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Abstract
We propose an algebraic approach to stochastic graph-rewriting
which extends the classical construction of the Heisenberg-Weyl
algebra and its canonical representation on the Fock space. Rules
are seen as particular elements of an algebra of ‘diagrams’ (the di-
agram algebra D). Diagrams can be thought of as formal computa-
tional traces represented in partial time. They span a vector space
which carries a natural filtered Hopf algebra structure. Diagrams
can be evaluated to normal diagrams (each corresponding to a rule)
and generate an associative unital (non-commutative) ˚-algebra of
rules (the rule algebra R). Evaluation becomes a morphism of uni-
tal associative algebras which maps general diagrams in D to nor-
mal ones in R. In this algebraic reformulation, usual distinctions
between graph observables (real-valued maps on the set of graphs
defined by counting subgraphs), and rules disappear. Instead, natu-
ral algebraic substructures of R arise: formal observables are seen
as rules with equal left and right hand sides and form a commutative
subalgebra, the ones counting subgraphs forming a sub-subalgebra
of identity rules. Actual graph-rewriting (of the DPO type) is recov-
ered as a canonical representation of the rule algebra as linear op-
erators over the vector field generated by (isomorphism classes of)
finite graphs. The construction of the representation is in close anal-
ogy and subsumes the classical (multi-type bosonic) Fock space
representation of the Heisenberg-Weyl algebra.

This subtle shift of point of view (away from its canonical repre-
sentation to the rule algebra itself) has far-reaching and unexpected
consequences. We find that natural variants of the evaluation mor-
phism map give rise to concepts of graph transformations hitherto
not considered (these will be described in a separate paper, as in this
extended abstract we limit ourselves to the simplest concept namely
that of DPO-rewriting). We prove very simply a DPO version of
the jump-closure theorem, namely that the sub-space of represen-
tations of formal graph observables closed under the action of any
rule set. From this new jump-closure result follows that for any set
of rules R, one can derive a formal and self-consistent Kolmogorov
backward equation for (representations) of formal observables.

1. Introduction
Graphs and derivatives (colored graphs, nested graphs, site graphs
etc.) are basic components in the modern toolkit of modeling. They
appear in varied situations such as the study of epidemics, so-
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cial dynamics of opinions, ad hoc networks, spin glasses (Gleeson
2013), and also combinatorial chemical reaction networks (Danos
et al. 2007). Oftentimes, one has competing rewiring operations
or rules which locally remodel the graph and, thus, naturally de-
fine a Markovian process on the discrete set of graphs. This is the
situation we are interested in this paper. Our specific goal is to es-
tablish a new route to the study of these models. Traditionally one
uses graph transformation systems (Heindel 2009) and the notion
of rule and rule application. Here we posit as our primary object
a notion of rule diagram. Such diagrams can be seen as formal
composition of rules in ‘true concurrency’ style. Operationally, di-
agrams can also be understood as neighbourhoods of realizations
of processes of interest (and might be seen as specific closed sets in
the Skorokod topologies used in Ref. (Gupta et al. 2004)). We put
together a formalism to represent such diagrams and their evalua-
tions. With this algebraification of rule composition, the world of
rules becomes autonomous - rules can be formally composed using
the diagram algebra and then evaluated to (linear combination of)
rules by means of a specific evaluation mechanism. Four different
variants of evaluation appear and we restrict here to the simplest
form (but see below). The net result is that rules form a unital as-
sociative algebra R, while (formal) graph observables are just spe-
cial rules which form a commutative subalgebra of R. The vector
space of finite graphs comes back in the picture as the carrier of a
natural representation of the rule algebra. Actual graph rewriting is
now seen as the induced action and we recover DPO-type rewriting
(no implicit edge-deletion is allowed when deleting a node). Other
evaluation strategies allow to recover the SPO-type and two new
types appear (by time-symmetry). There is no reason in our anal-
ysis to prefer DPO-rewriting other than that it allows for shortcuts
in the construction of R. Other variants are perfectly workable and
we will work them out in another paper.

Ideas presented here are somewhat anticipated in Lowe’s 1993
paper on the concept of rule composition (Lowe 1993) for SPO-
rewriting. Diagrams themselves are implicit in Hayman’s recent
construction on traces. But, it is only by decoupling the algebra
of rule from its representations that we can operationalise these
ideas and develop an efficient and versatile combinatorial frame-
work for quantitative graph-rewriting. Indeed, our construction em-
bodies a combinatorial engine for accurate handling of the many
counting situations which arise in the manipulation of graph rewrit-
ing systems. In particular, a special case of this construction is
that of discrete typed graphs (no edges): R then boils down to
the Heisenberg-Weyl algebra, and R’s representation to the tra-
ditional interpretation on this algebra as acting on the multi-type
Fock space. Our combinatorial engine thus subsumes analytic com-
binatorics on the Fock space (Blasiak et al. 2007). Another type
of combinatorial work we can put our engine to use is the deriva-
tion of the formal forward equation for graph observables. These
equations are widely used in the study of stochastic graph models
and often use ad hoc counting arguments. A recent example can be
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found in Ref. (Basak et al. 2015, p21). The derivation relies on a
re-derivation of the jump-closure theorem (Danos et al. 2014). Not
only do we find a much cleaner derivation but it also generalises in
a straightforward manner to obtain a compact formula for the case
of correlators of observables (aka multivariate moments). Besides,
and this is a more subtle difference, as said, we derive jump-closure
for DPO-rewriting which is more intricate than the SPO-version
obtained earlier.

2. Preliminaries
Relations. We will work with relations over finite sets. The set of
relations between the sets A and B will be denoted by RelpA,Bq.
The set of one-to-one relations between A and B (aka partial
maps from A to B) will be denoted by either Rel11pA,Bq or
A á B depending on the context. The domain and codomain of a
relation r are defined as domprq “ ta | pa, bq P ru and codprq “
tb | pa, bq P ru. r P RelpA,Bq induces a function rr s : ℘pAq Ñ
℘pBq where rrU s fi tb | Du P U.pu, bq P ru for U Ď A. The
identity relation overA will be noted idA P RelpA,Aq. Sequential
composition of relations r P RelpA,Bq and s P RelpB,Cq
will be denoted by r; s P RelpA,Cq. The Kleene closure of
r P RelpA,Aq will be denoted by r˚ P RelpA,Aq. We use
r` as a notation for r; r˚. If r P RelpA,Bq, we denote by
r´1

P RelpB,Aq the inverse relation. The equivalence relation
generated by r P RelpA,Aq will be noted cl„prq.

Graphs. We will use exclusively directed multigraphs, however
we insist on the fact that all these developments hold in the setting
of colored or undirected graphs (Behr et al. 2016). Graphs will be
represented as tuples G “ pV,E, s, tq where V and E are finite
sets of respectively vertices and edges, and s, t : E Ñ V are the
maps associating edges to their source and target vertices. When
we allow s and t to be partial maps, we call the graph partial. An
edge e such that speq or tpeq is undefined is dangling. If G is a
partial graph, we denote by totalpGq the largest total subgraph of
G, i.e. the graph where all dangling edges of G are removed. The
connected component relation ccpGq Ď V ˆ V is the equivalence
relation generated by tpspeq, tpeqq | e P Eu. Given a pair of equiv-
alence relations„V ,„E on respectively V and E, A partial injec-
tive morphism of graphs from pV,E, s, tq to pV 1, E1, s1, t1q is a pair
of one-to-one relations pfV : Rel11pV, V

1
q, fE : Rel11pE,E

1
q

such that fE ; s1 “ s; fV fV ˝s “ s1˝fE whenever s and s1˝fE are
defined (and similarly for t). isomorphisms pfV , fEq is an isomor-
phism whenever fV and fE are bijections. The set of isomorphism
classes of finite graphs will be denoted G–.

3. The rule diagram & rule algebra
We introduce rule diagrams, a syntax for truly concurrent traces
of graph rewriting systems. Moreover, these diagrams admit a no-
tion of composition which encompasses the usual notion of match-
ing together with a notion of normalization which implements
rewriting. These diagrams and their normal forms span algebras
which, in the next sections, will be the basis for an interpretation of
stochastic graph rewriting systems as representations.

Polarized discrete diagrams. Rule diagrams and their reduction
semantics are defined in terms of simpler polarized discrete dia-
grams (pdds), that correspond to traces of set rewriting ((Heindel
2009), Sec. 2) processes. We will denote the set of discrete dia-
grams, defined below, by D0.

Definition 1 (Polarized discrete diagram). A pdd is a tuple d “
pi, o, r,mq where i, o are finite, disjoint input and output sets and
r P Rel11pi, oq,m P Rel11po, iq will be respectively called the
rule and the match relations. We require the pdd to be acyclic;

formally, this corresponds to requiring that idi X pr;mq` “ ∅
and symmetrically, ido X pm; rq` “ ∅. A pdd is normal whenever
m “ ∅.

The input and output sets should be thought of as vertices on
which some finite set of rules operate. These rules (grouped in the
rule relation) are themselves strung together along the match rela-
tion. Pdds admit a simple graphical syntax that we now illustrate on
small examples. In the pictures to follow, elements of i will be de-
picted as ˝, elements of o as ‚, the rule relation as dotted arrows and
the match relation as full arrows. The acyclicity of pdds induces a
partial order on elements that we will interpret as the global arrow
of time; the diagrams will be displayed vertically with the time go-
ing upwards. Besides the empty pdd dtu “ p∅, ∅, ∅, ∅q, the simplest
examples correspond to the creation, annihilation and preservation
of a vertex, corresponding respectively to normal pdds dc, da, dp:

‚ ‚

dc
˝

da
˝

dp

OO (1)

concretely given by dc “ p∅, t‚u , ∅, ∅q, da “ pt˝u , ∅, ∅, ∅q
and dp “ pt˝u , t‚u , tp˝, ‚qu , ∅q. A rule that matches a ver-
tex and creates another one can be presented as the pdd d1 “
pt˝0u , t‚1, ‚2u , tp˝0, ‚2qu , ∅q, displayed here:

‚1 ‚2

˝0
r

<< (2)

As an illustration of a non-normal pdd, we can compose (as will
be made precise in Prop. 5) two instances of the previous pdd, for
example matching the top instance’s input to ‚2:

‚4 ‚5

˝3
r

<<

‚1 ‚2

m
OO

˝0
r

<<

(3)

This last pdd corresponds concretely to:

d2 “ pt˝0, ˝3u , t‚1, ‚2, ‚4, ‚5u , tp˝0, ‚2q, p˝3, ‚5qu , tp‚2, ˝3quq

These examples hint at the fact that pdds are composed of an union
of alternating sequences of elements of i and o (as the sequence
p˝0, ‚2, ˝3, ‚5q in Fig. 3), corresponding to the history (that we
call worldline) of some element during the rewriting process. This
trivial consequence of the choice of one-to-one relations for the rule
and match relations together with acyclicity of pdds is pivotal in the
definition (to follow) of rule diagrams.

Definition 2 (Worldlines). Let d “ pi, o, r,mq be a pdd. We define
the worldline relation

ωpdq Ď piY oq ˆ piY oq
ωpdq “ cl„pr Ymq

Informally, ωpdqrtxus is the connected component of x in d
seen as a bipartite graph. However, the one-to-oneness and acyclic-
ity conditions place some constraints:

Lemma 3. Let d “ pi, o, r,mq be a pdd and x, y P iY o such that
px, yq P ωpdq. Then:

x, y P i ñ px, yq P pr;mq˚ Y pr;mq˚
´1

x, y P o ñ px, yq P pm; rq˚ Y pm; rq˚
´1

x P i, y P o ñ px, yq P r; pm; rq˚ Y r; pm; rq˚
´1

x P o, y P i ñ px, yq P m; pr;mq˚ Ym; pr;mq˚
´1
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Proof. This is a trivial consequence of acyclicity and the fact that
r, m are one-to-one.

A pdd also has a natural notion of interface, corresponding to
those parts of i and o that are not matched:

Definition 4 (Interface of a pdd, diagram matches). Let d “

pi, o, r,mq be a pdd. We define its input interface by Ipdq fi

izcodpmq and its output interface by Opdq fi ozdompmq. The
set of diagram matches from d P D0 to d1 P D0 is defined by
M0pd, d

1
q fi Rel11pOpdq, Ipd1qq.

Using the diagram d2 of Fig. 3 as an example, we have Ipd2q “
t˝0u while Opd2q “ t‚1, ‚4, ‚5u. Pdds admit a straightforward
notion of composition by concatenation along a match relation on
their interfaces.

Proposition 5 (Associative composition). Consider two disjoint
pdds d “ pi, o, r,mq, d1 “ pi1, o1, r1,m1q and a diagram match
n PM0pd, d

1
q. Let us denote by dBn d1 (or equivalently d1 Cn d)

the tuple
piY i1, oY o1, r Y r1,mYm1 Y nq

We have that (i) d Bn d1 is a pdd and (ii) the resulting notion
of composition is associative: there is a bijection αd,d1,d2 from
the set

 

pn, n1q | n PM0pd, d
1
q, n1 PM0pdBn d1, d2q

(

to the
set

 

pw,w1q | w1 PM0pd
1, d2q, w PM0pd, d

1 Bw1 d
2
q
(

that ver-
ifies, for all pw,w1q “ αd,d1,d2pn, n

1
q,

pdBn d
1
qBn1 d

2
“ dBw pd

1 Bw2 d
2
q

Proof. (i) By disjointness of d and d1, rYr1 is one-to-one. Observe
that by definition of interfaces,mYm1 and n have disjoint support
and are by assumption one-to-one, thereforemYm1Yn is one-to-
one. (ii) Let pdBn d1qBn1d2 be a composite. By definition, OpdBn
d1q “ Opd1qZpOpdqzdompnqq, therefore n1 uniquely decomposes
as n1 “ n10 Z n11 where n10 P Rel11pOpdqzdompnq, Ipd2qq and
n11 P Rel11pOpd1q, Ipd2qq. One then obtains the sought identity
by setting w “ n Y n10 and w1 “ n11. The converse computation
yields the claimed bijection.

The diagram d2 in Fig. 3 corresponds to the composition of d1
with d11 “ pt˝3u , t‚4, ‚5u , tp˝3, ‚5qu , ∅q along the match relation
m “ tp‚2, ˝3qu.

Observe that acyclicity and one-to-oneness of the relations r and
m imply trivially that worldline equivalence classes have at most a
singleton intersection with either the input or output interface of a
pdd. This motivates the definition of the boundary relations, which
relate elements of a pdd with the interfaces through the worldline
relation:

Definition 6 (Boundary relations). Let d “ pi, o, r,mq be given.
We define the input boundary relation Iωpdq and the output bound-
ary relation Oωdq:

Iωpdq P Rel11piY o, Ipdqq
Iωpdq “ ωpdq; idIpdq
Oωpdq P Rel11piY o,Opdqq
Oωpdq “ ωpdq; idOpdq

The notion of normalization that we apply to pdds corresponds
to taking the trace of the worldline relation against the interface of
a diagram.

Definition 7 (Normalization). We define the normalization map
B0 : D0 Ñ D0 by

B0pdq “ pIpdq,Opdq, Iωpdq´1;Oωpdq, ∅q
Clearly, for d normal one has B0pdq “ d. The following lemma

lists some properties of normalization:

Lemma 8. Let d and B0pdq be as in Def. 7. One has that (i) Ipdq “
IpB0pdqq and Opdq “ OpB0pdqq, and (ii) Iωpdq´1;Oωpdq “
IωpB0pdqq´1;OωpB0pdqq.

Proof. (i) is a trivial consequence of having an empty match rela-
tion in B0pdq. As for (ii), we clearly have the inclusion

Iωpdq´1;Oωpdq Ě IωpB0pdqq´1;OωpB0pdqq

The converse inclusion proceeds easily by using the first point and
unfolding Def. 2, 6 and 7.

Normalization is compatible with composition:

Proposition 9. Let d, d1 P D0. (i) M0pd, d
1
q “M0pBpdq, Bpd

1
qqq

and (ii) @n PM0pd, d
1
q, B0pdBn d1q “ B0pB0pdqBn B0pd1qq.

Proof. (i) By Lemma 8, interfaces are preserved by reduction there-
fore M0pd, d

1
q “ M0pB0pdq, B0pd

1
qq. (ii) It is sufficient to check

equality of the reduced rule relation. Observe that Ipd Bn d1q “
Ipdq Z Ipd1qzcodpnq and OpdBn d1q “ Opd1q ZOpdqzdompnq.
For the left hand side, we obtain

A “ IωpdBn d1q´1;OωpdBn d1q
“ idIpdBnd1q;ωpdBn d

1
q; idOpdBnd1q

Splitting the input interfaces according to n and simplifying using
Lemma 3:

A “ idIpdq;ωpdBn d
1
q; idOpdBnd1q

Z idIpd1qzcodpnq;ωpdBn d
1
q; idOpdBnd1q

“ idIpdq;ωpdBn d
1
q; idOpdBnd1q

Z idIpd1qzcodpnq; r
1; pm1; r1q˚; idOpd1q

Splitting the output interfaces according to n and simplifying:

A “ idIpdq;ωpdBn d
1
q; idOpd1q

Z idIpdq;ωpdBn d
1
q; idOpdqzdompnq

Z idIpd1qzcodpnq; r
1; pm1; r1q˚; idOpd1q

“ idIpdq; r; pm; rq˚;n; r1; pm1; r1q˚; idOpd1q
Z idIpdq; r; pm; rq˚; idOpdqzdompnq
Z idIpd1qzcodpnq; r

1; pm1; r1q˚; idOpd1q

For the right hand side, letting d “ B0pdqBn B0pd1q, we have:

B “ Iωpdq´1;Oωpdq

Unfolding and using that interfaces are preserved, we derive:

B “ idIpdq;ωpdq; idOpdq
“ idIpB0pdqBnB0pd1qq;ωpdq; idOpB0pdqBnB0pd1qq

“ idIpdBnd1q;ωpdq; idOpdBnd1q

Splitting the input and output interfaces according to n and simpli-
fying,

B “ idIpdq;ωpdq; idOpd1q
Z idIpdq;ωpdq; idOpdqzdompnq
Z idIpd1qzcodpnq;ωpdq; idOpd1q

Let us denote by resp. B0prq fi Iωpdq´1;Oωpdq and B0pr1q fi

Iωpdq´1;Oωpdq the rule relations of resp. B0pdq and B0pd1q. By
definition,

ωpdq “ cl„pB0prq Y B0pr
1
q Y nq

and we have by further simplifications:

B0prq “ Iωpdq´1;Oωpdq “ idIpdq;ωpdq; idOpdq
“ r; pm; rq˚

B0pr
1
q “ Iωpd1q´1;Oωpd

1
q “ idIpd1q;ωpd

1
q; idOpd1q

“ r1; pm1; r1q˚

Substituting these equations and performing some more trivial sim-
plifications, one obtains the equality.
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During the construction of the rule and rule diagram algebras,
diagrams will only be considered up to isomorphisms, defined as
follows:

Definition 10 (Isomorphism of pdds). Let d, d1 P D0 be such that
d “ pi, o, r,mq and d1 “ pi1, o1, r1,m1q. An isomorphism from d
to d1 is a pair of bijections f “ pfi : i Ñ i1, fo : o Ñ o1q such
that p˝1, ‚2q P r ô pfip˝1q, fop‚2qq P r

1 and p‚2, ˝1q P m ô

pfop‚2q, fip˝1qq P m
1. This will be denoted by f : d – d1.

Rule diagrams. A rule diagram is a suitable coupling of a pair of
pdds supported by respectively a set of vertices and a set of edges.
The set of rule diagrams will be denoted by D.

Definition 11 (Rule diagram). A rule diagram is a tuple

d “ pdV , dE , si, ti, so, toq

where dV “ piV , oV , rV ,mV q and dE “ piE , oE , rE ,mEq are
pdds verifying conditions 1 to 5 below.

1. Gipdq fi piV , iE , si, tiq and Gopdq fi poV , oE , so, toq are
graphs;

2. prV , rEq is a partial graph morphism from Gipdq to Gopdq;

1. and 2. are summarized in the following diagram, where the
horizontal components are graphs and the vertical ones pdds:

iV

rV

''
oV

mV

gg

iE

si

JJ

ti

TT

rE

''
oE

mE

gg

so

JJ

to

TT

Further, we require the following.

3. d must fulfill the delayed morphism condition: letting s “
si Y so, one has

pe, e1q P ωpdEq ñ pspeq, spe1qq P ωpdV q

and similarly for t “ ti Y to.
4. We ask the diagrams to be globally acyclic. Let

r1V fi ccpGipdqq; rV ; ccpGopdqq

be the rule relation up to cc. We require:

idoV X pmV ; r1V q
`
“ ∅

For the scope of this paper, we add the following:

5. d verifies the totality condition:

idIpdEq; si; IωpdV q and idOpdEq; so;OωpdV q

are total functions from resp. IpdEq to IpdV q and OpdEq to
OpdV q; and similarly for ti, to.

A rule diagram is normal whenever dV and dE are normal pdds.
The set of normal rule diagrams will be denoted N pDq.

Observe that a normal diagram is isomorphic to a rule in the
graph rewriting sense (Heindel 2009).

Definition 12 (Rule associated to a normal diagram). Let d P

N pDq. By definition, r “ prV , rEq is a partial injective graph
morphism from Gipdq to Gopdq. The rule associated to d will be
denoted by Gopdq

r
ðù Gipdq. Conversely, any rule g1

r
ðù g induces

trivially a normal diagram.

Let us discuss the conditions listed in Def. 11. The delayed mor-
phism condition ensures that reduction can be properly defined on

rule diagrams. Global acyclicity allows to have a sequential inter-
pretation of rule diagrams as stackings of rules: in this sense, it is
a “correctness” criterion. However, it is not required for having a
well-defined reduction. Finally, the totality condition is a simpli-
fying assumption we make for the scope of this paper: it enforces
that the source and target maps in any normalized diagram are total
functions (i.e. that the corresponding notion of graph rewriting is
DPO (Heindel 2009)). An account of more general types of rewrit-
ing is available in a preprint (Behr et al. 2016). Examples of dia-
grams that do not verify totality and global acyclicity are available
in Sec. A of the appendix. As a first example, we consider a normal
diagram corresponding to a rule which acts identically on an edge.
We use the same pictural conventions as for pdds for vertices and
we use ˛ to denote input edges and ˛ for output edges.

‚2 ˛b §
to

đ
so

‚3

˝0

rV
OO

˛a

rE
OO

đ
si

§
ti
˝1

rV
OO (4)

The concrete representation for this diagram is d “ pdV , dE , si, ti,
so, toq with dV “ pt˝0, ˝1u , t‚2, ‚3u , tp˝0, ‚2q, p˝1, ‚3qu , ∅q for
vertices, dE “ pt˛au , t˛bu , tp˛a, ˛bqu , ∅q for edges and the obvi-
ous maps for si, ti, so, to. This type of diagram, made up of only
one identity rule for some arbitrary graph, will be called in the fol-
lowing an observable (here, the graph is reduced to a single edge,
we therefore call the corresponding diagram an edge observable).
Rule diagrams have a straightforward notion of isomorphism:

Definition 13 (Isomorphism of rule diagrams). Let d “ pdV , dE ,
si, ti, so, toq and d1 “ pd1V , d

1
E , s

1
i, t
1
i, s

1
o, t

1
oq be rule diagrams.

An isomorphism from d to d1 is a pair of discrete diagram isomor-
phisms (Def. 10)

fV : dV – d1V fE : dE – d1E
fV “ pfV,i, fV,oq fE “ pfE,i, fE,oq

such that pfV,i, fE,iq is a graph isomorphism fromGipdq toGipd1q
and pfV,o, fE,oq is a graph isomorphism from Gopdq to Gopd1q.
The set of isomorphism classes of rule diagrams will be noted
D–. Isomorphism classes of normal rule diagrams will be noted
N pD–q.

Normalization of rule diagrams is defined as the componentwise
normalization of the vertices and edges pdds.

Definition 14 (Normalization of rule diagrams). Let us consider
a rule diagram d “ pdV , dE , si, ti, so, toq. We define its normal
form as Bpdq fi pB0pdV q, B0pdEq, s̄i, t̄i, s̄o, t̄oq where

s̄i fi idIpdEq; si; IωpdV q s̄o fi idOpdEq; so;OωpdV q

and similarly for t̄i, t̄o.

The following proposition states that normalization preserves
the structure of rule diagrams.

Proposition 15. (i) Normalization is a function B : D Ñ N pDq
and (ii) B ˝ B “ B.

Proof. (i) Let us show that the conditions listed in Def. 11 are
verified by Bpdq.

1. Totality directly implies GipBpdqq and GopBpdqq are graphs.
2. Injectivity is trivial. Let pei, eoq P IpdEqˆOpdEq, then by the

delayed morphism condition, psipeiq, sopeoqq P ωpdV q there-
fore ps̄ipeiq, s̄opeoqq P ωpdV q. By Def. 7, this pair of vertices
is trivially in the reduced rule relation. The same argument goes
for ti, to.

3. By the previous point and using that the match relation is empty,
the delayed morphism condition is trivially verified.
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4. Trivial by emptyness of the match relation of Bpdq.
5. Totality is by construction.

Normality of Bpdq as well as (ii) are trivial.

As for pdds, rule diagrams admit a notion of binary composition
along a match:

Definition 16 (Composition). Consider two disjoint rule diagrams

d “ pdV , dE , si, ti, so, toq;
d1 “ pd1V , d

1
E , s

1
i, t
1
i, s

1
o, t

1
oq

and a pair of matches on respectively vertices and edges

n “ pnV , nEq PM0pdV , d
1
V q ˆM0pdE , d

1
Eq

Whenever the object defined by

dBnd
1
“ pdV BnV d

1
V , dEBnE d

1
E , siYs

1
i, tiYt

1
i, soYs

1
o, toYt

1
oq

is a valid rule diagram (i.e. dBnd1 P D), we call it the composition
of d and d1 along n. This object might equivalently be denoted by
d1 Cn d.

The reader might be unsatisfied seeing that we need to refer
to the definition of rule diagrams to carve out the set of allowed
composites of such diagrams. Before adressing this problem, let
us give a few examples of composites. The diagram to the left of
Fig. 11 provides an example of composition of an edge observable
with a “vertex annihilation” diagram da. The following example
corresponds to a vertex observable precomposed and postcomposed
with edge observables.

‚8 ˛d §đ ‚9

˝6

OO

˛c §
ti

đ

OO

˝7

OO

‚5

OO

˝4

OO

‚2

OO

˛b §
to

đ

OO

‚3

OO

˝0

OO

˛a

OO

đ § ˝1

OO

(5)

This example highlights in a striking way the “delayed mor-
phism” condition: here, p˛b, ˛cq are in the match relation but
ptop˛bq, tip˛cqq are not. This makes the following proposition,
which characterizes the admissible matches, not totally trivial. As a
side note, the totality condition only appears here as a simplifying
assumption.

Proposition 17 (Admissible matches). Let d, d1, n be as in Def. 16.
d Bn d1 is a rule diagram if and only if (i) n is a partial injective
morphism of graphs from GopBpdqq to GipBpd1qq and (ii) d Bn d1

verifies the totality condition. Such a n will be called admissible.
We denote the set of admissible matches from d to d1 by Mpd, d1q.

Proof. Assume dBnd1 P D with n “ pnV , nEq. First, observe that
this implies trivially that dBnd1 P D verifies the totality condition.
Now observe that by construction, nV P Rel11pOpdV q, Ipd1V qq
and nE P Rel11pOpdEq, Ipd1Eqq. Consider e, e1 such that e1 “
nEpeq. We have to prove that n is a partial injective morphism
of graphs from GopBpdqq to GipBpd

1
qq (see Prop. 15 for their

definitions), i.e. that nV ps̄opeqq “ s̄1ipe
1
q.

By definition of reduction, psopeq, s̄opeqq P ωpdV q and sym-
metrically, ps1ipe

1
q, s̄1ipe

1
qq P ωpd1V q; while the delayed morphism

property (dmp) ensures that psopeq, s1ipe
1
qq P ωpdV BnV d1V q.

Since d and d1 are disjoint and n is by assumption one-to-one, this

is only possible if nV ps̄opeqq “ s̄1ipe
1
q is verified. Mirroring this

argument for t, t1 yields the result that n is a partial injective mor-
phism of graphs.

Conversely, assume n is as stated. We only prove that d Bn d1

verifies the dmp (the other defining properties of rule diagrams
are easily verified). It is enough to exhibit the dmp for a pair of
edges pe, e1q with e in d and e1 P d1, as otherwise it is satisfied
by assumption. Assume that pe, e1q P ωpdE BnE d1Eq. Using
one-to-oneness and acyclicity of pdds, we obtain that pe, e1q P
ωpdEq;nE ;ωpd1Eq. Therefore, there exists eo P OpdEq, e1i P
Ipd1Eq such that pe, eoq P ωpdEq, pe1i, e

1
q P ωpd1Eq and e1i “

nEpeOq; and one can apply the dmp on pe, eoq and pe1i, e
1
q, by

assumption. The goal is reduced to proving that psopeoq, s1ipe
1
iqq P

ωpdV BnV d1V q. Since d and d1 are disjoint, this can only be if the
vertices related by ωpdV q in the interface are related through nV ,
i.e. it is enough to prove that

pso;ωpdV q; idOpdV q;nV qpeoq “ psi;ωpd
1
V q; idIpd1

V
qqpe

1
iq

which by definition of s̄ and s̄1 corresponds to having nV ps̄opeoqq “
s̄1ipe

1
iq. Since eo is an edge of GopBpdqq and e1i is an edge of

totalpGipBpd
1
qqq, nV ps̄opeoqq “ s̄1ipe

1
iq. The exact same argu-

ment for the target maps to, t1i concludes the proof.

The associativity of composition of pdds lifts to rule diagrams:

Proposition 18. Let d, d1, d2 P D. There exists a bijection αd,d1,d2
from the set

 

pn, n1q | n PMpd, d1q, n1 PMpdBn d1, d2q
(

to the
set

 

pw,w1q | w1 PMpd1, d2q, w PMpd, d1 Bw1 d
2
q
(

that veri-
fies, for all pw,w1q “ αd,d1,d2pn, n

1
q,

pdBn d
1
qBn1 d

2
“ dBw pd

1 Bw2 d
2
q

Proof. The source and target maps si, ti, so, to of a triple com-
posite are given by the union of the corresponding data from each
component, independently of the chosen matches. Therefore, it is
enough to apply Prop. 5 to conclude.

Remark 19. The rule diagram d∅ “ pdtu, dtu, ∅, ∅, ∅, ∅q acts as a
neutral element for the composition: d∅ B∅ d

1
“ d1 B∅ d∅ “ d1.

Moreover, normalization respects composition:

Proposition 20. Let d, d1 P D and n P Mpd, d1q. One has (i)
n PMpBpdq, Bpd1qq and (ii) BpdBn d1q “ BpBpdqBn Bpd1qq.

Proof. (i) Using the assumption n P Mpd, d1q, by Prop. 17, n is
an injective morphism of graphs from GopBpdqq to GipBpd1qq and
therefore n P MpBpdq, Bpd1qq. The proof of (ii) follows the same
pattern as the proof of Prop. 9.

The rule diagram & rule algebra. Pdds and rule diagrams
span vector spaces that admit, thanks to the composition oper-
ation, the structure of algebras In the following, we denote by
pspanpXq,`, ¨q the formal vector space of finite linear combi-
nations with real coefficients over a set X where v ` v1 is the
pointwise addition and λ ¨ v is the scalar multiplication. We let
δ : X Ñ spanpXq be the map associating x P X to the basis
vector δpxq. However, where the context allows it, we will drop δ
and denote a basis element by its index in X . In the remainder of
this paper, we will only deal explicitly with isomorphism classes of
combinatorial structures where required.

Definition 21 (Vector space of rule diagrams and normal rule
diagrams). We denote the R-vector space spanned by D– by D “

pspanpD–q,`, ¨q. Since N pD–q Ď D–, there exists a subvector
space of D spanned by (isomorphism classes of) normal diagrams
which will be denoted by R, together with a canonical inclusion
ψ : R ãÑ D “ idR.
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D admits an algebra structure induced by diagram composition.
Let us define the product.

Definition 22 (Product in D). Let δpdq, δpd1q P D be two basis
vectors for d, d1 P D–. We define their product as:

δpd1q ˚D δpdq fi
ÿ

nPMpd,d1q

δpd1 C
n
dq

This extends to arbitrary elements of D by linearity:
˜

ÿ

d1

βd1δpd
1
q

¸

˚D

˜

ÿ

d

αdδpdq

¸

fi
ÿ

d,d1

αdβd1δpd
1
q ˚D δpdq

Theorem 23. ˚D makes D into an associative algebra with unit
1D “ 1 ¨ δpd∅q. We call pD , ˚D ,1Dq the rule diagram algebra.

Proof. Bilinearity of ˚D is straightforward. Let us prove associa-
tivity. Clearly it is enough to consider basis vectors. We have:

pδpd2q ˚D δpd1qq ˚D δpdq

“
ÿ

n1PMpd1,d2q

δpd2 C
n1
d1q ˚D d

“
ÿ

n1PMpd1,d2q

ÿ

nPMpd,d2Cn1d
1q

δppd2 C
n1
d1qC

n
dq

Applying Prop. 18, we can rewrite the last equation as
ÿ

wPMpd,d1q

ÿ

w1PMpd1Cwd,d1q

δpd2 C
w1
pd1 C

w
dqq

Let us check the unit law. Observe that for all d P D, ∅ is the only
element in Mpd∅, dq and in Mpd, d∅q, therefore

δpd∅q ˚D δpdq “ d∅ B
∅
d “ d “ dB

∅
d∅ “ δpdq ˚D δpd∅q

This lifts trivially to arbitrary vectors.

The normalization map extends by linearity to a linear map from
D to R that we call the reduction map.

Definition 24 (Reduction map). The function ϕ̄ defined on basis
vectors as

ϕ̄pδpdqq “ δpBpdqq if Bpdq P N pDq,
“ 0 ¨ δpd∅q otherwise

extends straightforwardly to a linear map ϕ̄ : D Ñ R.

The unital associative algebra structure on D can be pushed
forward to R by composing normal diagrams and normalizing back
their composition.

Definition 25 (Product in R). Let v, v1 P R be given. We define
their product as:

v1 ˚R v fi ϕ̄
`

ψpv1q ˚D ψpvq
˘

Theorem 26. (i) ϕ̄ is a homomorphism of algebras from pD , ˚Dq

to pR, ˚Rq; (ii) ˚R makes R into an associative algebra with
unit 1R “ 1 ¨ d∅ and ϕ̄ is a homomorphism of associative unital
algebras. We call pR, ˚R,1Rq the rule algebra.

Proof. (i) By bilinearity of ˚R and ˚D , it is enough to consider
basis vectors. We have to prove ϕ̄pδpd1q ˚D δpdqq “ ϕ̄pδpd1qq ˚R

ϕ̄pδpdqq. Unfolding the definition of ˚R, we get:

ϕ̄pδpd1qq ˚R ϕ̄pδpdqq “ ϕ̄
`

ψpϕ̄pδpd1qqq ˚D ψpϕ̄pδpdqqq
˘

therefore, the goal reduces to proving

ϕ̄pδpd1q ˚D δpdqq “ ϕ̄
`

ψpϕ̄pδpd1qqq ˚D ψpϕ̄pδpdqqq
˘

Let us proceed by case analysis. Assume Bpdq R N pDq or Bpd1q R
N pDq. Then point 2. of Prop. 20 imply that both sides reduce to

0¨δ∅ and the equality holds. Now, assume that Bpdq, Bpd1q P N pDq.
Then ψpϕ̄pδpdqqq “ δpBpdqq and ψpϕ̄pδpdqqq “ δpBpd1qq, and it is
sufficient to prove that ϕ̄pδpd1q˚Dδpdqq “ ϕ̄

`

δpBpd1qq ˚D δpBpdqq
˘

,
which boils down to point 1. of Prop. 20. (ii) The unit part is trivial.
As for associativity, it suffices to apply the homomorphism prop-
erty to ϕ̄pψpxq ˚D ψpyq ˚D ψpzqq in the two possible ways to
obtain the sought equality.

An important subalgebra of R is that of observables, which will
be denoted by O . Its elements are (linear combinations of) normal
diagrams g1

r
ðù g where g and g1 are isomorphic. In a slight abuse

of notation, we will note this g
r
ðù g. The particular case where

r is an isomorphism from g to g1 will be denoted g
–
ðù g - as

we will see these correspond (via the representation to be defined
below) to function on graphs counting the number of matches for
a given graph. If r is not an iso, but simply a injective morphism,
then we are only counting such matches where nodes deleted by
r (and recreated subsequently) are sent to nodes of same degree in
the target graph. To stress the difference between true identities and
general obervables we will sometimes explicitly call the latter ones
‘thin’ identities.

In the following, we will work directly with representatives,
without loss of generality.

Proposition 27. The family O fi tg
r
ðù gugPG– is a commutative

subalgebra of R.

Proof. Commutativity of O is easy. Let d “ g
r
ðù g, d1 “ g1

r1

ðù g1

and n “ pnV , nEq P Mpd, d1q be given as in Def. 16. By Prop.
17, n is an partial graph morphism from g to g1. Let us write
d “ d Bn d1. We prove that there is a graph isomorphism from
Ipdq “ GipBpdqq to Opdq “ GopBpdqq. Let e be an edge of
Ipdq. By assumption, e has an image e1 in Opdq through a graph
isomorphism σd.

1. Assume e1 P dompnEq, then sope1q and tope1q are in Ipd1q
(since n is a graph morphism) and we conclude easily to.

2. Assume e1 R dompnEq. Then e1 P Opdq. The only nontrivial
case is whenever sope1q or tope1q overlaps dompnV q, in which
case we use the totality hypothesis to rule out the possibility
of sope1q, tope1q being deleted in d1: sope1q, tope1q are related
through the match relation of d1 to Opd1q.

The case of isolated vertices is treated similarly. All in all, this
prove that Ipdq injects in Opdq. Reversing the same argument con-
cludes to the existence of an isomorphism. Therefore, thin observ-
ables form a subalgebra.

4. Representation
Let G fi spanpG–q be the vector space spanned by isomorphism
classes of graphs. We construct a representation (that is, a homo-
morphism of unital associative algebras) of the algebra R to the al-
gebra EndpGq of endomorphisms over the vector space G. In Sec.
5, we will show how this representation implements mass-action
stochastic graph rewriting. In this section, we proceed by (i) con-
structing a linear map ρ : R Ñ EndpGq and (ii) proving that ρ is
indeed a homomorphism. The whole construction is in close anal-
ogy to the representation theory of the Heisenberg-Weyl algebra.
We will therefore use notations drawn from quantum mechanics:
elements of G will be denoted by |vy for v P G. G admits (by def-
inition of span) a Hamel basis constituted of linear combinations
of the form 1 ¨ δpgq for each g P G–. We will denote these by |gy.
Among all elements of G, we distinguish the vector correspond-
ing to the (trivial isomorphism class of the) empty graph: |∅y; it is
is the counterpart of the vacuum vector in the construction of the
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bosonic Fock space representation for the Heisenberg-Weyl algebra
(Blasiak et al. 2007) and it will play a similar role here.

Constructing the representation. The representation map ρ :
R Ñ EndpGq must satisfy (i) linearity and (ii) for all v, v1 P ρ,
the equation ρpv1 ˚R vq “ ρpv1qρpvq. It is sufficient to define ρ on
a basis of R and then extend it by linearity; similarly, an operator
in EndpGq is entirely characterized by its action on basis vectors
|gy. In the following, we will use the notation g1

r
ðù g for normal

diagrams seen as rules, as in Def. 12. We will omit δ and simply
write ρpg1

r
ðù gq where unambiguous.

Definition 28 (Representation map).

ρpg1
r
ðù gq |∅y fi

" ˇ

ˇg1
D

if g “ ∅
0 ¨ |∅y else

ρpg1
r
ðù gq

ˇ

ˇg2 ‰ ∅
D

fi ρpg1
r
ðù g ˚R g2 ðù ∅q |∅y

This extends to a linear operator ρ : R Ñ EndpGq. Note that
the first definition implies the equation |gy “ ρpg ðù ∅q |∅y for all
g P G–. We have:

Theorem 29. ρ is a homomorphism of unital algebras.

Proof. Let d, d1 P N pD–q be given. By linearity, it suffices to
prove ρpd1˚Rdq “ ρpd1qρpdq and ρp1Rq “ 1EndpGq. It is enough
to test these equalities on basis vectors of G. By definition of ρ, we
trivially have

ρp1Rq |∅y “ ρpd∅q |∅y “ ρp∅ðù ∅q |∅y “ |∅y
Let us test the homomorphism property on |∅y: if d is not of the
form d “ g ðù ∅ then ρpd1qρpdq |∅y “ 0 ¨ |∅y. Since @n, Ipdq Ď
IpdBn d1q, one also has ρpd1 ˚R dq |∅y “ 0 ¨ |∅y and the equality
holds. Assume now that d is of the form g ðù ∅. Then by definition,
ρpd1qρpg ðù ∅q |∅y “ ρpd1q |gy “ ρpd1 ˚R g ðù ∅q |∅y. Let us
proceed to the case of a basis vector |g ‰ ∅y. We have thanks to the
previous result ρp1Rq |gy “ ρp1R ˚ g ðù ∅q |∅y “ |gy. Finally,
using the previous results together with the associativity of ˚R,

ρpd1 ˚R dq |gy “ ρpd1 ˚R d ˚R g ðù ∅q |∅y
“ ρpd1qρpd ˚R g ðù ∅q |∅y
“ ρpd1qρpdq |gy

The following result will be useful in constructing a stochastic
dynamics.

Lemma 30. ρ ranges in row-finite operators.

Proof. It is enough to consider d “ f 1
r
ðù f . We have to prove

that for all h, there are finitely many |gy such that pρpdq |gyqh is
nonzero, i.e. such that

ρpf 1
r
ðù f ˚R g ðù ∅q |∅y

has a strictly positive component in |hy. But since h is a finite
graph, there are only finitely many g and n such that

Bpf 1
r
ðù f Cn g ðù ∅q “ hðù ∅

5. Stochastic mechanics of graph rewriting
Stochastic mechanics in a nutshell. We are interested in describ-
ing the time evolution of a probability distribution supported by
G–. As these are not necessarily finitely supported, they do not fit
in G “ spanpG–q. Therefore, we define our space of states to be
the real Fréchet space Ĝ fi pRG– ,

 

} }k

(

kPNq of all real sequences
indexed by G– with seminorms }f}k fi |fpgkq|. G is a subspace

of G–. The convex subset of subprobability states Prob Ă Ĝ con-
tains all states ψ P Ĝ that are i) positive, i.e. @x P X,ψpxq ě 0
and ii) subnormalized, i.e.

ř

x ψpxq ď 1. Substochastic operators,
denoted by Stoch, are those operators A P EndpV q which verify
ApProbq Ď Prob.

A stochastic dynamics in our setting will be a continuous-time
Markov chain that will be given by an Hamiltonian H P EndpGq.
We require this operator to be infinitesimal stochastic, which means
that H “ phxyqx,yPX verifies i) hxx ď 0 for all x, ii) hxy ě 0
for all x ‰ y and iii)

ř

x hxy “ 0 for all y. The stochastic
dynamics induced by a Hamiltonian is a semigroup P : r0,8q Ñ
StochpG–q of substochastic operators (i.e. P psqP ptq “ P ps` tq
for all s, t ě 0) which is the pointwise minimal non-negative
solution of the (backwards) master equation:

dP

dt
“ HP (6)

Given an initial state ψ, the corresponding trajectory is given by
t ÞÑ P ptqψ. See Norris (Norris 1998) for a thorough treatment of
the subject. Note that the above only makes formal sense whenever
H P EndpGq can be interpreted as an element of EndpĜq. In this
paper, as a consequence of Lemma 30, it will be by construction
always the case:

Lemma 31. For all H P EndpGq if H is row-finite then H P

EndpĜq.

Proof. Operators in EndpGq must map finite linear combinations
to finite linear combinations, therefore they must be column-finite.
If such an operator is moreover row-finite, its application is trivially
well-defined on all elements of Ĝ.

The projection. It will be useful to integrate elements of Ĝ against
the counting measure. In analogy with the notations of quantum
mechanics, we call this the projection and denote this linear (par-
tial) operation by

x| : Ĝ á R
x| “ v P Ĝ ÞÑ

ř

g vpgq

Hamiltonians verify the following special property:

Lemma 32. If H P EndpGq is infinitesimal stochastic, x|H “ 0.

Proof. By condition (iii) of the definition of infinitesimal stochastic
operators, columns vectors H |gy of H sum to zero.

Operators for graph observables. The quantities of interest in
stochastic graph rewriting-based models are “graph-counting ob-
servables”. They correspond to the number of occurrences of some
subgraph isomorphic to a pattern h in the graph being rewritten, say
g – in other words, the number of injections from h to g, denoted
by rh; gs. In our setting, these quantities are computed by graph-
counting operators. A graph observable for a pattern h P G– is an
operator Oh P EndpGq which verifies

Oh |gy “ rh; gs |gy (7)

i.e. every basis vector |gy is an eigenvector with eigenvalue rh; gs.
Note that one could take this as a definition. However, it will be
useful to express these operators in terms of the representations of
the elements of the subalgebra of thin graph observables O (see
Prop. 27):

Oh fi ρph
rh
ðù hq for some rh

Let us verify that this matches Eq. 7:

ρph
rh
ðù hq |gy “ ρph

rh
ðù hqρpg ðù ∅q |∅y

“ ρph
rh
ðù h ˚R g ðù ∅q |∅y

(8)
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Consider an arbitrary composite pg ðù ∅q Bn ph
rh
ðù hq for some

admissible match n P Mpg ðù ∅, h
rh
ðù hqq. By Prop. 17, n must

be an injective graph morphism from g to h. Assume that n is not
surjective: then

ρpϕ̄pph
rh
ðù hqCn pg ðù ∅qqq |∅y “ 0 |∅y

in other words, the only contributions to Eq. 8 are those where
n is an injective and surjective partial map from g to h, i.e. an
embedding of h in g. It follows that

x| ρph
rh
ðù hq |gy “ rh; gsrh

where rh; gsrh Ď rh; gs for the subset of matches of h in g that are
compatible with rh deletions - meaning each node deleted by rh
(and then recreated) is matched to a node of same degree.

Hamiltonians for stochastic graph rewriting. We have now all
the ingredients required to produce the Hamiltonian corresponding
to a stochastic graph rewriting system.

Proposition 33. Let
!

g1i
ri
ðù gi P N

)

iPI
be a finite family of nor-

mal diagrams seen as rules and tκi P r0,`8quiPI their associated
rates. Define

H “
ÿ

iPI

κipρpg
1
i

ri
ðù giq ´ ρpgi

ri
ðù giqq

where gi
ri
ðù gi is the thin observable obtained from g1i

ri
ðù gi.

We have that (i) H is infinitesimal stochastic, (ii) H P EndpGq is
row-finite.

We will need the following lemma.

Lemma 34. For all g1
r1
ðù g P N , g2

r2
ðù g P N ,

x| ρpg1
r1
ðù gq “ x| ρpg2

r2
ðù gq

Proof. We start with |h “ ∅y. If g ‰ ∅ then the claim is trivially
verified. Let us then assume g “ ∅ (implying r1, r2 “ ∅):

x| ρpg1
r1
ðù ∅q |∅y “ x| |g1y “ 1

“ x| |g2y

“ x| ρpg2
r2
ðù ∅q |∅y

For |h ‰ ∅y, we have by definition of ρ:

x| ρpg1
r1
ðù gq |hy “ x| ρpg1

r1
ðù g ˚R hðù ∅q |∅y

“
ř

n x| ρpg1
r1
ðù g Cn ϕ̄phðù ∅qq |∅y

Only admissible matches n which are surjective graph morphisms
from h to g contribute to this sum. Also, Mph ðù ∅, g1

r1
ðù gq “

Mphðù ∅, g2
r2
ðù gq. Applying reduction we may write:

ř

n x| ρpϕ̄pg1
r1
ðù g Cn hðù ∅qq |∅y “

ř

n x| ρpg1 ðù ∅q |∅y
“

ř

n x| ρpg2 ðù ∅q |∅y
where the last line follows by the first case of our analysis. Apply-
ing the same reasoning in reverse yields the claim.

We can now prove Prop. 33:

Proof. It suffices to consider the case of one rule g1
r
ðù g. It is

enough to prove that for all |gy,

x| pρpg1
r
ðù gq ´ ρpg

r
ðù gqq |gy “ 0

where g
r
ðù g is the thin observable obtained from g

r
ðù g. This is

a straightforward consequence of Lemma 34. Row-finiteness is a
direct consequence of Lemma 30.

Jump-closure for observables. As presented at the beginning of
this section, any Hamiltonian (as obtained from Prop. 33) induces
a stochastic dynamics, from which one can – in principle – derive
all quantities of interest. However, one is typically not interested in
the full dynamical system, but only in the expected value of some
graph observable (or higher moments thereof). The remainder of
this section re-proves in our algebraic setting a series of results
(Danos et al. 2014) which allow to derive from a Hamiltonian a
formal (in the sense that solutions do not always exist) system of
ordinary differential equations (ODEs) which describes the time
evolution of the expected value of graph observables. The key result
is jump-closure of observables under the action of a Hamiltonian.
In words, this result implies that the time evolution of the expected
value of a graph observable Og is a function of the time evolution
of the expected value of a finite family of other observables. This
induces a coupled system of ODEs which, in good cases, closes
on a finite set of variables. Even when that is not the case, this
presentation of the dynamics has the quality of being amenable to
approximations (Danos et al. 2014). Let us prove jump-closure:

Theorem 35 (Jump-closure for observables). For all Hamiltonian
H as produced in Prop. 33 and all g P G–, there exists a finite
family F Ď G– such that

x|OgH “
ÿ

hPF
αg,h,H x|Oh

for some constants tαg,h,HuhPF .

Proof. By linearity, it is sufficient to consider the case where H is
generated by a single rule d “ f 1

r
ðù f with rate κ, yielding

H “ κpρpf 1
r
ðù fq ´Of q

where Of “ f
r
ðù f . The goal is reduced to exhibiting F s.t.

x| pOgρpf
1 r
ðù fq ´OgOf q “

ÿ

hPF
αg,h,H x|Oh

Since observables O form a subalgebra of R (Prop. 27), OgOf is
trivially a finite linear combination of observables. Let us consider
the term x|Ogρpf 1

r
ðù fq:

x|Ogρpf
1 r
ðù fq “ x| ρpg

rg
ðù g ˚R f 1

r
ðù fq

“
ř

n αg,H,hn x| ρph
1
n
rn
ðù hnq

where n PMpf 1
r
ðù f, g

rg
ðù gq. Lemma 34 allows us to write:

ř

n αg,hn,H x| ρph
1
n
rn
ðù hnq “

ř

n αg,hn,H x| ρphn
rn
ðù hnq

“
ř

n αg,hn,HOhn

which concludes the proof.

Jump-closure for products of observables. As we will show,
jump-closure for observables corresponds to the data of a system of
ODEs describing the time evolution of the expected value (the first
“moment”) of an observable. The same procedure can be extended
to yield ODEs describing the time evolution of higher moments,
i.e. expected values of products of observables. The action of a
Hamiltonian on a product of observables will be expressed in term
of the commutator of these operators. Let us recall the definition of
the commutator.

Definition 36 (Commutator). The commutator rA,Bs of two op-
erators A,B P EndpGq is defined by

rA,Bs fi AB ´BA

It is trivially bilinear.
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The commutator of two operators quantifies their lack of com-
mutativity – in this respect, it is a quantitative account of the inde-
pendence of the processes represented by these operators. In par-
ticular, we have:

Lemma 37. For all observables Oh, Og P O , rOh, Ogs “ 0.

Proof. Trivial consequence of Prop. 27.

We will need the following lemma when dealing with nested
commutators.

Lemma 38. Let O “ tOiu1ďiďn be a finite family of commuting
operators (i.e. rOi, Ojs “ 0 for all i, j),B an operator and σ P Sn
a permutation of t1, . . . , nu. Let us define the notation

Cσ
pO, Bq fi rOσp1q, rOσp2q, . . . rOσpnq, Bs . . .ss

Then for all σ P Sn, Cσ
pO, Bq “ Cid

pO, Bq fi CpO, Bq.

Proof. We proceed by induction. Let us start wit h n “ 2 and with
O2 “ tO1, O2u. Using the fact that observables commute,

rO1, rO2, Bss “ rO1, O2B ´BO2s

“ rO1, O2Bs ´ rO1, BO2s

“ O1O2B `BO2O1 ´O2BO1 ´O1BO2

“ O2O1B `BO1O2 ´O2BO1 ´O1BO2

“ rO2, O1Bs ´ rO2, BO1s “ rO2, rO1, Bss

For n “ k ` 1, the result follows by setting B “ CσpAnz tO1uq

and applying the induction hypothesis.

The following proposition asserts that the expected value of
observables under the action of a Hamiltonian can be reordered in
an useful form.

Proposition 39 (Jump-closure for products of observables). For
all Hamiltonian H as produced in Prop. 33, for all n ě 2 and
all finite family of observables O “ tOiu1ďiďn, noting Oσ

m “
 

Oσpiq
(

1ďσpiqďm
,

x|O1 . . . OnH “
ÿ

σPSn

n
ÿ

m“1

x|
CpOσ

m, Hq
ś

iąmOσpiq
m!pn´mq!

(9)

where Sn is the symmetric group over n elements.

Proof. We proceed by induction on n, starting from n “ 2. We
have:
x|O1O2H “ x| pO1rO2, Hs `O1HO2q

“ x| pO1rO2, Hs ` prO1, Hs `HO1qO2q

“ x| pO1rO2, Hs ` rO1, HsO2 `HO1O2q

The term x|HO1O2 vanishes per Lemma 32. Observe also that
O1rO2, Hs “ rO1, rO2, Hss ` rO2, HsO1. We obtain:

x|O1O2H “ x| prO1, rO2, Hss ` rO2, HsO1 ` rO1, HsO2q

“ x|

´

CpOid
2 , Hq `

ř

σPS2
CpOσ

1 , HqOσp2q

¯

Applying Lemma 38, one obtains the sought formula. Let us treat
the inductive case n “ k ` 1. Given a family On “ tOiu1ďiďn
and writing O1i “ Oi for all i ă k and O1k “ OkOn, we get a
family of operators O1k. The result follows easily by applying the
induction hypothesis on this family.

Eq. 9 shows that in order to compute higher moments, it is re-
quired to compute the full nested commutators CpOσ

m, Hq. This
computation can be simplified slightly with the following obser-
vation. Any element of v P R can be decomposed uniquely as
v “ v̂ ` v̊ with v̂ P RzO and v̊ P O . This decomposition lifts to
Hamiltonians by linearity of the representation.

Definition 40 (Non-observable part of a Hamiltonian). Let H be
constructed as in Prop. 33. H admits a unique decomposition

H “ Ĥ ` H̊

where Ĥ “ ρpv̂q for v̂ P RzO and H̊ “ ρp̊vq for v̊ P O .

The following Lemma takes advantage of this decomposition to
simplify commutators:

Lemma 41 (Commutator simplification for Hamiltonians). For all
graph observable operator Oh and all Hamiltonian H as defined
in Prop. 33, rOh, Hs “ rOh, Ĥs.

Proof. Direct consequence of linearity of the commutator and of
Lemma 37.

This allows for the following refined version of Proposition 39:

Corollary 42 (Refined jump-closure for products of observables).
Let H and O be as in Prop. 39. With the same notations, it holds
that

x|O1 . . . OnH “
ÿ

σPSn

n
ÿ

m“1

x|
CpOσ

m, Ĥq
ś

iąmOσpiq
m!pn´mq!

(10)

Proof. Straightforward using Lemma 41 and Lemma 38.

Existence of solutions: what we know. As introduced at the be-
ginning of this section, jump-closure provides a method for pro-
ducing coupled systems of ODEs that describe the expected value
of observables (or product thereof). We conclude this section by (i)
exposing when and how these differential systems are obtained and
(ii) discussing the relevance of the solutions, if any, with respect to
the underlying system.

Let H be an Hamiltonian and let P : r0,8q Ñ Stoch be
the semigroup induced by the semigroup associated to H . Let
us denote the time-evolving subprobability by |ψptqy “ P ptqψ,
for ψ P Prob some initial condition. The expression x|Ogpptq
describes formally the time evolution of the expected value of Og .
By definition of the master equation (Eq. 6), we have:

d

dt
x|Og |ψptqy “ x|OgH |ψptqy

and by Thm. 35, there must exists a finite family F Ă G– s.t.

d

dt
x|Og |ψptqy “

ÿ

hPF
αg,h,H x|Oh |ψptqy

In the exact same way, one can derive a formal system of ODEs
for the expected value of finite products of observables (sometimes
called correlators), thus giving access to all moments of pptq.
Starting from Eq. 10 (and reusing the same notations), one obtains:

d

dt
x|O1 . . . OnH “

ÿ

σPSn

n
ÿ

m“1

x|
CpOσ

m, Ĥq
ś

iąmOσpiq
m!pn´mq!

|ψptqy

whence, in both cases, we have produced a (potentially infinite)
formal system of differential equations – formal in the sense that
the following problems might arise:

1. it might have no unique solution;

2. it might be explosive (Norris 1998): p might not be defined at
all times and might range in subprobabilities, in which case the
relation of the “solution” with the actual expected value of the
observable is subject to caution.

In general, for finite systems (meaning that only finitely many
states are accessible from a given reference initial state x0) all the
above objects make sense, have unique solutions and the meaning
of their solution is indeed, as expected, the time-dependent mean

short description of paper 9 2016/1/19



value of the associated observable (starting at x0). This is also
easily seen to be true if the observables are finitely supported. To
quote (Spieksma 2012), ”Other cases are not quite as clear”.

It remains to be seen whether the few available sufficient condi-
tions on H and and on observables for the derived system of ODEs
to have solutions can be exploited to guarantee existence of so-
lutions for a substantial class of dynamics studied in this paper.
An adaption of energy-based graph-rewriting systems (as studied
in (Danos et al. 2013)) can be a good guess for obtaining a sub-
stantial such class. Indeed, in the discrete case (see eg (Danos and
Oury 2013)), we know that energy-driven dynamics converges to
a multidimensional Poisson distribution and the dynamics is non-
explosive, which is a first indication that the extended FE has solu-
tions for a wide class of observables.

6. Outlook
We have introduced in this paper an algebra of graph-rewriting
rules. Rules are seen as normal forms of a combinatorial algebra
of diagrams. The diagram algebra is a syntax which we believe has
independent interest as it describes what one might call abstract
computational traces, or neighbourhoods of such traces. This is
reminiscent of structures introduced for trace compression (Danos
et al. 2012) used in causal analysis and diagnosis methods and
developed for the specific case of site-graph rewriting (specifically,
the Kappa language) (Danos et al. 2007). It would be a worthwhile
effort to investigate rather this formalism lends itself better to
trace compression. (Incidentally, there is a more relaxed version
of diagrams where one does not ask for global acyclicity. Not every
diagram can now be built inductively from rules but the evaluation
of diagrams works as before.)

With the algebraic part of the paper in place, we turn to actual
rewriting which is now seen as a representation of the rule alge-
bra on the vector space spanned by graphs. In the discrete case (no
edges), this construction boils down to the Heisenberg-Weyl (HW)
algebra and its canonical representation on the Fock space (see ref-
erences in (Blasiak et al. 2010)), so we are on familiar territory. The
fundamental property of this representation is the property of jump-
closure, that is to say, we show that observables are closed under
(the representation of) rules. This development compares advanta-
geously to Ref. (Danos et al. 2014) where one obtains jump-closure
in a rather ad hoc way and in the easiest setting of SPO rewriting
(our method can do both with equal ease). The actual combinato-
rial expression of jump-closure reduces in our new framework to
a straightforward evaluation in the diagram algebra. Besides the
conceptual clarification which the new technique provides, it also
marks an improvement as a practical computational tool. It can also
be said that the former approach can handle the case of correlators
only in an indirect way by using the algebra structure of observ-
ables. The direct derivation we propose here is compellingly simple
in comparison.

From jump closure, one can immediately derive the so-called
rate equations for graph observables and arbitrary moments thereof.
These equations are ubiquitous in the physics and applied mathe-
matical literature. A recent example is Ref. (Basak et al. 2015, p21)
where the authors derive the forward equation for a voter model
with rewiring (up to order 3). This is still doable by hand, but would
become extremely difficult at higher orders or for more complex
models. Evidently, it would be interesting to find non trivial classes
of rules and observables for which one can have guarantees on the
existence and meaning of solutions to these equations, but, further
than the case of finitely supported observables, little seems to be
known. In Ref. (Spieksma 2012), one finds hard-earned conditions
which could allow one some progress, but this remains to be seen.
Ergodicity conditions which one can derive from assuming poten-
tials driving the dynamics (perhaps by adapting the work done in

Ref. (Danos et al. 2013) for site-graphs) offers an interesting and
complementary option.

Another interesting avenue is the search for combinatorial ap-
plications which parallel those obtained via the HW algebra in the
discrete case. Some discrete dynamics, such as multi-type birth-
death processes, admit closed forms that one can derive in a sys-
tematic way by means of standard analytical combinatorics tech-
niques (umbral calculus (Blasiak et al. 2010)). Preliminary results
show that we can extend these ideas to graph-based dynamics.

Returning to purely algebraic part of the paper, other types of
rewriting follow naturally form the approach. Relaxing condition
5) on diagrams (Section 3) gives rise to a Hopf algebra of diagrams
for which one can define four different evaluation morphisms. Each
corresponds to a different way to handle worldlines of edges which
outlast or predate that of their ends. The simplest evaluation is
the only one considered here and corresponds to DPO-rewriting.
Other types induce different canonical representations and lead to
other types of graph rewriting (among which SPO-rewriting and a
hitherto unconsidered dual variant). We will pursue this interesting
classification in further work and build this variant stochastic me-
chanical frameworks for each obtained notion of graph-rewriting.
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A. Rule diagrams, untamed
An example of diagram not satisfying the totality condition. The
reader might wonder which are the “pathological” diagrams that
give rise to partial graphs after normalization. Let us give such an
example. The following diagram is an edge observable attached to
a rule that deletes a vertex (notice there is no output vertex on top
of ˝4). We invite the reader to check that the right hand side of the
diagram is indeed the outcome after normalization.

˝4

‚2 ˛bđ § ‚3

OO

� B // ‚2 ˛bđ

˝0

OO

˛ađ §

OO

˝1

OO

˝0

OO

˛ađ §

OO

˝1

(11)

Observe that the output graph is partial. As has already been in-
vestigated by the authors (Behr et al. 2016), these partial normal
forms have a rich theory which is related to particular types of
graph rewriting techniques.

An example of diagram not satisfying the global acyclicity condi-
tion. The following is an example of diagram that does not satisfy
global acyclicity.

‚2

��

˛bđ § ‚3

˝0

OO

˛ađ §

OO

˝1

OO (12)

One easily checks that the (unique) vertex pdd here is indeed
acyclic. The outcome of normalisation will be a loop observable.
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