing neighbours.

Some explanations are in order:

1. let OutArity be the number of outgoing edges from n;

2. if n has no neighbour to transmit the information to, then Share does not880

need to be computed; we address this issue by having OutArity returning

−1 in such case instead of 0 to avoid errors;
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3. we formulate Share as a single expression using λ or δ depending on the

value of isActive (otherwise, two different rules should be used with only

a small variation in the computation of Share).885

Finally, another attribute named Sigma is used to store the result of the

sharing decision, in a way similar to Tau, and is computed as

Sigma = Share − random(0, 1) (7)

where random(0, 1) is a random number chosen in [0, 1[. The propagation from

n to all its neighbours is performed when the attribute Sigma of n is greater

than or equal to 0. This attribute allows us to separate the activation process890

from the sharing process.

Although all these attributes are needed to emulate the propagation process,

it is important to note that, in real-world applications of the RP algorithm, the

only visible information to an external observer is whether a node has heard of

the information or not. This translates to the State attribute marking a node as895

unaware or aware, without any distinction (such as Colour) between informed

and active nodes.

4.3.2. Rewrite rules

Following the formal definition of the RP model, we can define the following

steps in the propagation mechanism given by the rules presented in Figure 10.900

The first rule, RP initialisation (Fig. 10(a)), is an opening step used to prepare

the freshly informed nodes who did not yet try to propagate the information

(i.e., unmarked nodes). A node is offered the possibility to be interested in

the information, with Tau computed accordingly (see Equation 5), and sees its

Marked attribute set to 1. This means that the node is soon to be considered905

for activation and as a candidate for spreading information. We then keep the

same informed node and tentatively apply the rule RP activate (Fig. 10(b)) on

it. Depending of the previously obtained Tau value for n, and more precisely if

Tau ≥ 0, its activation can take place, thus putting n in an active state and

setting isActive to 1.910
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State = informed

MarkedN = 0

State = informed

Tau = Eq. 5
MarkedN = 1

(a) RP initialisation: this rule is used to

initialise an informed nodes aware of the

propagation subject.

State = informed

Tau ≥ 0

State = active

isActive = 1

(b) RP activate: an informed node be-

comes active if its Tau attribute is greater

or equal to 0.

State 6= unaware State 6= unaware

Share = Eq. 6

Sigma = Eq. 7

(c) RP share trial : whether a node is

active or informed, the RP model can

decide to use it to spread the information

to others.

State 6= unaware

Sigma ≥ 0

Marked = 0

State = unaware

State 6= unaware

Marked = 1

State = informed

(MarkedN = 0)

(d) RP inform: a node aware of the infor-

mation (active or informed), and selected

to share its knowledge, informs an unaware

neighbour.

Figure 10: Rules used to express the Riposte model RP. Colours keep their meaning from the

previous propagation models: active nodes are green, informed nodes are blue and unaware

nodes are red. A bi-colour blue/green node can be either informed or active.

The RP share trial rule, shown in Figure 10(c), computes the Share and

Sigma attributes of the previously considered, and either informed or active,

node n. The Share computation, performed following Equation 6, uses isActive

to change the probability result depending of n’s current State. Sigma then

reuses the Share value (see Equation 7) to randomly decide whether n must915

share the information with its neighbours. The transmission of information to

the neighbours is performed by the last rule RP inform, depicted in Figure 10(d).

An active or simply informed node n who has been selected to propagate the
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information (whose attribute Sigma ≥ 0) informs an unaware neighbour n′. As

a result, the unaware node becomes informed, leading it to be considered as a920

new potential information spreading source in the next propagation step. The

newly informed node has its MarkedN attribute untouched, thus still equal to

its default value (0), and ready to be subjected to the RP initialisation rule.

4.3.3. Strategy

The strategy used in this model is given below in Strategy 6. Much like the925

previous models, we use a repeat loop (line 1) in the RP strategy to control

the rewriting steps. Recall that initially, all nodes see their attribute MarkedN

set to 0. We initiate the strategy by choosing the node who will be the focus

of rewriting in this propagation step. As we want to pick a single element and

follow its behaviour, we first filter out the nodes to find a suitable candidate:930

among all the informed nodes (line 2), we select one who has never been con-

sidered to spread the propagation, that is, its MarkedN attribute is still equal

to its default value (line 3).

Strategy 6: Riposte propagation model RP

1 repeat(

2 setPos(all(property(crtGraph, node, State == informed)));

3 setPos(one(property(crtPos, node,MarkedN == 0)));

4 one(RP initialisation);

5 try(one(RP activate));

6 one(RP share trial);

7 repeat(one(RP inform));

8 )

The first rule, RP initialisation (Fig. 10(a)), is then applied. In case not

a single candidate satisfying the aforementioned conditions has be found –i.e.,935

there is no informed node or all have already been considered before (with

MarkedN = 1)– then the rule application fails and the propagation comes to an
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end (line 4). However, if a matching node n exists in position P , the rule is

applied on it and its Tau attribute is computed according to Equation 5. The

rewritten node is then inserted in P and ready for the next rule application.940

With our candidate node at hand, we can propose to it to endorse the

propagation subject and activate. We thus try to apply the RP activate rule

(line 5). As shown in Figure 10(b), in addition to State as matching attribute,

Tau is the real filtering condition to decide whether the selected informed node

can become active. This operation is optional as, in RP, the activation and945

propagation are distinct mechanisms, and thus its application, thanks to the

try strategy, cannot fail. We use the isActive attribute to store the result of the

activation trial and add the rewritten node to P .

We then apply RP share trial (Fig. 10(c)) on the node n (line 6) which can

either be active or just informed if it did not satisfy the matching conditions950

of RP activate. The transformation computes new values for n’s Share (Eq. 6)

and Sigma (Eq. 7) attributes while keeping the rewritten node n in P . These

values indicate to the RP model whether to use n as a starting point to spread

the information to its neighbours.

This leads us to the nested repeat loop applying RP inform (Fig. 10(d))955

to all neighbours (line 7). If the (indifferently informed or active) node has

been selected to inform its unaware neighbours (n′), then its Sigma attribute

is greater or equal to 0. The rule application sets the State attribute of n′ to

informed and, through its Marked attribute, marks the edge connecting the

two nodes to avoid multiple applications of the rule on the same pair of nodes.960

The newly informed node is now eligible to be subjected to a propagation

step itself as its MarkedN attribute is still equal to its default value.

Proposition 17. The strategic rewrite progam given by rules in Figure 10 and

Strategy 6 terminates and correctly implements the RP model.

Proof 18. If the initial set of informed nodes is empty, the strategic program965

immediately terminates without changing the graph. Otherwise, a step of prop-

agation is performed as specified in points RP.2 and RP.3 (see Definition 16):
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a single informed node n ∈ Nk−1, which has not yet passed the information

(MarkedN = 0), is selected.

The rule RP initialisation marks the node n (which ensures this node will not970

be considered again, as specified in point RP.4, Definition 16) and updates Tau

as explained in Section 4.3.1. Then try(one(RP activate)) tries to activate

n with a probability pn, recorded in the attribute Interest, and reflected by the

value of Tau as explained in Section 4.3.1.

Whether or not the node becomes active, its Share attribute, updated by975

one(RP share trial), expresses the user’s (private) opinion to be active or not,

and takes into account the parameters λ and δ of the propagation model. The

value of the Sigma attribute indicates the probability of sharing the information

with all its neighbours, as specified in Definition 16, point RP.3.

When possible (if Sigma ≥ 0), the rule RP inform is used to propagate the980

information to all unaware neighbours of the node. This is ensured by the nested

repeat(one(RP inform)) loop in Strategy 6 which is guaranteed to terminates

thanks to the marking of the edges. Each newly informed node has their attribute

MarkedN value equal to 0, and is added to Nk as requested in point RP.1.

The main repeat loop stops when Nk is empty, respecting point RP.5. This985

termination happens when all informed nodes are marked (MarkedN = 1), since

this ensures failure of rule RP initialisation (line 4, Strategy 6).

4.4. Adapting the Riposte model with linear thresholds

The graph rewriting formalisation highlights the key components of the dif-

ferent propagation models. Distinguishing the rules, in charge of local trans-990

formations, from the strategy, managing and steering their application, makes

easier the comparison between the components of the different propagation mod-

els. For instance, despite their quite distinctive definitions, the basic IC and

LT models were already presented as being somewhat similar, as discussed in

[14]; a fact that our formalisation shows clearly: indeed, except for the Tau995

attribute computation during the influence trial rule application, the rules and

strategies used to express the two models are identical. Expressing the models
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using a common language, i.e., here the rule and strategy formalism, can thus

enable experts to draw parallels between two apparently distinct models.

Additionally, breaking-down the models into smaller operations brings fur-1000

ther benefits than just a more in depth understanding of the model. In order

to properly illustrate the advantages of our approach, we show hereafter how to

design a new propagation model by reusing some of the previously encountered

mechanisms.

Compared to the first two models, RP proposes a privacy preservation fea-1005

ture, allowing users to influence the result of a propagation, by either endors-

ing or not supporting the information, without exposing their true opinion to

others. We propose in the following to develop a propagation model merging

elements from both RP and LT. This model, which we name Riposte with Lin-

ear Thresholds (RP-LT), hides the users’ reaction to the propagation subject1010

(endorsement or reject) while taking into account the influence from each user

on its followers. As in RP, the users know from which of their neighbours the

re-post comes from, but do not know for certain if the user is truly supportive

of the propagation subject.

We recall here the different elements needed to establish the new model,1015

keeping the notations consistent with LT and RP. An inactive node n′ is influ-

enced by each of its active neighbours n according to the probability pn,n′ and

we note pn′
(
Sn′(k)

)
the joint influence endured by n′ at step k from all its active

neighbours Sn′(k). The threshold value of n′, or its resistance to activation, is

defined as θn′ . Finally, λ and δ are global parameters (0 < δ < 1 < λ), and Sn′1020

is the set of unaware nodes adjacent to n′.

Considering the core mechanism of the LT model, that is the necessity for

a given node to be influenced multiple times to have a chance to activate, we

cannot force the user to make a decision about the propagation subject after

having only heard about it once. We thus add to our model an information1025

counter. Let us define γ as the maximum number of times a node can be told

an information before being asked to formulate his opinion. A node can be

influenced at most γ times, but may decide to activate before.
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Definition 19 (Propagation process in RP-LT). Let pn,n′ , pn
(
Sn(k)

)
, θn,

λ, δ, γ and Sn′ be defined as above. The model RP-LT is specified as follows:1030

RP-LT.1 Let N0 ⊂ N be the subset of nodes initially aware of the information

and let Nk be the set of informed nodes at step k who did not try to pass on

the information to their neighbours yet. The set Nk of nodes is computed

from Nk−1, by adding and deleting nodes as follows.

RP-LT.2 For a node n ∈ Nk−1, n activates if the joint influence it is subjected1035

to is at least equal to its resistance, i.e., pn
(
Sn(k)

)
≥ θn.

RP-LT.3 If n activates successfully, regardless of the number of times it has

been influenced, then all its neighbours are added to Nk with a probability

λ/Sn′ . Otherwise, for an inactive n which has been influenced γ times, all

its neighbours are added to Nk with a probability δ/Sn′ .1040

RP-LT.4 When n’s neighbours, noted n′, are added to Nk, their respective

joint influence is updated to take into account the fact that n shares the

information: pn′
(
Sn′(k)

)
= 1−

∏
n∈Sn′ (k)(1− pn,n′).

RP-LT.5 The node n is then excluded from Nk. This process continues until

Nk = ∅.1045

While the core of the model description looks like RP’s (see Definition 16),

the use of the influence (pn,n′), joint influence (pn(Sn)) and theta (θn) attributes

distinguish the two models: where RP focuses on the users’ interest to make

the propagation evolve, RP-LT looks at the influence users have on one another

and their response to it.1050

4.4.1. Attributes

For the sake of completeness, we recall the different attributes already used

in RP and LT. Obviously, we keep the general attributes: State and Colour to

distinguish the nodes’ states, Marked to mark the visited pairs of nodes, as well

as MarkedN for the nodes previously considered for activation and sharing, and1055
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Tau to store the activation decision. We complete them with the LT attributes

Influence to store pn,n′ , Theta for the threshold θn, and JointInf for pn(Sn).

Some RP attributes are also needed to complete the model: Share to store

the node’s sharing probability according to its State, isActive to mark whether

the node is active or not (used to compute Share), OutArity to request the1060

number of outgoing neighbours, and Sigma to store the trigger value of the

propagation operation.

The equations used to compute the values of attributes JointInf, Tau, Share,

Sigma are the same: see equations 3, 4, 6, 7 respectively.

In addition, we introduce a new attribute Count to track the number of times1065

a node has been informed of the propagation subject. All nodes have the Count

attribute initialised to 0 and each node is only given the same information γ

times (from different neighbours).

4.4.2. Rewrite rules

The rewrite rules, given in Figure 11, are quite similar to the RP rules. The1070

first rule RP-LT initialisation (Fig. 11(a)) updates the Tau attribute (according

to Eq. 4) of an informed node. When rewritten, the node stays informed and

its MarkedN attribute is set to 1.

The second rule RP-LT activate (Fig. 11(b)) is in charge of the potential

activations. When the Tau attribute indicates that the node n has been suc-1075

cessfully influenced (when Tau ≥ 0), then its State becomes active and the

isActive attribute is accordingly updated to match n’s current state. In case

of activation, we also set the Count attribute to γ to indicate the node will no

longer be responsive to influence.

Every node aware of the propagation, who either decided to activate, or who1080

has been influenced γ times, is entitled to compute its Share (6) and Sigma

(7) attribute values. This is achieved by using the RP-LT share trial rule

(Fig. 11(c)), which applies only to nodes whose Count attribute exceeds or

equals γ.

The last rule is RP-LT inform (Fig. 11(d)). The active or informed node1085
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State = informed

MarkedN = 0

State = informed

Tau = Eq. 4
MarkedN = 1

(a) RP-LT initialisation: the rule ini-

tialises an informed node, computes

its Tau attribute and marks it using

MarkedN.

State = informed

Tau ≥ 0

State = active

isActive = 1
Count = γ

(b) RP-LT activate: an informed node

becomes active when its Tau attribute is

positive.

State 6= unaware

Count ≥ γ
State 6= unaware

Share = Eq. 6
Sigma = Eq. 7

(c) RP-LT share trial : whether the node

is informed or active, if it has been in-

formed γ times or made its decision, its

sharing probability must be computed.

State 6= unaware

Sigma ≥ 0

Marked = 0

State 6= active

Count < γ

State 6= unaware

Marked = 1

State = informed

JointInf = Eq. 3

MarkedN = 0

Count = Count+ 1

(d) RP-LT inform: an inactive user is in-

formed by an informed or active neigh-

bour. The rule computes the neighbour’s

JointInf value, resets its marker and in-

crements its influence counter.

Figure 11: Rules used to express the Riposte with Linear Threshold model RP-LT.

n successfully selected to spread the information (Sigma ≥ 0), shares it with

its unaware or informed neighbours n′. To avoid multiple matching with the

same pair of connected nodes, the edge between n and n′ is marked. The

joint influence probability of n′ is updated using Equation 3 and the node is

unmarked to indicate a change has happened (MarkedN = 0). The propagation1090

step is only targeting inactive nodes which have been influenced less than γ

times since then n′ should be able to form an opinion concerning the shared
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information. When n′ is rewritten, its influence counter is incremented to keep

track of the operation (Count = Count + 1).

4.4.3. Strategy1095

The rewriting operations are applied according to Strategy 7. Just like the

strategies used for IC and LT, the ones defining the RP and RP-LT are very

similar. For each rule application considered hereafter, we reinsert the newly

rewritten elements in position P .

Strategy 7: Riposte with Linear thresholds propagation model RP-LT

1 repeat(

2 setPos(all(property(crtGraph, node, State == informed)));

3 setPos(one(property(crtPos, node,MarkedN == 0)));

4 one(RP-LT initialisation);

5 try(one(RP-LT activate));

6 try(one(RP-LT share trial));

7 repeat(one(RP-LT inform));

8 )

As for the previous models, we use a repeat loop (line 1) to perform as many1100

propagation steps as possible. We select an informed node (line 2) which has

not yet been subject to an initialisation or which has since undergone changes

(line 3). By applying RP-LT initialisation (Fig. 11(a)) we mark the selected

informed node (MarkedN = 1), compare the JointInf and Theta attributes and

store the result in Tau (Eq. 4). This value is used when the strategy tries to1105

apply the second rule RP-LT activate (Fig. 11(b)) to activate the node (line

4). Only successfully applied if Tau is positive or null, the rule transforms the

informed node into an active one, respectively modifying isActive and Count

values to reflect the node current State and indicate that its decision concerning

the propagation subject has been confirmed.1110

The application of RP-LT share trial rule (Fig. 11(c)) is the only difference
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between this strategy and the one proposed for RP (Strategy 6). Here, the

Count attribute restricts the rule application to nodes which have either been

influenced γ times or for which the joint influence is sufficient to persuade them

to endorse the propagation subject (thus Count = γ from the RP-LT activate1115

rule). As a result, only when the Count attribute of the node in P is set to the

appropriate value, will the rule successfully apply. In such a case, the Share and

Sigma attributes are computed using respectively Equations 6 and 7.

Depending on its Sigma’s value, the node n in P will share the information

with its inactive neighbours n′ which have been influenced less than γ times and1120

have not yet been contacted by n. The RP-LT inform rule (Fig. 11(d)) then

marks the connection between n and n′ and updates some of the informed node

n′ attributes: JointInf is recomputed taking into account the new Influence of

n on n′ (Eq. 3), the influence counter Count is incremented to track the new

influence, and the marker MarkedN is reset to its default value, indicating that1125

some changes have been applied to the attributes of n′.

To guarantee that the node in P will match with the aware node (active

or informed) and not with the inactive node (unaware or informed), we use

located rewriting (Definition 6). We define the aware node (green/blue) of the

left-hand side as being part of the W set, thus forcing the node in position P1130

to match with this element, ensuring the appropriate elements are rewritten as

intended.

Proposition 20. The strategic rewrite program given by rules in Figure 11 and

Strategy 7 terminates and correctly implements the RP-LT model.

Proof 21. If the initial set of informed nodes is empty, the strategic program1135

immediately terminates without changing the graph. Otherwise, a step of propa-

gation is performed as specified in points RP-LT.2 to RP-LT.4 (Definition 19):

a single informed node n ∈ Nk−1, which has not yet passed the information

(MarkedN = 0), is selected.

The rule RP-LT initialisation marks the node and updates Tau as explained1140

in Section 4.4.1 (step RP-LT.1). Then try(one(RP-LT activate)) tries to
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activate it, according to the value of Tau as explained in Section 4.3.1 (step

RP-LT.2).

Whether or not the node becomes active, its Share and Sigma attributes

are updated by one(RP-LT share trial) (step RP-LT.2), provided it has been1145

influenced γ times or is active but did not yet propagate the information (step

RP-LT.3).

The rule RP-LT inform propagates the information to an unaware neighbour

of the node. Thanks to the marking of edges, the command repeat(one(RP

inform)) terminates, and each newly informed node is unmarked (MarkedN =1150

0) and added to Nk (step RP-LT.1).

The main repeat loop stops when Nk is empty (step RP-LT.5), i.e., when

all the informed nodes are marked (MarkedN = 1).

Termination of the RP-LT strategy is a consequence of the fact that the

strategy eventually run out of suitable nodes to apply RP-LT initialisation on,1155

that is Nk = ∅. The rule updates the MarkedN attribute value which will only be

reset to 0 in RP-LT inform when a new influence touch the node; this operation

however can only happen a limited number of times (set by γ’s value). After-

ward, the MarkedN attribute will no longer be modified thus leaving the node as

unmatchable for future applications. We ensure that the command one(RP-LT1160

initialisation) (line 4) in the body of the repeat will fail, hence that the pro-

gram will terminate. We also use the marking of edges in rule RP-LT inform

to guarantee that each connected pair is only considered once. This ensures that

the nested repeat loop comes to an end when all inactive neighbours have been

visited (thus leaving RP-LT inform to fail).1165

5. A framework to study social networks

At this point, we may argue that we have the ingredients for a social network

modelling framework:

- in Section 3, we have explained how to generate social network models

tailored to various sizes, number of links and communities. The capability of1170
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generating arbitrary models is important to validate new methods or algorithms

and check their behaviour.

- in Section 4, we have formalised with labelled port graphs, rules and strate-

gies, three known models of propagation with different properties. We identified

common basic features (attributes, rules, strategies) and simultaneously better1175

understood what is different between these three approaches. For instance, we

have identified that the obfuscation property is ensured by the addition of new

node attributes and rules that reflect intermediate state changes. This formali-

sation then helped us to design a new propagation model RP-LT, by combining

the features of the LT and RP models.1180

- The formalism used, based on labelled port graphs, rewrite rules and

strategies, provides the logical background necessary to understand and analyse

the programs and their executions. For instance we have shown how to prove

the correctness of the different strategic rewrite programs for each propagation

model.1185

- Visualisation features provided in the Porgy environment are indeed an

important component of the framework. The prototyping aspect of rules and

strategies is amplified by visualisation of results, especially for large graphs.

For instance, the result of generating a social network according to different

parameters is illustrated quite well on examples of Section 3. Then the behaviour1190

of a new propagation model like RP-LT can be experimented and visualised on

a generated network with a selected topology.

- The environment can for instance be used to compare two propagation

models in the same line as done in [8]. Visualisation provides a first intuition for

comparing two models applied to the same starting network, but indeed compar-1195

ison needs to use measurement methods appropriate to propagation phenomena

in social networks. This is left for future work.
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6. Conclusion

Our first experiments and results on generation and propagation in social

networks illustrate how labelled port graph strategic rewriting provides a suit-1200

able common formalism in which different mathematical models can be ex-

pressed and compared. In Section 3, we have shown the power of topological

matching and the importance of strategies, while in Section 4, the attributes

have been heavily used to steer the rewriting operations. In both sections, rules

are quite simple but apply to big graphs.1205

For the social network community, the rewrite rule approach is not quite

surprising because some works such as [36] already use rules to generate social

networks, although without claiming it. Expressing different models in the

same formalism facilitates the comparison of algorithms and models. With the

development of social networks analysis, there are many opportunities where1210

simulations can indeed be of assistance during decision taking, for instance to

prevent bad situations, to test counter-measures, or to look for optimal diffusion

strategy. Although we did not develop this aspect here, when modelling the

evolution of a network, the derivation tree (also a port graph) provides support

for history tracking, state comparison, state recovery and backtracking.1215

Overall, several issues remain to be addressed. Although graph rewriting

has been largely studied, social network applications have only recently been

developed, and require a drastic change of scale. Dealing with millions of nodes

and edges requires great attention to size and complexity. There is also room

for improvement in data storage and retrieval (relevant for graph data bases),1220

subgraph matching algorithms –either exact or approximate– for finding one or

all solutions, parallel graph rewriting avoiding dangling edges, and probabilistic

or stochastic issues for matching and rewriting, for instance, in the context of

imprecise data or privacy constraints.

Also related to size, but even more to complexity of data, there is a need for1225

data structuring and management, that may be carried on by abstraction pat-

tern, focusing on points of interests, hierarchies and views (for instance, through
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multi-layer graphs). All these notions need a precise and logical definition that

may be influenced by well-known programming language concepts.

Like programs, data need certification and validation tools and processes,1230

not only at a single step but all along their evolution. The knowledge developed

in the logic and rewriting community should be valuable in this context.

This study has also revealed the importance of visualisation and raises some

challenges in this area. Visualisation is important, more widely, for data anal-

ysis, program engineering, program debugging, testing or verifying. However,1235

the representation of dynamic or evolving data, such as social networks or richer

graph structures, is yet an actual research topic for the visualisation community.
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all the other members of the Porgy project.

References1240

[1] P. Carrington, J. Scott, S. Wasserman, Models and Methods in Social Net-

work Analysis, Structural Analysis in the Social Sciences, Cambridge Uni-

versity Press, 2005.

URL http://books.google.fr/books?id=4Ty5xP_KcpAC

[2] M. Newman, A.-L. Barabási, D. J. Watts, The structure and dynamics1245

of networks, Princeton Studies in Complexity, Princeton University Press,

2006.

[3] J. Scott, P. J. Carrington, The SAGE Handbook of Social Network Anal-

ysis, SAGE, 2011.

[4] M. Granovetter, Threshold models of collective behavior, American1250

Journal of Sociology 83 (6) (1978) 1420.

URL https://sociology.stanford.edu/publications/

threshold-models-collective-behavior

53

http://books.google.fr/books?id=4Ty5xP_KcpAC
http://books.google.fr/books?id=4Ty5xP_KcpAC
http://books.google.fr/books?id=4Ty5xP_KcpAC
http://books.google.fr/books?id=4Ty5xP_KcpAC
https://sociology.stanford.edu/publications/threshold-models-collective-behavior
https://sociology.stanford.edu/publications/threshold-models-collective-behavior
https://sociology.stanford.edu/publications/threshold-models-collective-behavior
https://sociology.stanford.edu/publications/threshold-models-collective-behavior


[5] P. Dodds, D. Watts, A generalized model of social and biological

contagion, Journal of Theoretical Biology 232 (4) (2005) 587 – 604.1255

doi:http://dx.doi.org/10.1016/j.jtbi.2004.09.006.

URL http://www.sciencedirect.com/science/article/pii/

S0022519304004515

[6] E. Bertuzzo, R. Casagrandi, M. Gatto, I. Rodriguez-Iturbe, A. Ri-

naldo, On spatially explicit models of cholera epidemics, Journal of The1260

Royal Society Interface 7 (43) (2010) 321–333. arXiv:http://rsif.

royalsocietypublishing.org/content/7/43/321.full.pdf+html,

doi:10.1098/rsif.2009.0204.

URL http://rsif.royalsocietypublishing.org/content/7/43/321.

abstract1265

[7] W. Chen, C. Wang, Y. Wang, Scalable influence maximization for prevalent

viral marketing in large-scale social networks, in: Proc. of the 16th ACM

SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, KDD ’10,

ACM, 2010, pp. 1029–1038. doi:10.1145/1835804.1835934.

URL http://doi.acm.org/10.1145/1835804.18359341270

[8] J. Vallet, H. Kirchner, B. Pinaud, G. Melançon, A visual analytics ap-
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