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Abstract. Production planning and control and more generally taking a decision 
in the context of production systems often consider that input information are 
known, static and predictable. However, uncertainties on data and perturbations 
are recorded in the genetic of every production system. For instance, it is impos-
sible to know exactly the level of the demand for a product, the availability of 
resources, etc. Dealing with this issue asks the question of the ability to take ro-
bust decisions against uncertainty (off-line) or the ability to be flexible (on-line).  
This paper proposes to analyze how Product Driven Systems – as reactive sys-
tems against unpredicted perturbations – can be part of operational research so-
lution process against perturbations. Moreover, an overview of models and ap-
proaches for dealing with uncertainty in Operational Research is given and a first 
proposition is made for applying these elements into PDS as decision-making-
against-perturbations engines.  
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1 Introduction 

Since some years, Product Driven Systems (PDS) are becoming a credible way to 
control product flows on shop-floors and in supply chains thanks to Auto-ID and espe-
cially RFID technologies. PDS are defined as systems in which products are able to be 
active and are at the core of an enterprise architecture which integrates every actor in 
the company, from the central systems to the processes, products and also operators, 
into the same ambient information system [1]. The Intelligent Product (IP) paradigm 
[2,3] was a step further to the use of RFID-tagged products, and not only for identifi-
cation objectives. IP has demonstrated the efficiency of speeding up and making more 
visible information flows in logistic operations [4]. Following, a new interpretation of 



the stigmergy concept was put forward in [1], where the cooperation between produc-
tion actors (products, resources and all used manufacturing appliances) was achieved 
thanks to attributes called informational pheromones and carried by RFID-tagged prod-
ucts. Products collaboration is a concept on which many researchers [5,6] have focused 
their works. 

Thus, this Product Driven Systems (PDS) paradigm has been established and its rel-
evance has been highlighted precisely to deal with new product flows control ap-
proaches, especially to react to unpredicted events occurring on the shop-floors and in 
the supply chains. Indeed, anybody with production or logistic experience knows that, 
often, a predicted plan or schedule cannot be exactly executed! Events occurring on the 
shop-floor, or in the supply chain lead to uncertainties in daily activities inducing needs 
for adjustments in plans. That is one of the main reasons that justify PDS. 

On the other hand, in the previous decades, a lot of research teams have proposed a 
huge of models, built on exact approaches or on heuristics, useful to schedule or re-
schedule production and logistic activities. In the design or management of these vari-
ous types of control systems, and particularly for production and logistic ones, a number 
of variables have to be frequently determined so as to optimize a given performance 
criterion. Optimization models are used to search for the best possible values of a vector 
of variables (e.g. number of resources, production planning in a manufacturing system 
and so on). In this context, operational research approaches are privileged approaches 
when dealing with optimization in production systems. However, in most dedicated 
works, the optimization model is built from data that characterize given and fixed en-
vironmental conditions (e.g., assumed nominal processing times, fixed transportation 
delays, exact amount of demand etc). However, in practice, perturbations can modify 
these values, and thus change the data that were initially assumed to be known and 
static. The expected values (also called reference instance in [7] or base environmental 
scenario in [8]) are supposed to model the environment that the domain expert think 
relevant to characterize the actual operating conditions of the studied system. In prac-
tice, good or even optimal performances, achieved by the system in given conditions 
can be drastically deteriorated if these conditions change. For instance, a delivery delay, 
evaluated through an optimization model, can be considered as acceptable, with regards 
to the customer demand, if breakdowns occur at a given rate, but can become unsatis-
factory if the breakdown rate increases. To deal with this issue, it is necessary to take 
the data uncertainty and the perturbations into account. Since several years, operational 
researchers are aware of this issue and have proposed some process and approaches to 
deal with uncertainty and perturbations. 

The goal of this paper is to analyze how the PDS paradigm can be involved inside 
the process proposed by operational researchers to deal with perturbations and to iden-
tify the knowledge and information about operational research works dealing with 
scheduling under uncertainties and to highlight if some of them could be useful to deal 
with PDS re-scheduling acting in uncertain production and/or logistic environment. The 
rest of the paper is organized as follows. The section 2 is dedicated to present how 
optimization can take into account inherent uncertainties and perturbations and pro-
poses a 3-steps solution process to deal with uncertainties and perturbations. The sec-



tion 3 deals with the step 1 and more specifically on the concepts of robustness in op-
erational research. The section 4 focuses on the step 2 and presents how the concept of 
Product-Driven-System can be a good candidate for implementing this step as a react-
ing system against perturbations. Moreover, this section proposes a first overview of 
the models and approaches coming from Operation Research that can be useful for im-
plementing efficiently these types of system. Finally, a conclusion is given with some 
perspectives in the section 5. 

2 Dealing with uncertainty: a full solution process 

2.1 Classical optimization 

Classically, solving an optimization problem consists in building a solution ܵ that op-
timizes a criterion ݖ (that is assumed to be a minimization criterion in this section with-
out loss of generality) and satisfies some constraints assuming that the problem data are 
certain and sure. This particular string of data can be seen as a forecast instance ܫ 
that is used to compute ܵ. Getting an optimal solution is still a problem that is often 
hard. An optimal solution to the problem for an instance ܫ is denoted ூܵ

∗ and its corre-
sponding performance is denoted ݖூ

∗. Otherwise, the performance of a solution ܵ ap-
plied to an instance ܫ relatively to an optimization criterion ݖ is denoted ݖூሺܵሻ. 
The classical way to solve an optimization problem without uncertainty is the predictive 
approach. An off-line algorithm builds an optimal solution ூܵೝ

∗  for the forecast in-
stance ܫ, and guarantees an optimal performance for this instance only, valued by 
ூೝݖ
∗ . In practice, the real system is subject to perturbations such that the solution ூܵೝ

∗  
is applied to the actual instance ܫ that may be different from the forecast instance ܫ, 
and ூܵೝ

∗  may even no longer be admissible. In the most optimistic case (when the so-
lution remains admissible for ܫ), the actual performance ݖூሺ ூܵೝ

∗ ሻ can be “far” from the 
forecast performance ݖூೝ

∗ , and also far from the optimal value for ݖ ,ܫூ
∗. Then, a costly 

solution step may return a poor-quality solution.  

2.2 A full solution process for dealing with uncertain context 

There are two complementary ways for taking uncertainties into account. The first one 
is concerned with uncertainties that are explicitly depicted. Those uncertainties are 
somehow expected. The second way concerns unexpected perturbations which the sys-
tem has undergone. Expected uncertainties can be taken into account more or less in an 
anticipative optimisation structure, that is the robust approach. Unexpected uncertain-
ties have to be taken into account in a reactive procedure. In [9], the generic structure 
for dealing with uncertainties is addressed. It is formally defined for addressing sched-
uling problems. It is composed of three steps. 

Step 0: static problem definition.  



Classic specifications of the optimisation problem are given along with the optimisation 
criterion z. Moreover,.when uncertainties are identified, it is necessary to produce a 
model of these uncertainties. Several possibilities exist. Uncertainties can be modelled 
as stochastic parameters [10] or parameters belonging to fuzzy intervals [11] or belong-
ing to a set of scenarios or instances [12], [7]. This set of instances can be a continuous 
or a discrete interval. A specific robustness criterion has to be defined related to the 
expected risk answering the question: “what must be guaranteed despite these pertur-
bations?” 

Step 1: calculation of a set of anticipative solutions by an off-line algorithm.  
From the available knowledge about perturbations (the risk to be covered defined in 
step 0), one or more algorithms can be used to build a set of robust solutions guaranty-
ing a performance on the considered risk as defined in step 0. This set can include one 
or more solutions. Instead of computing an optimal solution for a single forecast in-
stance, a global performance on the risk to be covered is addressed. Such solutions if 
they exist, are said to be robust for the considered risk. 

Step 2: calculation of the applied solution by an on-line algorithm.  
The on-line algorithm uses the progressive knowledge about environment to implement 
a solution knowing the anticipative solutions. This solution can be chosen among the 
set of solutions calculated in step 1 or can result from a reactive adaptation of anticipa-
tive choices. The gap between the implemented solution and the anticipative one de-
pends on the perturbations that occur: if they are included in the expected risk to be 
covered then the reactive procedure consists in choosing a solution among the robust 
previously computed solutions, otherwise all changes are possible. Moreover, this asks 
the question of the detection of the perturbation. 
In this dynamic procedure, the problem of guaranteed performance is open. 

3 Step 1: taking robust decisions 

3.1 What is robustness? 

Developing robustness features for the decision to be made has appeared to be an effi-
cient way of coping with deterministic uncertainties as in [12]; [13,14,15,16] even 
though researchers use different measures of robustness. [17] identifies several types 
of uncertainty involved in robustness optimization and several ways of formulating and 
addressing the corresponding problems in the field of parameter design. In [16], robust-
ness is defined as a capacity for withstanding “vague approximations” and/or “zones 
of ignorance” to prevent undesirable impacts, notably the degradation of the properties 
to be maintained. What are exactly the so-called properties to be maintained and the 
considered “approximations” and “zones of ignorance” is strongly application depend-
ent, and has led researchers to develop a large variety of robustness approaches. 
Many robustness definitions can be found in the literature. 



The five following papers are devoted to such definitions: [12], [15,16], [18,19]. A lot 
of other papers are devoted to finding a robust solution for a given problem and explic-
itly proposing or not a measure of robustness. It is possible to sort the robustness defi-
nitions into two categories. The first category defines a robust solution as a solution 
that optimizes a robustness criterion. This point of view has the advantage that classical 
models and approaches used in Operational Research can be used for addressing this 
problem. The second category defines a robust solution as a solution that satisfies a 
condition (or a set of conditions). Such a vision for robustness allows practitioners to 
keep their solution processes and to check for the robustness of any solution with no 
restriction. 

4 Step 2: React after the occurrence of perturbations 

4.1 The product centric paradigm/Product Driven Systems 

When perturbations don’t concern directly data (like variation in demand) but are rela-
tive to specific events occurring on the shop-floor or in the supply chain, it is necessary 
to react on-line. As previously introduced, Product Driven Systems (PDS) are seen to-
day as a good alternative to address this challenge. The idea is to deal directly with 
products whose information content is permanently bound to their material content and 
which are able to influence the decisions made about and for them. Therefore, product-
driven control has an impact on decision-making procedures as well as on information 
exchange and storage. PDS are thus good candidates for covering the step 2. 

4.2 Re-optimization or Online optimization 

In the production step, an in-process product can manage its own manufacturing, dis-
patching or operating lists and priorities, according to the real state of the production 
system and possible dysfunctions occurring on the shop floor or modifications concern-
ing the due dates or the demand volume. It can ask for specific production services to 
resources and communicate with the other products to negotiate priorities and produc-
tion deadlines. In the logistic phase, active products in a system with safety constraints 
can supervise their own operations, triggering alarms when required by cooperating 
with other active components, thus improving the availability and maintainability of 
the system and obtaining an ambient system [20]. 

All these re-scheduling cases could be solved in a more reactive way in switching 
down from the centralize control system to PDS. Very quickly PDS could find, if exist, 
a feasible solution to do production or logistic activities remaining after the specific 
event. Obviously if no solution emerges at the operational level it would be still neces-
sary to switch back to the centralize way to find an optimal solution. Ideally, to be the 
most possible reactive, this kind of process must be “on-line” to be sure that the real 
system won’t change during the decision process as highlighted in [21]. 

The main issue for researchers is then to provide accurate mechanisms to define “on-
line” the best switching dates (and/or the best switching decision-making levels) for 



control holons/agents so that they behave in a sense that the behavior of the hybrid 
architecture stays globally optimized despite disturbances. In this context, flexibility 
and resilience are two performance indicators that are interesting for evaluating a PDS. 

4.3 Models and approaches for reacting after perturbations 

Models.  
Regarding Operational Research, two main models are used for modelling an opti-

mization problem: graphs and mathematical programs. When dealing particularly with 
operations scheduling problems, it is easy to check that the mathematical programs are 
more used in this context. According to the type of the mathematical program (linear 
or not, with integer variables or not…), associated solution methods are existing for 
finding the optimal solution. And these methods are implemented in commercial tools 
like Cplex, Lingo. The efficiency of the methods for solving such models is particularly 
sensitive to the type of variables, the number of variables and the number of constraints. 

When dealing with operations scheduling (and so re-scheduling), two subproblems 
must be solved. The first one concerns the allocation of operations to machines and the 
second one concerns the sequencing of these operations with possible precedence con-
straints to be satisfied. We can note that the allocation problem can be sometimes fixed 
a priori when only one machine is qualified for executing a given operation. We will 
see in the next paragraph that the fact that the allocation problem is fixed or not has an 
incidence on the solving method. 

Solution approaches. 
Classical Operational Research approaches for solving optimization problems can 

be split into two categories: 

 Exact methods: Branch and Bounds algorithms (for solving Mixed Integer Linear 
Programs), dedicated algorithms. These approaches have the advantage to be able to 
find the optimal solution but are often not efficient for real-sized problems. 

 Approximation methods: mainly heuristics and metaheuristics. These approaches 
have the advantage to be efficient even for real-sized examples and to be able to find 
good solution regarding the optimization criterion. 

For identifying the relevant approaches for solving re-scheduling problems in the 
context of PDS, it is mandatory to take into account at least two inputs: the available 
time for finding the schedule and the type of decision to be taken. 

The available time is clearly dependent of the duration of the unpredicted perturba-
tion. In fact, if the time for taking the decision becomes bigger than the time for solving 
directly the perturbation, the re-scheduling becomes useless. For instance, imagine that 
a machine failed and that we can predict that the machine can be repaired with a given 
duration, this will fix the available time for finding a new schedule. It is precisely here 
that the PDS concept is the most useful because its application must help to evaluate 
this available time through the information that can give the product the closest from 
the production system. The product can help to detect the unpredicted perturbation and 



then the merged information coming from the different products is able to give an over-
all situation and then can help to decide which type of decision must be taken. 

The type of decision to be taken concerns mainly if re-allocation is needed or not. If 
re-allocation is needed, that means that an integer variable is necessary for representing 
the allocation of each operation to one machine. That means that the mathematical pro-
gram for modelling the problem becomes a Mixed Integer Linear Program (MILP). 
This type of problem is known to be NP-Complete: that means that no efficient solution 
method is known for solving efficiently a MILP. 

According to several inputs, we define a first table giving the preferable solution 
methods depending on some criteria arbitrarily defined. To our best of knowledge, such 
a work has never been done such that the identified criteria/needs should be enriched 
and discussed. The first table is given in the next figure. Future works must be done to 
i) fill the gaps in the table, ii) better justifying the criteria in the table. 
 

 

Fig. 1. - Identified solution methods according to several criteria 

5 Conclusions 

This paper investigates the product-driven systems as a candidate for reacting against 
perturbations and for taking part in a full solution process existing in the operational 
research context. Moreover, this paper is a first attempt to identify the solution ap-
proaches from operational researchers that are relevant for implementing a PDS. 

Valuable efforts should still be done for better identifying the different situations 
that can occur when dealing with perturbations, and thus to associate the better solution 
approaches to deal with these situations. 
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