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HIGH ORDER FINITE ELEMENT SIMULATIONS FOR FLUID DYNAMICS VALIDATED BY EXPERIMENTAL DATA FROM THE FDA BENCHMARK NOZZLE MODEL
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The objective of the present work is to construct a sound mathematical, numerical and computational framework relevant to blood flow simulations and to assess it through a careful validation against experimental data. We perform simulations of a benchmark proposed by the FDA for fluid flow in an idealized medical device, under different flow regimes. The results are evaluated using metrics proposed in the literature and the findings are in very good agreement with the validation experiment.

INTRODUCTION

A challenging benchmark was proposed by the US Food and Drug Administration (FDA) in [START_REF] Hariharan | Multilaboratory particle image velocimetry analysis of the FDA benchmark nozzle model to support validation of computational fluid dynamics simulations[END_REF] in order to assess the stability, accuracy and robustness of computational methods in different physiological regimes. The findings of 28 blinded investigations were reported in [START_REF] Stewart | Results of FDAs first interlaboratory computational study of a nozzle with a sudden contraction and conical diffuser[END_REF] and as critically analyzed in [START_REF] Sotiropoulos | Computational fluid dynamics for medical device design and evaluation: are we there yet?[END_REF], practically all CFD solvers failed to predict results that agreed in a satisfactory manner with the experimental data. Several subsequent papers tackled this question, by employing different numerical approaches: for instance a finite-element based direct numerical simulation method in [START_REF] Passerini | Validation of an open source framework for the simulation of blood flow in rigid and deformable vessels[END_REF] or a large-eddy simulation method in [START_REF] Zmijanovic | About the numerical robustness of biomedical benchmark cases: Interlaboratory FDA's idealized medical device[END_REF].

We aim at contributing to the effort of improving the reliability and reproducibility of computational studies by performing a thorough validation of the fluid solver developed in the open source finite element library Feel++ [START_REF] Prud'homme | Feel++: A Computational Framework for Galerkin Methods and Advanced Numerical Methods[END_REF]. In the current investigation, we present results corresponding to three Reynolds numbers 500, 2000 and 3500 obtained by using a direct numerical simulation method of the Navier-Stokes equations. In particular we implement and compare low order as well as high order approximations including for the geometry and we discuss some issues not previously reported in the literature.

METHODOLOGY

Benchmark description. The FDA benchmark nozzle model provides a comprehensive dataset of experimental measures using a well-defined geometry corresponding to an idealized medical device (see Figure 1 for a schematic sketch of the domain and [1, Sec. 2.1] for the precise dimensions of each part). Five sets of data spanning laminar, transitional and turbulent regimes are made available; we focus in the current work on the flow regime specifications described in Figure 1.

The comparison with experimental data is made in terms of (i) wall pressure difference (normalized to the mean throat velocity) versus axial distance; and (ii) axial component of the velocity (normalized to the mean inlet velocity) along the centerline:

∆p norm = p z -p z=0 1 2 ρ f u 2 t and u norm z = u z u i , where u 2 t = 4Q πD 2 t , u i = 4Q πD 2 i , (1) 
and Q is the volumetric flow rate retrieved from Re t (see Figure 1, right panel). Furthermore, we present results on two validation metrics reported in [START_REF] Stewart | Results of FDAs first interlaboratory computational study of a nozzle with a sudden contraction and conical diffuser[END_REF], also assessed in [START_REF] Passerini | Validation of an open source framework for the simulation of blood flow in rigid and deformable vessels[END_REF]: a conservation of mass error metric E Q (on a percentage basis) and a general validation metric E z comparing average experimental velocity data with computed axial velocities.

Fluid equations and numerical approach. We now turn to the mathematical and the numerical setting. We consider the homogeneous, incompressible, unsteady Navier-Stokes equations, which read in conservative form: find (u, p) such that

ρ ∂u ∂t + (u • ∇)u -µ∆u + ∇p = 0, div(u) = 0, in Ω × I.
The set Ω ⊂ R 3 represents the spatial domain described in Figure 1. I = (0, T ) is the time interval, u and p are the velocity and pressure of the fluid and ρ and µ are the density and the dynamic viscosity of the fluid, respectively. We supplement the equations with initial and boundary conditions. At t = 0s, the fluid is considered to be at rest, u(x, t) = 0. A Poiseuille velocity profile is imposed on Γ inlet , homogeneous Dirichlet condition on Γ wall and a free outflow on Γ outlet .

We refer to [8, Sec. 2] regarding the variational formulation, the finite element discretization including low to high order geometry as well as the time discretization. We choose the generalized Taylor-Hood finite element for the velocity-pressure discretization; the notation P N +1 P N G kgeo is used to specify exactly the discretization spaces for the velocity, pressure and geometry, respectively.

The benchmark hereafter is developed in the framework of the Finite Element Embedded Library in C++, Feel++ [START_REF] Prud'homme | Feel++: A Computational Framework for Galerkin Methods and Advanced Numerical Methods[END_REF], that allows to use a very wide range of Galerkin methods and advanced numerical techniques such as domain decomposition. The ingredients include a very expressive embedded language, seamless interpolation, mesh adaption and seamless parallelization. Regarding the computational domain, we used GMSH. The construction used the following steps: (i) start with a 2D geometry embedding the benchmark metric locations and customizing characteristic mesh size depending on the region and (ii) extrude by rotation to obtain the device geometry. Finally we use the PETSC interface developed in Feel++ and in particular the FieldSplit preconditioning framework to implement block preconditioning strategies such as PCD [START_REF] Elman | Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics[END_REF]. Note that PCD requires specific tuning with respect to boundary conditions.

RESULTS AND CONCLUSIONS

h min h max h average N elt M0 1.9 • 10 -4 2.9 • 10 -3 1.3 • 10 -3 412 575 M1 1.6 • 10 -4
1.8 • 10 -3 7.6 • 10 -4 830 000 M2 1.4 • 10 -4 1.96 • 10 -3 6 • 10 -4 3 400 000 M3 8.5 • 10 -5

1.7 • 10 -3 3.5 • 10 -4 7 000 000 M4 6. We perform simulations for three Reynolds numbers evaluated in the throat Re t = 500, 2000, 3500, with several mesh refinements and polynomial order approximations. The fluid's prescribed density is ρ = 1056 kg m 3 and viscosity µ = 0.0035P a.s. The mesh characteristics are described in Table 1. At Re t = 500, the simulation is carried out until t = 3s, time reasonably close to the steady state, and we choose the time step equal to ∆t = 10 -3 . At Re t = 2000 (resp Re t = 3500), the numerical experiments were carried out until t = 0.45s (resp t = 0.4s), time when the turbulent regime was fully developed and we set ∆t = 10 -4 .

Figure 2 shows the results in the three flow regimes for the normalized axial velocity and the normalized pressure difference along the z axis, respectively. In each case, we can see satisfactory agreement with the experimental data. However, for Re t = 2000, we observe that the numerical jet breakdown point is captured further downstream than the experimentally observed breakdown point. As recently highlighted in [START_REF] Zmijanovic | About the numerical robustness of biomedical benchmark cases: Interlaboratory FDA's idealized medical device[END_REF], the prediction of the axial location of the jet breakdown is extremely sensitive to numerical parameters, therefore a possible explanation of this mismatch may be the accuracy of the numerical integration. Finally, we illustrate in Figure 3 the computation of metrics E z and E Q for several mesh refinements at Re t = 500. The metric E z takes small values in each numerical experiment, identifying a good agreement betweeen computed and experimental data, and displays only small variations with respect to mesh refinement. On the other hand, the metric E Q is more sensitive to this factor: error doesn't exceed the ∼ 2% except for the coarse mesh M 0 where, in two locations, the error increases up to ∼ 10%. Furthermore, we note that the P 3 P 2 G 1 approximation doesn't improve the results for the coarse mesh, but that a satisfactory error below 2% is retrieved when using a P 2 P 1 G 2 approximation. Additional tests to complement the study of the impact of high order approximation are ongoing.

Conclusions and perspectives

We validated our computation fluid dynamic framework against this FDA benchmark for three different regimes and different discretization and solution strategies. Perspectives include a full report on our findings including in terms of iteration and timing performances as well extending our results to the turbulent range. 

Figure 1 :

 1 Figure 1: Computational domain (top) and flow regime specifications (bottom); Re i and Re t : Reynolds number in the inlet section and throat section, respectively.

Figure 2 :

 2 Figure 2: Comparison between experimental data and numerical results for the normalized axial velocity along z (left) and the normalized pressure difference along z (right), for Re t = 500 (top) Re t = 2000 (middle) and Re t = 3500 (bottom).

Figure 3 :

 3 Figure 3: Validation metrics E z (left) and E Q (right) for Re t = 500.

Table 1 :

 1 

	3 • 10 -5	2.0 • 10 -3 5.8 • 10 -4 2 879 365
	M5 1.4 • 10 -4	2.6 • 10 -3 4.1 • 10 -4 3 200 000

Characteristic lengths of the different meshes: h min , h max , h average are respectively the minimum, maximum and average edge length in the meshes and N elt is the number of tetrahedra.
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