
HAL Id: hal-01429890
https://hal.science/hal-01429890

Submitted on 9 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Strategy-Driven Exploration for Rule-Based Models of
Biochemical Systems with Porgy

Oana Andrei, Maribel Fernández, Hélène Kirchner, Bruno Pinaud

To cite this version:
Oana Andrei, Maribel Fernández, Hélène Kirchner, Bruno Pinaud. Strategy-Driven Exploration
for Rule-Based Models of Biochemical Systems with Porgy. Bill Hlavacek. Modeling Biomolecu-
lar Site Dynamics, 1945, Springer, pp 43-70, 2019, Methods in Molecular Biology, 978-1-4939-9100-6.
�10.1007/978-1-4939-9102-0_3�. �hal-01429890�

https://hal.science/hal-01429890
https://hal.archives-ouvertes.fr


Strategy-Driven Exploration for Rule-Based
Models of Biochemical Systems with Porgy

Oana Andrei1, Maribel Fernández2, Hélène Kirchner3, and Bruno Pinaud4

1 School of Computing Science, University of Glasgow, UK
oana.andrei@glasgow.ac.uk
2 King’s College London, UK
maribel.fernandez@kcl.ac.uk

3 Inria, France
helene.kirchner@inria.fr

4 University of Bordeaux, CNRS UMR5800 LaBRI, France
bruno.pinaud@u-bordeaux.fr

Abstract. This paper presents Porgy – an interactive visual envi-
ronment for rule-based modelling of biochemical systems. We model
molecules and molecule interactions as port graphs and port graph rewrite
rules, respectively. We use rewriting strategies to control which rules to
apply, and where and when to apply them. Our main contributions to
rule-based modelling of biochemical systems lie in the strategy language
and the associated visual and interactive features offered by Porgy.
These features facilitate an exploratory approach to test different ways
of applying the rules while recording the model evolution, and tracking
and plotting parameters. We illustrate Porgy’s features with a study of
the role of a scaffold protein in Raf-1/MEK/ERK signalling.

Key words: Computational systems biology, Biochemical networks,
Rule-based modelling, Graph transformations, Strategic rewriting, Vi-
sual Analytics Software

1 Introduction

The study of biochemical networks is a difficult task due to the usually high
number of underlying processes and large body of data, some of which are only
partially available at best. Rule-based modelling techniques [11] have been suc-
cessfully applied in this area, giving rise to a methodology where the state of
the biochemical network at a given point in time is represented as a data struc-
ture, and its dynamic behaviour as a set of rules (or transformations) describing
changes of state. This methodology is supported by several software tools (see
Section 1.2).

To facilitate the tasks associated with the specification, simulation, and anal-
ysis of biochemical networks, we propose a modelling framework based on the
use of port graphs with attributes to represent system states. A port graph is a
graph where edges connect to nodes at specific points, called ports. Nodes, ports



and edges in the graph describe the network components and their relationships,
while the attributes encapsulate the data values associated with each element.
We use port graph rewrite rules to describe the evolution of the system by means
of particular graph transformations.

Port graph rewrite rules are graphical representations of transitions in the
system, thus they provide a direct, visual mechanism to observe the system’s
behaviour, as opposed to textual specifications, which usually require more effort
to be interpreted by humans5.

In addition to port graphs and rewrite rules, we consider it essential to add
explicitly a third ingredient, which is often left implicit in this kind of modelling
framework: together with an initial port graph and a set of port graph rewrite
rules, our models include a strategy expression, which controls the application
of the rules. Strategies help modellers when priorities over rule applications are
known rather than exact reaction rates, when they want to bound the number
of certain rule applications, or when they want to restrict the rule applications
to certain parts of the graph. Thus, starting from a port graph representing
the initial state of the system, and given a set of port graph rewrite rules, the
strategy expression defines which transformation steps (among potentially many
possible rule applications) are feasible. It may be the case that more than one
transformation is possible at a given state, in which case instead of a single trans-
formation step, we may have several alternatives, and in turn, generate several
different sequences of steps starting from a given state. The various transforma-
tion sequences are organised as a tree, which we call the derivation tree. In other
words, given an initial state and a set of rules, instead of implementing a specific
strategy of application of the rules, we allow the users to specify the way rules
should apply. This explicit control is done using a set of control operators, that
indicate when and where to apply the rules.

This approach has been implemented in Porgy – an interactive visual envi-
ronment for rule-based modelling of complex systems. Porgy provides support
for the definition of graph-based models, the representation of rules describing
model transformations, and the specification of strategies to control the applica-
tion of rules (see Fig. 1). The derivation tree is itself a data structure that gives
users access to the history of the system (i.e., the various states that preceded the
current state). Porgy provides an interface to interact with the model, which
includes visualisation of the derivation tree. In this way, users can analyse the
system, track specific molecules, measure quantities of relevant elements at dif-
ferent points, compare concentrations, scatterplot, visualise alternative traces,
etc.

1.1 Contributions

Our approach contributes to the general rule-based modelling trend of complex
systems. Although Porgy is a general purpose modelling environment, not ex-
5 “A picture is worth a thousand words” – Traditional idiom.



Fig. 1. Overview of Porgy. The panels (see the black numbers in the top right corner)
permit to (1) edit a graph (representing a state of the model); (2) edit a rule; (3) show
the available rules; (4) display the derivation tree, a complete trace of the computing
history; (5) write a strategy, using the strategy editor.

clusively dedicated to biology, its design has been strongly inspired from the
study of biochemical systems and we focus here on this specific domain.

Our purpose is to introduce the main concepts of Porgy and present what
distinguishes it from other rule-based modelling frameworks:

– Porgy is an interactive visual environment that offers graphical represen-
tations of different ingredients: the model species as port graph elements,
the reactions as port graph rewrite rules, the biological pathways as strate-
gic derivations. Thus, we do not need to go through writing an encoding of
the model species and reactions, but simply use these visual representations.
Porgy also provides useful visual tools for representing the system’s evo-
lution history and for plotting parameters evolution. Visualisation is quite
helpful in a modelling environment to get intuitions when searching for an
expected event or to debug a model.

– When studying biochemical systems that evolve along transformation steps,
it is important to be able to have access to the evolution history. For that
purpose, the derivation tree is displayed and provides visual execution traces
of the process. The history of transformations leading to a state is available,
as well as branching points where different choices are possible. This enables
the causal analysis of specific events or components by placing a derivation
under scrutiny.

– Through its strategy language, Porgy provides an explicit and flexible con-
trol mechanism for applying rules. By making the strategy explicit, we give



the user the possibility to specify where, in which order and how rules are
applied. This finer description is often useful to specify the behaviour of
complex systems and to be able to ensure some properties like termination
of the transformation process or absence of conflicts. Moreover the user can
also easily modify the strategy while keeping the same rules and so perform
different in-silico experiments. For instance, we will see (in Section 3) how
when we only have partial or approximate knowledge of the reaction rate
constants, we can easily modify the strategy to perform different in-silico
experiments.

1.2 Related Works

Pfaltz [29] was an early advocate of graph grammars, using graphs to represent
pictures and geometrical problems. Bunke [10] proposes the use of attributed
graphs and graph transformations to interpret diagrams and flowcharts. This
work gave rise to numerous applications in a variety of domains (e.g., music no-
tation, programming language implementation, software engineering, synthetic
biology). In all these works, graph transformations are usually specified by means
of rules [13,17].

More recently, graph rewriting has been implemented in a variety of program-
ming languages and modelling tools, however, in most cases a fixed strategy is
used for rule application. Tools such as BioNetGen [19], RuleBender [36], Mos-
bie [39] and Kappa [15] integrate visualisation with modelling and simulation
of rule-based intracellular biochemistry with emphasis on visual model explo-
ration and integrated execution of simulations. States are represented by graphs
describing the system components, often called agents; their interactions are de-
fined by rules governed by associated rate constants, which determine how fre-
quently the rules apply. BioNetGen explicitly uses the structure of port graphs,
while the other tools use graph-based structures with labels.

Our contribution and main difference with respect to the rule-based tools
enumerated above is the general strategy language, which allows the modeller to
define explicit control over the application of a set of rules, and the inclusion of
the derivation tree as part of the visualisation framework, which gives the mod-
eller access to all the traces (i.e., sequences of transformation steps) to facilitate
the analysis of the system’s evolution.

Some tools offer users basic mechanisms to define strategies. In AGG [18], ap-
plication of rules can be controlled by defining layers and then iterating through
and across layers. PROGRES [34] allows users to define the way rules are ap-
plied and includes non-deterministic constructs, sequence, conditional and loops.
The Fujaba Tool Suite [28] offers a basic strategy language, including condition-
als, sequence and method calls, but no concurrency. GROOVE [33] permits to
control the application of rules, via a control language with sequence, loop,
random choice, try()else() and simple function calls. In GReAT [6] the pattern-
matching algorithm always starts from specific nodes called “pivot nodes”; rule
execution is sequential and there are conditional and looping structures. Gr-
Gen.NET [23] uses the concept of search plans to represent different matching



strategies. GP [32] is the closest to Porgy in that it is a rule-based, non-
deterministic language, where users can program their own strategy to define
which rules are applied (but not where; there are no positioning constructs in its
strategy language). GP’s strategy language has three main control constructs:
sequence, repetition and conditional. Only one derivation is built, although early
versions of GP used a Prolog-like backtracking technique to explore the deriva-
tion tree. The tool described in [1] for chemical space exploration uses graphs to
represent models of chemical compounds and rules to simulate their reactions,
however, since the purpose is the exploration of very large chemical spaces, the
notion of transformation step has been adapted to include partial rule appli-
cations, and the strategy language is geared towards systematic exploration of
spaces of graphs, including predicates to prune unwanted derivations.

None of the available tools permits users to visualise the derivation tree, as in
Porgy, where users can interactively navigate on the tree, visualise alternative
derivations, follow the development of specific redexes (reactants), etc.

Porgy’s strategy language is strongly inspired by GP and PROGRES, and
by strategy languages developed for term rewriting, such as Elan [7] and Strat-
ego [38]. The sublanguage to manipulate rewrite positions in Porgy is a lower
level version of the built-in (predefined) traversal mechanisms available in term-
based languages.

The probabilistic primitives in Porgy’s strategy language (in particular,
the ppick commands) allow users to model basic dynamic behaviour in non-
deterministic and probabilistic systems. These features are used to deal with
uncertainties and large volumes of data. The current implementation permits
to use constants to specify probabilities in ppick commands, and offers a more
general version of the command that incorporates a probability distribution as
a parameter. In this way, it is possible to incorporate sophisticated behaviours
(for example, where the application rate of rules depends on specific internal or
external parameters).

To perform stochastic simulation in biological signalling pathways specifi-
cally [14], the Kappa language [15, 16] and the BioNetGen system [19] provide
for each state of the system and each rule, a rate law used to determine the
probability that a reaction occurs within a given fixed time step. How to com-
pute this probability is detailed for instance in [12]; tools such as KaSim [14,15],
LBS-Kappa and LMS-Kappa have been implemented to facilitate the creation
and manipulation of Kappa models.

Both Kappa and BioNetGen offer mechanisms to combine modules in order
to build systems in an incremental way. In Porgy, strategies can be named and
then used as macros in other strategies. This offers basic support for modular
design at strategy level. Higher-order port-graphs [22] formalise a notion of hi-
erarchical port-graph that could be used to support incremental definition of
models; this feature is under development for Porgy.



1.3 Outline

The paper is structured as follows. In Section 2, we describe the Porgy tool,
which implements the rule-based modelling approach presented in this paper.
Section 3 illustrates the approach via examples. We study a model of an A-
kinase anchor protein (AKAP) and its mediating role in the crosstalk between
the cyclic AMP (cAMP) and the Raf-1/ERK/MEK signalling pathway with re-
spect to the activity of the cAMP-specific phosphodiesterase-8A1 (PDE8A1).
We introduce the concepts of port graphs and port graph rewrite rules, and
show how we use these structures to represent the molecular species and reac-
tion rules. We then introduce the strategy language, give examples of strategy
expressions for our AKAP model, and discuss some possible experiments and
analysis options offered by Porgy. Section 4 provides additional information
about port graph rewriting systems and strategies, and gives technical details
about Porgy’s implementation and installation.

2 Software

Porgy [4,20,30] is a visual environment that allows users to define port graphs
and port graph rewrite rules, and to apply the rewrite rules in an interactive way,
or via the use of strategies. A distinctive feature of Porgy’s strategy language
is that it allows users to use not only operators to combine graph rewriting rules
but also operators to define the location in the target graph where rules should,
or should not, apply. Users can create graph rewriting derivations and specify
graph traversals using the language primitives to select rewriting rules and the
subgraphs where the rules apply.

In order to support the various tasks involved in the study of a port graph
rewriting system, the system provides facilities:

– to view each component of the rewriting system: the current graph being
rewritten (or any other previous state), the derivation tree, the rules and
the strategy, with drag-and-drop mechanisms to apply rules and strategies
on a given state,

– to explore a derivation tree with all possible derivations,
– to perform on-demand reduction using a strategy expression, which permits

to restrict or guide reductions,
– to track the reduction process throughout the whole derivation tree,
– to navigate in the derivation tree, for instance, backtracking and exploring

different branches,
– to plot the evolution of a chosen parameter (a specific element in the port

graph structure) along a derivation. The system supports synchronisation
between the different views: selecting points on the plot view triggers the
selection of the corresponding nodes in the derivation tree. Such a mechanism
helps to track properties of the output graph along the rewriting process (see
Sect. 3.5).



These features have been successfully applied to propose a visual analytics ap-
proach to compare propagation models in social networks in [21,37].

Porgy is implemented on top of the open-source visualisation framework
Tulip [5] as a set of Tulip plugins. The latest version of Porgy (including
Tulip) can be downloaded from http://porgy.labri.fr either as source code
or binaries for MacOS and Windows machines. The Tulip library natively sup-
ports many features for graph generation, manipulation and visualisation. We
refer the reader to [20, 31] for more details about the interactive features of
Porgy and how they are implemented with Tulip. See Note 4.5 for informa-
tion about how to install Porgy.

3 Methods

We illustrate the use of Porgy with a model of an A-kinase anchor protein
(AKAP) and its mediating role in the crosstalk between the cyclic AMP (cAMP)
and the Raf-1/ERK/MEK signalling pathway with respect to the activity of the
cAMP-specific phosphodiesterase-8A1 (PDE8A1). The Raf-1/ERK/MEK pathway
plays an important role in cell growth, prevention of apoptosis, cell cycle ar-
rest and induction of drug resistance in cells [27]. The interactions between
these molecules and pathway are complex and still under study in the labora-
tory [8,9]. An initial rule-based model was formalised in [2,3] using a population-
based continuous-time Markov model. Our illustrative biological example follows
the hypotheses put forward by biologists about the cAMP-degrading effect of
PDE8A1 either bound or not an AKAP scaffold. Using Porgy as a modelling,
simulation and analysis tool, we show that indeed the fully filled scaffold in-
creases the output of the signalling more than the partially filled scaffold.

In the following we walk through the AKAP model to introduce the concepts
of port graphs and port graph rewrite rules, and show how we use these structures
to represent the molecular species and reaction rules. We then introduce the
strategy language, give examples of strategy expressions for our AKAP model,
and discuss some possible experiments and analysis tools available in Porgy.

3.1 Molecules as Port Graphs

Graphical notation is a simple communication tool to use by both (computa-
tional) biologists and computer scientists. A port graph is a graph where nodes
have explicit connection points called ports; edges are attached to ports. Nodes,
ports and edges are labelled by a set of attributes. For instance, a port may be
associated with a state (e.g., active/inactive or principal/auxiliary) and a node
may have properties such as colour, shape, etc. Attributes (see Note 4.1) may
be used to define both the behaviour of the modelled system and for visualisa-
tion purposes. We represent molecular species as port graphs in a simple way:
each molecule is represented by a node whose ports correspond to its binding or
phosphorylation sites.



In Porgy, nodes, ports and edges between ports have sets of attributes at-
tached to them, whose values may vary along the simulation. Standard attributes
for all nodes are Name for identifying the type of species, as well as Colour and
Shape, which have the same values for all nodes with the same Name. Additional
attributes specific to the modelling can be defined.

In intracellular signal transduction pathways scaffolds are proteins exhibiting
two main functions [26]: anchors for particular proteins in specific intracellular
locations for receiving signals or transmitting them and catalysts for increasing
the output of a signalling cascade or decreasing the response time for a faster
output under certain circumstances. A-Kinase Anchoring Proteins (AKAP s) are
a family of scaffolds proteins with the ability of binding the regulatory subunit
of protein kinase A (PKA). Recently many computational models were stud-
ied in order to provide insight about how AKAP regulates signalling dynamics
and cardiovascular pathophysiology [25]. Our AKAP scaffold models have three
binding sites: one for the protein PKA, one for the enzyme Raf-1, and one for
the enzyme PDE8A1, with the latter not always bound to AKAP. In this paper
we are investigating two slightly different AKAP scaffold models: M1, where all
binding sites are filled, and M2, where PDE8A1 is not bound.

The molecular species of our AKAP models are the following:

– scaffold protein AKAP with three binding sites, s1, s2, and s3;
– nucleotide cAMP with one binding site s1;
– protein PKA with one site s1 bound to AKAP’s site s1 and one site s2 for

binding to cAMP’s site s1; we say that PKAis active when bound to cAMP;
– Raf-1 enzyme with two sites: the site s1 bound to AKAP’s site s2 and the

phosphorylation site s2;
– enzyme PDE8A1 with one site s1 for binding to the scaffold’s site s3 and one

phosphorylation site s2; we say that PDE8A1 is more active when the site s2
is phosphorylated;

– activation signal SA –an artificially introduced entity whose role is explained
later in the description of the reaction rules.

Fig. 2 illustrates the port graph representations of the molecular species in
our AKAP model: a filled scaffold protein AKAP binding together PKA, Raf-1, and
PDE8A1; a partially filled protein AKAP binding together only PKA and Raf-1;
an unbound cAMP; a signal molecule; an unbound PDE8A1. In the graphical
representation, we fill in the sites with black when bound to another site, with
a grey shadow when activated, otherwise the sites are white-filled.

3.2 Model Behaviour and Reaction Rules

The AKAP scaffold binds together PKA, Raf-1, and sometimes PDE8A1. One
of the biologists’ hypothesis concerns the effect of PDE8A1 on degrading cAMP
and, as a consequence, on the Raf-1 activation. In the following we detail the
overall behaviour of our AKAP model.

If the concentration of cAMP rises above a given threshold, cAMP activates
PKA by binding to it. Activated PKA catalyses the transfer of phosphates to the



AKAP PKA

Raf-1

PDE8A1

cAMP

σ

PDE8A1

AKAP PKA

Raf-1
s₁

s₁ s₁

s₁ s₂

s₁ s₂

s₃s₃

s₂

s₁ s₁

s₁

s₁

s₂

s₂

s₂

s₁

s₂

Fig. 2. Molecular species in the AKAP model.

phosphorylation site s2 of Raf-1. Only when s2 is dephosphorylated, the path-
way Raf-1/MEK/ERK is activated and the signalling cascade begins; we represent
this by the creation of a signal molecule σ. The catalytic function of PKA some-
times couples with the AKAP, by binding PKA together with phosphodiesterase
PDE8A1 on the scaffold to form a complex that functions as a signal module.
Under these conditions, as the cell is stimulated, cAMP activates PKA, and then
PKA is responsible for the activation of PDE8A1 (by phosphorylation). PDE8A1
degrades cAMP, but if phosphorylated, PDE8A1 degrades more cAMP, hence
rapidly reducing the amount of cAMP that can activate PKA. This leads to a
feedback mechanism for downregulating PKA.

In order to analyse the effect of PDE8A1 on the cAMP degradation, we analyse
two models:

– M1 only with filled scaffolds (the three sites are bound to PKA, Raf-1, and
PDE8A1) and no unbound PDE8A1 molecules,

– M2 only with unfilled scaffolds (the binding site for PDE8A1 is free, the other
two are bound) and unbound PDE8A1 molecules.

In the following, we detail the two sets of rules for each model, before de-
scribing their representation as port-graph rewrite rules.

Overview of the reaction rules in M1. There are fourteen rules in this model:
R1, . . . , R14; we explain them in turn. Free cAMP activates PKA by binding to its
free port (R1). Active PKA catalyses the transfer of phosphates to the phospho-
rylation site s2 of Raf-1 both when PDE8A1 is unphosphorylated (R2) or when
PDE8A1 is phosphorylated (R3). Active PKA also acts to phosphorylate PDE8A1
and, as a consequence, to enhance PKA’s activity in both cases when the site s2
of Raf-1 is unphosphorylated (R4) or phosphorylated (R5) respectively. When
cAMP is released as it unbinds from PKA, PKA becomes inactive and, conse-
quently, Raf-1 and PDE8A1 are unphosphorylated, and a signal molecule SA is
created to mark that the Raf-1/MEK/ERK is activated (see Fig. 3). Unphospho-
rylated PDE8A1 degrades cAMP when PKA is active and Raf-1 inactive (R7),
when PKA is active and Raf-1 unphosphorylated (R8), when PKA is inactive and
Raf-1 phosphorylated (R9), and when PKA is active and Raf-1 phosphorylated
(R10). Phosphorylated PDE8A1 also degrades cAMP when PKA is inactive and



Raf-1 unphosphorylated (R11), when PKA is active and Raf-1 unphosphorylated
(R12), when PKA is inactive and Raf-1 phosphorylated (R13), and when PKA is
active and Raf-1 phosphorylated (R14).

Overview of the reaction rules in M2. There are seven rules in this model. Free
cAMP activates PKA by binding to its free port (Ru

1 ). Active PKA phosphorylates
Raf-1 on site s2 (Ru

2 ). Active PKA phosphorylates free (unbound) PDE8A1 in
both cases when Raf-1 is not phosphorylated (Ru

3 ) or is phosphorylated (Ru
4 ).

When cAMP is released as it unbinds from PKA, PKA becomes inactive and,
consequently, Raf-1 is unphosphorylated, and a signal molecule SA is created to
mark that the Raf-1/MEK/ERK is activated (Ru

5 ). Free cAMP is degraded by
both unphosphorylated PDE8A1 (Ru

6 ) and phosphorylated PDE8A1 (Ru
7 ).

Reaction rates. We associate reaction rate constants (from r1 to r14 for M1 and
from ru1 to ru7 for M2) to each reaction. These reactions have mass-action ki-
netics. The existing experimental data suggest only approximate ratios of the
reaction rates. We only have partial information on the ratio between some
reaction rates, such as in M1, PKA phosphorylates Raf-1 and PDE8A1 at the
same rate and pPDE8A1 degrades approximately three times more cAMP than
unphosphorylated PDE8A1. Additionally, for M2, we know that PKA phospho-
rylates three times less PDE8A1 than Raf-1. If we consider r1 to be 1.0 as a
baseline, then we obtain the following values for the reaction rate constants:
r1 = r2 = r3 = r4 = r5 = r6 = r11 = r12 = r13 = r14 = 1.0, r7 = r8 = r9 =
r10 = 1

3 , r
u
1 = ru2 = ru5 = ru7 = 1.0, ru3 = ru4 = 1

3 , r
u
6 = 1

9 .

Port graph rewrite rules. We represent these reactions as port graph rewrite
rules as explained below. First, recall that a port graph rewrite rule L ⇒ R is
a port graph consisting of two subgraphs L and R together with a node (called
arrow node) that encodes the correspondence between the ports of L and the
ports of R. L and R are called the left- and right-hand side respectively. For
more details, see Note 4.3. A port graph rewrite system R is a finite set of port
graph rewrite rules.

To illustrate the idea, we show the representation of the reaction R6 as a
port graph rewrite rule in Fig. 3. A phosphorylation action activates a site (or
port) and we represent a phosphorylated site by a grey-filled port; a black-filled
port corresponds to a bound site, while a white-filled port corresponds to a free
(i.e., not bound) and inactive (i.e., not phosphorylated) site.

Figure 4 shows rules R6 (left panel) and R10 (right panel) of model M1 as
they are visually represented in Porgy. The layout and shape of the graph are
different from the ones used in Fig. 3. See Note 4.7 for more details on Porgy’s
layout algorithms and techniques.

Rule application is briefly described below and more completely in Note 4.3.

Let L⇒ R be a port graph rewrite rule and G a port graph such that there
is an injective port graph morphism g from L to G. By replacing the subgraph



AKAP PKA

Raf-1

PDE8A1

cAMP
AKAP PKA

Raf-1

PDE8A1

cAMP

R₆

σ

Fig. 3. Rule R6 in the filled AKAP model M1 (note we no longer label the sites’ names
in this graphical representation of the rewrite rules, but it is mandatory in Porgy).

Fig. 4. Rules R6 (left panel, also presented in Fig. 1) and R10 (right panel) of model
M1. A rule is a graph composed of a left-hand side (LHS) and a right-hand side (RHS),
linked by an arrow node. A red edge connected to the arrow node from LHS to RHS
indicates a direct correspondence between two ports. The port colour is used to show
its state: a phosphorylated port is shown in red, while an unphosphorylated port is
shown in green.

g(L) of G by g(R) and connecting it with the rest of the graph, we obtain a
port graph G′ representing a result of one-step rewriting of G using the rule
L ⇒ R, written G →L⇒R G′. Several injective morphisms g from L to G may
exist leading to possibly different rewriting results. These are built as solutions
of a matching problem from L to a subgraph of G. If there is no such injective
morphism, we say that G is irreducible with respect to L ⇒ R. Given a set R
of rules, a port graph G rewrites to G′, denoted by G→R G′, if there is a port
graph rewrite rule r in R such that G→r G

′. This induces a transitive relation
on port graphs. Each rule application is a rewriting step and a derivation is a
sequence of rewriting steps, also called a computation. A port graph is in normal
form if no rule can be applied on it. Rewriting is intrinsically non-deterministic
since several subgraphs of a port graph may be rewritten under a set of rules.



Porgy provides a special matching construct Match that checks whether a
rule matches the current graph and computes all solutions of a given matching
problem. This construct is used in rule application. It is important to note that
attributes play an important role in the matching process, since their values
often determine whether a rule is applicable or not. By default, all attributes are
taken into account in the matching process, but Porgy also offers the possibility
to specify that an attribute is not used in matching. This feature gives a great
flexibility in the design of rules due to the many combinatorial possibilities. It
can also be used to optimise the matching process when some attributes are
specified as non relevant.

3.3 Strategies for Rule Application

In Porgy, graph transformations can be defined by a single rule, or two or
more rules composed in parallel or in a probabilistic manner. There are several
ways of performing graph transformations (denoted by T below) in Porgy: the
strategy language provides various constructs to specify how transformations
should be applied; here we just illustrate how strategies are used to simulate the
two models of the AKAP Scaffold Protein. The reader should refer to Note 4.4
for more information on the strategy language. To choose between several rules,
the following operators are available:

one: one(T ) computes only one of the possible applications of the transforma-
tion T and ignores the others; more precisely, it makes a choice between
all the possible applications, with equal probabilities. Porgy also supports
all(t) which computes all possible applications of the transformation T .

ppick: When probabilities π1, . . . , πn ∈ [0, 1] are associated to rules T1, . . . , Tn
such that π1 + . . . + πn = 1, the strategy ppick(T1, π1, . . . , Tn, πn) picks
one of the rules for application, according to the given probabilities. More
generally, this strategy can also take as inputs a list of rules R1, . . . , Rn and
a user-defined function prob.py that computes the respective probability for
each rule to apply on the current graph: ppick(R1, R2, . . . , Rn, “prob.py“).
The probabilities may be computed from the current system state instead of
a fixed distribution. The function has to be written as a Python script (see
Note 4.8). It is for instance possible to perform probabilistic rule application
according to mass-action kinetics, as in Gillespie’s stochastic simulation al-
gorithm [24]. Previous versions of Porgy’s strategy language offered only
the first format (that is, the particular case where the function prob is a
fixed distribution of probabilities that does not depend on the current sys-
tem state).

Beyond the different choices for rule application, many other choices have to
be made to control rewriting: choose where to apply a rule in a graph, define a
sequence of rules which are correlated, iterate a rule or a sequence of rules, etc.
For this, we can use the following constructs.

– id and fail are two atomic strategies that respectively denote success and
failure.



– The expression S;S′ represents sequential application of S followed by S′ if
S succeeds.

– repeat(S)(n) simply iterates the application of S until it fails, but, if n is
specified, then the number of repetitions cannot exceed n.

– try(S) behaves like the strategy S if S succeeds, but if S fails, it still returns
id, thus never fails.

In the following we illustrate how to use the above strategy constructs in
simulating the behaviour of the AKAP scaffold protein. Strategy 1 is the strat-
egy used for model M1. The function “ComputeProba.py” which computes the
respective application probability πi for each rule Rj to apply on a port graph
G is computed as follows: PG(Rj) =

mj∗rj∑
i=1,..,14 mi∗ri where mi (resp. mj) is the

number of rule Ri (resp. Rj) matches in the port graph G and ri (resp. rj) is
the application rate of rule Ri (resp. Rj). The strategy for model M2 is similar;
one has just to replace the name of each rule and set the application rates in the
Python script accordingly. See Note 4.8 for the associated Python code.

Strategy 1: Strategy of model M1.
repeat(
one(
ppick(R1, R2, R3, R4, R5, R6, R7, R8,
R9, R10, R11, R12, R13, R14,“ComputeProba.py”)

)
)

Having a strategy language allows easily changing the control on rule appli-
cation. Let us give two examples of this flexibility:

– Let us assume that we want to change the reaction rate constants. These
rates are declared as constants in the Python script. One has just to change
the corresponding value.

– A strategy is specially useful to express anteriority or priority between rules.
For instance, if we want to express that the degradation process of the cAMP
molecule occurs after other rules application, the previous strategy can be
changed as described in Strategy 2.

3.4 Derivations and Derivation Tree

Once the representation of each species has been defined as above, it is easy to
replicate as many port nodes as wanted and to draw the edges between them if
needed.

For example, let us consider an initial port graph consisting of 30 unbound
cAMP molecules; 6 structures built upon an AKAP protein binding an inactive
PKA an unphosphorylated PDE8A1 and an unphosphorylated Raf-1 for model



Strategy 2: Updated strategy of modelM1 where the degradation process
(rule R6) occurs after the other rule applications.

repeat(
one(
ppick(R1, R2, R3, R4, R5, R7, R8,
R9, R10, R11, R12, R13, R14,“ComputeProba.py”)

);
try(one(R6))

)

M1 and 30 unbound cAMP molecules; 6 structures built upon an AKAP protein
binding an inactive PKA and an unphosphorylated Raf-1 plus 3 unphosphory-
lated PDE8A1 proteins not bound to an AKAP scaffold protein for model M2.

A derivation, or computation, is a sequence G →∗R G′ of rewriting steps.
Each rewriting step involves the application of a rule at a specific position in the
graph. Considering a whole derivation and its successive steps provides access to
the evolution history and is particularly useful for understanding and explaining
how a specific state of the system has been reached. In general, several derivations
are possible from any single state, giving rise to the notion of derivation tree, a
data structure that represents all the different alternatives.

The derivation tree can be visualised and analysed in Porgy (we give more
details in Section 3.5). Although it is in general a large data structure, it provides
an organised, indexed representation of the evolution of the system, where each
node in the derivation tree represents one system state. Porgy offers zooming
mechanisms to analyse the tree and work with this structure at different levels;
derivations can be visualised in different ways. One such zooming mechanism is
the small multiples and we illustrate it in Fig. 5 for some steps of one execution
of Strategy 1. This view allows to see the graph like a comics. Each thumbnail
shows an overview of the graph or the morphism of the LHS/RHS of a rule.
The layout of the graph is not changing, so it is easy to compare two states of
the graph being rewritten. For instance, Fig. 6 shows a blue bordered node of
interest (on the left of each thumbnail). The border is present until the node is
modified by the application of a rewriting rule (border disappeared since G21).

3.5 Experimentation and analysis

Porgy allows users to interact and experiment with port graph rules in a visual
and interactive way. It offers different views on each component of the rule
system: the current graph being rewritten, the derivation tree, the rules and the
strategy. The different components are shown for the AKAP example in Fig. 1.



Fig. 5. Small multiples view of a derivation of Strategy 1. The first thumbnail (G0) is
an overview of the initial graph, the next one allows to view the LHS instance of rule
r1 in G0, then the RHS instance of r1 in the next graph G1 and so on.

Fig. 6. Same small multiples views like in Fig. 5 (same graph, continuing) without
LHS and RHS. The selected node in blue disappeared from G22 because it has been
changed by the application of a rule.

In order to illustrate the capabilities of Porgy, we describe in this section
different experiments performed on our running example. These experiments are
calibrated in size in order to be able to draw understandable pictures. Indeed for
real analysis, more and bigger experiments are necessary and we do not pretend
giving any biological conclusion from these experiments. We just show some
interesting capabilities of Porgy. Porgy has been designed with the Visual
information-seeking mantra of Shneiderman [35] in mind: Overview first, zoom
and filter, then details on demand.



Overview First. Because we use probabilistic rewriting, it may be relevant
to execute several times the same rewrite program on the same input to look
for potential variations. To launch a strategy, one has just to drag and drop
the strategy to execute onto a node of the derivation tree. We show the results
obtained for ten runs in Fig. 7 and 8. A black edge represents one application of
a rule. A green edge represents one application of a strategy. Its extremities are
respectively the starting and resulting nodes of the strategy. This structure is of
course hardly readable, it has to be used as an overview and as such, it is a good
starting point for an analysis. Fig. 5 and 6 were obtained from a branch of these
trees. Instead of drawing a Small Multiples, Porgy is also able to animate the
changes over a branch of the whole tree. We may compare the overall results of
each branch but also the sequences of rules applied in a particular branch.

Zoom and Filter. Typically, the user may be interested in plotting the evolu-
tion of a parameter computed out of each intermediate state to filter and zoom
on some interesting states. For example, in the AKAP model, the behaviour of
the SA protein, as predicted by the biologists, can be examined by plotting the
curve of the evolution of the number of SA protein throughout the rewriting
process. The evolution of the rewriting process is here modelled by the depth of
a branch of the derivation tree.

After selecting a branch inside the derivation tree, Porgy allows us to isolate
this branch and compute the number of nodes of some given types. Thanks to
Tulip, the scatter plot is dynamically built from the nodes of the derivation
tree. A scatterplot can be built to visually compare for models M1 and M2

(resp. Fig. 9 and Fig. 10). We have selected one branch inside the derivation
tree of each model with equivalent length (78 and 100). We can immediately see
that both plots have a step shape. However, the evolution rate is very different.
Moreover, all graphical views are synchronised. For instance, if some interesting
points are selected inside the scatter plot, they are also immediately selected
inside the corresponding branch of the derivation tree (Fig. 9). Porgy is also
able to easily show where a given rule was used inside the derivation tree (See
Fig. 11).

Details on Demand. Now, that some differences have been highlighted be-
tween both models, we can investigate further and see where the differences are
more precisely. By zooming further on the derivation tree, one can, for instance,
analyse the sequence of rules used to produce the selected graphs with model
M1 by just hovering the mouse pointer on a node (Fig. 12). See Note 4.6 to
understand how this sequence of rules can be retrieved as a strategy ready to
run. It is also possible to see which elements were changed by the application of
a rule by hovering the mouse pointer over an edge (Fig. 13). The nodes changed
in the rewriting step are emphasised in the picture, to clearly show the elements
that have evolved inside the graph.



Fig. 7. The full derivation tree after running strategies for model M1 10 times from
the same graph. Note that the depth of each branch is not the same because of the
probabilistic rewriting. The longest branch has 100 intermediate states between the
starting graph and the final state where no rule can be applied any longer.

3.6 Concluding Remarks

We have illustrated via examples the use of Porgy as a tool for the develop-
ment and analysis of rule-based models of biological systems. Since Porgy is
a general purpose formal specification environment (based on strategic rewrite



Fig. 8. The full derivation tree after running strategies for model M2 10 times from
the same graph including a close-up on a branch (built-in in Porgy). Note that the
depth of each branch is not the same because of the probabilistic rewriting. The full
tree is hardly readable because the longest branch has 343 intermediate states between
the starting graph and the final state where no rule can be applied any longer.

programs) and has not been designed exclusively for biological modelling, some
features specific to this application domain may be missing. However Porgy is
an open source software and its architecture makes it easy to develop domain-
specific instances of the general framework and to extend and refine the features
presented here.

A main contribution of Porgy is its strategy language, partly demonstrated
here. The full expressivity has not been illustrated here; in particular we have
omitted some constructs to select positions in a graph. More information on the
full strategy language is provided in [21], where the use of other strategy con-
structs is illustrated in the domain of social networks. The strategy language has
evolved: it has been refined to take into account the specific needs of new appli-
cation domains. The deliberate choice of separation between rules and control
gives this flexibility of evolution. Many questions are still opened concerning
strategies. How to compare and optimise them? How to synthesise them, i.e.,
how to find a sequence of rules leading to a certain port graph?

We have argued that visualisation techniques are important to guide intuition
and design biochemical systems. However there remain also big challenges in this
domain: for instance provide capability to easily change the display of molecules
or to define new views.



Fig. 9. A close-up on the derivation tree of Fig. 7 (left panel) and a scatterplot (right
panel) which shows the evolution of the number of SA s for model M1. A portion
of interest of the scatterplot is selected (in blue) and this selection is automatically
reported on the derivation tree. The Depth axis represents the number of rewriting rules
applied to create the branch. It is the depth of the selected branch of the derivation
tree.

4 Notes

4.1 Attributes

All attributes of nodes, ports and edges are represented in records over a given
signature ∇ [20]. A record r is a set {(a1, v1), . . . , (an, vn)} of pairs, where each
ai occurs only once in r, and there is one pair where ai = Name. The function
Atts applies to records and returns the labels of all the attributes: Atts(r) =
{a1, . . . , an} if r = {(a1, v1), . . . , (an, vn)}. As usual, r.ai denotes the value vi of
the attribute ai in r.

The attribute Name identifies the record in the following sense: For all r1,
r2, Atts(r1) = Atts(r2) if r1.Name = r2.Name.

4.2 Port graph

We recall the general definition of port graph; further examples can be found
in [20].



Fig. 10. A scatterplot built like the one of Fig 9 showing the evolution of the number
of SA s for model M2.

Fig. 11. The context menu associated with each rule displayed on the left panel allows
to highlight this rule in the derivation tree (right panel).

Definition 1 (Port graph). A port graph over a signature ∇ is a tuple G =
(V, P,E,L) where

– V ⊆ N is a finite set of nodes; n, n1, . . . range over nodes.
– P ⊆P is a finite set of ports; p, p1, . . . range over ports.
– E ⊆ E is a finite set of edges between ports; e, e1, . . . range over edges. Edges

are undirected and two ports may be connected by more than one edge.



Fig. 12. After selecting and zooming on some interesting nodes of the derivation tree
(Fig. 9), hovering the mouse pointer over a node displays the list of rewriting operations
used to obtain this state of the rewritten graph. See Note 4.6 for more information.

Fig. 13. Hovering the mouse pointer over an edge of the derivation tree allows seeing
what parts of the graph were changed by the application of a rule. The rule (and some
runtime information) are displayed as a tooltip.

– L is a labelling function that returns, for each element in V ∪P ∪E, a record
such that:



• for each edge e ∈ E, L(e) contains an attribute Connect whose value is
the pair {p1, p2} of ports connected by e.

• for each port p ∈ P , L(p) contains an attribute Attach whose value is
the node n to which the port belongs, and an attribute Arity whose value
is the number of edges connected to this port.

• For each node n ∈ V , L(n) contains an attribute Interface whose value
is the set of names of ports in the node: {L(pi).Name | L(pi).Attach =
n}. We assume that L satisfies the following constraint:

L(n1).Name = L(n2).Name⇒ L(n1).Interface = L(n2).Interface.

4.3 Rules and rewriting

In order to provide a better control for rule application, Porgy uses the con-
cept of located graph GQ

P that consists of a port graph G and two distinguished
subgraphs P and Q of G, called respectively the position subgraph, or simply
position, and the banned subgraph. In a located graph GQ

P , P represents the sub-
graph of G where rewriting steps may take place (i.e., P is the focus of the
rewriting) and Q represents the subgraph of G where rewriting steps are forbid-
den. The intuition is that subgraphs of G that overlap with P may be rewritten,
if they are outside Q.

When applying a port graph rewrite rule, not only the underlying graph G
but also the position and banned subgraphs may change. A located rewrite rule
specifies two disjoint subgraphs M and M ′ of the right-hand side R that are
respectively used to update the position and banned subgraphs. If M (resp. M ′)
is not specified, R (resp. the empty graph ∅) is used as default. Precise definitions
are given in [20].

4.4 Strategies

To control the application of the rules, a strategy language is presented in [20,21]
where the grammar rules for strategy expressions is given.

A strategic graph program, consists of a located graph as defined above in
Note 4.3, a set of rewriting rules, and a strategy expression. Porgy provides a
strategy language to define those strategy expressions. In addition to the well-
known constructs to select rewrite rules, the strategy language provides position
primitives to select or ban specific positions in the graph for rewriting. The
latter is useful to program graph traversals in a concise and natural way, and is
a distinctive feature of the language.

A complete formal definition of strategic graph programs and their seman-
tics can be found in [20]. Correctness and completeness of strategic port graph
rewriting are stated and imply in particular that the derivation tree in which
each rewrite step is performed according to the strategy –let us call it the strate-
gic derivation tree– is actually a subtree of the derivation tree of the rewrite
system without strategy. The strategic derivation tree is a valuable concept be-
cause it records the history of the transformations and provides access to gener-
ated models. It is, by itself, a source of challenging questions, such as detecting



isomorphic models and folding the tree, finding equivalent paths and defining
the “best ones”, abstracting a sequence of steps by a composition strategy, or
managing the complexity of the tree and its visualisation.

4.5 Downloading and installing Porgy

Porgy is built on top of the Tulip visualisation framework (http://tulip.
labri.fr), as a set of Tulip plugins. Porgy is coded in C++11 and uses
the Qt and Boost libraries. From the Boost library, we particularly use Spirit
(see http://boost-spirit.com/home/) for the strategy language interpreter.
A binary distribution of Tulip containing Porgy for MacOS (universal binary)
and Windows (64-bit Windows only) machines and ready to compile source files
can be downloaded from the Porgy page of the Tulip website (http://porgy.
labri.fr). We also have automatic nightly builds for binaries and source files
which are built from the latest development source trees of Tulip and Porgy.

4.6 Obtaining a strategy from the derivation tree

Fig. 12 illustrates how the list of operations done from the root node of the
derivation tree to a given node can be retrieved. This is achieved by selecting
the “Get Information” interactor from the interactor toolbar which is on top of
each graphical view (look for the mouse pointer close to a question mark).

This list of operations can also be retrieved as a new strategy ready to run.
Select a branch or a portion of a branch of the derivation tree, then from the
“new strategy” menu, choose “New strategy from the derivation tree”.

4.7 About the layout of the graphs in Porgy

Graph drawing is a research field in itself (see for instance the proceedings of the
annual Graph Drawing & Network Visualization conference). The graphs used in
different application domains usually look quite different. To produce a drawing
that looks like the diagrams used in a particular domain, it is necessary to
develop drawing algorithms that are specifically tuned for that domain. However,
Porgy is a generic tool not linked to a particular application domain. This is
why the current version of Porgy cannot deal with all drawing conventions and
constraints. Porgy uses traditional and well known graph drawing algorithms
available with Tulip, adapted to display port graphs. These algorithms are
known to produce good drawings in reasonable time. However, thanks to the
plugin mechanism of Tulip, new layout algorithms can be added easily and
used inside Porgy.

4.8 Tulip and the embedded Python support

First introduced in Tulip 3.5, the Tulip framework now provides Python bind-
ing of all Tulip main features. It empowers users with easy scripting capabilities,



facilitated by the property-based nature of Tulip. We used a common approach
to bind C/C++ definitions with the SIP tool.6

The bindings are also publicly available from PyPI and can be independently
installed from the Tulip framework as a standard Python package7. Users can
then manipulate their graphs, create visualisation and export images completely
independently from the Tulip perspectives and GUI previously mentioned.

In Porgy we use a feature which allows to call Python code directly from
C++ code. The Python script path needs to be given as a parameter of the
ppick() construct. The basename of the given file (i.e. filename without path
information and extension) is used as the name of the function to call inside the
Python script. The function must have 5 parameters which are in this order: the
graph used to apply the rules on, a list of rules to test, the position subgraph
and the banned subgraph. It must return a Python array (the C++ Tulip
library does not support conversion from Python dictionary, this is planned for
a future Tulip release) which has as elements the name of a rule followed by its
application probability and so on for each rule. Reaction rates are given inside
the Python script. Note that, all modifications made by the Python script are
not kept.

The Python code used to compute the application probability for model M1

is given in Listing 1. For model M2, one has just to update the reaction rates
and rule names accordingly. The script works by calling the “Check Rule” Tulip
plugin for Porgy which computes the number of possible rule applications given
a position subgraph and a banned subgraph. The plugin returns the number of
application found. “Check Rule” is a core plugin of Porgy which is called every
time a rule is tentatively applied. It computes all the morphisms of the rule LHS
in a given graph.

For more flexibility, the reaction rates can be seen as rule parameters instead
of being hardcoded in the Python script. In a future release of Porgy, we plan
to support rule parameters directly stored in the Tulip graph describing each
rule.

Acknowledgements

We thank Guy Melançon and Olivier Namet for their work in the initial Porgy
project (2009–2012); their ideas and enthusiasm were invaluable during the early
stages of development of this tool. We also thank Jason Vallet for implementing
several features of Porgy and writing the documentation.

6 Riverbank Computing Limited. SIP –A tool for automatically generating Python
bindings for C and C++ libraries. http://www.riverbankcomputing.co.uk/
software/sip/

7 This package is available at https://pypi.python.org/pypi/tulip-python and can
be installed using the command pip install tulip-python



References

1. Jakob L. Andersen, Christoph Flamm, Daniel Merkle, and Peter F. Stadler.
Generic strategies for chemical space exploration. I. J. Computational Biology
and Drug Design, 7(2/3):225–258, 2014.

2. Oana Andrei and Muffy Calder. A Model and Analysis of the AKAP Scaffold.
Electr. Notes Theor. Comput. Sci., 268:3–15, 2010.

3. Oana Andrei and Muffy Calder. Trend-Based Analysis of a Population Model of
the AKAP Scaffold Protein. Trans. Computational Systems Biology, 14:1–25, 2012.

4. Oana Andrei, Maribel Fernández, Hélène Kirchner, Guy Melançon, Olivier Namet,
and Bruno Pinaud. PORGY: Strategy-Driven Interactive Transformation of
Graphs. In Rachid Echahed Echahed, editor, Proc. of the 6th Int. Workshop on
Computing with Terms and Graphs (TERMGRAPH 2011), volume 48, pages 54–
68, 2011.

5. David Auber, Daniel Archambault, Romain Bourqui, Maylis Delest, Jonathan
Dubois, Bruno Pinaud, Antoine Lambert, Patrick Mary, Morgan Mathiaut, and
Guy Melancon. Tulip III. In Encyclopedia of Social Network Analysis and Mining.
Springer-Verlag New York, 2014.

6. Daniel Balasubramanian, Anantha Narayanan, Christopher P. van Buskirk, and
Gabor Karsai. The Graph Rewriting and Transformation Language: GReAT. ECE-
ASST, 1, 2006.

7. Peter Borovanský, Claude Kirchner, Hélène Kirchner, Pierre-Etienne Moreau, and
Christophe Ringeissen. An overview of ELAN. ENTCS, 15, 1998.

8. Kim M. Brown, Jon P. Day, Elaine Huston, Bastian Zimmermann, Kornelia Ham-
pel, Frank Christian, David Romano, Selim Terhzaz, Louisa C. Y. Lee, Miranda J.
Willis, David B. Morton, Joseph A. Beavo, Masami Shimizu-Albergine, Shireen A.
Davies, Walter Kolch, Miles D. Houslay, and George S. Baillie. Phosphodiesterase-
8A binds to and regulates Raf-1 kinase. Proceedings of the National Academy of
Sciences, 110(16):E1533–E1542, 2013.

9. Kim M. Brown, Louisa C.Y. Lee, Jane E. Findlay, Jonathan P. Day, and George S.
Baillie. Cyclic AMP-specific phosphodiesterase, PDE8A1, is activated by protein
kinase A-mediated phosphorylation. FEBS Letters, 586(11):1631–1637, 2012.

10. Horst Bunke. Attributed programmed graph grammars and their application
to schematic diagram interpretation. IEEE Trans. Pattern Anal. Mach. Intell.,
4(6):574–582, 1982.

11. Lily A Chylek, Leonard A Harris, James R Faeder, and William S Hlavacek. Mod-
eling for (physical) biologists: an introduction to the rule-based approach. Physical
Biology, 12(4), 2015.

12. Joshua Colvin, Michael I Monine, James R Faeder, William S Hlavacek, Daniel D
Von Hoff, and Richard G Posner. Simulation of large-scale rule-based models.
Bioinformatics, 25(7):910–917, 04 2009.

13. Andrea Corradini, Ugo Montanari, Francesca Rossi, Hartmut Ehrig, Reiko Heckel,
and Michael Löwe. Algebraic approaches to graph transformation - part i: Basic
concepts and double pushout approach. In Handbook of Graph Grammars and
Computing by Graph Transformations, Volume 1: Foundations, pages 163–246.
World Scientific, 1997.

14. Vincent Danos, Jérôme Feret, Walter Fontana, Russell Harmer, and Jean Krivine.
Rule-Based Modelling of Cellular Signalling. In Luís Caires and Vasco Thudichum
Vasconcelos, editors, Proc. of CONCUR’07, volume 4703 of Lecture Notes in Com-
puter Science, pages 17–41. Springer, 2007.



15. Vincent Danos, Jérôme Feret, Walter Fontana, and Jean Krivine. Scalable Simu-
lation of Cellular Signaling Networks. In Zhong Shao, editor, Proc. of APLAS’07,
volume 4807 of Lecture Notes in Computer Science, pages 139–157. Springer, 2007.

16. Vincent Danos and Cosimo Laneve. Formal Molecular Biology. Theoretical Com-
puter Science, 325(1):69–110, 2004.

17. Hartmut Ehrig, Gregor Engels, Hans-Jörg Kreowski, and Grzegorz Rozenberg.
Handbook of Graph Grammars and Computing by Graph Transformations, Vol-
ume 1-3. World Scientific, 1997.

18. Claudia Ermel, Michael Rudolf, and Gabriele Taentzer. The AGG approach: Lan-
guage and environment. In H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg,
editors, Handbook of Graph Grammars and Computing by Graph Transformations,
Volume 2: Applications, Languages, and Tools, pages 551–603. World Scientific,
1997.

19. James Faeder, Michael Blinov, and William Hlavacek. Rule-Based Modeling of
Biochemical Systems with BioNetGen. In I. V. Maly, editor, Systems Biology,
volume 500 of Methods in Molecular Biology, pages 113–167. Humana Press, 2009.

20. Maribel Fernández, , Hélène Kirchner, and Bruno Pinaud. Strategic Port Graph
Rewriting: An Interactive Modelling and Analysis Framework. Research Report,
Inria, January 2016.

21. Maribel Fernández, Hélène Kirchner, Bruno Pinaud, and Jason Vallet. Labelled
Graph Rewriting Meets Social Networks. In Dorel Lucanu, editor, Rewriting Logic
and Its Applications, WRLA 2016, volume 9942 of LNCS, page 25, Eindhoven,
Netherlands, April 2016. Springer International Publishing Switzerland.

22. Maribel Fernández and Sébastien Maulat. Higher-order port-graph rewriting. In
Sandra Alves and Ian Mackie, editors, Proceedings 2nd International Workshop
on Linearity, LINEARITY 2012, Tallinn, Estonia, 1 April 2012., volume 101 of
EPTCS, pages 25–37, 2012.

23. Rubino Geiß, Gernot Veit Batz, Daniel Grund, Sebastian Hack, and Adam Sza-
lkowski. GrGen: A Fast SPO-Based Graph Rewriting Tool. In Proc. of ICGT,
volume 4178 of LNCS, pages 383–397. Springer, 2006.

24. Daniel T. Gillespie. Exact stochastic simulation of coupled chemical reactions. J.
Phys. Chem., 81(25):2340–2361, 1977.

25. Eric C. Greenwald and Jeffrey J. Saucerman. Bigger, better, faster: principles and
models of AKAP signaling. J Cardiovasc Pharmacol., 58(5):462–469, 2012.

26. Jr. James E. Ferrell. What Do Scaffold Proteins Really Do? Sci. STKE, 2000(52):1–
3, 2000.

27. James A. McCubrey, Linda S. Steelman, William H. Chappell, Stephen L.
Abrams, Ellis W.T. Wong, Fumin Chang, Brian Lehmann, David M. Terrian,
Michele Milella, Agostino Tafuri, Franca Stivala, Massimo Libra, Jorg Basecke,
Camilla Evangelisti, Alberto M. Martelli, and Richard A. Franklin. Roles of
the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug
resistance. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research,
1773(8):1263 – 1284, 2007.

28. Ulrich Nickel, Jörg Niere, and Albert Zündorf. The FUJABA environment. In
ICSE, pages 742–745, 2000.

29. John L. Pfaltz and Azriel Rosenfeld. Web Grammars. In Proc. of the 1st Int. Joint
Conf. on Artificial Intelligence, Washington, DC, May 1969, pages 609–620, 1969.

30. Bruno Pinaud, Guy Melançon, and Jonathan Dubois. PORGY: A Visual
Graph Rewriting Environment for Complex Systems. Computer Graphics Forum,
31(3):1265–1274, 2012.



31. Bruno Pinaud, Guy Melançon, and Jonathan Dubois. PORGY: A Visual
Graph Rewriting Environment for Complex Systems. Computer Graphics Forum,
31(3):1265–1274, 2012.

32. Detlef Plump. The Graph Programming Language GP. In S. Bozapalidis and
G. Rahonis, editors, CAI, volume 5725 of LNCS, pages 99–122. Springer, 2009.

33. Arend Rensink. The GROOVE Simulator: A Tool for State Space Generation. In
AGTIVE, volume 3062 of LNCS, pages 479–485. Springer, 2003.

34. Andy Schürr, Andreas J. Winter, and Albert Zündorf. The PROGRES Approach:
Language and Environment. In H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozen-
berg, editors, Handbook of Graph Grammars and Computing by Graph Transfor-
mations, Volume 2: Applications, Languages, and Tools, pages 479–546. World
Scientific, 1997.

35. Ben Shneiderman. The eyes have it: A task by data type taxonomy for information
visualizations. In Proc. of the IEEE Symp. on Visual Languages, pages 336–343.
IEEE Computer Society Press, 1996.

36. Adam M. Smith, Wen Xu, Yao Sun, James R. Faeder, and G.Elisabeta Marai.
Rulebender: integrated modeling, simulation and visualization for rule-based in-
tracellular biochemistry. BMC Bioinformatics, 13(8), 2012.

37. Jason Vallet, Hélène Kirchner, Bruno Pinaud, and Guy Melançon. A visual ana-
lytics approach to compare propagation models in social networks. In Proceedings
Graphs as Models, GaM 2015, London, UK, 11-12 April 2015., pages 65–79, 2015.

38. Eelco Visser. Stratego: A language for program transformation based on rewriting
strategies. System description of Stratego 0.5. In Proc. of RTA’01, volume 2051 of
LNCS, pages 357–361. Springer-Verlag, 2001.

39. John E.Jr. Wenskovitch, Leonard A. Harris, Jose-Juan Tapia, James R. Faeder,
and G. Elisabeta Marai. Mosbie: a tool for comparison and analysis of rule-based
biochemical models. BMC Bioinformatics, 15(1), 2014.



1 from tulip import *
2 def computeProba(graph, rules, position, ban):
3 react={} #Reaction rates for M1

4 react["R1"] = float(1)
5 react["R2"] = float(1)
6 react["R3"] = float(1)
7 react["R4"] = float(1)
8 react["R5"] = float(1)
9 react["R6"] = float(1)

10 react["R7"] = float(1)/float(3)
11 react["R8"] = float(1)/float(3)
12 react["R9"] = float(1)/float(3)
13 react["R10"] = float(1)/float(3)
14 react["R11"] = float(1)
15 react["R12"] = float(1)
16 react["R13"] = float(1)
17 react["R14"] = float(1)
18

19 num={} #number of applications of each rule
20 total=0.0 #Overall number of rule applications
21 for g in rules: #Check if the rule can be applied
22 params = tlp.getDefaultPluginParameters("Check Rule", graph)
23 params["Rule Name"] = g
24 params["Property for Position"]=graph.getBooleanProperty(position)
25 params["Property for Ban"]=graph.getBooleanProperty(ban)
26 graph.applyAlgorithm("Check Rule", params)
27 #retrieve the number of possible rule applications
28 number = params["number of instances"]
29 num[g]=float(number)
30 total += number * react[g]
31

32 #compute application probability for each rule
33 proba={}
34 for g in rules:
35 if(total==0):
36 proba[g]=0
37 else:
38 proba[g]=num[g]*react[g]/total;
39

40 list_proba=[] #result array: a rule followed by its probability
41 for i in proba:
42 list_proba.append(i)
43 list_proba.append(str(proba[i]))
44

45 return list_proba

Listing 1: Python code used to compute the probabilities for model M1. This
code is called from the strategy (see Strategy 1) for every ppick() call.


