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Abstract. Bayesian inversion is at the heart of probabilistic program-
ming and more generally machine learning. Understanding inversion is
made difficult by the pointful (kernel-centric) point of view usually taken
in the literature. We develop a pointless (kernel-free) approach to inver-
sion. While doing so, we revisit some foundational objects of probability
theory, unravel their category-theoretical underpinnings and show how
pointless Bayesian inversion sits naturally at the centre of this construc-
tion.

1 Introduction

The soaring success of Bayesian machine learning has yet to be matched with
a proper foundational understanding of the techniques at play. These statistical
models are fundamentally nothing more than programs that manipulate proba-
bility distributions. Therefore, the semantics of programming languages can and
should inform the semantics of machine learning. This point of view, upheld by
the proponents of probabilistic programming, has given rise to a growing body of
work on matters ranging from the computability of disintegrations [1] to opera-
tional and denotational semantics of probabilistic programming languages [12].
These past approaches have all relied on a pointful, kernel-centric view of the
key operation in Bayesian learning, namely Bayesian inversion. In this paper,
we show that a pointless, operator-based approach to Bayesian inversion is both
more general, simpler and offers a more structured view of Bayesian machine
learning.

Let us recall the underpinnings of Bayesian inversion in the finite case.
Bayesian statistical inference is a method for updating subjective probabilities
on an unknown random process as observations are collected. In a finite setting,
this update mechanism is captured by Bayes’ law:

P (d) · P (h | d) = P (d | h) · P (h) (1)

On the right-hand side, the likelihood P (d | h) encodes a parameter-dependent
probability over data, weighted by the prior P (h) which corresponds to our cur-
rent belief on which parameters best fit the law underlying the unknown random
process. The left-hand side of Eq.1 involves the marginal likelihood P (d), which



is the probability of observing the data d under the current subjective proba-
bility, and the posterior P (h | d) which tells us how well the occurrence of d
is explained by the parameter h. More operationally, the posterior tells us how
we should revise our prior as a function of the observed data d. In a typical
Bayesian setup, the prior and likelihood are given and the marginal likelihood
can be computed from the two first ingredients. The only unknown is the pos-
terior P (h | d). Eq. 1 allows one to compute the posterior from the two first
ingredients–whenever P (d) > 0! This formulation emphasises the fundamental
symmetry between likelihood and posterior, and hopefully makes clear why the
process of computing the posterior is called Bayesian inversion. The key obser-
vation is that both the likelihood and posterior can be seen as matrices, and
Eq. 1 encodes nothing more than a relation of adjunction between these matri-
ces seen as (finite-dimensional) operators. This simple change of point of view,
where one thinks no longer directly in terms of kernels (which transform prob-
ability measures forward), but in terms of their semantics as operators (which
transform real-valued obervables backward) generalises well and gives us a much
more comprehensive account of Bayesian learning as adjunction. If one thinks of
observables as extended predicates, this change of point of view is nothing but
a predicate transformer semantics of kernels: a well-established idea planted in
the domain of probabilistic semantics by Kozen in the 80s [10].

Our contributions are as follows. In Sec. 3, we recall how Bayesian inversion
is formulated using the language of kernels, following the seminal work of [5] and
our own preliminary elaboration of the ideas developed in the current paper [6].
We observe that Bayesian inversion fits somewhat awkwardly in the structure of
the category of kernels and conclude to the need for a better behaved setting.
Drawing from domain-theoretic ideas first developed by [11], we develop in Sec.
4 a categorical theory of ordered Banach cones, including a generalisation of the
adjunction theorem for L+

1 /L
+
∞ cones developed in [4] to arbitrary L+

p /L
+
q cones.

In Sec. 5, we define a functorial operator-theoretic representation of kernels in the
category of Banach cones and prove that pointful Bayesian inversion corresponds
through this functorial bridge to adjunction, expanding our recent result [6] to
arbitrary L+

p /L
+
q cones. We note that unlike the pointful case, the pointless,

adjunction-based approach works with arbitrary measurable spaces. Finally, in
Sec. 6 we extract from the pointful and pointless approaches what we consider
to be the essence of Bayesian inversion: a correspondence between couplings and
linear operators. In this new light, adjunction (and therefore Bayesian inversion)
is nothing more than a permutation of coordinates. We conclude with a sketch
of some directions for future research where one could most profit of the superior
agility and extension of the pointless approach.

2 Preliminaries

We refer the reader to e.g. [2] for the concepts of measure theory and functional
analysis used in this paper. For convenience, some basic definitions are recalled
in Appendix A.
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The category of measurable spaces and measurable functions will be denoted
by Mes. Mes admits a full subcategory corresponding to the standard Borel
spaces, denoted SB. The Giry endofunctor, denoted by G : Mes→Mes, maps
each measurable space X to the space G(X) of probability measures over X. The
measurable structure of G(X) corresponds to the initial σ-algebra for the family
{evB : G(X)→ [0, 1]}B of evaluation maps evB(p) = p(B), where B ranges over
measurable sets in X. The action of G on arrows is given by the pushforward (or
image measure): for f : X → Y measurable, we have G(f) : G(X)→ G(Y ) given
by G(f)(p) = p◦f−1. This functor admits the familiar monad structure (G,m, δ)
where m : G2 ⇒ G and δ : Id ⇒ G are natural transformations with compoents
at X defined by mX(P )(B) =

∫
G(X)

evB dP and δX(x)(B) = δx(B). It is well-

known that when restricted to standard Borel spaces, the Giry functor admits the
same monad structure. See [7] for more details on this construction. The Kleisli
category of the Giry monad, corresponding to Lawvere’s category of probabilistic
maps, will be denoted by K`. The objects of K` correspond to those of Mes and
arrows from X to Y correspond to so-called kernels f : X → G(Y ). Kleisli arrows
will be denoted by f : X _ Y . For f : X _ Y, g : Y _ Z, the Kleisli composition
is defined as usual by g ◦′ f = mZ ◦G(g) ◦ f . We distinguish deterministic Kleisli
maps as those that can be factored as a measurable function followed by δ and
denote these arrows f : X _δ Y . We write 1 for the one element measurable
space (which is the terminal object in Mes). Clearly the Homset K`(1, Y ) is in
bijection with the set of probabilities over Y . This justifies the following slight
abuse of notation: if µ ∈ G(X) is a probability and f : X _ Y is a kernel, the
pushforward of µ through f will be denoted f ◦′ µ.

It is instructive to consider the full subcategory of K` restricted to finite
spaces. In that setting, any kernel f : X _ Y is isomorphic to a positive, real-
valued matrix that we denote T (f) = {f(x)(y)}x,y with X rows, Y columns and
where all rows sum to 1. Matrix multiplication corresponds to Kleisli composi-
tion: taking f, g as above, one has g◦′f ∼= T (f)T (g) (hence, this representation of
kernels as matrices is contravariant). Such matrices act on vectors of dimension
Y (observables on Y ) and maps them to observables on X: for v ∈ RY , T (f)v
corresponds to the expectation of v according to f . Later, we will generalise this
representation to the infinite-dimensional case.

3 Bayesian inversion in a category of kernels

We introduce the category Krn of pointed kernels and recall the statement of
Bayesian inversion in this setting.

3.1 Definition of Krn

Our starting point is the under category 1 ↓ K`, where 1 is the one-element
measurable space. Objects of 1 ↓ K` are Kleisli arrows µ : 1 _ X, i.e. probability
spaces (X,µ) with µ ∈ G(X) while pointed kernels from (X,µ) to (Y, ν) are
Kleisli arrows f : X _ Y such that f ◦′µ = ν. We will call these arrows “kernels”
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for short. For a deterministic map fδ : X _δ Y (factoring as fδ = δY ◦ f), this
boils down to ν = G(f)(µ). Therefore the subcategory of 1 ↓ K` consisting of
deterministic maps is isomorphic with the usual category of probability spaces
and measure-preserving maps. We define Krn to be the subcategory of 1 ↓ K`
restricted to standard Borel spaces.

3.2 Bayesian inversion in the finite subcategory of Krn

We translate the presentation of Bayesian inversion of Sec. 1 in the language of
Krn. We are given finite spaces of data D and parameters H and it is assumed
that there exists an unknown probability on D, called the “truth” and denoted τ
in the following, that we wish to learn. The likelihood corresponds to a K` arrow
f : H _ D, The prior is a probability µ ∈ G(H) while the marginal likelihood
ν ∈ G(D) is obtained as ν = f ◦′ µ. This yields a Krn arrow f : (H,µ) _ (D, ν).
If our prior was perfect, we would have ν = τ but of course (by assumption)
this is not the case! The only access we have to the truth is through an infinite,
independent family {dn}n∈N of random elements in D each distributed according
to τ . Bayesian update is the process of using this sequence of data (sometimes
called evidence) to iteratively revise our prior. In this language, Bayes’s law
reads as follows:

ν(d) · f†(d)(h) = f(h)(d) · µ(h) (2)

where f† : (D, ν) _ (H,µ) denotes the sought posterior. Observe that both the
left and right hand side of Eq. 2 define the same joint probability γ ∈ G(H ×D)
defined by γ(h, d) = f(h)(d)·µ(h) = ν(d)·f†(d)(h). Denoting πH , πD the left and
right projections from H×D, one easily verifies that G(πH) = µ and G(πD) = ν.
In other terms, γ is a coupling of µ and ν. We draw the attention of the reader
to the following points.

– As hinted before, f†(d) is uniquely defined only when ν(d) > 0. Conversely,
f† does not depend on f on µ-null sets. These hurdles will be circumvented
by considering equivalence classes of kernels up to null sets. This is the object
of Sec. 3.3.

– Sec. 2 introduces a correspondence between (finite) kernels and Markov or
stochastic matrices. This begs the following question: what is Bayesian in-
version seen through that lens? The answer is adjunction. As we show in Sec.
5, this pointless point of view generalises to arbitrary measurable spaces and
is better behaved than the pointful one.

We now proceed to the generalisation of this machinery to the case of standard
Borel spaces.

3.3 Bayesian inversion in Krn

Bayesian inversion in Krn relies crucially on the construction of an (almost
sure) bijection between the Krn Homset Krn(X,µ;Y, ν) and the set of couplings
Γ(X,µ;Y, ν) of µ and ν (to be defined next).
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Couplings and kernels. To any pair of objects (X,µ), (Y, ν), one can associate
the space of couplings of µ and ν, i.e. the set of all probabilities γ ∈ G(X × Y )
such that G(πX)(γ) = µ and G(πY )(γ) = ν. We denote this set of couplings
Γ(X,µ;Y, ν). It is a standard Borel space, as the set of couplings of two measures
is a closed convex subset in G(X × Y ) for any choice of a Polish topology for
X,Y . In order to construct a mapping from couplings to Krn arrows, we will
need the disintegration theorem:

Theorem 1 (Disintegration ([8], Thm. 5.4)). For all deterministic Krn
arrow π : (X,µ) _δ (Y, ν), there exists a ν-almost surely (a.s.) unique π† :
(Y, ν) _ (X,µ) such that π ◦′ π† = id(Y,ν).

Disintegrations correspond to regular conditional probabilities (see e.g. [8]).
Note that the characteristic property of disintegrations can be equivalently stated
as the fact that π†(y) is ν-a.s. supported by π−1(y).

Example 1. In the finite case, disintegration is simply the formula for condi-
tional probabilities. Given X,Y finite and f : (X,µ) _δ (Y, ν), for y ∈ Y s.t.

ν(y) = µ(f−1(y)) > 0, it holds that f†(y)(x) = µ(x)
ν(x) . However, when ν(y) = 0,

the disintegration theorem does not constrain the value of f†(y) as long as the
resulting map is measurable–which in the finite, hence discrete case is trivial.

Disintegration allows to establish a bijective (up to null sets) correspondence
between couplings and kernels. Let us make this formal. In the following, we
denote N(f, f ′) = {x | f(x) 6= f ′(x)}.

Lemma 1. For all f, f ′ : (X,µ) _ (Y, ν), N(f, f ′) is measurable.

Proof. See Appendix B.

Note that in more general measurable spaces, N(f, f ′) is not necessarily
measurable, as those spaces are not always countably generated.

Definition 1. For fixed (X,µ), (Y, ν), we define on Krn(X,µ;Y, ν) the binary
relation ∼ as the smallest equivalence relation such that f ∼ f ′ if µN(f, f ′) = 0.
We denote Krn(X,µ;Y, ν)/µ the set of ∼-equivalence classes of Krn(X,µ;Y, ν).

Any Krn arrow f : (X,µ) _ (Y, ν) induces a measure on X ×Y , defined as:

IY,νX,µ(f)(BX ×BY ) =

∫
x∈BX

f(x)(BY ) dµ. (3)

Lemma 2. Eq. 3 defines a Set injection IY,νX,µ : Krn(X,µ;Y, ν)/µ→ Γ(X,µ;Y, ν).

Proof. See Appendix B.

The second part of the bijection between couplings and quotiented Krn
arrows relies crucially on disintegration.

5



Lemma 3. There is a Set injection DY,ν
X,µ : Γ(X,µ;Y, ν)→ Krn(X,µ;Y, ν)/µ.

Moreover, DY,ν
X,µ and IY,νX,µ are inverse of one another.

Proof. Any coupling γ ∈ Γ(X,µ;Y, ν) induces two (equivalence classes of) Krn

arrows by disintegrating along the projections, namely π†X : (X,µ) _ (X×Y, γ)

and π†Y : (Y, ν) _ (X × Y, γ). Postcomposing with the adequate projections, we

get from γ an equivalence class of kernels G(πY ) ◦ π†X : (X,µ) _ (Y, ν). We set

DY,ν
X,µ(γ) = G(πY ) ◦ π†X . Let γ ∈ Γ(X,µ;Y, ν) be a coupling. We have:

IY,νX,µ ◦D
Y,ν
X,µ(γ)(BX ×BY ) =

∫
x∈BX

DY,ν
X,µ(γ)(x)(BY ) dµ

=

∫
x∈BX

π†X(x)(X ×BY ) dµ

=

∫
x∈X

π†X(x)(BX ×BY ) dµ
(∗)
= γ

where (∗) follows from the characteristic property of disintegrations. Therefore,

IY,νX,µ and DY,ν
X,µ are inverse to each other.

Bayesian inversion in Krn. Bayesian inversion corresponds to the composition
of the bijections we just defined with the pushforward along the permutation
map σ : X × Y → Y ×X.

Theorem 2 (Bayesian inversion). Let −† be defined as f† = DX,µ
Y,µ ◦ G(σ) ◦

IY,νX,µ. The map −† : Krn(X,µ;Y, ν)/µ→ Krn(Y, ν;X,µ)/ν is a bijection.

Proof. By Lemma 2 and Lemma 3.

This section would be incomplete if we didn’t address learning in its relation
to Bayesian inversion. It is known that in good cases5, Bayesian inversion will
make the sequence of marginal likelihoods converge to the truth in some appro-
priate topology. However, issues of convergence are not the subject of this paper
and will not be discussed further.

3.4 Pointfulness is harmful

Let us take a critical look at the approach to Bayesian inversion developed so
far. The fact that −† is by construction ∼-invariant and yields ∼-equivalence
classes of Krn arrows suggests that Krn is ill-suited as a category in which to
build a theory of Bayesian inversion. Indeed, this problem already arises in the
finite case where Bayes’ rule yields kernels only defined up to a null set (see
discussion after Eq. 2), and is an inevitable consequence of the pointful point
of view: kernels should respect the measures endogenous to their domain. A
solution would be to quotient all of Krn. However, carrying out this approach

5 E.g. H,D finite and µ putting strictly positive measure on f−1(τ)

6



successfully seems non-trivial6: our past attempts are riddled with obstructions
stemming from accumulation of negligible sets–the very technical hurdles that
make the theory of disintegration of measures so unintuitive in the first place,
while moreover relying on standard Borel assumptions.

This improper typing obscures the categorical structure of Bayesian inversion.
In the next sections, we leave the inhospitable world of kernels and relocate the
theory of Bayesian inversion in a category of Banach cones and linear maps
where these problems vanish, and the structure we seek for becomes manifest.

4 Banach cones

Following [11] and [4], we introduce a category of Banach cones and ω-continuous
linear maps, with the intent of interpreting Markov kernels as linear operators
between well-chosen function spaces. In the subcategory corresponding to these
function spaces, we develop a powerful adjunction theorem that will be used in
Sec. 5 to implement pointless Bayesian inversion.

4.1 The category Ban

A Banach cone, informally, corresponds to a normed convex cone of a Banach
space which is ω-complete with respect to a particular order. Let us introduce
these cones progressively.

Definition 2. A normed, convex cone (C,+, ·, 0, ‖·‖C) of a normed vector space
(V,+, ·, 0, ‖·‖V ) is a subset C ⊆ V that is closed under addition, convex combi-
nations and multiplications by positive scalars, endowed with the restriction of
the ambient norm, which must be monotone w.r.t. the partial order u ≤C v ⇔
∃w ∈ C.u+ w = v.

We require our Banach cones to be ω-complete with respect to this order,
and to be subsets of Banach spaces.

Definition 3 (Banach cones). A normed convex cone C is ω-complete if for
all chain (i.e. ≤C-increasing countable family) {un}n∈N of bounded norm, the
least upper bound

∨
n un exists and ‖

∨
n un‖C =

∨
n ‖un‖C . A Banach cone is

an ω-complete normed cone of a Banach space.

Norm convergence and order convergence are related by the following result.

Lemma 4 ([4], Lemma 2.12). Let {un}n∈N be a chain of bounded norm in a
Banach cone. Then limi→∞ ‖

∨
n un − ui‖ = 0.

6 Without additional assumptions the quotient is not compatible with pre-
composition, differently to what we mistakenly stated in ([6], Lemma 3).
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A prime example of Banach cones is given by the positive cones associated
to classical Lp spaces of real-valued functions. In details: for (X,µ) a measure
space and p ∈ [1,∞], the set of elements f ∈ Lp(X,µ) which are non-negative
µ-a.e. is closed under addition, multiplication by non-negative scalars and under
linear combinations with non-negative coefficients. Equipped with the restric-
tion of the norm of Lp(X,µ), this subset forms a normed convex cone that we
denote L+

p (X,µ). The partial order associated to these L+
p cones can be defined

explicitly: for f, g ∈ L+
p (X,µ), we write that f ≤ g if f(x) ≤ g(x) µ-a.e.. One

easily checks that this coincides with the definitional partial order.

Proposition 1 (ω-completeness of L+
p cones, [4]). For all X measurable,

µ ∈ G(X) and p ∈ [1,∞], L+
p (X,µ) is a Banach cone.

This result is a direct consequence of the definition of suprema in L+
p (X,µ).

We are going to construct a category of all Banach cones and we thus have to
specify what a morphism between such cones is. We consider only linear maps
which are Scott-continuous, which in this case7 boils down to commuting with
supremas of increasing chains.

Definition 4. Let C,C ′ be Banach cones and A : C → C ′ be a linear map. A
is ω-continuous if for every chain {fn}n∈N such that

∨
n fn exists, A(

∨
n fn) =∨

nA(fn).

The following example should help make ω-continuity less mysterious. Ob-
serve that for Y = 1 (the singleton set), all Banach cones L+

p (Y, µ) (for µ nonzero
and p ∈ [1,∞]) are isomorphic to R≥0 – therefore, R≥0 is a bona fide Banach
cone. There exists a familiar linear map from L+

p (X,µ) to R≥0, namely the
Lebesgue integral

∫
: L+

p (X,µ) → R≥0, taking u ∈ L+
p (X,µ) to

∫
X
u dµ. In

this case, ω-continuity of the integral is simply the monotone convergence the-
orem! Unless stated otherwise, all maps in the remainder of this section are
ω-continuous.

The property of ω-continuity is closed under composition and the identity
function is trivially ω-continuous. This takes us to the following definition.

Definition 5 (Categories of Banach cones and of L+
p cones). The category

Ban has Banach cones as objects and ω-continuous linear maps as morphisms.
We distinguish the full subcategory L having as objects all L+

p -spaces (ranging
over all p ∈ [1,∞]). Further, L admits a family of full subcategories {Lp}p∈[1,∞],

each having as objects L+
p spaces (for fixed p).

Ban is itself a full subcategory of the category ωCC of ω-complete normed
cones and ω-continuous maps, as defined in [4]. Let us denote by Ban(C,C ′) the
set of ω-continuous linear maps from C to C ′. Denoting ‖·‖C the norm of C, we
recall that the operator norm of a linear map A : C → C ′ is given by ‖A‖op =

7 These cones have the “countable sup property”[2]. Therefore, all directed sets admit
a countable subset having the same least upper bound, and we can restrict our
attention to chains.
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inf {K ≥ 0 | ∀ u ∈ C, ‖Au‖C′ ≤ K ‖u‖C}. A partial order on Ban(C,C ′) is given
by A ≤ B iff for all u ∈ C, A(u) ≤C′ B(u). Selinger proved in [11] that ω-
continuous linear maps between ω-complete cones have automatically bounded
norm (i.e. they are continuous in the usual sense), therefore we can and will
abstain from asking continuity explicitly. The following result is a cone-theoretic
counterpart to the well-known fact that the vector space of bounded linear oper-
ators between two Banach spaces forms a Banach space for the operator norm.

Proposition 2. For all Banach cones C,C ′, the cone of ω-continuous linear
maps Ban(C,C ′) is a Banach cone for the operator norm and the pointwise
order.

Proof. See Appendix C.

4.2 Duality in Banach cones

We use a powerful Banach cone duality result initially proved in the supple-
mentary material to [4]. We say that a pair (p, q) with p, q ∈ [1,∞] is Hölder
conjugate if 1

p + 1
q = 1. For any Banach cone C, its dual C∗ is by definition the

Banach cone of ω-continuous linear functionals, i.e. the cone C∗ = Ban(C,R≥0).
This operation defines a contravariant endofunctor −∗ : Ban→ Banop mapping
each cone C to C∗ and each map of cone A : C → C ′ to the map A∗ : C ′

∗ → C∗

defined by A∗(ϕ) = ϕ ◦A, for ϕ ∈ C ′∗. For Hölder conjugate (p, q), we have the
following extension to the usual isomorphism of L+

p cones.

Theorem 3 (L+
p cone duality ([4])). There is a Banach cone isomorphism

εp : L+
p (X,µ) ∼= L+,∗

q (X,µ).

We won’t reproduce the proof of this theorem here, which can be found in the
supplementary material to [4]. Suffice it to say it is a Riesz duality type argument
which relies entirely on the Radon-Nikodym theorem. Note that Theorem 3
implies in particular that L+,∗

∞ (X,µ) ∼= L+
1 (X,µ), which classically fails in the

usual setting of Lp Banach spaces. It is instructive to study how ω-continuity
wards off a classical counter-example to duality in the general Banach case.

Example 2 (Taken from [11]). Let µ be a probability measure on N with full
support. We consider the cone `+∞ = L+

∞(N, µ) of bounded sequences of real
numbers. Let U be a non-principal ultrafilter on N. We define the function limU :
`+∞ → R as limU ({xn}n∈N) = sup {y | {n | xn ≥ y} ∈ U}. This function is linear

and bounded. However, consider the chain
{
uk ∈ `+∞

}
k∈N with ukn = 1 for all

n ≤ k and ukn = 0 for all n > k. The supremum of this chain is the constant 1
sequence. However, we have limU (uk) = 0 for all k, whereas limU (

∨
k u

k) = 1.
Therefore, limU (uk) is not ω-continuous–i.e., limU 6∈ `+,∗∞ .

It is useful to have a concrete representation of the isomorphism stated in
Theorem 3. This theorem implies that for all u ∈ L+

p (X,µ), there exists a unique
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ω-continuous linear functional ε(u) ∈ L+,∗
q (X,µ)–which must therefore corre-

spond to ε(u)(v) =
∫
X
uv dµ. The pairing between L+

p and L+
q cones that we

introduce below corresponds to the evaluation of such a functional against some
argument.

Definition 6 (Pairing). For Hölder conjugate (p, q), the pairing is the map
〈·, ·〉X : L+

p (X,µ)× L+
q (X,µ)→ R≥0 defined by 〈u, u′〉 =

∫
uu′ dµ.

The pairing is bilinear, continuous and ω-continuous in each argument (con-
sequences of the corresponding properties of the Lebesgue integral). We can now
state the adjunction theorem.

4.3 Adjunctions between conjugate L+
p cones

It is instructive to look at Theorem 3 under a slightly more general light. Ob-
serve that L+

p (X,µ) is isomorphic to Ban(R≥0, L+
p (X,µ)): indeed, any map

A in this function space is entirely constrained by linearity by its value at
1. Therefore, Theorem 3 really states a Banach cone isomorphism between
Ban(R≥0, L+

p (X,µ)) and Ban(L+
q (X,µ),R≥0). This isomorphism generalises

to the case where R≥0 is replaced by an arbitrary conjugate pair of cones
L+
p (Y, µ), L+

q (Y, ν) (i.e. s.t. (p, q) are Hölder conjugate). We show in Sec. 5 that
this corresponds to pointless Bayesian inversion.

Theorem 4 (L+
p /L

+
q adjunction). For (p, q) Hölder conjugate and for all A :

L+
p (X,µ)→ L+

p (Y, ν), A∗ : L+
q (Y, ν)→ L+

q (X,µ) is unique such that

∀ u ∈ L+
p (X,µ), v ∈ L+

q (Y, ν), 〈v,A(u)〉Y = 〈A∗(v), u〉X . (4)

Proof. For v ranging in L+
q (Y, ν), the map A∗ : L+

q (Y, ν)→ L+,∗
p (X,µ) is defined

as usual as

A∗(v) = εq(v) ◦A = u ∈ L+
p (X,µ) 7→ 〈v,A(u)〉Y . (5)

Clearly, A∗ is linear. By ω-continuity of A and of the pairing, the functional
A∗(v) is ω-continuous. By Theorem 3, this map can be typed as A∗ : L+

q (Y, ν)→
L+
q (X,µ). Since A∗(v) is ω-continuous for all v ∈ L+

q (Y, ν) and by ω-continuity
of the pairing, we have for any norm-bounded chain {vn}n∈N s.t. v =

∨
n vn that

A∗(
∨
n

vn) = u 7→
∨
n

〈vn, A(u)〉Y = u 7→
∨
n

〈vn, A(u)〉Y =
∨
n

A∗(vn).

Eq. 4 follows from Theorem 3. It remains to prove unicity of A∗. Let B :
L+
q (Y, ν)→ L+

q (X,µ) be such that Eq. 4 is verified, i.e. 〈B(v), u〉X = 〈v,A(u)〉Y
for all u, v. We deduce that B(v) = εq(v) ◦A = A∗(v).

The essence of the previous theorem is neatly captured as follows.

Corollary 1. For all Hölder conjugate (p, q), the duality functor −∗ : Ban →
Banop restricts to an equivalence of categories −∗ : Lp→ Lqop.

Fig. 1 recapitulates the categories of Banach cones mentioned in this section
along their relationships.

10
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Fig. 1. Categories of cones
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KK

Fig. 2. Kernels, AMKs and MOs

5 Pointless Bayesian inversion

Krn arrows can be represented as linear maps between function spaces. This
bridge allows one to manipulate Markov kernels both from the measure-theoretic
side and from the functional-analytic side. Concretely, this linear interpretation
of kernels is presented as a family of functors from Krn to L, the subcategory
of Ban restricted to L+

p cones and ω-continuous linear maps. We show that
pointful Bayesian inversion, whenever it is defined, coincides with adjunction.

5.1 Representing Krn arrows as AMKs

More precisely, kernels are associated to so-called abstract Markov kernels (AMKs
for short), which are a generalisation of stochastic matrices.

Definition 7 (Abstract Markov kernels). An arrow A : L+
p (Y, ν)→ L+

p (X,µ)
is an AMK if A(1Y ) = 1X and if ‖A‖ = 1. Clearly, AMKs are closed under
composition and the identity operator is trivially an AMK. AMKp is the sub-
category of Lp having the same objects and where morphisms are restricted to
AMKs.

The adjoint of an AMK is in general not an AMK. In the finite case, this re-
flects the fact that the transpose of a stochastic matrix is not necessarily stochas-
tic. Adjoints of AMKs are called Markov operators (MOs for short). Whereas
AMKs pulls back observables, an MO pushes densities forward.

Definition 8 (Markov operators). An arrow A : L+
p (X,µ) → L+

p (Y, ν) is
a MO if for all u ∈ L+

p (X,µ), ‖A(u)‖1 = ‖u‖1 and if ‖A‖ = 1. MOp is the
subcategory of Lp having the same objects and where morphisms are restricted
to MOs.

Notice that we require an MO to be norm preserving for the L+
1 norm. This

is a mass preservation constraint in disguise. Adjunction maps AMKs to MOs
and conversely.

11



Proposition 3. The equivalence of categories −∗ : Lp → Lqop restricts to an
equivalence of categories −∗ : AMKp →MOq

op.

Proof. See Appendix D.

We now introduce a family of contravariant functors Tp : Krnop → AMKp.
On objects, we set Tp(X,µ) = L+

p (X,µ). For f : (X,µ) _ (Y, ν) a Krn arrow,
and for v ∈ Tp(Y, ν) = L+

p (Y, ν), we define Tp(f)(v)(x) =
∫
Y
v df(x).

Theorem 5. Tp is a functor from Krnop to AMKp.

Proof. See Appendix D.

The relationship between AMKs and MOs is summed up in Fig. 2. Notice
that AMKp and MOp are subcategories of Lp which are not full.

5.2 Bayesian inversion in Krn

Recall that Theorem 2 gives Bayesian inversion as a bijection

−† : Krn(X,µ;Y, ν)/µ ∼= Krn(Y, ν;X,µ)/ν.

Tp is ∼-invariant, which allows us to apply it to ∼-equivalence classes of arrows.

Lemma 5. Let f, f ′ : (X,µ) _ (Y, ν) be such that f ∼ f ′. Then for all p ∈
[1,∞], Tp(f) = Tp(f

′).

Proof. Since µ {x | f(x) 6= f ′(x)} = 0, we have for all function g : G(Y )→ [0,∞]
that µ {x | g ◦ f(x) 6= g ◦ f ′(x)} = 0. Taking g = evv(λ) =

∫
Y
v dλ, the sought

property follows.

The following theorem states that pointful Bayesian inversion implements
adjunction.

Theorem 6. For all Krn arrow f : (X,µ) _ (Y, ν) and all Hölder conjugate
(p, q), Tp(f

†) = Tq(f)∗.

Proof. It is enough to prove that for all u ∈ L+
p (X,µ), v ∈ L+

q (Y, ν), we have

〈Tp(f†)(u), v〉Y = 〈u,Tq(f)(v)〉X . We compute:

〈Tp(f†)(u), v〉Y =

∫
y∈Y

v(y)

∫
x∈X

u(x) df†(y) dν

=

∫
y∈Y

∫
(x,y)∈X×Y

u(x)v(y) dπ†Y (y) dν (∗)

=

∫
(x,y)∈X×Y

u(x)v(y) dIY,νX,µ(f)

=

∫
x∈X

∫
(x,y)∈X×Y

u(x)v(y) dπ†X(x) dµ

=

∫
x∈X

u(x)

∫
y∈Y

v(y) df(x) dµ (∗)

= 〈u,Tq(f)(v)〉X

12



This string of equations follows from the definition of −† (Theorem 2). At the
equations marked (∗) we used the characteristic property of disintegrations to
move u (resp. v) in (resp. out) of the integral (see Theorem 1).

This proves that Bayesian inversion is really just adjunction. However, per-
forming Bayesian inversion in Krn relies on standard Borel assumptions, while
adjunction does not! Notice also that the proof of Theorem 6 relies centrally
on the representation of kernels as couplings. This suggests promoting the lat-
ter as the central notion of morphism. In the next section, we carry out the
construction of the corresponding category.

6 Pointless Bayesian inversion through couplings

We reverse engineer the operator-centric pointless approach to inversion and
construct a bidirectional mapping between operators and couplings. In this new
setting, freed from pointful woes, we prove that Bayesian inversion amounts to
permuting the coordinates of the coupling. Our first ingredient is a map from
couplings to ω-continuous linear operators. The key observation is the following.

Proposition 4. Any coupling γ ∈ Γ(X,µ;Y, ν) induces for all p ∈ [1,∞] an
ω-continuous linear operator Kp(γ) : L+

p (X,µ) → L+
p (Y, ν) defined for u ∈

L+
p (X,µ) and v ∈ L+

q (Y, ν) (using L+
p (Y, ν) ∼= L+,∗

q (Y, ν) for (p, q) Hölder
conjugate) as Kp(γ)(u)(v) =

∫
(x,y)∈X×Y u(x)v(y) dγ. Moreover, Kp ranges over

AMKp(X,µ;Y, ν).

Proof. Linearity is trivial. Let us prove that the integral converges. Any function
u ∈ L+

p (X,µ) extends to a function û ∈ L+
p (X × Y, γ) defined as û(x, y) =

u(y). Indeed, one trivially has
∫
X×Y û

p dγ =
∫
Y
up dν by inserting the relevant

projection and applying a change of variables. The operation −̂ : L+
p (X,µ) →

L+
p (X×Y, γ) is easily seen to be linear, ω-continuous and norm-preserving (and

similarly from L+
q (Y, ν) to L+

q (X × Y, γ)), since its action is only to precompose
with a projection. The case p = ∞ is treated similarly. Therefore, we have the
equation Kp(γ)(u) = 〈û, −̂〉X×Y = εp(û)(−̂). This proves that Kp(γ) is linear
and ω-continuous (hence continuous).

Observe that Kp(γ)(1X) ∈ L+,∗
q (Y, ν) verifies Kp(γ)(1X)(v) =

∫
Y
vdν. Clearly,

the functional v 7→
∫
Y
v dν corresponds through the εp isomorphism to the ele-

ment 1Y ∈ L+
p (Y, ν). For all u ∈ L+

p (X,µ), we have

‖Kp(γ)(u)‖p = sup
{
‖Kp(γ)(u)(v)‖ | v ∈ L+

q (X,µ), ‖v‖q = 1
}

= sup

{∫
X×Y

u(x)v(y)dγ | v ∈ L+
q (Y, µ), ‖v‖q = 1

}
.

But by Hölder’s inequality,
∫
X×Y u(x)v(y)dγ ≤ ‖u‖p ‖v‖q = ‖u‖p therefore,

‖Kp(γ)‖ ≤ 1. Taking u = 1X , we conclude that ‖Kp(γ)‖ = 1. Therefore, Kp(γ)
ranges over AMKp(X,µ;Y, ν).
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Dually to Prop. 4, any MO gives rise to a probability measure (but not
necessarily a coupling!). For A : L+

p (X,µ) → L+
p (Y, ν) and BX × BY a basic

measurable rectangle in X × Y , we define:

Cp(A)(BX ×BY ) =

∫
Y

1BY
A(1BX

) dν. (6)

Lemma 6. For all MO A : L+
p (X,µ)→ L+

p (Y, ν), Cp(A) ∈ G(X × Y ).

Proof. See Appendix E for the proof.

It is not obvious what a necessary and sufficient condition should be for Cp(A)
to give rise to a coupling. However, we have the following reasonable sufficient
condition.

Proposition 5. For all MO A : L+
∞(X,µ)→ L+

∞(Y, ν), C∞(A) ∈ Γ(X,µ;Y, ν).

Proof. Le us prove that C∞(A), which is an element of G(Y ×X) by Lemma 9,
has the right marginals. Projecting on X, we have

C∞(A)(BX × Y ) =

∫
Y

1YA(1BX
) dν

=

∫
X

A∗(1Y )1BX
dµ (∗1)

=

∫
X

1BX
dµ = µ(BX), (∗2)

where we used the adjunction theorem (Theorem 4) at (∗1) and the fact that the
adjoint of an MO is an AMK (Prop. 3) at (∗2). Projecting on Y , we get using
that A∗ is an AMK1 arrow:

C∞(A)(X ×BY ) =

∫
Y

1BY
A(1X) dν

=

∫
X

A∗(1BY
) dµ = ‖A∗(1BY

)‖1 ≤ ‖1BY
‖1 = ν(BY ).

Performing the same computation with BcY = Y \BY instead of BY yields that
C∞(A)(BcY ×X) ≤ ν(BcY ). Using these two inequations together with ν(BY ) +
ν(BcY ) = 1 and the fact that C∞(A) is a probability measure allows to conclude
that C∞(A)(BY ) = ν(BY ).

C and K are the counterparts of respectively I and D in Sec. 3.3, with kernels
replaced by respectively MOs and AMKs. However, no quotient is needed to
obtain the following result, which states that pointless Bayesian inversion (i.e.
adjunction) coincides in the world of couplings to the operation which permutes
the coordinates (namely the isomorphism G(σ) : G(X × Y )→ G(Y ×X)).

Theorem 7. For all MO A : L+
∞(X,µ)→ L+

∞(Y, ν), A∗ = K1 ◦ G(σ) ◦ C∞(A).
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Proof. It is enough to check the adjointness relation. A monotone convergence
argument shows that for all v ∈ L+

1 (Y, ν) and u ∈ L+
∞(X,µ),

∫
X×Y vudC∞(A) =∫

Y
vA(u) dν. Therefore,

〈K1 ◦ G(σ) ◦ C∞(A)(v), u〉X =

∫
(x,y)∈X×Y

u(x)v(y) d(G(σ) ◦ C∞(A))

=

∫
Y

vA(u)dν = 〈v,A(u)〉Y .

The fact that −∗ is an equivalence of categories implies that K1 ◦ G(σ) ◦ C∞
is bijective as a map of Homsets. This should convince the reader that couplings
can be made into the morphisms of a category having the same objects as Krn.
Inversion makes this category of couplings into a dagger category–in fact, a self-
dual one.

7 Conclusion

Pointless Bayesian inversion has several qualities lacked by its pointful counter-
part: it does not rely on Polish assumptions on the underlying space, it is better
typed (as it boils down to an equivalence of categories between abstract Markov
kernels and Markov operators) and it admits a trivial and elegant computational
interpretation in terms of couplings (as well as the structure of a self-duality on
the category of couplings sketched above).

This pointless categorical approach to Bayesian inversion opens the way for
exciting new research. First, one yearns to reinterpret previous constructions
performed in a kernel-centric way in this new light, such as [12]. Also, the con-
nection between our categories of operators and couplings hints at connections
with the Kantorovich distance [13]. For instance, one could study issues of con-
vergence of learning using the weak topology on the space of couplings, which
suggests possibly fruitful connections with information geometry.

But chiefly, our more structured framework allows to reason on the inter-
actions between the approximation of Markov processes by averaging [4] and
Bayesian inversion. For instance, we can now ask whether some properties of the
Bayesian learning procedure are profinite, i.e. entirely characterised by consider-
ing the finite approximants (one thinks of issues of convergence of learning, for
instance). More generally, we posit that pointless inversion is the right tool to
perform approximate learning.
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A Basics of measure theory and functional analysis

We recall some basic definitions and set up some notations that are useful for
reading the article.

A measurable space (X,Σ) is given by a set X together with a σ-algebra of
subsets of X denoted by Σ. Where unambiguous, we will omit the σ-algebra and
denote a measurable space by its underlying set. We will consider the measurable
spaces generated from Polish (completely metrisable and separable) topological
spaces, called standard Borel spaces [9]. A measurable function f : (X,Σ) →
(Y,Λ) is a function f : X → Y such that for all B ∈ Λ, f−1(B) ∈ Σ. Measurable
spaces and measurable functions form a category denoted by Mes. The full
subcategory of standard Borel spaces and measurable maps will be denoted by
SB.

A finite measure µ over a measurable space (X,Σ) is a σ-additive function
µ : Σ → [0,∞) that verifies µ(X) < ∞. We will only consider finite measures
which are also nonzero. Whenever µ(X) = 1, µ is a probability measure. A pair
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(X,µ) with X a measurable space and µ a finite measure on X is called a measure
space. A measurable set B will be qualified of µ-null if µ(B) = 0.

A real valued measurable function f : X → R is µ-integrable if
∫
X
|f | dµ <

∞. Any µ-integrable f induces a finite measure f · µ over X by the formula
(f ·µ)(B) =

∫
B
f dµ for all B measurable. Two real-valued measurable functions

f, g : (X,µ) → R are said to be µ-almost everywhere (µ-a.e. for short) equal if
µ {x | f(x) 6= g(x)} = 0. For (X,µ) a measure space and p ∈ [1,∞), the set of (µ-
a.e. equivalence classes of) real-valued functions f which verify

∫
X
|f |p dµ <∞

admits the structure of a complete normed vector space (i.e. a Banach space)

with norm given by ‖f‖p = (
∫
X
|f |p dµ)

1
p . This space is denoted by Lp(X,µ).

For p = ∞, one considers the Banach space L∞(X,µ) of essentially bounded
functions, normed by ‖f‖∞ = inf {C > 0 | µ {x | f(x) ≤ C} = 1}.

Given two measures µ, ν over some space X, we say that ν is absolutely
continuous with respect to µ if µ(B) = 0⇒ ν(B) = 0 for all measurable B. This
is denoted by ν � µ. The Radon-Nikodym theorem ([2], Ch. 13) states that in
this case, there exists a unique function dν

dµ ∈ L1(X,µ) such that ν = dν
dµ ·µ. The

function dν
dµ is called the Radon-Nikodym derivative of ν w.r.t. µ. The following

further property of Radon-Nikodym derivatives is easily verified: If ν = f · µ
then ν � µ and dν

dµ = f µ-a.e.. See e.g. [2], Ch. 13 for more details on Lp spaces
and the Radon-Nikodym theorem.

B Bayesian inversion in a category of kernels (proofs)

Lemma 7. For all f, f ′ : (X,µ) _ (Y, ν), N(f, f ′) is measurable.

Proof. We work with standard Borel spaces, hence two measures ρ, ρ′ on Y are
equal if and only if they coincide on a countable generating π-system {Bn}n∈N
of the σ-algebra of Y (this follows from the Carathéodory extension theorem
[14]). Dually, if f(x) 6= f ′(x) then there must exist an n such that f(x)(Bn) 6=
f ′(x)(Bn). Therefore, N(f, f ′) = ∪n {x | f(x)(Bn) 6= f ′(x)(Bn)}. Each set Cn =
{x | f(x)(Bn) 6= f ′(x)(Bn)} can be written as

Cn = ((evBn
◦ f)× (evBn

◦ f ′) ◦∆)−1({(r, r′) | r 6= r′ ∈ [0, 1]})

where ∆ : X → X×X is the diagonal and evBn
is an evaluation functional, mea-

surable by definition of G. A countable union of measurable sets is measurable,
hence so is N(f, f ′).

Lemma 8. Eq. 3 defines a Set injection IY,νX,µ : Krn(X,µ;Y, ν)/µ→ Γ(X,µ;Y, ν).

Proof. One easily verifies that IY,νX,µ(f) is a coupling of µ and ν by evaluat-
ing Eq. 3 for respectively BX = X and BY = Y . Let us prove injectivity.
For f 6∼ f ′ : (X,µ) _ (Y, ν), let N(f, f ′) be as in Sec. 3.1. Y is standard
Borel, hence its σ-algebra is generated by a countable π-system {Bn}n∈N and
it is enough to test measures for equality on this family. Therefore, N(f, f ′) =
∪n∈N {x | f(x)(Bn) 6= g(x)(Bn)}. Since µN(f, f ′) > 0, we can construct measur-

able sets A in X and B in Y s.t. IY,νX,µ(f)(A×B) 6= IY,νX,µ(f ′)(A×B), from which

we conclude that IY,νX,µ is injective.
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C Banach cones (proofs)

Proposition 6. For all Banach cones C,C ′, the cone of ω-continuous linear
maps Ban(C,C ′) is a Banach cone for the operator norm and the pointwise
order.

Proof. It remains to prove that Ban(C,C ′) is ω-complete. Let us check that
the pointwise order corresponds to the definitional cone order. Assume A ≤ B
pointwise. We need to prove that B −A ∈ Ban(C,C ′), which amounts to prove
that B − A is ω-continuous. Let {un}n∈N be an chain s.t.

∨
n un exists. By ω-

continuity of A,B, (B − A)(
∨
n un) =

∨
nB(un) −

∨
nA(un). It is enough to

prove that ‖
∨
nB(un)−

∨
nA(un)− (

∨
nB(un)−A(un))‖ = 0. Using Lemma

4, it suffices to prove that

lim
k→∞

∥∥∥∥∥∨
n

B(un)−
∨
n

A(un)− (B(uk)−A(uk))

∥∥∥∥∥ = 0.

Notice that
∨
nB(un) = B(

∨
n un) implies limk ‖

∨
nB(un)−B(uk)‖ = 0 (using

Lemma 4) and similarly for A. An application of the triangle inequality allows
us to conclude.

Let us prove that Ban(C,C ′) is ω-complete. Let {An}n∈N be an chain in
the pointwise order, s.t. {‖An‖}n is bounded. Therefore, there exists K ≥ 0
s.t. for all u,

∨
‖An(u)‖C′ ≤ K ‖u‖. By ω-completeness of C ′,

∨
An(u) exists.

For all u ∈ C, we set A(u) =
∨
nAn(u). Linearity is trivial. Since the norms

are ω-continuous, ‖A(u)‖ =
∨
n ‖An(u)‖ and therefore, A is precisely of norm∨

n ‖An‖.

D Pointless Bayesian inversion (proofs)

Proposition 7. The equivalence of categories −∗ : Lp → Lqop restricts to an
equivalence of categories −∗ : AMKp →MOq

op.

Proof. It is enough to prove that an operator A is an AMK if and only if A∗ is
an MO. Let A : L+

p (Y, ν)→ L+
p (X,µ) be an AMK. For all u ∈ L+

q (X,µ), ‖u‖1 =
〈A(1Y ), u〉X = 〈1Y , A∗(u)〉Y = ‖A∗(u)‖1. Conversely, let A : L+

p (X,µ) →
L+
p (Y, ν) be an MO. For all u ∈ L+

p (X,µ), 〈A∗(1Y ), u〉 = 〈1Y , A(u)〉 = ‖A(u)‖1 =
‖u‖1, therefore A∗(1Y ) must be equal to 1X .

Theorem 8. Tp is a functor from Krnop to AMKp.

Proof. We consider Krn arrows f : (X,µ) _ (Y, ν), g : (Y, ν) _ (Z, ρ). Let
us proceed stepwise. (i) We first consider the case p ∈ [1,∞). We show that
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∀v ∈ L+
p (Y, ν),Tp(f)(v) ∈ L+

p (X,µ). We have:∫
x∈X

(Tp(f)(v)(x))
p
dµ =

∫
x∈X

(∫
Y

v df(x)

)p
dµ

≤
∫
x∈X

∫
Y

vp df(x) dµ (1)

=

∫
Y

vp d(f ◦′ µ) (2)

=

∫
Y

vp dν <∞

where (1) follows from Jensen’s inequality and (2) by the monotone convergence
theorem – see ([7], Theorem 1, d)) for more details. Therefore ‖Tp(f)(v)‖p ≤
‖v‖p. Observe that Tp(f)(1Y )(x) =

∫
Y

1Y df(x) = 1, therefore Tp(f)(1Y ) = 1X .
This implies that ‖Tp(f)(1Y )‖p = ‖1X‖p = 1. Therefore, Tp(f) has operator
norm equal to 1 and it is ω-continuous by the monotone convergence theorem.
We conclude that Tp(f) is an AMK. In the case p =∞, given v ∈ L+

∞(Y, ν), we
have by definition:

‖T∞(f)(v)‖∞ = inf {C | µ {x | Tp(f)(v)(x) > C} = 0}

= inf

{
C | µ

{
x |
∫
Y

v df(x) > C

}
= 0

}
≤ ‖v‖∞ .

The bound is reached by taking v = 1Y , therefore ‖Tp(f)‖ = 1.
(ii) We now turn to the property of Tp of being a functor. Let id′ : (X,µ) _

(X,µ) be the identity at some object (X,µ), i.e. the identity function postcom-
posed with the monadic unit δ; let also be u ∈ L+

p (X,µ). We have trivially
Tp(id)(u)(x) =

∫
X
u id′(x) = u(x). Finally, we must prove that Tp commutes

with composition: we must prove Tp(g ◦′ f) = Tp(f)Tp(g). For all w ∈ L+
p (Z, ρ),

we have:

Tp(g ◦′ f)(w)(x) =

∫
Z

w d(g ◦′ f)(x)

=

∫
y∈Y

(∫
Z

w dg(y)

)
df(x) (1)

=

∫
y∈Y

Tp(g)(w) df(x)

= Tp(f)Tp(g)(w)(x)

where (1) is an application of ([7], Theorem 1, d)).

E Pointless Bayesian inversion through couplings (proofs)

Lemma 9. For all MO A : L+
p (X,µ)→ L+

p (Y, ν), Cp(A) ∈ G(X × Y ).

Proof. Let us first prove that Cp(A) is a finite measure. Clearly, Cp(A)(∅×∅) = 0.
Since A is a Markov operator, Cp(A)(X × Y ) = 1. Finite additivity of Cp(A)
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is a consequence of linearity. Therefore, Cp(A) is a finitely additive measure
on the algebra generated by basic measurable rectangles. Note that rectangles
form a semialgebra in the sense of ([3], Def. 1.2.13). ω-continuity of A and of
the Lebesgue integral implies that Cp(A) is σ-additivity on this semialgebra. By
([3], Prop. 1.3.10), this implies σ-additivity of Cp(A) on the algebra generated
by the rectangles. Then, the Carathéodory extension theorem [14] implies the
existence of a unique (by finiteness) extension of the function defined in Eq. 6
to a probability measure on X × Y .
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