Maribel Fernández
email: maribel.fernandez@kcl.ac.uk

Hélène Kirchner
email: helene.kirchner@inria.fr

Bruno Pinaud
email: bruno.pinaud@u-bordeaux.fr

Jason Vallet
email: jason.vallet@u-bordeaux.fr

Labelled

Labelled Graph Strategic Rewriting for Social Networks

Keywords: Labelled port graph, graph rewriting, strategies, strategic rewrite programs, social networks, generation, propagation

niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

Social networks, representing connected users and their relationships, have been intensively studied in the last years [START_REF] Carrington | Models and Methods in Social Network Analysis[END_REF][START_REF] Newman | The structure and dynamics of networks[END_REF][START_REF] Scott | The SAGE Handbook of Social Network Analysis[END_REF]. Their analysis raises several questions, in particular regarding their construction and evolution. Network propagation mechanisms, replicating real-world social network phenomena, such as the relaying of information announcing events, have applications in various domains, ranging from sociology [START_REF] Granovetter | Threshold models of collective behavior[END_REF] to epidemiology [START_REF] Dodds | A generalized model of social and biological contagion[END_REF][START_REF] Bertuzzo | On spatially explicit models of cholera epidemics[END_REF] or even viral marketing and product placement [START_REF] Chen | Scalable influence maximization for prevalent viral marketing in large-scale social networks[END_REF].

To gain a better understanding of these phenomena, we need to model and analyse such systems and deal with features that are complex (since they involve data that are massive and highly heterogeneous), dynamic (due to interactions, time, external or internal evolutions), and distributed in networks. We argue in this paper that relevant concepts to address these challenges are: Labelled Graphs to represent networks of data or objects, Rules to deal with concurrent local transformations, and Strategies to control the application of rules (including probabilistic application) and to focus on points of interest. Indeed, since we have to deal with large networks, the ability to perform pattern-matching and to define appropriate views (to focus on areas of interest) is essential. Since data are often corrupted or imprecise, we also need to deal with uncertainty, which implies that we need to be able to address probabilistic or stochastic issues in the models. The dynamic evolution of data is generally modelled by simple transformations, applied in parallel and triggered by events or time. However, such transformations may be controlled by some laws that induce a global behaviour.

Modelling may reveal conflicts, which can be detected by computing overlaps of rules and solved, for instance, by using precedence (or other choices). Thus, the ability to define strategies is also essential, including mechanisms to deal with backtracking and history through notions of derivations or traces. Last but not least, visualisation is important at all levels: for data analysis, program engineering, program debugging, tests and verification (for instance to provide proof intuition).

Preliminary results obtained by applying this approach to the study of network propagation phenomena and network generation are described in [START_REF] Vallet | A visual analytics approach to compare propagation models in social networks[END_REF]9], respectively. In this paper, we recall the main results and build on them to develop more detailed analyses of network generation algorithms, and new and improved propagation algorithms.

We start by presenting a framework, based on directed port graph rewriting, to define social network models and specify their dynamic behaviour. Port graph rewriting systems have been used to model systems in other domains (e.g., biochemistry, interaction nets, games; see [START_REF] Vallet | A visual analytics approach to compare propagation models in social networks[END_REF][START_REF] Andrei | PORGY: Strategy-Driven Interactive Transformation of Graphs[END_REF][START_REF] Fernández | A strategy language for graph rewriting[END_REF][START_REF] Fernández | Strategic port graph rewriting: An interactive modelling and analysis framework[END_REF]). Here, we adapt to the specific domain of social network modelling the general port graph rewriting notions given in [13], and enrich them to facilitate the implementation of algorithms in this area. Most notably, here we use oriented edges and add a primitive notion of conditional matching.

We use this framework to specify an algorithm to generate networks that have the characteristics of real-world social networks, and to study the process of propagation (of actions such as relaying information, spreading gossip, etc.) within a social network. For the latter, we consider three different propagation algorithms: the independent cascade model IC [START_REF] Kempe | Maximizing the spread of influence through a social network[END_REF], the linear threshold model LT [START_REF] Goyal | Learning influence probabilities in social networks, in: Web Search and Data Mining[END_REF], and the Riposte model RP [START_REF] Giakkoupis | Mittal, Privacy-Conscious Information Diffusion in Social Networks[END_REF]. The first two propagation models were specified using strategic rewriting in [START_REF] Vallet | A visual analytics approach to compare propagation models in social networks[END_REF]. In this paper, we show that these two models are instances of the same strategic graph program, and we also develop a strategic rewriting definition of RP. This latter model can be seen as an improved version of IC, although with slight differences, where the propagation process ensures that users' opinions will not be disclosed to passive observers.

Based on this idea, we also develop a new propagation model: a privacy-aware version of LT, which we call RP-LT.

All algorithms have been implemented in Porgy, an interactive modelling tool based on port graph rewriting; more details concerning the rewriting platform can be found in [START_REF] Pinaud | PORGY: A Visual Graph Rewriting Environment for Complex Systems[END_REF]. Furthermore, since the instructions used in Porgy have formal semantics, we are able to provide proofs of correctness for the different algorithms implementation. Related Work. Several definitions of graph rewriting are available, using different kinds of graphs and rewrite rules (see, for instance, [START_REF] Barendregt | Term graph rewriting[END_REF][START_REF] Lafont | Interaction nets[END_REF][START_REF] Barthelmann | How to construct a hyperedge replacement system for a context-free set of hypergraphs[END_REF][START_REF] Corradini | Algebraic approaches to graph transformation -part i: Basic concepts and double pushout approach[END_REF]22,[START_REF] Habel | Double-pushout graph transformation revisited[END_REF][START_REF] Andrei | A Rewriting Calculus for Multigraphs with Ports[END_REF][START_REF] Andrei | A Higher-Order Graph Calculus for Autonomic Computing[END_REF]). To model social networks in this paper, we define directed port graphs with attributes and associated notions of strategic rewriting, based on the general notion of port graph rewriting presented in [13]. An alternative solution using undirected edges and nodes with two ports called "In" and "Out" to simulate edge direction was previously developed and successfully applied in [START_REF] Vallet | A visual analytics approach to compare propagation models in social networks[END_REF], however, having oriented edges as a primitive concept makes it much easier to represent social relationships that are naturally asymmetric. To facilitate the specification of network algorithms, we have also extended the concept of port graph rewrite rule to incorporate conditional matching, reminiscent of similar solutions found in Elan [START_REF] Borovanský | An overview of ELAN[END_REF] and GP [START_REF] Plump | The Graph Programming Language GP[END_REF].

Although many data sets, extracted from various real-world social networks, are publicly available 1 , in order to test new ideas, demonstrate the generality of a new technique, or design and experiment with stochastic algorithms on a sufficiently large sample of network topologies, it is sometimes convenient to use randomly generated networks as they can be fine-tuned to produce graphs with specific properties (number of nodes, edge density, edge distribution. . .). Several generative models of random networks are available (e.g., [START_REF] Erdős | On the evolution of random graphs[END_REF][START_REF] Watts | Collective dynamics of 'small-world' networks[END_REF][START_REF] Barabási | Emergence of scaling in random networks[END_REF][START_REF] Wang | Random pseudofractal scalefree networks with small-world effect[END_REF][START_REF] Batagelj | Efficient generation of large random networks[END_REF]). Some, like the Erdös-Rényi (ER) model [START_REF] Erdős | On the evolution of random graphs[END_REF], do not guarantee any specific property regarding their final topology, whereas others can show small-world characteristics [START_REF] Watts | Collective dynamics of 'small-world' networks[END_REF], distinctive (scale-free) edge distributions [START_REF] Barabási | Emergence of scaling in random networks[END_REF] or both at the same time [START_REF] Wang | Random pseudofractal scalefree networks with small-world effect[END_REF]. In this paper, we show how to generate such models using labelled port graphs, rules and strategies. Moreover, we take advantage of the visual and statistical features available in Porgy to tune the algorithms: our experimental results guide and validate the parameter choices made in the generation algorithms, ensuring the generated networks satisfy the required properties.

Afterwards, we implement four propagation algorithms using the labelled graphs, rules and strategies concepts mentioned above. While three of them are based on existing models described in previous work [START_REF] Kempe | Maximizing the spread of influence through a social network[END_REF][START_REF] Goyal | Learning influence probabilities in social networks, in: Web Search and Data Mining[END_REF][START_REF] Giakkoupis | Mittal, Privacy-Conscious Information Diffusion in Social Networks[END_REF], the fourth model is an original creation, specifically built to incorporate the privacy-preserving features described in [START_REF] Giakkoupis | Mittal, Privacy-Conscious Information Diffusion in Social Networks[END_REF] to the propagation mechanism proposed in [START_REF] Goyal | Learning influence probabilities in social networks, in: Web Search and Data Mining[END_REF].

The paper is organised as follows. Section 2 introduces the modelling concepts: labelled port graphs, rewriting, derivation tree, strategy and strategic graph programs. We develop social network generation algorithms in Section 3, and propagation algorithms in Section 4. Section 5 briefly describes a framework for designing and experimenting with social network models. In Section 6, we conclude and give directions for future work.

Labelled Graph Rewriting for Social Networks

A social network [START_REF] Brandes | Analysis and visualization of social networks[END_REF] is usually described as a graph where the nodes represent the users and the edges represent their relationships. Some real-world social relations involve mutual recognition (e.g., friendship), whereas others present an asymmetric model of acknowledgement (e.g., Twitter, where one of the users is a follower while the other is a followee). It is thus natural to represent such relations using directed graphs. In this paper, we model social networks using labelled directed port graphs, as defined below.

Directed Port Graphs for Social Networks

Roughly speaking, a port graph is a graph where edges are attached to nodes at specific points, called ports. Nodes, ports and edges are labelled using records over a signature ∇ comprising pairwise disjoint sets ∇ A of attributes, X A of attribute variables, ∇ V of values and X V of value variables. We assume ∇ A contains distinguished elements Name, (In/Out)Arity, Connect, Attach, and Interface. Values in ∇ V are assumed to be of basic data types such as strings, integers, Booleans,. . . or to be well-typed computable expressions built using ∇ and basic types.

A record r over ∇ is a set of pairs (attribute, value):

{(a 1 , v 1), . . . , (a n , v n)},
where for 1 ≤ i ≤ n, a i ∈ ∇ A ∪ X A , each a i occurs only once in r, and there is one distinguished attribute Name, and

v i ∈ ∇ V for 1 ≤ i ≤ n.
The function Atts returns all the attributes in a given record:

Atts(r) = {a 1 , . . . , a n } if r = {(a 1 , v 1), . . . , (a n , v n)}.
As usual, r.a i denotes the value v i of the attribute a i in r.

The attribute Name identifies the record in the following sense: for all r 1 , r 2 , Atts(r 1) = Atts(r 2) if r 1 .Name = r 2 .Name.

Definition 1 (Directed port graph). Given sets N , P, E of nodes, ports and edges, a directed port graph (or simply port graph, since there will be no ambiguity) G over a signature ∇ is a tuple (N, P, E, L) where

• N ⊆ N is a finite set of nodes; n, n , n 1 , . . . range over nodes.

• P ⊆ P is a finite set of ports; p, p , p 1 , . . . range over ports.

• E ⊆ E is a finite set of edges between ports; e, e , e 1 , . . . range over edges.

Edges are directed and two ports may be connected by more than one edge.

• L is a labelling function that returns, for each element in N ∪ P ∪ E, a record such that:

for each edge e ∈ E, L(e) contains an attribute Connect whose value is the ordered pair (p 1 , p 2) of ports connected by e.

for each port p ∈ P , L(p) contains an attribute Attach whose value is the node n which the port belongs to, and two attributes, InArity and OutArity, whose values are the number of incoming and outgoing edges connected to this port, respectively.

-For each node n ∈ N , L(n) contains an attribute Interface whose value is the set of names of ports in the node:

{L(p i).Name | L(p i).Attach = n}
We assume that L satisfies the following constraint:

L(n 1).Name = L(n 2).Name ⇒ L(n 1).Interface = L(n 2).Interface.
We present in Figure 1 an example of a labelled directed port graph. In this example, nodes have attributes State, Marked, and Tau (used in the algorithms given in the next sections), as well as an attribute Colour, for visual purposes. The advantage of using port graphs rather than plain graphs is that they allow us to express in a more structured and explicit way the properties of the connections, since ports represent the connecting points between edges and nodes. However, the counterpart is that the implementation, rules and matching operations are more complex. So, whenever possible, it is simpler and more efficient to keep the number of ports for each node to a minimum.

In the social network models we use in this paper, nodes representing users have only one port gathering directed connections. While this is sufficient in many cases, when dealing with real social networks, multiple ports are useful, either to connect users according to the nature of their relation (e.g., friend, parent, co-worker . . .) or to model situations where a user is connected to friends via different social networks. The full power of port graphs is indeed necessary in multi-layer networks [START_REF] Kivelä | Multilayer networks[END_REF] where edges are assigned to different layers and where nodes are shared. In that case, different ports are related to different layers, which can improve modularity of design, readability and matching efficiency through various heuristics. This is however a topic left for future work.

Located Rewriting

A port graph rewrite rule L ⇒ R is itself a port graph, consisting of two subgraphs L and R and an arrow node that encodes in particular the correspondence between ports in L and ports in R.

Definition 2 (Port graph rewrite rule). A port graph rewrite rule is a port graph consisting of:

• two directed port graphs L and R over the signature ∇, respectively called left-hand side and right-hand side, such that all the variables in R occur in L, and R may contain records with expressions;

• an arrow node with a set of edges that each connect a port of the arrow node to a port in L and a port in R. The arrow node has for N ame ⇒. It also has an optional attribute Where whose value is a Boolean expression involving elements of L (edges, nodes, ports and their attributes).

The edges connecting L and R to the arrow node are used to rewire the graph when the rule is applied. See Figure 2 (top right-hand side corner) for an example of port graph rewrite rule.

When modelling rumour propagation, the rules never suppress nor add new nodes. Moreover, since there is only one port per node, there is no ambiguity on the rewiring between left and right-hand sides. In that case, the structure and visualisation of the arrow node is much simpler. However, this only holds when the network's structure does not change.

The introduction of the Where attribute is inspired from the GP programming system [START_REF] Plump | The Graph Programming Language GP[END_REF] (and from a more general definition given in Elan [START_REF] Borovanský | An overview of ELAN[END_REF]), in which a rule may have a condition introduced by the keyword where. The Boolean expression introduced with the keyword where is in this paper used to specify the absence of certain edges. For instance, a condition where not Edge(n,n') requires that no edge exists between the nodes n and n . This condition is checked at matching time. • In the build step, a copy R c = g(R) (i.e., an instantiated copy of the port graph R) is added to G.

• The rewiring phase then redirects edges from G to R c as follows:

For each port p in the arrow node:

If p L ∈ L is connected to p:
for each port p i R ∈ R connected to p, find all the ports p k G in G that are connected to g(p L) and are not in g(L), and redirect each edge connecting p k G and g(p L) to connect p k G and p i Rc .

• The deletion phase simply deletes g(L). This creates the final graph G .

Given a finite set R of rules, a port graph G rewrites to G , denoted by G → R G , if there is a rule r in R and a morphism g such that G → g r G . This induces a reflexive and transitive relation on port graphs, called the rewriting relation, In a located graph G Q P , P is the subgraph of G under study (the focus of the transformations), and Q is a protected subgraph, where transformations are forbidden.

When applying a port graph rewrite rule, not only the underlying graph G but also the position and banned subgraphs may change. A located rewrite rule, defined below, specifies two disjoint subgraphs M and M of the right-hand side R that are respectively used to update the position and banned subgraphs. If M (resp. M) is not specified, R (resp. the empty graph ∅) is used as default. Below, we use the operators ∪, ∩, \ to denote union, intersection and complement of port graphs. These operators are defined in the natural way on port graphs considered as sets of nodes, ports and edges.

Definition 6 (Located rewrite rule). A located rewrite rule is given by a port graph rewrite rule L ⇒ R, with two disjoint subgraphs M and M of R and optionally, a subgraph

W of L. It is denoted L W ⇒ R M M .
We write

G Q P → g L W ⇒R M M G Q P and say that the located graph G Q P rewrites to G Q P using L W ⇒ R M M at position P avoiding Q, if G → L⇒R G
with a morphism g such that g(L) ∩ P = g(W) or simply g(L) ∩ P = ∅ if W is not provided, and g(L) ∩ Q = ∅. The new position subgraph P and banned subgraph Q are defined as P = (P \ g(L)) ∪ g(M), Q = Q ∪ g(M); if M (resp. M) are not provided then we assume M = R (resp. M = ∅).

Example 7. In influence propagation, carefully managed position and banned subgraphs are used to avoid several consecutive activations of the same neighbours. Another usage is to select a specific community in the social network where the propagation should take place.

In general, for a given located rule L W ⇒ R M M and located graph G Q P , several rewriting steps at P avoiding Q may be possible. Thus, the application of the rule at P avoiding Q may produce several located graphs. A derivation, or computation, is a sequence of rewriting steps. If all the derivations are finite, the system is said to be terminating. A derivation tree from G is made of all possible computations (including possibly infinite ones). See Figure 2 (bottom right-hand side corner) for an example of derivation tree. Strategies are used to specify the rewriting steps of interest, by selecting branches in the derivation tree.

Strategic graph programs

A strategic graph program consists of a located graph, a set of located rewrite rules, and a strategy expression that combines applications of located rules and focusing constructs. In the context of social networks, the focusing primitives are convenient to restrict the application of rules to specific parts of the graph.

Subgraphs of a given graph can be defined by specifying simple properties, expressed with attributes of nodes, edges and ports.

The most basic strategies are id, which always succeeds, and fail, which always fails. More interesting strategies can be built by composition; a full description of the strategy language can be found in [13]. We briefly explain below the constructs used in this paper.

The primary construct is a located rule, which can only be applied to a located graph G Q P if at least a part of the redex is in P , and does not involve Q. When probabilities π 1 , . . . , π k ∈ [0, 1] are associated to rules T 1 , . . . , T k such that π 1 + • • • + π k = 1, the strategy ppick(T 1 , π 1 , . . . , T k , π k) picks one of the rules for application, according to the given probabilities. all(T) denotes all possible applications of the transformation T on the located graph at the current position, creating a new located graph for each application. In the derivation tree, this creates as many children as there are possible applications. one(T) computes only one of the possible applications of the transformation and ignores the others; more precisely, it makes an equiprobable choice between all possible applications. Similar constructs exist for focusing expressions, which are used to define positions for rewriting in a graph, or to define positions where rewriting is not allowed: one(F) returns one node in the subgraph defined by F and all(F) returns the full F . When not specified, F stands for all(F). In this paper, F is defined using the following elements:

• crtGraph, crtPos and crtBan: applied to a located graph G Q P , return respectively the whole graph G, the position subgraph P and the banned subgraph Q.

• property(F, ρ) is used to select elements of a given graph that satisfy a certain property, specified by ρ. It can be seen as a filtering construct: if the expression F generates a subgraph G then property(F, ρ) returns only the nodes and/or edges from G that satisfy the decidable property ρ = Elem, Expr. Depending on the value of Elem, the property is evaluated on nodes, ports, or edges.

• ngb(F, ρ) returns a subset of the neighbours (i.e., adjacent nodes) of F according to ρ. Note that the edge direction is taken into account, to emphasise it, we also introduce ngbOut(F, ρ) and its counterpart ngbIn(F, ρ).

If edge is used, i.e., if we write ngb(F, edge, Expr), it returns all the neighbours of F connected to F via edges which satisfy the expression Expr.

• setPos(D) (resp. setBan(D)) sets the position subgraph P (resp. Q) to be the graph resulting from the expression D. This operation always succeeds (i.e., returns id).

• isEmpty(F) returns id if F denotes the empty graph and fail otherwise.

It is defined as F = ∅. This last focusing operation, although derivable, facilitates the implementation.

The following constructs are used to build strategies.

• S;S represents sequential application of S followed by S .

• if(S)then(S)else(S) checks if the application of S on (a copy of) G Q P returns id, in which case S is applied to (the original) G Q P , otherwise S is applied to the original G Q P . The else(S) part is optional.

• repeat(S)[max n] simply iterates the application of S until it fails; if max n is specified, then the number of repetitions cannot exceed n.

• (S)orelse(S) applies S if possible, otherwise applies S . It fails if both S and S fail.

• try(S) behaves like S if S succeeds, but will returns id if S fails. It is a derived operation which is defined as (S)orelse(id).

• When probabilities π 1 , . . . , π k ∈ [0, 1] are associated to strategies S 1 , . . . , S k such that π 1 +• • •+π k = 1, the strategy ppick(S 1 , π 1 , . . . , S k , π k) picks one
of the strategies for application, according to the given probabilities. This construct generalises the probabilistic constructs on rules and positions.

Probabilistic features of the strategy language, through the use of the ppick() construct, are illustrated in Section 3 for social network generation. The propagation models in Section 4 illustrate how record expressions are used to compute attribute values and how these are updated through application of rules.

A more complete definition of strategic graph programs and their semantics can be found in [13], where it is proved that the derivation tree in which each rewrite step is performed according to the strategy -let us call it the strategic derivation tree-is actually a subtree of the derivation tree of the rewrite system without strategy. The strategic derivation tree is a valuable concept because it records the history of the transformations and provides access to generated models. It is, by itself, a source of challenging questions, such as detecting isomorphic models and folding the tree, finding equivalent paths and defining the "best ones", abstracting a sequence of steps by a composition strategy, or managing the complexity of the tree and its visualisation.

Social network generation

In this section we address the problem of generating graphs with a smallworld property as defined in [START_REF] Watts | Collective dynamics of 'small-world' networks[END_REF]. Such graphs are characterised by a small diameter -the average distance between any pair of nodes is short-and strong local clustering -for any pair of connected nodes, both tend to be connected to the same neighbouring nodes, thus creating densely linked groups of nodes called communities. Popularised by Milgram in [START_REF] Milgram | The small world problem[END_REF], small-world graphs are a perfect case study for information propagation in social networks due to their small diameter allowing a quick and efficient spreading of information.

Our goal is to design an algorithm to generate small-world graphs of a given A few previous works have explored the idea of using rules to generate networks. In [START_REF] Kejžar | Probabilistic inductive classes of graphs[END_REF], the authors define and study probabilistic inductive classes of graphs generated by rules which model spread of knowledge, dynamics of acquaintanceship and emergence of communities. Below we present a new algorithm for social network generation that follows a similar approach, however, we have adjusted its generative rules to cope with directed edges and ensure the creation of a graph with a single connected component. This is achieved by performing the generation through local additive transformations, each only creating new elements connected to the sole component, thus increasingly making the graph larger, more intricate and more interesting to study.

Starting from one node, the generation is divided into three phases imitating the process followed by real-world social networks. Whenever new users first join the social network, their number of connections is very limited, mostly to the other users who have introduced them to the social network (Sect. 3.1). During the second phase, these new users can reach to the people they already know personally, thus creating new connections within the network, which may seem random for any spectator only aware of the present social network (Sect. 3.2).

Finally, the users get to know the people with whom they are sharing friends in the network, potentially leading to the creation of new connections (Sect. 3.3).

Generation of a directed acyclic port graph

The first step toward the construction of a directed port graph G = (N, E, P, L) moreover, their application using the ppick() construct ensures an equiprobable choice between the two rules.

uses

Creating complementary connections

During this phase, we either create seemingly random connections between the network users or reciprocate already existing single-sided connections.

We In both rules, the existence of edges between the nodes on which the rule applies should be taken into account: the rules should not create an edge if a similar one already exists (since we aim at creating a simple graph rather than a multi-graph). This can be achieved by adding a condition "where not Edge(n,n')" (see Definition 2), or by using position constructs to restrict the elements to be considered during matching. We use the latter solution here.

In Strategy 2, we first filter the elements to consider during the matching. We randomly select one node among the nodes whose outgoing arity (OutArity) is lower than the maximal possible value (i.e., |N | -1), and we ban all its outgoing neighbours as they cannot be considered as potential matching elements.

Construction of communities

To create a realistic social network, we now add communities. For this, we need to ensure that the links between users follow certain patterns. Based on ideas advanced in several previous works (e.g., [START_REF] Cartwright | Structural balance: a generalization of Heider's theory[END_REF][START_REF] Kejžar | Probabilistic inductive classes of graphs[END_REF][START_REF] Leskovec | Signed networks in social media[END_REF][START_REF] Nick | Simmelian backbones: Amplifying hidden homophily in facebook networks[END_REF]), we focus on triad configurations (i.e., groups formed by three users linked together). Our community generation algorithm uses three rewrite rules, introduced in Figure 5.

Resulting network generation

For the sake of simplicity, the strategies presented above make equiprobable choices between rules. The probabilities may of course be modified to take into account specific conditions present in the modelled system. Whatever the chosen probabilities are, the following result holds. Proof 9. The termination property is a consequence of the fact that the three composed strategies have only one command which could generate an infinite derivation (the repeat loop) but in the three cases, there is a limit on the number of iterations (i.e., it is a bounded repeat).

Since the program terminates, we can use induction on the number of rewriting steps to prove that the generated port graphs are directed, simple (at most one edge in each direction between any two nodes) and weakly connected (connected when direction of edges is ignored). This is trivially true for G 0 and each rewrite step preserves these three properties, thanks to the positioning strategy that controls the out degree in Edge generation (Strategy 2) and the forbidden edges in the rules for Community generation (Figure 5). As the strategic program never fails, since a repeat strategy cannot fail, this means that a finite number of rules has been applied and the three properties hold by induction.

It remains to prove that the number of nodes and edges is as stated. Observe The method presented above can easily be extended to create graphs with more than one component. One has to use a number of starting nodes equal to the number of desired connected components and ensure that no edge is created between nodes from different components. The generative rules and strategies can then be applied on each component iteratively or in parallel (parallel application of rules is possible but beyond the scope of this paper).

Implementation and Experimental Validation

We use the Porgy system [START_REF] Pinaud | PORGY: A Visual Graph Rewriting Environment for Complex Systems[END_REF] to experiment with our generative model.

The latest version of the rewriting platform5 is available either as source code or binaries for MacOS and Windows machines. To ensure that our constructions present characteristics of real-world social networks, we have performed several generations using different parameters and measured the characteristic path length -the average number of edges in the shortest path between any two nodes in the graph-and the clustering coefficient -how many neighbours of a node n are also connected with each other-as defined in [START_REF] Watts | Collective dynamics of 'small-world' networks[END_REF]. In a typical random graph, e.g., a graph generated using the The graphs generated using our method can be subsequently used as any randomly generated network. For instance, we have used such graphs in [START_REF] Vallet | A visual analytics approach to compare propagation models in social networks[END_REF] to study the evolution of different information propagation models. In the following section, we recall these propagation models and introduce their translation as strategic graph programs using directed located port graphs, located rewrite rules and strategies.

Propagation in social networks

In social networks, propagation occurs when users perform a specific action To replicate this phenomena, some propagation models opt for entirely probabilistic activations (e.g., [START_REF] Kempe | Maximizing the spread of influence through a social network[END_REF][START_REF] Chen | Influence maximization in social networks when negative opinions may emerge and propagate[END_REF][START_REF] Wonyeol | CT-IC: Continuously activated and timerestricted independent cascade model for viral marketing[END_REF]), where the presence of only one active neighbour is often enough to allow the propagation to occur, while others (e.g., [START_REF] Goyal | Learning influence probabilities in social networks, in: Web Search and Data Mining[END_REF][START_REF] Kempe | Influential nodes in a diffusion model for social networks[END_REF][START_REF] Watts | A simple model of global cascades on random networks[END_REF]) use threshold values, building up during the propagation.

Such values represent the influence of one user on his neighbours or the tolerance towards performing a given action (the more solicited a user is, the more inclined he becomes to either activate or utterly resist). In general, several propagations may happen in one network at the same time, but most propagation models focus only on one action (e.g., relaying a specific information) as the other propagations are likely to be about entirely different subjects, thus creating few if any interference.

In [START_REF] Vallet | A visual analytics approach to compare propagation models in social networks[END_REF], two basic propagation models were specified using strategic rewriting:

the independent cascade model IC [START_REF] Kempe | Maximizing the spread of influence through a social network[END_REF] and the linear threshold model LT [START_REF] Goyal | Learning influence probabilities in social networks, in: Web Search and Data Mining[END_REF].

In this section, we first recall the definition of these two models and show in which manner they can be described as instances of the same strategic graph program. We then consider another propagation model, called Riposte (RP), described in [START_REF] Giakkoupis | Mittal, Privacy-Conscious Information Diffusion in Social Networks[END_REF]. For this model, it is shown that an information deemed interesting by a sufficiently large fraction of the population is more likely to spread widely, whereas an information that only a few people consider interesting will not spread far beyond the set of users initially exposed to it. Moreover, when observing the information propagation process (more precisely, the users' re-posts), one cannot determine with sufficient confidence the opinion of any single user concerning the information that is disseminated. We implement the algorithm as a strategic graph program. Finally, we use the rules and strategies modularity to develop a new propagation model combining features of LT and RP, which we also implement as a strategic graph program.

In the following implementations as strategic graph programs of the various propagation models, several common ingredients are used:

-we assume that, at any given time, each node is in a precise state, which determines its involvement in the current spreading of information. States are represented by one of the following values: unaware for those who have not (yet) heard of the action, informed to describe those who have been informed of the action/influenced by their neighbours, or active to qualify those who have been successfully influenced and decided to propagate the action themselves.

We encode this information on each node using an attribute State, which can take one of these three values as a string of characters: unaware, informed, or active. For visualisation purposes, an attribute Colour is associated to State to colour the nodes in red, blue, or green, respectively.

-the rules we use to express the models describe how the nodes' states evolve.

An unaware node becomes informed when at least one of its active neighbours tries to influence it, and an informed node becomes active when its influence level is sufficiently high. These two distinct steps correspond to the two basic

The independent cascade model (IC)

We first describe a basic form of the IC model as introduced in [START_REF] Kempe | Maximizing the spread of influence through a social network[END_REF]. This model has several variations (e.g. [START_REF] Gomez-Rodriguez | Inferring networks of diffusion and influence[END_REF][START_REF] Watts | A simple model of global cascades on random networks[END_REF]) allowing, for instance, to simulate the propagation of diverging opinions in a social network [START_REF] Chen | Influence maximization in social networks when negative opinions may emerge and propagate[END_REF].

Definition 10 (Propagation process in IC). For each pair of adjacent nodes (n, n), let p n,n be the influence probability from n on n (0 ≤ p n,n ≤ 1). For this model, p n,n is usually history independent -its value is fixed regardless of the operations performed beforehand-, and non symmetric -so that p n,n does not have to be equal to p n ,n . The propagation model behaves as follows: IC.4 This process continues until no more activations can be performed, that is when ξ contains all the possible pairs (n, n) where n belongs to the current set of active nodes and n is an inactive neighbour.

IC.1 Let N 0 ⊂ N
The order used to choose the nodes n and their neighbours during the propagation is arbitrary.

Attributes

To take into account the specificities of IC, we need additional attributes.

First, two attributes are needed for each edge going from n to n : Influence, ranging on [0, 1], which gives the influence probability from n on n (i.e., p n,n), and Marked, taking for value 0 or 1, which is used to indicate whether the given pair (n, n) has already been considered, thus avoiding multiple influence tentatives. M arked = 1 if (n, n) ∈ ξ, 0 otherwise.

The attribute Tau, ranging on [-1, 1], is used to measure how globally influenced a given node is. Initially, the few preset active nodes have their attribute Tau = 1, while unaware ones see their attribute Tau set to -1. During the propagation, the value of the attribute Tau is updated by the influence trial rewrite rule in order to reflect the influence probability p n,n , stored in the Influence attribute:

Tau = Influence -random(0, 1) (1)
where random(0, 1) is a random number in [0, 1[. We design the Equation 1so that when a node is successfully influenced and ready to become active, the value of its attribute Tau is such that Tau ≥ 0. This is because n has a probability p n,n of becoming active (where p n,n is given as the value of the attribute Influence). A random number random(0, 1) is thus chosen in an equi-probabilistic way and compared to the value of Influence. As a result,

Influence is greater than or equal to random(0, 1) in p n,n % of cases, so Tau = Influence -random(0, 1) is greater or equal to 0 in p n,n % of cases.

Rewrite rules

The rewrite rules used to represent the IC model are given in Figure 8. The first one, Rule IC influence trial (Fig. 8 Rule IC activate in Figure 8(b) is only applied on a single node n and its objective is much more straightforward. If a node n has been sufficiently influenced, i.e., if its attribute Tau is greater than 0, then its state is changed, going from informed (blue) to active (green).

Strategy

Application of the rules describing IC is controlled by Strategy 4. 5)

The first instruction in the body of the repeat command (line 2) exclusively 650 selects all the nodes whose State is active and adds them to the position P .

29

The second instruction then performs located rewriting (see Definition 6). 6 An active node will thus be used as a mandatory element from P when calling the IC influence trial rule (line 3) to rewrite a pair of active/inactive neighbours.

At the end of the IC influence trial rule (Fig. 8(a)), the newly informed node is added to the position P .

The IC activate rule (Fig. 8(b)) is then immediately executed (line 4) to activate the potentially successfully influenced node. As the position P only contains the one informed node we have considered in the previous rule, we can ensure that the informed node becomes active as soon as it qualifies (when T au ≥ 0). The try instruction (line 4) is added to prevent any early failure if the informed node is not sufficiently influenced (and thus no matching informed node with Tau ≥ 0 can be found). The whole process is then repeated until no more propagation can be performed (all edges are marked and all possible activations have been performed). For each rule application, the elements corresponding to the left-hand side are chosen arbitrarily among the matching possibilities.

Proposition 11. The strategic rewrite program given by the rules in Figure 8 and

N k = N k-1 ∪ {n }. Otherwise N k = N k-1 .
Recall that the semantics of repeat guarantees that if a command inside the body fails, the loop is terminated. The command one(IC inf luence trial) fails when no more unmarked pair of nodes (active, inactive) exists in the current graph. Then the repeat loop stops and the propagation is complete.

The linear threshold model (LT)

In the LT model, the node activation process takes into account the neighbours' combined influence and threshold values to determine whether an informed node can become active or not (see [START_REF] Kempe | Maximizing the spread of influence through a social network[END_REF] for some examples of publications describing models using activation thresholds). The model detailed below describes the first static model defined in [START_REF] Goyal | Learning influence probabilities in social networks, in: Web Search and Data Mining[END_REF].

The LT model seems more complicated than the IC model, but the approach is very similar. Here again, two different operations are used to perform the propagation: for each inactive node n , we compute the joint influence of its active neighbours, then, if the influence n is subjected to exceed a threshold value, the node becomes active.

Definition 13 (Propagation process in LT). Let p n,n be the influence probability of n on n (0 ≤ p n,n ≤ 1) and θ n the threshold value of n -i.e., the resistance of n to its neighbours' influence-chosen independently from n and randomly in [0, 1[. Let also S n (k) denote the set of nodes currently active at step k and adjacent to n , and p n S n (k) the joint influence on n of its active neighbours at step k. The LT propagation model operates as follows:

LT.1 Let N 0 ⊂ N be the subset of nodes initially active and let N k be the set of active nodes at step k. The set N k of nodes is initialised from N k-1 , and computed by adding nodes as follows.

LT.2 An inactive node n ∈ N k-1 has its active neighbours' joint influence value computed using the formula:

p n S n (k) = 1 -n∈S n (k) (1 -p n,n) where S n (k) = Ngb(n) ∩ N k-1 .
LT.3 An inactive node n becomes active at step k when its neighbours' joint influence exceeds the threshold value, i.e., p n S n (k) ≥ θ n , leading n to be added to N k .

LT.4 This process continues until, for all the joint influences up-to-date, no more activation can be performed.

To simplify the following expressions, we note S n the set S n (k) being considered at the current step.

Similarly to the IC model, one can see that the LT propagation takes place in two phases: influence computation followed by activation. Before presenting the corresponding rules, we need to specify more precisely the properties of the intended propagation model from [START_REF] Goyal | Learning influence probabilities in social networks, in: Web Search and Data Mining[END_REF], as the authors present several propagation models with multiple definitions of the influence and joint influence probability of n over n (i.e., p n,n and p n (S n)). In this paper, we are implementing the static propagation model where p n,n is expressed as a constant value. Because the activation of a specific node n is dependent of the influence probabilities coming from each of its active neighbours, we need to update their joint influence p n (S n) whenever one of the previously inactive neighbours of n activates.

This operation is performed using the formula p n S n ∪ {n} , introduced in the original paper.

p n S n ∪ {n} = p n (S n) + 1 -p n (S n) × p n,n (2)
This equation will add the influence of n among the other active nodes adjacent to n (where n ∈ S n).

Attributes

In order to take into account these specificities, two new attributes are needed in addition to the ones introduced earlier in IC (State and Colourto define the nodes states-, Influence -to store the probability p n,n -, Marked -to mark edges connecting previously visited pairs of nodes-, and Tau -to store the influence trial outcome). Each node is now also provided with a threshold value, stored in the attribute T heta, whose value is in [0, 1]. The joint influence probability, measuring the influence level an inactive node is subjected to, is stored using the attribute JointInf. Initially, the active nodes have their attributes JointInf = 1, while unaware ones have JointInf = 0. During the influence step, the value of JointInf on the informed node is updated as specified by Equation 2, which is translated to the following formula when using the appropriate attributes:

JointInf = JointInf old + (1 -JointInf old) × Influence (3)
We can then compare this updated joint influence value for a node n with its threshold value, stored in Theta and assign the result to the attribute T au:

Tau = JointInf -Theta (4)
If, for an informed node n , T au ≥ 0, then the joint influence of its neighbours (JointInf) exceeds its threshold value (T heta), thus leading n to endorse the propagation subject and to activate to spread this very information to all of its neighbours.

Rewrite rules

The rules are quite similar to those introduced in the IC model. The first rule LT influence trial (Figure 9(a)) is applied on a connected pair of activeinactive nodes (respectively green and red/blue). During its application, the rule transforms an inactive node n into an informed node as its active neighbour n tries to influence it. Two computations are performed in order to update the attributes of the inactive node n . The attribute JointInf is changed during the rule LT influence trial by using the Influence value to update the previous joint influence probability measure; this is given by Equation 3. The attribute Tau then compares this value to the attribute Theta as described in Equation 4.

The edge between the two nodes is marked to avoid successive influence trials from n to n . As a result, n may be influenced by several active nodes before their joint influence is important enough to outweigh the threshold value of n , but each of its neighbours will only be able to influence n a single time.

The second rule, named LT activate (Figure 9

Strategy

We use the rewriting Strategy 5 to manage the rules application similarly to the IC model. The two strategies (used for IC and LT) differ only in the rules applied.

As in the previous model, we use a repeat command (line 1) to compute the propagation as many times as possible and start by defining a position P which will gather all the active nodes (line 2). One of these nodes is considered and we apply the LT influence trial rule (line 3) on it and one of its inactive neighbours. For the active-inactive pair of nodes (resp. n and n), we first update the JointInf attribute of n using Equation 3 and then compute its Tau attribute with Equation 4. The edge connecting the two nodes is finally marked to avoid n being repeatedly influenced by the same active node n, and n is added to the position set P .

We then try to apply the LT activate rule (line 4) on an informed node whose

Tau attribute value exceeds or equals 0. Given that the node matching the lefthand side must belong to position P , it can only be the sole informed node added to P , that is the inactive node which became informed during the LT influence trial rule application. If the node has not been successfully influenced (its Tau attribute value is lower than 0), the previously informed node is not an appropriate match, and thus the LT activate rule is not applied.

Proposition 14. The strategic rewrite program given by the rules in Figure 9 and Strategy 5 terminates and correctly implements the LT model.

Proof 15. The proof is quite similar to the one proposed for IC (Proof 12).

Each iteration of the repeat loop implements a step of propagation in the model as specified in points LT.2 and LT.3 (see Definition 13): when LT influence trial applies, one pair (n, n) of nodes (active, inactive) is chosen and the joint influence on n of all its active neighbours is updated (as explained in Section 4.2.1). If n is sufficiently informed (JointInf >= Theta, i.e., Tau ≥ 0), n becomes active and

N k+1 = N k ∪ {n}. Otherwise N k+1 = N k .
As in the case of IC, termination is a consequence of the fact that one of the commands in the repeat loop eventually fails: the rule LT influence trial can only be applied a finite number of times due to the marking of edges, hence one(LT inf luence trial) ultimately fails, the repeat loop comes to an end, and the propagation is complete.

Riposte (RP): a privacy preserving propagation model

We propose in this section the translation of a more recent propagation model, called Riposte, based on the ideas introduced in [START_REF] Giakkoupis | Mittal, Privacy-Conscious Information Diffusion in Social Networks[END_REF]. Although still following the characteristic principle of randomly driven activations encountered in IC, RP differs from the two previous models on several key points. First of all, its activation and propagation mechanisms are not directly linked: both active or inactive users can propagate information, and active users are not automatically assumed to spread information to their neighbours. These features confer to RP the property of plausible deniability, which is essential to preserve the users' privacy. Indeed, independently of the user's opinions and consent concerning the propagated information, RP will sometimes propagate information to the user's neighbours. The user's opinion influences the probability of sharing in order to favour interesting topics, but with this propagation model, witnesses observing the exchanges within the network can now no longer precisely pinpoint which users have supported the propagation and shared the information with their neighbours. In this sense, this model improves over the previous two models. Finally, RP does not take into account the influence from one user upon another, but considers the personal interest a given user has in the information.

New parameters are needed to reflect these characteristics. First, let p n be the probability given for a specific information to be re-posted by the user n.

The value of p n can be seen as a measure of how interesting the information is to n. Then, in order to prevent revealing the opinion of individual users, some randomness concerning the information propagation is incorporated. Let δ and λ be global parameters of the propagation model where 0 < δ < 1 < λ. We define S n as the set of nodes currently unaware of the information and adjacent to n. After being informed by one of its neighbours, two different behaviours are possible. If n wishes to propagate the information (that is, n becomes active), then either all its neighbours or none will be informed of it with a probability λ/S n . Alternatively, if n does not wish to propagate the information (thus, n remains "simply" informed), then the information can still be passed to all its neighbours, but this time with a weaker probability δ/S n .

Definition 16 (Propagation process in RP). Let p n , λ, δ and S n be defined as above. The complete propagation process can be described as follows:

RP.1 Let N 0 ⊂ N be the subset of nodes initially aware of the information and let N k be the set of informed nodes at step k who did not try to pass on the information to their neighbours yet. The set N k of nodes is computed from N k-1 by adding and deleting nodes as follows.

RP.2 For a node n ∈ N k-1 , n tries to activate with a probability p n .

RP.3

If n activates successfully, then all its neighbours are added to N k with a probability λ/S n . Otherwise, for an inactive n, all its neighbours are added to N k with a probability δ/S n .

RP.4

The node n is excluded from N k .

RP.5 This process continues until N k = ∅, that is, until all the nodes that are aware of the information have been given a chance to pass the information on to their neighbours.

As one can see, the propagation decision depends on both the user's opinion concerning the information (p n) and the number of neighbours unaware of it (S n). In the original definition [START_REF] Giakkoupis | Mittal, Privacy-Conscious Information Diffusion in Social Networks[END_REF], the value S n is an upper bound on the number of n's outgoing neighbours that have no knowledge yet of the information. However, a variant of the algorithm for systems where users are unable to know whether their neighbours have already heard of the information or not was also proposed. For such instance of application, which is our case, the probability is computed using the total number of n's outgoing neighbours instead of considering the upper bound of unaware neighbours.

Attributes

We naturally make use of the generic State and Colour node attributes as described in the previous models, as well as Marked on directed edges. But here we also need to flag nodes that have already attempted to spread the information (regardless of their activation status). This information is reflected by a new node attribute called MarkedN.

In addition to these, we introduce new attributes to model the specificities of RP. First, the attribute Interest records the node's interest for an information, namely the probability p n for an information to be re-posted by n. Then the attribute Tau is used to store the result of the activation decision, computed as

Tau = Interest -random(0, 1) (5)
where random(0, 1) is a number uniformly and randomly chosen in [0, 1[. An informed node becomes active when Tau ≥ 0. By default, Tau is set to -1 on all the nodes before the propagation begins and, as in the previous models,

Tau is still the key attribute to enable node activation. This time however, Tau is computed using the Interest attribute instead of the Influence attribute as in IC and LT.

To perform the propagation according to the given parameters λ and δ of the RP model, an additional attribute Share is used to store the likeliness of n to share (i.e., spread) the information. Its value is computed as follows:

Share = isActive(λ -δ) + δ OutArity (6)
where isActive is an integer set to 1 when the attribute State = active (and set to 0 otherwise), and OutArity is the cardinality of the set of outgoing neighbours.

Some explanations are in order:

1. let OutArity be the number of outgoing edges from n;

2. if n has no neighbour to transmit the information to, then Share does not need to be computed; we address this issue by having OutArity returning -1 in such case instead of 0 to avoid errors;

3. we formulate Share as a single expression using λ or δ depending on the value of isActive (otherwise, two different rules should be used with only a small variation in the computation of Share).

Finally, another attribute named Sigma is used to store the result of the sharing decision, in a way similar to Tau, and is computed as

Sigma = Share -random(0, 1) (7)
where random(0, 1) is a random number chosen in [0, 1[. The propagation from n to all its neighbours is performed when the attribute Sigma of n is greater than or equal to 0. This attribute allows us to separate the activation process from the sharing process.

Although all these attributes are needed to emulate the propagation process, it is important to note that, in real-world applications of the RP algorithm, the only visible information to an external observer is whether a node has heard of the information or not. This translates to the State attribute marking a node as unaware or aware, without any distinction (such as Colour) between informed and active nodes.

Rewrite rules

Following the formal definition of the RP model, we can define the following steps in the propagation mechanism given by the rules presented in Figure 10.

The first rule, RP initialisation (Fig. 10(a)), is an opening step used to prepare the freshly informed nodes who did not yet try to propagate the information (i.e., unmarked nodes). A node is offered the possibility to be interested in the information, with Tau computed accordingly (see Equation 5), and sees its Marked attribute set to 1. This means that the node is soon to be considered for activation and as a candidate for spreading information. We then keep the same informed node and tentatively apply the rule RP activate (Fig. 7) to randomly decide whether n must 915 share the information with its neighbours. The transmission of information to the neighbours is performed by the last rule RP inform, depicted in Figure 10(d).

An active or simply informed node n who has been selected to propagate the information (whose attribute Sigma ≥ 0) informs an unaware neighbour n . As a result, the unaware node becomes informed, leading it to be considered as a new potential information spreading source in the next propagation step. The newly informed node has its MarkedN attribute untouched, thus still equal to its default value (0), and ready to be subjected to the RP initialisation rule.

Strategy

The strategy used in this model is given below in Strategy 6. Much like the previous models, we use a repeat loop (line 1) in the RP strategy to control the rewriting steps. Recall that initially, all nodes see their attribute MarkedN set to 0. We initiate the strategy by choosing the node who will be the focus of rewriting in this propagation step. As we want to pick a single element and follow its behaviour, we first filter out the nodes to find a suitable candidate: among all the informed nodes (line 2), we select one who has never been considered to spread the propagation, that is, its MarkedN attribute is still equal to its default value (line 3). The first rule, RP initialisation (Fig. 10(a)), is then applied. In case not a single candidate satisfying the aforementioned conditions has be found -i.e., there is no informed node or all have already been considered before (with MarkedN = 1)-then the rule application fails and the propagation comes to an a single informed node n ∈ N k-1 , which has not yet passed the information (MarkedN = 0), is selected.

The rule RP initialisation marks the node n (which ensures this node will not be considered again, as specified in point RP. When possible (if Sigma ≥ 0), the rule RP inform is used to propagate the information to all unaware neighbours of the node. This is ensured by the nested repeat(one(RP inf orm)) loop in Strategy 6 which is guaranteed to terminates thanks to the marking of the edges. Each newly informed node has their attribute

MarkedN value equal to 0, and is added to N k as requested in point RP.1.

The main repeat loop stops when N k is empty, respecting point RP.5. This termination happens when all informed nodes are marked (MarkedN = 1), since this ensures failure of rule RP initialisation (line 4, Strategy 6).

Adapting the Riposte model with linear thresholds

The graph rewriting formalisation highlights the key components of the different propagation models. Distinguishing the rules, in charge of local transformations, from the strategy, managing and steering their application, makes easier the comparison between the components of the different propagation models. For instance, despite their quite distinctive definitions, the basic IC and LT models were already presented as being somewhat similar, as discussed in [START_REF] Kempe | Maximizing the spread of influence through a social network[END_REF]; a fact that our formalisation shows clearly: indeed, except for the Tau attribute computation during the influence trial rule application, the rules and strategies used to express the two models are identical. Expressing the models using a common language, i.e., here the rule and strategy formalism, can thus enable experts to draw parallels between two apparently distinct models.

Additionally, breaking-down the models into smaller operations brings further benefits than just a more in depth understanding of the model. In order to properly illustrate the advantages of our approach, we show hereafter how to design a new propagation model by reusing some of the previously encountered mechanisms.

Compared to the first two models, RP proposes a privacy preservation feature, allowing users to influence the result of a propagation, by either endorsing or not supporting the information, without exposing their true opinion to others. We propose in the following to develop a propagation model merging elements from both RP and LT. This model, which we name Riposte with Linear Thresholds (RP-LT), hides the users' reaction to the propagation subject (endorsement or reject) while taking into account the influence from each user on its followers. As in RP, the users know from which of their neighbours the re-post comes from, but do not know for certain if the user is truly supportive of the propagation subject.

We recall here the different elements needed to establish the new model, keeping the notations consistent with LT and RP. An inactive node n is influenced by each of its active neighbours n according to the probability p n,n and we note p n S n (k) the joint influence endured by n at step k from all its active neighbours S n (k). The threshold value of n , or its resistance to activation, is defined as θ n . Finally, λ and δ are global parameters (0 < δ < 1 < λ), and S n is the set of unaware nodes adjacent to n .

Considering the core mechanism of the LT model, that is the necessity for a given node to be influenced multiple times to have a chance to activate, we cannot force the user to make a decision about the propagation subject after having only heard about it once. We thus add to our model an information counter. Let us define γ as the maximum number of times a node can be told an information before being asked to formulate his opinion. A node can be influenced at most γ times, but may decide to activate before.

p n S n (k) = 1 -n∈S n (k) (1 -p n,n).

RP-LT.5

The node n is then excluded from N k . This process continues until

N k = ∅.
While the core of the model description looks like RP's (see Definition 16), the use of the influence (p n,n), joint influence (p n (S n)) and theta (θ n) attributes distinguish the two models: where RP focuses on the users' interest to make the propagation evolve, RP-LT looks at the influence users have on one another and their response to it.

Attributes

For the sake of completeness, we recall the different attributes already used in RP and LT. Obviously, we keep the general attributes: State and Colour to distinguish the nodes' states, Marked to mark the visited pairs of nodes, as well as MarkedN for the nodes previously considered for activation and sharing, and

Tau to store the activation decision. We complete them with the LT attributes Influence to store p n,n , Theta for the threshold θ n , and JointInf for p n (S n).

Some RP attributes are also needed to complete the model: Share to store the node's sharing probability according to its State, isActive to mark whether the node is active or not (used to compute Share), OutArity to request the number of outgoing neighbours, and Sigma to store the trigger value of the propagation operation.

The equations used to compute the values of attributes JointInf, Tau, Share, Sigma are the same: see equations 3, 4, 6, 7 respectively.

In addition, we introduce a new attribute Count to track the number of times a node has been informed of the propagation subject. All nodes have the Count attribute initialised to 0 and each node is only given the same information γ times (from different neighbours).

Rewrite rules

The rewrite rules, given in Figure 11, are quite similar to the RP rules. The first rule RP-LT initialisation (Fig. 11(a)) updates the Tau attribute (according to Eq. 4) of an informed node. When rewritten, the node stays informed and its MarkedN attribute is set to 1.

The second rule RP-LT activate (Fig. 11(b)) is in charge of the potential activations. When the Tau attribute indicates that the node n has been successfully influenced (when Tau ≥ 0), then its State becomes active and the isActive attribute is accordingly updated to match n's current state. In case of activation, we also set the Count attribute to γ to indicate the node will no longer be responsive to influence.

Every node aware of the propagation, who either decided to activate, or who has been influenced γ times, is entitled to compute its Share (6) and Sigma [START_REF] Chen | Scalable influence maximization for prevalent viral marketing in large-scale social networks[END_REF] attribute values. This is achieved by using the RP-LT share trial rule (Fig. 11(c)), which applies only to nodes whose Count attribute exceeds or equals γ.

The last rule is RP-LT inform (Fig. 11(d)). The active or informed node information. When n is rewritten, its influence counter is incremented to keep track of the operation (Count = Count + 1). Depending on its Sigma's value, the node n in P will share the information with its inactive neighbours n which have been influenced less than γ times and

have not yet been contacted by n. The RP-LT inform rule (Fig. 11(d)) then marks the connection between n and n and updates some of the informed node n attributes: JointInf is recomputed taking into account the new Influence of n on n (Eq. 3), the influence counter Count is incremented to track the new influence, and the marker MarkedN is reset to its default value, indicating that some changes have been applied to the attributes of n .

To guarantee that the node in P will match with the aware node (active or informed) and not with the inactive node (unaware or informed), we use located rewriting (Definition 6). We define the aware node (green/blue) of the left-hand side as being part of the W set, thus forcing the node in position P to match with this element, ensuring the appropriate elements are rewritten as intended.

Proposition 20. The strategic rewrite program given by rules in Figure 11 and The main repeat loop stops when N k is empty (step RP-LT.5), i.e., when all the informed nodes are marked (MarkedN = 1).

Termination of the RP-LT strategy is a consequence of the fact that the strategy eventually run out of suitable nodes to apply RP-LT initialisation on, that is N k = ∅. The rule updates the MarkedN attribute value which will only be reset to 0 in RP-LT inform when a new influence touch the node; this operation however can only happen a limited number of times (set by γ's value). Afterward, the MarkedN attribute will no longer be modified thus leaving the node as unmatchable for future applications. We ensure that the command one(RP-LT initialisation) (line 4) in the body of the repeat will fail, hence that the program will terminate. We also use the marking of edges in rule RP-LT inform to guarantee that each connected pair is only considered once. This ensures that the nested repeat loop comes to an end when all inactive neighbours have been visited (thus leaving RP-LT inform to fail).

A framework to study social networks

At this point, we may argue that we have the ingredients for a social network modelling framework:

-in Section 3, we have explained how to generate social network models tailored to various sizes, number of links and communities. The capability of generating arbitrary models is important to validate new methods or algorithms and check their behaviour.

-in Section 4, we have formalised with labelled port graphs, rules and strategies, three known models of propagation with different properties. We identified common basic features (attributes, rules, strategies) and simultaneously better understood what is different between these three approaches. For instance, we have identified that the obfuscation property is ensured by the addition of new -The environment can for instance be used to compare two propagation models in the same line as done in [START_REF] Vallet | A visual analytics approach to compare propagation models in social networks[END_REF]. Visualisation provides a first intuition for comparing two models applied to the same starting network, but indeed comparison needs to use measurement methods appropriate to propagation phenomena in social networks. This is left for future work.

Conclusion

Our first experiments and results on generation and propagation in social networks illustrate how labelled port graph strategic rewriting provides a suitable common formalism in which different mathematical models can be expressed and compared. In Section 3, we have shown the power of topological matching and the importance of strategies, while in Section 4, the attributes have been heavily used to steer the rewriting operations. In both sections, rules are quite simple but apply to big graphs.

For the social network community, the rewrite rule approach is not quite surprising because some works such as [START_REF] Kejžar | Probabilistic inductive classes of graphs[END_REF] already use rules to generate social networks, although without claiming it. Expressing different models in the same formalism facilitates the comparison of algorithms and models. With the development of social networks analysis, there are many opportunities where simulations can indeed be of assistance during decision taking, for instance to prevent bad situations, to test counter-measures, or to look for optimal diffusion strategy. Although we did not develop this aspect here, when modelling the evolution of a network, the derivation tree (also a port graph) provides support for history tracking, state comparison, state recovery and backtracking.

Overall, several issues remain to be addressed. Although graph rewriting has been largely studied, social network applications have only recently been developed, and require a drastic change of scale. Dealing with millions of nodes and edges requires great attention to size and complexity. There is also room for improvement in data storage and retrieval (relevant for graph data bases), subgraph matching algorithms -either exact or approximate-for finding one or all solutions, parallel graph rewriting avoiding dangling edges, and probabilistic or stochastic issues for matching and rewriting, for instance, in the context of imprecise data or privacy constraints.

Also related to size, but even more to complexity of data, there is a need for data structuring and management, that may be carried on by abstraction pattern, focusing on points of interests, hierarchies and views (for instance, through multi-layer graphs). All these notions need a precise and logical definition that may be influenced by well-known programming language concepts.

Like programs, data need certification and validation tools and processes, not only at a single step but all along their evolution. The knowledge developed in the logic and rewriting community should be valuable in this context.

This study has also revealed the importance of visualisation and raises some challenges in this area. Visualisation is important, more widely, for data analysis, program engineering, program debugging, testing or verifying. However, the representation of dynamic or evolving data, such as social networks or richer graph structures, is yet an actual research topic for the visualisation community.

M arked = 1 Figure 1 :

 11 Figure 1: Example of port graph for a toy social network

Figure 2 :

 2 Figure 2: A screenshot of Porgy in action.

 denoted by → * R . A port graph on which no rule is applicable is irreducible. To facilitate the specification of graph transformations, we use the concept of located graph from [13]. Definition 5 (Located graph). A located graph G Q P consists of a port graph G and two distinguished subgraphs P and Q of G, called respectively the position subgraph, or simply position, and the banned subgraph.

 size, that is, for which the number of nodes |N | and directed edges |E| are given a priori. Moreover, the graphs generated should satisfy the following conditions: they must have only one connected component, thus |E| ≥ |N | -1; they should be simple, that is, any ordered pair of nodes (n, n) can only be linked once, thus the maximum number of edges is |E| max = |N | × (|N | -1); finally, the number of communities should be randomly decided during the generation process.

 the two rules shown in Figures3(a) and 3(b). Both rules apply to a single node and generate two linked nodes (thus each application increases by one the 385 number of nodes and also the number of edges). The difference between these two rules lies in the edge orientation as Rule 3(a) creates an outgoing edge on the initiating node, while Rule 3(b) creates an incoming edge.(a) Rule GenerationNode1. (b) Rule GenerationNode2.

Figure 3 :Strategy 1 :

 31 Figure 3: Rules used for generating and re-attaching nodes to pre-existing node with a directed edge going from the pre-existing node to the newly added node in (a) or oriented in the opposite direction in (b).

 use two rules to link existing nodes, thus creating a new additional edge with each application. The first rule (Fig. 4(a)) simply considers two nodes and adds an edge between them to emulate the creation of a (one-sided) connection between two users. The second rule (Fig. 4(b)) reciprocates an existing connection between a pair of users: for two nodes n, n ∈ N connected with an oriented edge (n , n), a new oriented edge (n, n) is created; it is used to represent the mutual appreciation of users in the social network. Note that, because each node is randomly chosen among the possible matches, we do not need to create alternative versions of these rules with reversed oriented edges.(a) Rule GenerationEdge. (b) Rule GenerationMirror.

Figure 4 :

 4 Figure 4: Rules generating additional connections: (a) between two previously unrelated nodes, (b) by reciprocating a pre-existing connection.

 (a) Rule CommunityLegacy. (b) Rule CommunityDown.(c) Rule CommunityUp.

Figure 5 :Strategy 3 : 5 (6 (7) 10 (12) 15 (17), 1 / 3)

 535671012151713 Figure 5: Generation of additional connections based on triads. Two distinctive edge types are used: standard arrow edges for representing existing connections and cross-shaped headed edges for indicating edges which should not exist during the matching phase.

Proposition 8 .

 8 Given three positive integer parameters |N |, |E|, |E |, such that |N | -1 ≤ |E| ≤ |N | × (|N | -1) and |E | ≤ |E| -|N | + 1, let the strategy S |N |,|E|,|E | be the sequential composition of the strategies Node generation, Edge generation and Community generation described above, and G 0 be a port graph composed of one node with one port. The strategic graph program [S, G 0] terminates with a simple and weakly-connected directed port graph G with |N | nodes and |E| edges.

 that by construction, the strategy Node generation creates a new node and a new edge at each step of the repeat loop, exactly |N | -1, and is the only strategy that creates new nodes. Hence, after applying the Node generation strategy, the graph created has exactly |N | nodes and |N | -1 edges. The strategies Edge generation and Community generation create a new edge at each step of the repeat loop, so respectively |E | and |E| -|E | -|N | + 1. As a result, when the strategy S terminates, the number of edges created is equal to |N |-1 + |E | + |E| -|E | -|N | + 1 = |E|.

Figures 6 and 7 Fig. 7 .

 77 Figures 6 and 7 are two examples of social networks generated using a sequential composition of the previous strategies. Although both graphs have the same number of nodes and edges (|N | = 100 and |E| = 500), they have been generated with different |E |, respectively |E | = 50 for Fig. 6 and |E | = 0 for Fig. 7. This changes the number of purely random edges created in the resulting graph and explains why the first graph seems to visually present less structure than the other one. Conversely, a graph with only randomly assigned edges could be generated with |E | = |E| -|N | + 1.

Figure 6 :Figure 6 (

 66 Figure 6: A generated social network. |N | = 100 nodes, |E| = 500 edges and |E | = 50. With these parameters, the average characteristic path length is L 2.563 and the average clustering coefficient is C 0.426.

Figure 7 :

 7 Figure 7: A generated social network. |N | = 100 nodes, |E| = 500 edges and |E | = 0. With these parameters, the average characteristic path length is L 3.372 and the average clustering coefficient is C 0.596.

520(

 such as relaying information, announcing an event, spreading gossip, sharing a video clip), thus becoming active. Their neighbours are then informed of their state change, and are offered the possibility to become active themselves if they perform the same action. The process then reiterates as newly active neighbours share the information with their own neighbours, propagating the 525 activation from peer to peer throughout the whole network.

State

 transformations we need to represent using the rewrite rules. We name the first step the influence trial, during which an active node n tries to influence an inactive neighbour n (where n is either unaware or just informed). The following step is the activation of n , where the node becomes active once it has been successfully influenced. -for each model, we use an attribute called Tau to store the influence level of the informed nodes. Computed/updated during the Influence trial step, this attribute is by default initialised to -1 and can take a numerical value in [-1, 1]. These principles are carried out in the following examples of propagation mechanisms. With each model, we introduce visual representations of the rules applied to perform the rewriting operations. We mention in their left-hand sides the attributes that are used in the matching process, and in their right-hand sides the attributes whose values are modified during the rewriting step. The specifications are detailed hereafter.

IC. 3

 3 be the subset of nodes initially active, N k be the set of active nodes at step k, and ξ be the set of ordered pairs (n, n) subjected to a propagation from n (active) toward n (inactive). The set N k of nodes is computed from N k-1 , by adding nodes as follows.IC.2We consider an active node n ∈ N k-1 and an inactive node n (∈ N k-1) adjacent to n but whom n has still not tried to influence yet: n ∈ Ngb(n)\ N k-1 , and (n, n) ∈ ξ. A given node n is only offered one chance to influence each of its neighbours, and it succeeds with a probability p n,n ; thus we add the pair (n, n) to ξ to avoid repeating the same propagation. If the adjacent node n is successfully activated, it is added to the set of active nodes N k .

 (a)), shows a pair of connected nodes in the left-hand side and their corresponding replacements in the right-hand side. The node n , initially unaware (in red), or already informed (in blue) by another neighbour, is influenced -successfully or not-in the left-hand side by an active node n (in green) connected through an unmarked edge (its attribute Marked is equal to 0). In the right-hand side, n remains unchanged while n becomes -or staysblue to visually indicate that it has been influenced by n and informed of the propagation. The updated influence level T au of n in the right-hand side is set according to Equation 1. Furthermore, the directed edge linking the two port nodes is marked, by setting to 1 the attribute Marked. This operation is performed to limit to one the number of influence attempt for each pair of active-inactive neighbours. Inactive nodes can thus still be influenced several times but only when visited by different active neighbours. State = active M arked = 0 State = active State = active M arked = 1 State = informed T au = Eq. 1 (a) IC influence trial: influence from an active neighbour on an inactive node (either unaware or just informed). State = informed T au ≥ 0 State = active (b) IC activate: an informed node becomes active when sufficiently influenced.

Figure 8 :

 8 Figure 8: Rules used to express the Independent Cascade model (IC): active nodes are depicted in green, informed nodes in blue and unaware nodes in red. A bi-colour red/blue node can be matched to either of the two corresponding states (unaware or informed).

Strategy 4 :

 4 Strategy progressive IC propagation 1 repeat(2 setPos(all(property(crtGraph, node, State == active))); 3 one(IC inf luence trial); 4 try(one(IC activate))

= 1

 1 State = informed JointInf = Eq. 3 T au = Eq. 4 (a) LT influence trial: Joint influence computation from an active neighbour on an inactive node (either unaware or just informed). State = informed T au ≥ 0 State = active (b) LT activate: an informed node becomes active when sufficiently influenced.

Figure 9 :

 9 Figure 9: Rules used to express the Linear Threshold model LT. Colours have the same meaning as previously: active nodes are green, informed nodes are blue and unaware nodes are red. A bi-colour red/blue node can be in either of the two states unaware or informed.

 (b)), is identical to the IC activate rule shown in Figure 8(b). A successfully influenced node, identified by the positive value of its Tau attribute, simply has its State attribute value set to active.

Strategy 5 :

 5 Strategy LT propagation 1 repeat(2 setPos(all(property(crtGraph, node, State == active))); 3 one(LT inf luence trial); 4 try(one(LT activate)) 5)

 10(b)) on it. Depending of the previously obtained Tau value for n, and more precisely ifT au ≥ 0, its activation can take place, thus putting n in an active state and setting isActive to 1.

State = informed M arkedN = 0

 0 State = informed T au = Eq. 5 M arkedN = 1 (a) RP initialisation: this rule is used to initialise an informed nodes aware of the propagation subject. State = informed T au ≥ 0 State = active isActive = 1 (b) RP activate: an informed node becomes active if its Tau attribute is greater or equal to 0. State = unaware State = unaware Share = Eq. 6 Sigma = Eq. 7 (c) RP share trial: whether a node is active or informed, the RP model can decide to use it to spread the information to others. State = unaware Sigma ≥ 0 M arked = 0 State = unaware State = unaware M arked = 1 State = informed (M arkedN = 0) (d) RP inform: a node aware of the information (active or informed), and selected to share its knowledge, informs an unaware neighbour.

Figure 10 :

 10 Figure 10: Rules used to express the Riposte model RP. Colours keep their meaning from the previous propagation models: active nodes are green, informed nodes are blue and unaware nodes are red. A bi-colour blue/green node can be either informed or active.

Strategy 6 :

 6 Riposte propagation model RP 1 repeat(2 setPos(all(property(crtGraph, node, State == inf ormed))); 3 setPos(one(property(crtPos, node, M arkedN == 0))); 4 one(RP initialisation); 5 try(one(RP activate)); 6 one(RP share trial); 7 repeat(one(RP inf orm)); 8)

3 8)

 8 setPos(one(property(crtPos, node, M arkedN == 0))); 4 one(RP-LT initialisation); 5 try(one(RP-LT activate)); 6 try(one(RP-LT share trial)); 7 repeat(one(RP-LT inform));As for the previous models, we use a repeat loop (line 1) to perform as many propagation steps as possible. We select an informed node (line 2) which has not yet been subject to an initialisation or which has since undergone changes (line 3). By applying RP-LT initialisation (Fig.11(a)) we mark the selected informed node (MarkedN = 1), compare the JointInf and Theta attributes and store the result in Tau (Eq. 4). This value is used when the strategy tries to apply the second rule RP-LT activate (Fig.11(b)) to activate the node (line 4). Only successfully applied if Tau is positive or null, the rule transforms the informed node into an active one, respectively modifying isActive and Count values to reflect the node current State and indicate that its decision concerning the propagation subject has been confirmed.The application of RP-LT share trial rule (Fig.11(c)) is the only difference between this strategy and the one proposed for RP (Strategy 6). Here, the Count attribute restricts the rule application to nodes which have either been influenced γ times or for which the joint influence is sufficient to persuade them to endorse the propagation subject (thus Count = γ from the RP-LT activate rule). As a result, only when the Count attribute of the node in P is set to the appropriate value, will the rule successfully apply. In such a case, the Share and Sigma attributes are computed using respectively Equations 6 and 7.

Strategy 7 Proof 21 .

 721 terminates and correctly implements the RP-LT model. If the initial set of informed nodes is empty, the strategic program immediately terminates without changing the graph. Otherwise, a step of propagation is performed as specified in points RP-LT.2 to RP-LT.4 (Definition 19): a single informed node n ∈ N k-1 , which has not yet passed the information (MarkedN = 0), is selected. The rule RP-LT initialisation marks the node and updates Tau as explained in Section 4.4.1 (step RP-LT.1). Then try(one(RP-LT activate)) tries to activate it, according to the value of Tau as explained in Section 4.3.1 (step RP-LT.2). Whether or not the node becomes active, its Share and Sigma attributes are updated by one(RP-LT share trial) (step RP-LT.2), provided it has been influenced γ times or is active but did not yet propagate the information (step RP-LT.3).The rule RP-LT inform propagates the information to an unaware neighbour of the node. Thanks to the marking of edges, the command repeat(one(RP inform)) terminates, and each newly informed node is unmarked (MarkedN = 0) and added to N k (step RP-LT.1).

 node attributes and rules that reflect intermediate state changes. This formalisation then helped us to design a new propagation model RP-LT, by combining the features of the LT and RP models. -The formalism used, based on labelled port graphs, rewrite rules and strategies, provides the logical background necessary to understand and analyse the programs and their executions. For instance we have shown how to prove the correctness of the different strategic rewrite programs for each propagation model. -Visualisation features provided in the Porgy environment are indeed an important component of the framework. The prototyping aspect of rules and strategies is amplified by visualisation of results, especially for large graphs. For instance, the result of generating a social network according to different parameters is illustrated quite well on examples of Section 3. Then the behaviour of a new propagation model like RP-LT can be experimented and visualised on a generated network with a selected topology.

 Then, Rule 4(a) or Rule 4(b) are equiprobably applied to add a new edge from the selected node. By banning neighbours, we ensure that future applications of the rule will not use those nodes, that is, the rule will only apply on pairs of nodes not already connected. This ensures that the graph is kept simple (i.e.,

only one edge per direction between two nodes). Strategy 2: Edge generation: addition of |E | edges if possible. 1 repeat(2 //select one node with an appropriate number of neighbours 3 setPos(one(property(crtGraph, node, OutArity < |N | -1))); 4 //for this node, forbid rule applications on its outgoing neighbours 5 setBan(all(ngbOut(crtPos, node, true))); 6 //equiprobable application of the edge generation rules 7 ppick((one(GenerationEdge))orelse(one(GenerationM irror)), 0.5, 8 (one(GenerationM irror))orelse(one(GenerationEdge)), 0.5); 9)(|E |) In this phase, we create |E | edges, where |E | < (|E| -|N | + 1) to keep the number of edges below |E|. The use of the orelse construct allows testing all possible rule application combinations, thus, if one of the rules can be applied, it is found. If no rule can be applied, the maximum number of edges in the graph has been reached, i.e., the graph is complete. If the value of |E | is not too high, we are left with (|E| -|E | -|N | + 1) remaining edges to create in the next step for enforcing communities within G.

 4, Definition 16) and updates Tau as explained in Section 4.3.1. Then try(one(RP activate)) tries to activate n with a probability p n , recorded in the attribute Interest, and reflected by the value of Tau as explained in Section 4.3.1. Whether or not the node becomes active, its Share attribute, updated by one(RP share trial), expresses the user's (private) opinion to be active or not, and takes into account the parameters λ and δ of the propagation model. The value of the Sigma attribute indicates the probability of sharing the information with all its neighbours, as specified in Definition 16, point RP.3.

 Definition 19 (Propagation process in RP-LT). Let p n,n , p n S n (k) , θ n , λ, δ, γ and S n be defined as above. The model RP-LT is specified as follows:RP-LT.1 Let N 0 ⊂ N be the subset of nodes initially aware of the information and let N k be the set of informed nodes at step k who did not try to pass on the information to their neighbours yet. The set N k of nodes is computed from N k-1 , by adding and deleting nodes as follows.RP-LT.2 For a node n ∈ N k-1 , n activates if the joint influence it is subjected to is at least equal to its resistance, i.e., p n S n (k) ≥ θ n .

RP-LT.3

If n activates successfully, regardless of the number of times it has been influenced, then all its neighbours are added to N k with a probability λ/S n . Otherwise, for an inactive n which has been influenced γ times, all its neighbours are added to N k with a probability δ/S n . RP-LT.4 When n's neighbours, noted n , are added to N k , their respective joint influence is updated to take into account the fact that n shares the information:

 The rewriting operations are applied according to Strategy 7. Just like the strategies used for IC and LT, the ones defining the RP and RP-LT are very similar. For each rule application considered hereafter, we reinsert the newly rewritten elements in position P .

	4.4.3. Strategy
	Strategy 7: Riposte with Linear thresholds propagation model RP-LT
	1 repeat(

2 setPos(all(property(crtGraph, node, State == inf ormed)));

For instance from http://snap.stanford.edu or http://konect.uni-koblenz.de/

This situation can produce some sort of transitivity as "the idol of my idol is my idol", meaning that A is much likely to influence C. We use here the term "idol" instead of the more classical "friend" because we only consider single-sided relations.

When in this position, the users B and C might start exchanging (similar connections, common interests. . .), thus creating a link between the two of them.

This case can happen when A and C are well-versed about a common subject of interest which is of importance to B. A link is thus created between the two influential users.

Porgy website: http://porgy.labri.fr

Recall that a rule can only be applied if the matching subgraph contains at least one node belonging to the position P , and no element belonging to the banned set Q.

Acknowledgements. We thank Guy Melançon (University of Bordeaux) and all the other members of the Porgy project.

end (line 4). However, if a matching node n exists in position P , the rule is applied on it and its Tau attribute is computed according to Equation 5. The rewritten node is then inserted in P and ready for the next rule application.

With our candidate node at hand, we can propose to it to endorse the propagation subject and activate. We thus try to apply the RP activate rule (line 5). As shown in Figure 10(b), in addition to State as matching attribute, Tau is the real filtering condition to decide whether the selected informed node can become active. This operation is optional as, in RP, the activation and propagation are distinct mechanisms, and thus its application, thanks to the try strategy, cannot fail. We use the isActive attribute to store the result of the activation trial and add the rewritten node to P .

We then apply RP share trial (Fig. 10(c)) on the node n (line 6) which can either be active or just informed if it did not satisfy the matching conditions of RP activate. The transformation computes new values for n's Share (Eq. 6)

and Sigma (Eq. 7) attributes while keeping the rewritten node n in P . These values indicate to the RP model whether to use n as a starting point to spread the information to its neighbours. This leads us to the nested repeat loop applying RP inform (Fig. 10(d)) to all neighbours (line 7). If the (indifferently informed or active) node has been selected to inform its unaware neighbours (n), then its Sigma attribute is greater or equal to 0. The rule application sets the State attribute of n to informed and, through its Marked attribute, marks the edge connecting the two nodes to avoid multiple applications of the rule on the same pair of nodes.

The newly informed node is now eligible to be subjected to a propagation step itself as its MarkedN attribute is still equal to its default value.

Proposition 17. The strategic rewrite progam given by rules in Figure 10 n successfully selected to spread the information (Sigma ≥ 0), shares it with its unaware or informed neighbours n . To avoid multiple matching with the same pair of connected nodes, the edge between n and n is marked. The joint influence probability of n is updated using Equation 3 and the node is unmarked to indicate a change has happened (MarkedN = 0). The propagation 1090 step is only targeting inactive nodes which have been influenced less than γ times since then n should be able to form an opinion concerning the shared