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Giry and the Machine

Fredrik Dahlqvist1 Vincent Danos2 Ilias Garnier3

University College London Ecole Normale Supérieure University of Edinburgh

Abstract

We present a general method - the Machine - to analyse and characterise in finitary terms natural transfor-
mations between well-known functors in the category Pol of Polish spaces. The method relies on a detailed
analysis of the structure of Pol and a small set of categorical conditions on the domain and codomain
functors. We apply the Machine to transformations from the Giry and positive measures functors to com-
binations of the Vietoris, multiset, Giry and positive measures functors. The multiset functor is shown to
be defined in Pol and its properties established. We also show that for some combinations of these func-
tors, there cannot exist more than one natural transformation between the functors, in particular the Giry
monad has no natural transformations to itself apart from the identity. Finally we show how the Dirichlet
and Poisson processes can be constructed with the Machine.

Keywords: probability, topology, category theory, monads

1 Introduction

Classical tools of probability theory are not geared towards compositionality, and

especially not compositional approximation (Kozen, [13]). This has not prevented

authors from developing powerful techniques (Chaput et al. [5], Kozen et al. [14])

based on structural approaches to probability theory (Giry, [9]). Here, we adopt a

slightly different standpoint: we propose to tackle this tooling problem globally, by

combining structural insights of Pol together with some classical tools of proba-

bility theory and topology put in functorial form. The outcome is the Machine, an

axiomatic reconstruction in category-theoretic terms of developments carried out in

[7]. Thus, we get a simpler and more conceptual proof of our previous results. We

also obtain a much more comprehensive picture and prove that natural transforma-

tions between Giry-like functors are entirely characterised by their components on

finite spaces. For instance, the monadic data of the Giry functor are easily obtained
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from the finite case (which is completely elementary) and applying the Machine. But

the construction is not limited to probability functors: we deal similarly with the

multiset and the Vietoris (the topological powerdomain of compact subsets) func-

tors. This allows one to consider transformations mixing probabilistic and ordinary

non-determinism, in a way which is reminiscent of (Keimel et al., [12]). Another

byproduct of our Machine is that we reconstruct from finitary data classical objects

of probability theory and statistics, namely the Poisson and Dirichlet processes. It

is worth noting that Poisson, Dirichlet (and many other similar constructions ob-

tained by recombining the basic ingredients differently) are obtained as natural and

continuous maps: naturality expresses the stability of the “behaviour” in a change

of granularity, and as such is a fundamental property of consistency, but continuity

(which to our knowledge is proved here for the first time) expresses a no less impor-

tant property, namely the robustness of the behaviour in changes in “parameters”.

This has potential implications in Bayesian learning.

The structure of the paper is as follows. In Sec. 3, we show that Pol is stratified

into the subcategories Polf , Polcz Polz of finite, compact zero-dimensional and

zero-dimensional Polish spaces respectively and show how these subcategories are

related. In Sec. 4, the Machine is introduced: we identify a small set of categorical

conditions on functors F,G that guarantee that any natural transformation from

F to G in Polf can be extended step-by-step through the subcategories to a nat-

ural transformation on Pol. In Sec. 5, we illustrate the workings of the Machine

on natural transformations connecting the Giry and positive measure functors to

combinations of the Vietoris, multiset, Giry and positive measure functors. As far

as we know, the multiset functor is defined in Pol for the first time and its prop-

erties are established. As a first application of the Machine, we develop in Sec. 6

general criteria under which there can exist at most one natural transformation

from a functor F to the Giry functor. In particular, we show that there exists at

most one natural transformation between the Vietoris, multiset, positive measure

and Giry functor to the Giry functor. Lastly, we show in Sec. 7 how transformations

of the type M+ ⇒ GH where M+ is the finite measure functor and H is either the

multiset or the finite measure functor can be built in Polf from a single generating

morphism M+(1) → GH(1) and give criteria for this transformation to be natural.

In particular, we show that the Dirichlet and Poisson distributions satisfy these

criteria and use the Machine to build Dirichlet and Poisson processes.

2 Notations

Most of our developments take place in the category Pol of Polish spaces and

continuous maps. Pol is a full subcategory of the category Top of topological spaces

and continuous maps. Pol has all countable limits and all countable coproducts

(Bourbaki [4], IX). The functor mapping any space to the measurable space having

the same underlying set and the Borel σ-algebra and interpreting continuous maps as

measurable ones will be denoted by B : Pol→Meas, where Meas is the category

of measurable spaces and measurable maps. A countable codirected diagram (ccd

for short) is given by a countable directed partial order I and a contravariant

functor D : Iop → Pol such that for all i ≤Iop j, D(i ≤Iop j) is surjective. We
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moreover assume that ccds range over non-empty spaces. With that assumption,

the categorical limit of a ccd D, which we denote by limD, is always non-empty.

3 The structure of Pol

Pol can be decomposed according to the following diagram of inclusions:

Polf
� � Icz //Polcz

� � Iz //Polz
� � Ip //Pol (1)

Here, Polf is the full subcategory of finite (hence discrete) spaces, Polcz is the full

subcategory of compact zero-dimensional spaces and Polz is the full subcategory of

zero-dimensional spaces while Icz, Iz and Ip are the obvious inclusion functors. To

this picture, we add categories of based spaces and base-preserving maps.

Definition 3.1 (Categories of based spaces) A based space is a pair (X,F) of

X ∈ Obj(Pol) and of a countable base F of the topology of X. A base-preserving

map from (X,F) to (Y,G) is a function f : X → Y such that f−1(G) ⊆ F (it is there-

fore continuous). One easily checks that this defines a category having based spaces

as objects and base-preserving maps as morphisms. We denote this category by Pol[.

Similarly, a based zero-dimensional space is a pair (Z,F) where Z ∈ Obj(Polz) and

F is a countable base of clopen sets which is also a boolean algebra. We denote by

Pol[z the category of based zero-dimensional spaces and base-preserving maps.

Of course, there exists for each such based category a (faithful, but not full!)

forgetful functor, that we will denote by resp. Uz and Up. The situation is summed

up in the following commutative diagram in Cat:

Pol[z
� � I[p //

Uz

��

Pol[

Up

��

Polf
� � Icz //Polcz v�

Iz ))

) 	
I[z

66

Polz
� �

Ip
//Pol

In the remainder of this section, we will unravel further relationships between these

categories.

Polf is a codense subcategory of Polcz. Objects of Polf are finite discrete

spaces. Note that every subset of a discrete space is clopen; as a consequence, any

map between two finite spaces is continuous. We will denote objects of Polf by

their cardinality m,n. The objects of Polcz are the compact zero-dimensional (or

profinite) spaces, a prime example being the Cantor space 2N. These spaces are

homeomorphic to limits of countable codirected diagrams (ccds for short) taking

values in Polf . This is exactly captured by the concept of codensity (see [15], X.6).

Proposition 3.2 Polf is codense in Polcz.

Proof. Let X be a compact zero-dimensional space, and consider the comma cat-

egory X ↓ Icz. We denote by DX : (X ↓ Icz) → Polf the diagram correspond-
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ing to the base of this cone. It is enough to prove that for all X ∈ Obj(Polcz),

X ∼= limDX . Following (Mac Lane [15], IX.3), it is in turn enough to exhibit a di-

agram D : Iop → Polf verifying X ∼= limD and a cofinal (“initial” in [15]) functor

c : Iop → (X ↓ Icz). Proposition 3.1 of [7] yields the existence of such a diagram D

where I is the set of finite partitions of X taken in the boolean algebra of clopen

sets of X (that we denote by Clo(X)), partially ordered by partition refinement

and directed by partition intersection. Observe that any continuous map f : X → n

induces a finite clopen partition of X by considering its fibres. Let us denote this

partition by X/f . Let c be the functor mapping any finite partition n ∈ Iop seen as

an object of Polf to the quotient map qn : X � n, and any refinement m ≤Iop n
to to the obvious map πmn such that qm = πmn ◦ qn. For any f : X → n the

partition X/f is mapped to c(X/f) : X → X/f , and there trivially exists a map

π : c(X/f)→ f . For any two f, f ′ ∈ Obj(X ↓ Icz), one can easily exhibit a partition

i ∈ I of X such that there exists π : c(i)→ f and π′ : c(i)→ f ′. 2

Polcz is a reflective subcategory of Pol[z. Objects of Polz are zero-dimensional

spaces, i.e. spaces whose topology admits a (countable) base of clopen sets. Discrete

spaces (such as N) are always zero-dimensional. A less trivial example is the Baire

space NN. The bridge between Polcz and Polz is provided by compactifiying zero-

dimensional spaces, as explained in full length in ([7], Sec. 3). Let us recall the

underpinnings of this compactification. Let Z be some zero-dimensional space and

F be a countable base of clopens of Z. One easily verifies that the boolean algebra

generated by F , that we denote by Bool(F), still generates the same topology and

is still countable. Therefore, one can witout loss of generality assume that the base

F of Z is a countable Boolean algebra of clopen sets. Let IF be the directed partial

order of finite partitions of Z taken in F and let DF : IopF → Polf be the diagram

defined by DF (i ∈ IopF ) , i on objects (seeing finite partitions of Z as finite discrete

spaces) and DF (j ≤IopF i) = qij where qij : j → i is the obvious quotient map.

Proposition 3.3 (Wallman compactification ([7], Prop. 3.12)) limDF is a

zero-dimensional compactification of Z that we denote by ωF (Z). We denote by

ηF : Z ↪→ ωF (Z) the canonical embedding of Z into its compactification.

Note that this compactification is not universal, in the sense that Polcz is not

a reflective subcategory of Polz (see [15], IV.3 for a definition of reflective subcat-

egory). However, we will show that Polcz is a reflective subcategory of Pol[z. In

the following, recall that Clo(X) is the boolean algebra of clopen sets of a compact

zero-dimensional space X.

Proposition 3.4 Let I[z be the operation that maps any compact zero-dimensional

space X to the pair (X,Clo(X)) and which acts identically on maps between such

spaces. I[z is a full and faithful functor from Polcz to Pol[z.

Proof. For any space X ∈ Obj(Polcz), its boolean algebra of clopen sets Clo(X)

is countable and therefore, (X,Clo(X)) is a based zero-dimensional space. By con-

tinuity, maps between such spaces are base-preserving. Functoriality, fullness and

faithfulness are trivial. 2

Our compactification naturally lives in Pol[z:
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Proposition 3.5 For any (Z,F) ∈ Obj(Pol[z), the embedding ηF : (Z,F) →
I[z(ωF (Z)) is base preserving.

Proof. By construction of ωF (Z), any finite clopen partition of this space will

induce through ηF a finite partition of Z taken in F . Therefore, ηF is base preserv-

ing. 2

The following proposition states the functoriality of compactification in this new

setting, and the fact that Polcz is a reflective subcategory of Pol[z.

Proposition 3.6 (ω as a reflector) (i) Let f : (Z,F) → (Z ′,F ′) be a base-

preserving map. There exists a unique ωFF ′(f) : ωF (Z) → ωF ′(Z
′) such that

ωFF ′(f) ◦ ηF = ηF ′ ◦ f . (ii) ω : Pol[z → Polcz is a functor defined on ob-

jects by ω(Z,F) , ωF (Z) and on base-preserving maps f : (Z,F) → (Z ′,F ′) by

ω(f) , ωFF ′(f), and it is left adjoint to the inclusion functor I[z (the unit being

given by η).

Proof. (i) This is Prop. 3.13 and Corollary 3.14 of [7]. Let us sketch the argument.

As f is base-preserving, any finite clopen partition of Z ′ taken in F ′ will induce

a unique finite clopen partition of Z taken in F . Using the notations of Prop.

3.3, we deduce that DF ′ is a sub-diagram of DF . Therefore, there exists a unique

mediating map (that we denote ωFF ′(f)) from limDF to limDF ′ , i.e. from ωF (Z)

to ωF ′(Z
′), such that ηF ′ ◦f = ωFF ′(f)◦ηF . (ii) ω trivially preserves identities. For

all f, f ′, the equality W (f ′ ◦ f) = W (f ′) ◦W (f) is a consequence of the uniqueness

of factorisations in (i). According to (Mac Lane [15], IV.3), left adjointness of ω is

a direct consequence of (i), as any map f : (Z,F) → I[z(X) will factor uniquely

through ηF : (Z,F)→ I[z(ωF (Z)). 2

This reflection is summarised in the following diagram:

η
��

Pol[z

Id
Pol[z

��

ω
//Polcz

I[z

//Pol[z

(2)

Pol[z is a coreflective subcategory of Pol[. The penultimate step in our struc-

tural analysis of Pol is to relate Pol[z and Pol[. This is accomplished by associat-

ing zero-dimensional refinements to arbitrary spaces, in an operation called zero-

dimensionalisation. Let us define this operation.

Proposition 3.7 (Zero-dimensionalisation ([7], Prop. 3.2)) Let X be a space

with underlying set U(X) and let F be a countable base of X. The topological space

zF (X) , (U(X), 〈Bool(F)〉) having as underlying set U(X) and whose topology is

generated by the boolean algebra Bool(F) verifies the following properties:

(i) zF (X) is Polish;

(ii) zF (X) is zero-dimensional.

(iii) measurable sets are preserved: B(X) = B(zF (X)).
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In a similar fashion to compactifications, this operation is better typed as a

functor from Pol[ to Pol[z. Let us make zero-dimensionalisation into a functor:

Proposition 3.8 Let f : (X,F)→ (Y,G) be a base-preserving map in Pol[. Then

f : (zF (X), Bool(F))→ (zG(Y ), Bool(G)) is base-preserving in Pol[z. We denote by

z : Pol[ → Pol[z the functor defined by z(X,F) = (zF (X), Bool(F)) on objects and

acting identically on arrows.

Proof. It is sufficient to consider the case of an arbitrary finite union of literals

L = Aε11 ∪ . . . ∪ Aεnn ∈ Bool(G), where Ai ∈ G and Aεii denotes either Aci or Ai.

We have f−1(L) = ∪ni=1f
−1(Ai)

εi , since f is base-preserving in Pol[ we deduce

that f−1(L) ∈ Bool(F). Continuity of f in Pol[z is a direct consequence of base

preservation. The fact that z is a functor is now trivial. 2

The following result now follows easily:

Proposition 3.9 (z as a coreflector) z is right adjoint to the inclusion functor

I[p, i.e. Pol[z is a coreflective subcategory of Pol[.

Proof. Observe that for all (X,F) ∈ Obj(Pol[), the identity function εF , id :

I[pz(X,F) → (X,F) is base-preserving. This indeed constitutes the counit of the

coreflection: one easily verifies that for all f : I[p(Z,F) → (X,G) there exists a

unique f ′ : I[p(Z,F) → I[pz(X,G) such that f = εG ◦ f ′ (and f ′ is equal to f as a

function). 2

This coreflection is summarised in the following diagram:

Pol[

Id
Pol[

��

z
//Pol[z

ε

KS

I[p

//Pol[

(3)

Relating Pol[ and Pol. For all space X ∈ Obj(Pol), let us denote the set of

countable bases of X, partially ordered by inclusion, by Bases(X). Observe that

Bases(X) is directed by taking the union of the bases and closing under finite

intersections. Accordingly, if F ⊆ G are two countable bases of X, the identity

function id : (X,G) → (Y,F) is trivially base-preserving. This defines a codirected

diagram BX : Bases(X)op → Pol[ mapping any base F to (X,F) and any pair

F ⊆ G to the identity function. Recall that Up : Pol[ → Pol is the base-forgetting

functor. The next definition and proposition provide a universal characterisation of

Polish spaces in terms of their zero-dimensionalisation.

Definition 3.10 (Diagram of zero-dimensionals) We define the diagram of

zero-dimensionals of X:

ZX , UpI
[
pzBX : Bases(X)op → Pol

that maps bases F ∈ Bases(X) to ZX(F) , zF (X).

6



We state without proof the following result, which is a category-theoretic refor-

mulation of ([7], Theorem 3.5):

Proposition 3.11 For all space X ∈ Obj(Pol), X ∼= colimZX .

In more concrete terms, any space X has the final topology for the family of iden-

tity functions {id : zF (X)→ X}F where F ranges over Bases(X). Let us conclude

this section by summarising our structural decomposition of Pol in the following

diagram:

Polf
� � Icz //Polczk�

Iz 11

t�

I[z

77⊥ Pol[z t�

I[p

88

ω

ww

Uz

��

> Pol[

z
ww

Up

��
Polz

� �

Ip
//Pol

(4)

4 The Machine

We will leverage the structural decomposition of Pol given in the previous section

to characterise some “profinite” natural transformations, in the sense that their

behaviour on arbitrary spaces is entirely determined by their behaviour on finite

spaces. We proceed in a stepwise and modular fashion: the Machine is presented as a

series of extension theorems giving sufficient conditions for a natural transformation

to be uniquely extended from a subcategory to the ambient one (Theorems 4.2-4.11).

These results are combined in Theorem 4.12.

I. From Polf to Polcz. One can completely characterise the subcategory of the

functor category [Polcz; Pol] consisting of functors commuting with certain codi-

rected limits in terms of [Polf ; Pol]. These functors are defined below.

Definition 4.1 (Polf -continuous functors) A functor F : Pol → Pol is Polf -

continuous if for all ccd D : Iop → Polf , F (limD) ∼= limFD.

The key result is the following:

Theorem 4.2 Let F,G : Polcz ⇒ Pol be two functors. If G is Polf -continuous,

then Nat(F |Polf , G|Polf ) ∼= Nat(F,G).

This isomorphism arises from the existence of a functor computing right Kan

extension along Icz (see [15], X), denoted by RanIcz in the following:

Proposition 4.3 The functor RanIcz : [Polf ; Pol]→ [Polcz; Pol] is full and faith-

ful.

Proof. In the following, for any X ∈ Obj(Polcz), DX : (X ↓ Icz) → Polf stands

for the diagram verifying X ∼= limDX (see proof of Prop. 3.2). We first prove

that any functor F : Polf → Pol admits a right Kan extension RanIcz F along

Icz. Following (Mac Lane [15], X.3, Corollary 4) it is sufficient to prove that for

all X ∈ Obj(Polcz), the diagram F ◦ DX : (X ↓ Icz) → Pol has a limit. By a

cofinality argument similar to that used in the proof of Prop. 3.2, one can show

that limF ◦DX
∼= limF ◦D for a countable diagram D and since Pol is countably

complete this limit exists, therefore F admits a right Kan extension. Let us prove
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that the extension is full and faithful. Since Icz is full and faithful, the universal

arrow εF : (RanIcz F )Icz ⇒ F is an iso. Given F,G : Polf → Polcz and α : F ⇒ G,

there exists a unique σ : RanIcz F ⇒ RanIcz G such that α ◦ εF : (RanIcz F )Icz → G

factors as α ◦ εF = εG ◦ σIcz. Therefore, RanIcz defines a functor from [Polf ; Pol]

to [Polcz; Pol] which is full and faithful by the bijection Nat(RanIcz F,RanIcz G) ∼=
Nat(F,G). 2

Proof. [Theorem 4.2] Prop. 4.3 and the universal property of Ran yields

an isomorphism Nat(F |Polf , G|Polf ) ∼= Nat(F,RanIcz G|Polf ). Recall that

RanIcz G|Polf (X) = limG ◦DX
∼= limG ◦D where DX and D are as in the proof

of Prop. 4.3. By Polf -continuity of G, RanIcz G|Polf (X) ∼= G(limD) = G(X). 2

II. From Polcz to Pol[z. As seen in Prop. 3.6, the Wallman compactification makes

Polcz into a reflective subcategory of Pol[z. The extension of a natural transforma-

tion from Polcz to Pol[z can be framed componentwise as a restriction of the natural

transformation to a space embedded into its compactification, that we construct us-

ing intersections.

Definition 4.4 (Intersections, preservation of intersections) If j1 : X ↪→
Z, j2 : Y ↪→ Z are two embeddings, we define the intersection X ∩ Y → Z as the

pullback of j1 and j2 (Eq. 5). We say that an endofunctor G : Pol→ Pol preserves

intersections if the diagram in Eq. 6 is an intersection.

X ∩ Y p1 //

p2
��

X_�

j1
��

Y �
�

j2
//Z

(5) G(X ∩ Y )
G(p1) //

G(p2)
��

G(X)
_�

G(j1)
��

G(Y )�
�

G(j2)
//G(Z)

(6)

The following Lemma characterises the topology of intersections in Pol.

Lemma 4.5 X ∩ Y is the Set-theoretic intersection of X,Y together with the sub-

space topology induced by Z.

Recall that if f : X → Y is a morphism in a category C, its cokernel pair

(if it exists) is the pushout of f with itself (Mac Lane [15], III.3). In Top,

there is a well-known characterisation of embeddings as limits of their coker-

nel pair (see e.g. (Adamek et al. [1], 7.56-7.58)). In Pol, we have the following:

X �
� f //
_�

f
��

Y
_�

j1
��

Y �
�

j2
// Y +X Y

Proposition 4.6 Let X,Y be Polish and f : X ↪→ Y be an

embedding. Then (i) the pushout object Y +X Y is Polish, (ii)

the cokernel arrows j1, j2 : Y → Y +X Y are embeddings and

(iii) the intersection of j1 and j2 is homeomorphic to X.

The following Lemma ensures that the pushout object of an embedding with

range in Polcz is still compact zero-dimensional.

Lemma 4.7 Let f : X ↪→ Y be an embedding in Pol such that Y ∈ Obj(Polcz).

Then Y +X Y ∈ Obj(Polcz).

Proof. The proof that Y +X Y is Polish is routine. It thus remains to see that

it is compact and zero-dimensional. Since finite unions of compacts are compact,
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the coproduct Y + Y is compact. By universality of coproducts, the cokernel maps

j1, j2 : Y → Y +XY define a unique continuous map j1+j2 : Y +Y → Y +XY , which

is easily seen to be surjective, and it follows that Y +X Y is the continuous image

of a compact, i.e. is compact. To see that it is zero-dimensional, we use the fact

that on compact Hausdorff spaces zero-dimensionality coincides with being totally

disconnected. Let x ∈ Y +X Y and let Ux be a subset such that x ∈ Ux. We can

assume w.l.o.g. that x is in the first copy of Y and that Ux is included in this copy.

Since Y is totally disconnected, if Ux 6= {x} it can be written as the union of two

disjoint opens V1, V2 in the subspace topology induced by Y and and thus also by

Y +X Y . It follows that if Ux 6= {x} it cannot be connected in Y +X Y . 2

Theorem 4.8 Let F,G : Pol[z → Pol be a pair of functors such that G preserves

embeddings and intersections. Then Nat(F,G) ∼= Nat(F |Polcz , G|Polcz).

Proof. In the interest of readability, we will elude the inclusion I[z : Polcz → Pol[z.

Let α : F |Polcz ⇒ G|Polcz be a natural transformation. We prove that (i) for all

X ∈ Obj(Pol[z), αω(X) : F (ω(X)) → G(ω(X)) restricts uniquely to a morphism

αX : F (X)→ G(X) such that αω(X) ◦ (Fη)X = (Gη)X ◦αX , and (ii) this restriction

uniquely extends α to a natural transformation from F to G.

(i) Consider, given X ∈ Obj(Pol[z), the embedding ηX : X ↪→ ω(X). By Prop.

4.6, X is the intersection of the cokernel maps j1, j2 : ω(X) ↪→ ω(X) +X ω(X).

Moreover by Lemma 4.7, there exists a component αωX+XωX . By functoriality and

naturality of η, the diagram in Fig. 1 (ignoring αX) commutes. Since G preserves

embeddings and intersections, there exists a unique mediating map αX : F (X) →
G(X) making the whole diagram commute.

(ii) Finally, we need to check that extending α to F |Pol[z
→ G|Pol[z

in this way

is natural. Let f : X → Y in Pol[z and let ηX , ηY denote the embeddings of X

and Y in their respective zero-dimensional compactifications. The corresponding

diagram is depicted in Fig. 2. The top, bottom, front, back and right-hand square

commute, and it follows that (Gη)Y ◦G(f) ◦ αX = (Gη)Y ◦ αY ◦ F (f). Since ηY is

an embedding and since G preserves embeddings, (GηY ) is an embedding and in

particular is injective, and it follows that i.e. G(f) ◦ αX = αY ◦ F (f) as desired.

F (ω(X))
F (j2) //

αω(X)

��

F (ω(X) +X ω(X))

αω(X)+Xω(X)

��

F (X)

αX

��

(Fη)X //

(Fη)X
;;

F (ω(X))
F (j1)

66

αω(X)

��

G(ω(X))
G(j2) //G(ω(X) +X ω(X))

G(X)
(Gη)X //

(Gη)X
;;

G(ω(X))
G(j1)

66

Fig. 1.

F (Y )
(Fη)Y //

αY
��

F (ω(Y ))

αω(Y )

��

F (X)

F (f)
>>

(Fη)X//

αX

��

F (ω(X))
F (ω(f))

99

αω(X)

��

G(Y )�
� (Gη)Y //G(ω(Y ))

G(X)

G(f)
>>

� � (Gη)X //G(ω(X))
G(ω(f))

99

Fig. 2.

2

III. From Pol[z to Pol. The last part of the Machine is a procedure to extend

natural transformations from Pol[z to Pol. We have seen in Prop. 3.11 that Polish

9



spaces are the colimits of their “diagrams of zero-dimensionals”. We will require

functors in the domain of natural transformations to commute with these colimits.

Definition 4.9 (Z-cocontinuous functors) A functor F : Pol → Pol is Z-

cocontinuous if for all X ∈ Obj(Pol), F (X) ∼= colimFZX where ZX is defined in

Def. 3.10.

Moreover, we will require these functors to be Z-stable, which means that the

underlying sets of the spaces in the range of the considered functors are invariant

by zero-dimensionalisation. As we will prove later, this is for instance the case of

the Giry, multiset and list functors.

Definition 4.10 (Z-stable functor) A functor F : Pol → Pol is Z-stable if

UFX = UFZX(F) for all F ∈ Bases(X).

Theorem 4.11 Let F,G : Pol → Pol be a pair of functors such that F is Z-

cocontinuous and Z-stable. Then Nat(F,G) ∼= Nat(FUpI
[
p, GUpI

[
p).

Proof. Let α : FUpI
[
p ⇒ GUpI

[
p and X ∈ Obj(Pol) be given. By Z-cocontinuity,

F (X) is the colimiting object of the diagram FZX = FUpI
[
pzBX : Bases(X)op →

Pol (Def. 3.10). Applying α, we get a natural transformation αzBX : FZX ⇒
GZX . Composing with the counit ε : I[pz → IdPol[ yields a natural transformation

(GUpε)(αzBX) : FZX ⇒ GUpIdPol[BX . Note that GUpIdPol[BX is equal to the

constant functor with value G(X). Therefore, we have constructed a cocone from

FZX to G(X). The situation above is summed up in the following diagram:

Pol[
Up //

α

��

Pol
F

''
Bases(X)op

BX //Pol[ z //

Id
Pol[

22

Pol[z
ε
�

I[p

''

I[p
77

Pol

Pol[
Up

//Pol
G

77

By universality, there exists a unique map uX : F (X) → G(X) such that uX ◦
(FUpεBX)F = (GUpεBX)F ◦ (αzBX)F . Let us prove naturality of {uX}X∈Obj(Pol).

For all f : X → Y and for all base G of Y , there exists a base F of X such that

f : (X,F) → (Y,G), is base-preserving, and by functoriality, so is z(f) : ZX(F) →
ZY (G). We get the following diagram:

FZX(F)
(αzBX)F //

Fz(f)

��

(FUpεBX)F

&&

GZX(F)

Gz(f)

��

(GUpεBX)F

xx
FX

uX //

F (f)
��

GX

G(f)
��

FY uY
//GY

FZY (G)
(αzBY )G

//

88

GZY (G)

ff

In the above diagram, the left and right cells commute by naturality of ε while

10



the top and bottom cells commute by construction of the arrows uX , uY . Note

that the arrow (FUpεBX)F is the image through F of the identity function εF =

id : ZX(F) → X. Since F is Z-stable, this arrow is surjective. We conclude that

the central square commute, and we extend α by setting for all X αX = uX as

constructed above. 2

IV. The Machine. Bringing the parts of the Machine together, we obtain:

Theorem 4.12 Let F,G : Pol→ Pol be a pair of functors such that:

(i) F is Z-cocontinuous and Z-stable,

(ii) G is Polf -continuous, preserves embeddings and intersections.

Then one has Nat(F,G) ∼= Nat(F |Polf , G|Polf ).

5 Feeding the Machine

We now investigate the properties of some functors, with an eye on applying the

Machine.

The Giry functor. For any space X, we denote by G(X) the space of Borel

probability measures over X, endowed with the weak topology (Giry, [9]). This

operation can be extended to a functor G : Pol→ Pol which admits the Giry monad

structure (G, δ, µ) (Giry, [9]). The action of G on maps f : X → Y is defined by

G(f)(P ) , P ◦ f−1. The unit is given by the Dirac delta: δX : X → G(X) while the

multiplication is defined by averaging: µX : G2(X) → G(X) , P 7→
∫
G(X) p dP (p).

G is a rather well-behaved functor:

Proposition 5.1 (i) For all ccd D, G(limD) ∼= limG◦D; (ii) G is Z-cocontinuous

and Z-stable; (iii) G preserves injections and embeddings; (iv) G preserves intersec-

tions.

Proof. (i) is the Bochner extension theorem in functorial form ([7], Theorem 2.5).

(ii) Z-cocontinuity is in ([7], Theorem 3.7); Z-stability stems from Prop. 3.7, (iii).

For (iii), see e.g. ([7], Lemma 2.1). Now for (iv): let j1, j2 : A,B � X be two

embeddings, let p1 : A ∩ B → A and p2 : A ∩ B � B be the corresponding

embeddings and consider µ ∈ G(A), ν ∈ G(B) such that G(j1)(µ) = G(j2)(ν). It

follows from (Kechris [11], Theorem 15.1) and the fact that p1 is injective that

whenever U is a Borel set of A ∩ B, p1[U ] is a Borel set of A, and similarly for p2.

We can therefore define λ ∈ G(A ∩ B) by λ(U) = µ(p1[U ]) = ν(p2[U ]). To see that

the equality on the right holds, note that since j1 in injective p1[U ] = j−1
1 (j1[p1[U ]]),

and thus

µ(p1[U ]) = µ(j−1
1 (j1[p1[U ]])) = G(j1)(µ)(j1[p1[U ]]) = G(j2)(ν)(j1[p1[U ]])

= G(j2)(ν)(j2[p2[U ]]) = ν(p2[U ])

This assignment from pairs (µ, ν) such that Gj1(µ) = Gj2(ν) to λ ∈ G(A ∩ B) is

clearly injective, and it follows that G(A∩B) ∼= GA∩GB as sets. Since G preserves

embeddings, G(j1 ◦ p1) = G(j2 ◦ p2) is an embedding, and it follows that G(A ∩ B)

and GA ∩ GB are in fact homeomorphic. 2
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Example 5.2 Theorem 4.12 implies that the unit δ : Id → G of the Giry monad

is entirely determined by its finite components. We do not yet know whether G2 is

Z-cocontinuous, and thus whether the multiplication µ : G2 → G is determined by

its finite components. However it follows from Theorem 4.8 that the restriction of

µ to Polz is determined by its finite components. We conjecture that this result

extends to the entire category Pol.

The non-zero finite measures functors. We will also consider functors closely

related to G: we let M+ be the functor mapping any space X to the space of non-

zero positive finite measures over X with the weak topology, and acting on maps

similarly as G. The following is trivial (consider the normalisation of a finite non-zero

measure):

Proposition 5.3 For all space X, we have the isomorphism M+(X) ∼= G(X)×R>0.

As a consequence, M+ verifies all the properties listed in Prop. 5.1. Note that

for all finite space n, M+(n) is also homeomorphic to Rn≥0 \ {0}.

The multiset functor. We consider the multiset functor B : Pol → Pol. It is

given explicitly by

B(X) ,
∐
n∈N

Xn/Sn

where Xn/Sn is the quotient of Xn under the obvious action of Sn – the permuta-

tion group on n elements – on tuples together with the quotient topology, i.e. the

final topology for the quotient map q : Xn � Xn/Sn. See Appendix A for a proof

that B(X) is Polish. Its action on maps is given by setting for any f : X → Y

and µ ∈ B(X), B(f)(µ) = y 7→
∑

x∈f−1(y) µ(x). This is easily shown to be continu-

ous. Observe also that for X finite, B(X) ∼= NX . The multiset functor verifies the

following properties:

Proposition 5.4 (i) B is Polf -continuous; (ii) B preserves injections and embed-

dings; (iii) B preserves intersections.

Proof. See Appendix B. 2

The Vietoris functor. As a non-probabilistic example, we will consider the Vi-

etoris functor. We recall its definition.

Definition 5.5 We denote by V : Pol → Pol the functor mapping any space X

to the space of compact subsets of X topologised with the Hausdorff distance, and

mapping any continuous function f : X → Y to V(f) , K ∈ V(X) 7→ f(K).

See (Kechris [11], 4.F) for a proof that V(X) is indeed Polish. V has the following

properties:

Proposition 5.6 (i) V is Polf -continuous; (ii) V preserves injections and embed-

dings; (iii) V preserves intersections.

Proof. (i) is in Appendix B. (ii) and (iii) are in Appendix B. 2
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Example 5.7 An interesting example of transformation which is not natural in

Pol, due to Michael Mislove, is provided by the support of a measure. Usually, the

support of p ∈ G(X) is defined to be the smallest closed subset of measure 1. On

finite spaces, for p ∈ G(n), we define suppn(p) , {x ∈ n | p(x) > 0}. Let us check

that this is natural: for f : m→ n, we have that supp(G(f)(p)) = supp(p ◦ f−1) ={
x ∈ n | f−1(x) ∩ supp(p) 6= ∅

}
, i.e. supp(G(f)(p)) = f(supp(p)) = V(f)(supp(p)).

However, this does not define a natural transformation in Pol: consider the sequence

of measures (pn)n∈N on X = {0, 1} defined by pn = n−1
n δ0+ 1

nδ1. pn weakly converges

to δ0 as n → ∞ and for all n, supp(pn) = {0, 1} but supp(δ0) = {0}. Therefore,

supp is not continuous!

6 Rigidity

The results presented in Sec. 4 allow to construct natural transformations from

finitary specifications. In this section, we apply these results to exhibit striking

rigidity properties of G and related functors.

Definition 6.1 A pair of functors F,G : C → D is called rigid, if there exists at

most one natural transformation η : F ⇒ G. In particular, we will say that an

functor F : C→ D is rigid if the identity natural transformation id : F ⇒ F is the

only natural transformation that exists from F to itself.

For each finite space k and functor T : Pol → Pol, there exists a canonical

action of Sk, the permutation group over k elements, given by:

α : Sk × T (k)→ T (k), (π, x) 7→ Tπ(x)

We will call this action the canonical action. We will call an element x ∈ T (k)

stabilised by the entire group Sk under the canonical action an isotropic element.

Isotropic elements will play a crucial role in our theorem.

Theorem 6.2 (Rigidity Theorem) Let H : Pol → Pol be a subfunctor of the

Giry monad G satisfying the following conditions: (i) H(k) = G(k) for every finite

Polish space k; (ii) H is Polf -continuous;(iii) H preserves injections. Let also T :

Pol → Pol be a functor such that (iv) for each finite Polish space k there exists a

dense subset Qk ⊆ T (k) with the property that if x ∈ Qk there exists a finite Polish

space k′, a morphism f : k′ → k and an isotropic element x′ ∈ T (k′) such that

T (f)(x′) = x. In these circumstances the pair (T,H) is rigid.

We prove this theorem in steps. But let us first show some example of functors

satisfying the property above.

Example 6.3 Let us show that the Vietoris functor V satisfies the condition (iv).

Note first that for every k, the full set k ∈ V(k) is isotropic: for any π ∈ Sk
α(π, k) = Vπ(k) = k since π is bijective. Now take Qk = V(k) (which is trivially

dense) and x = {x1, . . . , xn} ∈ V(k). Consider the full set n ∈ V(n) along with the

map f : n→ k, i 7→ xi, it is clear that V(f(n)) = x, and n is isotropic.

Example 6.4 The Giry monad G satisfies all conditions of Theorem 6.2: it satisfies

(i) trivially, it satisfies (ii) and (iii) by Prop. 5.1. Let us show that it satisfies (iv) as
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well. Note first that the uniform probabilities are the isotropic elements: if
(

1
k , . . . ,

1
k

)
denotes the uniform distribution on k elements, then

α

(
π,

(
1

k
, . . . ,

1

k

))
= G(π)

(
1

k
, . . . ,

1

k

)
=

(
1

k
, . . . ,

1

k

)
◦ π−1 =

(
1

k
, . . . ,

1

k

)

Consider now Qk = ∆k ∩ Qk, the rational probabilities on k elements. It is clearly

dense in G(k). Any x ∈ Qk, can without loss of generality be written as
(p1
n , . . . ,

pm
n

)
for a common denominator n. Now consider the projection map defined by

p : n→ k, i 7→


1 if 1 ≤ i ≤ p1

2 if p1 + 1 ≤ i ≤ p1 + p2

. . .

k if
∑k−1

i=1 pi + 1 ≤ i ≤
∑k

i=1 pi

It is easy to check from this definition that
(p1
n , . . . ,

pm
n

)
= G(p)

(
1
n , . . . ,

1
n

)
, where(

1
n , . . . ,

1
n

)
is isotropic.

Example 6.5 Let M+ : Pol→ Pol be the finite non-zero positive measure functor.

It follows easily from Prop. 5.3 that this functor satisfies condition (iv): the isotropic

elements are those of the shape ((1/k, . . . , 1/k), λ) for λ ∈ R>0. A dense subset is

provided by (Qk∩G(k))×R>0 and the same argument as in Example 6.4 shows that

every element ((p1/n, . . . , pk/n), λ) is the image of ((1/n, . . . , 1/n), λ) by G(p)× id
with p defined as in Example 6.4.

Example 6.6 The multiset functor B also has the property (iv). B(k) has one

isotropic element: the unordered list [(1, . . . , k)], and any [(x1, . . . , xk)] ∈ B(k) is

the image of [(1, . . . , k)] under B(f) for the map f : k → k, i 7→ xi (which might

very well not be injective).

Let us proceed to the proof of Theorem 6.2. The following settles the finite case:

Lemma 6.7 Let (T,H) be a pair of functors satisfying the conditions of Theorem

6.2, then (T,H) is rigid on Polf .

Proof. Let ν : T ⇒ H be a natural transformation. We first show that if x ∈ T (k)

is isotropic then

νk(x) =

(
1

k
, . . . ,

1

k

)
(7)

where
(

1
k , . . . ,

1
k

)
denotes the uniform probability distribution on k. Fix i ∈

{1, . . . , k}, and consider the permutations (ij) ∈ Sk, 1 ≤ j ≤ k sending i to j,
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j to i and leaving all other elements of k unchanged. We have

νk(x)(i) = νk(T (ij)(x))(i) (x isotropic)

= H(ij)(νk(x))(i) (By naturality)

= G(ij)(νk(x))(i) (H = G on Polf )

= νk(x)(ij)−1(i) (By def. of G)

= νk(x)(j) (By def. of (ij))

Since this holds for every 1 ≤ j ≤ k we have
∑k

j=1 νk(x)(j) =
∑k

j=1 νk(x)(i) =

kνk(x)(i) = 1 and thus νk(x)(i) = 1
k for every 1 ≤ i ≤ k, i.e. νk(x) =

(
1
k , . . . ,

1
k

)
.

Let us now consider an arbitrary x ∈ Qk, by assumption there exist f : k′ → k and

an isotropic element x′ ∈ T (k′) such that T (f)(x′) = x. It follows that

νk(x) = νk(T (f)(x′)) (By assumption on T )

= H(f)(νk(x
′)) (By naturality)

= G(f)(νk(x
′)) (H = G on Polf )

= G(f)

(
1

k′
, . . . ,

1

k′

)
(x′ is isotropic and (7))

Clearly, the same reasoning applies to any other natural transformation ρ : T ⇒ H.

We have thus shown that for each finite Polish set k, νk is unique on a dense subset

Qk of T (k). Since νk is a morphism in Pol it is continuous, and since Polish spaces

are complete, it is in fact Cauchy-continuous. It follows that the restriction of νk to

Qk has a unique extension to T (k). Since the restriction of νk to Qk is unique, it

follows that νk is also unique. 2

Note that the entire group Sk was necessary to show Lemma 6.7, i.e. a weaker

notion of isotropic element would not be sufficient.

Lemma 6.8 Let (T,H) be a pair of functors satisfying the conditions of Theorem

6.2, then (T,H) is rigid on Polcz.

Proof. Assume ν : T |Polf ⇒ H|Polf is given. By Lemma 6.7, ν is unique. Since H

is Polf -continuous, Theorem 4.2 applies and the proof is complete. 2

Lemma 6.9 Let (T,H) be a pair of functors satisfying the conditions of Theorem

6.2, then (T,H) is rigid on Pol[z.

Proof. It is enough to reuse the uniqueness part of the proof of Theorem 4.8. 2

We can finally prove Theorem 6.2.

Proof. (Theorem 6.2) Let α : T |Pol[z
⇒ H|Pol[z

be given. By Lemma 6.9, α is the

unique such transformation. Let β, β′ : T ⇒ H be given, extending α. For all X and

F ∈ Bases(X), the identity function id : zF (X)→ X is continuous. By the rigidity

assumption, βzF (X) = β′zF (X). Using this equation and naturality,

βX ◦ T (id) = H(id) ◦ βzF (X) = H(id) ◦ β′zF (X) = β′X ◦ T (id)

Therefore β = β′. 2
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Example 6.10 We have shown earlier that G satisfies all the conditions of Theorem

6.2. It follows that there can only exist a single natural transformation G⇒ G, and

since the identity transformation is natural, it follows that G is rigid.

Example 6.11 Let M+ : Pol→ Pol be the finite positive measure functor. We can

check that the following transformation is natural: define ν : M+ → G at a Polish

space X by νX(Q) , A 7→ Q(A)
Q(X) for A a Borel set of X. This is well defined since

0 < Q(X) < ∞. It is also natural: if f : X → Y is a map in Pol, then for each Q

in M+(X) and Borel set B of Y we have:

G(f)(νX(Q))(B) = νX(Q)(f−1(B)) =
Q(f−1(B))

Q(X)
=
Q(f−1(B))

Q(f−1(Y ))

= νY (M+(f)(Q))(B)

Since M+ satisfies (iv), it follows from Theorem 6.2, that the normalisation trans-

formation ν we have just defined is the only natural transformation M+ ⇒ G.

7 Applications

In previous work [7], we showed that a cornerstone of nonparametric Bayesian statis-

tics, the Dirichlet process [8,10], is in fact a natural transformation from M+ to G2.

This result hinged on a non-axiomatic version of the Machine of Sec. 4. In order

to validate our new developments we first give a short construction of the Dirichlet

process in axiomatic form. The value of our general framework is then illustrated

by constructing the Poisson process as a natural transformation. At the heart of

these constructions are families of distributions which are stable by convolution

(mistakenly taken to be infinitely divisible in [7]). Common examples include: the Γ

distribution, the Gaussian distribution, the Poisson distribution, etc. What exam-

ples such as Dirichlet or Poisson processes have in common is that they can all be

represented by natural transformations of the shape M+ ⇒ GH where the functor

H can be either B or M+. Since M+ is Z-cocontinuous, since G and H are Polf -

continuous, preserve injections, embeddings and intersections (see Appendix B) we

can define a natural transformation of this type by restricting ourselves to Polf and

running the Machine.

In the cases which we have mentioned above, the natural transformation in Polf
can in fact be defined by a single map! The fundamental property which makes this

possible is that both M+ and B turn coproducts into products. When this is the case

it is sometimes possible to define φ : M+ ⇒ GH on Polf from a map φ1 : M+(1)→
GH(1). For this we need a fundamental result which holds very generally in the

category Meas of measurable spaces and measurable maps. We define the product

measure natural transformation between the bifunctors π : G − ×G− → G(− × −)

at each pair of measurable spaces ((X,ΣX), (Y,ΣY )) by π(X,Y )(p, q) 7→ p× q where

p× q is the product measure defined on the product σ-algebra (ΣX ⊗ ΣY ).

Theorem 7.1 The transformation π : G−×G− → G(−×−) is natural in both its

arguments.

Let us now fix a continuous map φ1 : M+(1)→ GH(1). For any n in Polf we use
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the fact that n =
∐n
i=1 1 and the fact that M+ and H turn coproducts into products

to define φn : M+(n)→ GH(n) by

M+(n) ∼= M+(1)n
φn1 //

φn

((
(GH(1))n

⊗n
H1 //G(H1)n ∼= GH(n)

where
⊗n

H(1) is the n-fold measure product at H(1). The maps φn define the com-

ponent of a transformation M+ ⇒ GH. But when is it natural? A simple criterion

is given in the following result.

Theorem 7.2 A transformation φ : M+ → GH built as above is natural in Polf iff

the following diagrams commute:

M+(2)
φ2 //

M+(e)
��

GH(2)

GH(e)
��

M+(1)
φ1

//GH(1)

(8)

M+(n)
φn //

M+(ij)
��

GH(n)

GH(ij)
��

M+(n)
φn

//GH(n)

(9)

M+(1)
φ1 //

M+(i1)
��

GH(1)

GH(i1)
��

M+(2)
φ2

//GH(2)

(10)

M+(1)
φ2 //

M+(i2)
��

GH(2)

GH(i2)
��

M+(2)
φ1

//GH(2)

(11)

where e : 2→ 1 is the obvious unique epimorphism, (ij) : n→ n is any permutation

of two elements of n, and i1, i2 : 1→ 2 are the two injections of 1 into 2 = 1 + 1.

Proof. Any map f : m → n between finite sets can be written as a permutation

π : n → n followed by a monotone surjection q : n � k followed by a monotone

injection i : k� n. Since every permutation of n can be written as a composition of

permutation of two elements, repeated usage of Diagram (9) shows that GHπ◦φn =

φn ◦M+π. Monotone surjections q : m� n can be written as a composition of maps

of the shape

id1 + id1 + . . .+ e+ id1 + . . .+ id : k → k − 1

For notational clarity let us consider the case e+ id1 : 3� 2. The following square

commutes:

M+(3) ∼= M+(2)×M+(1)
φ2×φ1//

M+(e)×id1
��

GH(2)× GH(1)
⊗
//

GH(e)×id1
��

G(H(2)×H(1)) ∼= GH(3)

G(H(e)×id1)

��
M+(2) ∼= M+(1)×M+(1)

φ1×φ1
//GH(1)× GH(1) ⊗ //G(H(1)×H(1)) ∼= GH(2)

Indeed, the right-hand side square commutes by Theorem 7.1, whilst the left-hand
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side square commutes by assumption that Diagram 8 commutes. Monotone injec-

tions are treated in a similar way. 2

We will call a family of probability distributions φn : M+(n) → GH(n) additive

if (8) holds, exchangeable if (9) holds, and say that it admits zero parameters if (10)

and (11) hold.

The Γ distribution Γ1 : M+(1) → GM+(1) maps any parameter λ ∈ M+(1) to a

probability with density x 7→ xλ−1e−x

Γ(λ) w.r.t. Lebesgue [3]. The family of probability

distributions Γn generated by Γ1 is clearly exchangeable; it is also additive [7] and

one can easily adapt the definition so that it admits zero parameters. It follows from

Theorem 7.2 that Γn : M+(n)→ GM+(n) is a natural transformation on Polf which

extends to Pol. The Dirichlet process is then simply defined as D : M+ ⇒ G2 ,
(Gν)Γ, where ν : M+ ⇒ G is the normalisation natural transformation (unique, by

rigidity!).

Similarly, if we define Π1 : M+(1) → GB(1) ∼= G(N) by Π1(λ)(k) = λke−λ

k! , then

it is well-known that the family Πn generated by Π1 (similarly to the previous case)

is additive. It is also clearly exchangeable. Finally to allow for zero parameters, we

extend Π1 : M≥0(1)→ G(N) by putting Π1(0) = δ0, the Dirac delta at 0. It is clear

that for any test function f : N→ R

∑
k=0

f(k)
λke−λ

k!
= f(0)e−λ +

∑
k=1

f(k)
λke−λ

k!

λ→0−→ f(0) =
∑
k

f(k)δ0

i.e. our extension is continuous for the weak topology. This fact is the exact analogue

of Proposition 4.2 in [7]. The family Πn : M≥0(n) → GNn thus defines a natural

transformation in Polf by Theorem 7.2, and by applying the Machine we produce

a natural transformation on Pol. The processes ΠX : M+

≥0(X) → GB(X) (for X

in Pol) defined by this natural transformation are very well-known in probability

theory, they are the (inhomogeneous) Poisson point processes on X parameterised

by a measure on X.

8 Outlook

Our results allow the compositional and finitary approximation of a class of param-

eterised “stochastic” processes seen as natural transformations between probability-

like functors satisfying some general axioms. It is worth noting that all the conditions

on endofunctors that we require for the codomain of natural transformatins are pre-

served by composition (if we strengthen Polf -continuity to commutation with all

limits of ccds). Indeed, we are confident that compositionality can be pushed fur-

ther: following coalgebraic practice, we will investigate whether functors in e.g. the

polynomial closure of Giry can be fed to the Machine. For this to happen, parts

of the Machine have yet to be better understood, in particular the special role

played by the requirement of Z-cocontinuity (commutation with diagrams of zero-

dimensional refinements). For instance, we ignore whether the Vietoris functor and

the multiset functors are Z-cocontinuous, or whether Z-cocontinuity is preserved

by composition.
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Rigidity is an unexpected mathematical outcome of our structural decomposition

of Pol. Where the Machine allows to prove existence of natural transformations,

rigidity allows to prove unicity and is somewhat dual to the former. We expect

that the notion of isotropic element will find applications beyond the scope of these

developments.

On the applications side, we are confident that many processes beside Dirichlet

and Poisson can be subject to the same treatment. Poisson-Dirichlet, Cox processes

and some form of Gaussian processes seem to be easy targets. In the case of Dirich-

let, we already know that the Machine allows to prove an asymptotic “learning”

property. The work of (Culbertson et al, [6]) will provide a convenient setting where

we will study how topological properties of Bayesian models such as continuity relate

to asymptotic properties of Bayesian update. The finitary handle provided by the

Machine might also be useful in deriving new computability or complexity results

in the field of probability.
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A Construction of the multiset functor B

Proposition A.1 For X Polish, let B(X) ,
∐
n∈NX

n/Sn, where Xn/Sn is the

quotient of Xn under the obvious action of Sn on tuples with the quotient topology,

i.e. the final topology for the quotient map q : Xn � Xn/Sn. B(X) is Polish.

Proof. We first shown that if Q is dense in X, then Qn/Sn is dense in Xn/Sn:

let U be an open set of Xn/Sn, then q−1(U) is open in Xn and intersects Qn,

i.e. there exists (r1, . . . , rn) ∈ Qn with (r1, . . . , rn) ∈ q−1(U), but this means that

q(r1, . . . , rn) ∈ U and q(r1, . . . , rn) ∈ Qn/Sn. To see that it is completely metrisable,

let d be a complete metric for X,and consider the metric on Xn/Sn given by:

dq([x], [y]) = min
π∈Sn

dn(x, π(y))

where [x], [y] represent the orbits of x, y ∈ Xn respectively, and dn is the product

metric given by

dn((x1, . . . , xn), (y1, . . . , yn)) =

(∑
i

d(xi, yi)
p

) 1
p

(A.1)

for some 0 < p <∞ (any choice of p generates an equivalent topology on Xn). Note

that dn is invariant under permutations of Sn, i.e. for any permutation π ∈ Sn,

dn(x, y) = dn(π(x), π(y)) since this simply amounts to re-arranging the summands

in Eq. (A.1). It is not immediately clear that dq is well-defined or that it defines a

metric. To see that it is well defined let x′ be another representative of [x], then by

definition there exists ρ ∈ Sn such that ρ(x) = x′, and it follows that

min
π∈Sn

dn(x′, π(y)) = min
π∈Sn

dn(ρ(x), π(y)) = min
π∈Sn

dn(x, ρ−1π(y)) = min
π∈Sn

dn(x, π(y))

It follows that dq is well-defined. Let us now check that it is a metric. For any x, y

we clearly have dq([x], [y]) ≥ 0 and dq([x], [y]) = 0 means that there exists π ∈ Sn
such that dn(x, π(y)) = 0 i.e. x = π(y) since dn is a metric, and it follows that

[x] = [y]. It is straightforward to verify symmetry condition:

dq([x], [y]) = min
π∈Sn

dn(x, π(y))

= min
π∈Sn

dn(π−1(x), y) dn invariant under π−1

= min
π∈Sn

dn(y, π−1(x)) dn is symmetric

= dq([y], [x])

Finally, we need to check the triangular inequality. Since dn satisfies the triangular

inequality we have for any choice π1, π2 ∈ Sn that:

dn(x, π1(y)) ≤ dn(x, π2(z)) + dn(π2(z), π1(x))

≤ dn(x, π2(z)) + dn(z, π−1
2 π1(x)) dn invariant under π−1

2
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and it follows that dq([x], [y]) ≤ dq([x], [z]) + dq([z], [y]) since going through all the

combinations π−1
2 π1 will exhaust the entire group Sn. The fact that (Xn/Sn, dq) is

complete follows from the fact that (Xn, dn) is. Let us prove that dq induces the

topology of Xn/Sn. Let us take an open set U in Xn/Sn. By definition q−1(U) is

open in Xn, and can therefore be written as a union of open balls (for the metric

dn) U = ∪iBdn(xi, εi). By definition q−1(U) is invariant under permutation, so

q−1(U) =
⋃
π∈Sn

π(q−1(U)) =
⋃
π∈Sn

π

(⋃
i

Bdn(xi, εi)

)
=
⋃
π∈Sn

⋃
i

π (Bdn(xi, εi))

=
⋃
i

⋃
π∈Sn

π (Bdn(xi, εi))

since direct images commute with unions. It follows from the fact that each

π is an homeomorphism that
⋃
π∈Sn π(Bdn(xi, εi)) is open in Xn. Moreover,⋃

π∈Sn π(Bdn(xi, εi)) is by construction invariant under permutation, so

q−1(q(
⋃
π∈Sn

π(Bdn(xi, εi)))) =
⋃
π∈Sn

π(Bdn(xi, εi))

and therefore each q(
⋃
π∈Sn π(Bdn(xi, εi)) is an open in Xn/Sn. We conclude by

observing that q(
⋃
π∈Sn π(Bdn(xi, εi)) = Bdq(q(xi), εi) and that

q−1(Bdq(q(xi), εi)) = q−1(q(
⋃
π∈Sn

π(Bdn(xi, εi))) =
⋃
π∈Sn

π(Bdn(xi, εi))

is open in Xn. Therefore, the balls Bdq(q(xi), εi) are open in Xn/Sn, and since direct

images commute with unions it is not difficult to see that U =
⋃
iBdq(q(xi), εi) is a

union of opens from the basis generated by the metric. Since each Xn/Sn is Polish

and since Pol has countable coproducts, B(X) is Polish. 2

B Properties of the functors B and V

Proposition B.1 The multiset functor B preserves injections, embeddings and in-

tersections.

Proof. Let i : B � X be a mono, i.e. an injective continuous map. Note first

that B(i) is defined component-wise i.e. via Bn(i) : Bn/Sn � Xn/Sn injecting an

equivalence class of n-tuples of element of B in Xn/Sn. The fact that B(i) is injective

follows from the fact that every component Bn(i) is. Similarly, to show that if i is an

embedding so is B(i), it is enough to show that each Bn(i) is an embedding. To see

that this is the case we need to show that for every open U of Bn/Sn there exists

an open V of Xn/Sn such that U = V ∩Bn/Sn and conversely that every subset of

this shape is open in Bn/Sn. We write pn : Bn � Bn/Sn and qn : Xn � Xn/Sn.

For the first direction, let U be open in Bn/Sn, it follows that p−1
n (U) is open in

Bn, and thus that there exists an open V of Xn such that p−1
n (U) = Bn ∩ V . If we

can choose V to be closed under permutation we are done. Every permutation is a
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bijective isometry and thus a homeomorphism, and thus an open map, i.e. π(V ) is

open for every π ∈ Sn. It follows that

V ∗ =
⋃
π∈Sn

π(V )

is open and closed under permutations (this procedure amounts to taking all the

reflections of tuples along the diagonal). It follows that q−1
n (qn[V ∗]) = V ∗ and qn(V ∗)

is thus open in Xn/Sn. Moreover since Bn∩V is already closed under permutations

Bn ∩ V = Bn ∩ V ∗, and therefore U = Bn/Sn ∩ qn(V ∗). For the opposite direction,

let U be open in Xn/Sn and consider U ∩Bn/Sn, it is clear that

p−1
n (U ∩Bn/Sn) = p−1

n (U) ∩ p−1
n (Bn/Sn) = (q−1

n (U) ∩B) ∩B = q−1
n (U) ∩B

which is open in Bn since qn(U) is open in Xn.

For intersections, we proceed as in Proposition 5.1. Let j1, j2 : A,B � X be

two embeddings, let p1 : A ∩ B → A and p2 : A ∩ B � B be the corresponding

embeddings and consider µ ∈ BA, ν ∈ BB such that Bj1(µ) = Bj2(ν). We define

λ ∈ B(A ∩B)

λ(x) = µ(p1(x)) = ν(p2(x))

We check that the last equality holds in exactly the same way as in the proof of

Proposition 5.1, and the rest of the proof also follows identically. 2

Proposition B.2 The Vietoris functor V preserves monomorphisms, embeddings

and intersections.

Proof. It is clear that V preserves injective maps. To see that it preserves embed-

dings, consider an element of the basis of the topology on V(X), i.e. an element of

the form (Kechris [11] I, 4.F)

W = {K ∈ V(X) | K ⊆ U0&K ∩ U1 6= ∅& . . .&K ∩ Un 6= ∅}

for U0, . . . , Un opens in X. It follows that

W ∩ V(B)

= {K ∈ V(B) | K ⊆ (U0 ∩B)&K ∩ (U1 ∩B) 6= ∅& . . .&K ∩ (Un ∩B) 6= ∅}

which is an element of the basis of the topology of V(B), since elements of the shape

Ui ∩B are precisely the opens of B. Conversely therefore, starting from an element

W ′ of this shape it is clear that by removing all the intersections with B we get an

element W of the basis of the topology on V(X) such that W ∩ V(B) = W ′, and V
thus preserves embeddings.

For intersections, let j1, j2 : A,B � X be two embeddings, let p1 : A ∩ B → A

and p2 : A∩B� B be the corresponding embeddings and consider KA ∈ VA,KB ∈
VB such that Vj1(KA) = Vj2(KB), i.e. such that j1[KA] = j2[KB]. This means that

K = KA = KB is a subset of A∩B. To see that it is compact in A∩B, let
⋃
i Ui ⊇ K

be an open cover: for each i either Ui is of the form p−1
1 (Vi) for some Vi open in

A, or it is of the form p−1
2 (Vi) for some Vi open in B. In the latter case, since j2 is
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an embedding, there exists Wi open in C such that Ui = p−1
2 (j−1(Wi)), but then

Ui = p−1
1 (j−1

1 (Wi)), which means that we can assume without loss of generality that

for each i the element Ui of the cover is of the form p−1
1 (Vi) for some Vi open in A. It

is easy to see that Vi is an open cover of K in A, from which we can extract a finite

sub-cover, whose inverse image under p1 will be an finite sub-cover of K in A ∩B.

It follows that VA ∩ VB ' V(A ∩ B) as sets, and since V preserves embeddings,

they are also homeomorphic. 2

Proposition B.3 B is Polf -continuous.

Proof. Let Xi, i ∈ I be a ccd of Polf objects. We show limBXi = B(limXi). For

this we need to show that the unique continuous map u : B(limXi) → limBXi is

a homeomorphism. To show this will show that it is bijective and open. We start

by defining an inverse φ : limBXi� B(limXi). Since the set underlying the limits

are computed in Set, showing that φ exists and is an inverse as a function will be

enough to prove that u is bijective. We can assume w.l.o.g. that the morphisms

between the finite Polish spaces Xi are surjective.

Given a ‘thread’ (µi)i∈I ∈ limBXi we need to define a finitely supported multiset

on the threads (xi)i∈I ∈ limXi. For the thread (µi) consider the projective system

of supports (supp(µi))i∈I together with the obvious restrictions fij � supp(µi) of the

connecting maps fij : Xi → Xj which are also surjective. We claim that lim supp(µi)

is finite and forms the support of the multiset φ((µi)i∈I) on limXi . We make the

following observation:

(i) Each support is finite

(ii) The size of the support cannot increase by following the connecting arrows,

since they are surjective.

(iii) The total mass k of µi, i ∈ I is constant throughout the thread because B
applied to a connecting morphism preserves the total mass of a multiset.

(iv) The cardinality of the set supp(µi) is bounded by k since we cannot assign a

weight less than one to any element in the support.

(v) There exists an i ∈ I after which the cardinality of supp(µi) remains constant,

i.e. such that |supp(µk)| = |supp(µj)| for each j > k. If this wasn’t the case it

would contradict the previous points.

Thus let k be such that |supp(µk)| = |supp(µj)| for each j > k, we claim that

pk : lim supp(µi) → supp(µk) is a bijection. It is surjective since the connecting

morphisms in the diagram are surjective. If (xi)i∈I , (yi)i∈I are two threads such

that pk(xi) = pk(yi) then xk = yk. Now take any k′ ∈ I, by co-directedness there

exists j > k, k′ and by assumption on k, supp(µk) and supp(µj) have the same

cardinality, i.e. the connecting morphism pjk is bijective. There therefore exists a

unique xj ∈ supp(µj) such that pjk(xj) = xk = yk, and it follows that both thread

must go through the same element at k′ too, for any k′, which shows that pk is

injective. We define φ((µi)i∈I) as the multiset on limXi defined by:

(xi)i∈I 7→

{
0 if (xi)i∈I /∈ lim supp(µi)

µk(xk) else (where k is defined as above)
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We need to show that the definition is independent of the choice of k. Consider

another index k′ such that |supp(µk′)| = |supp(µj)| for each j > k′. Again by

co-directedness there exists j > k, k′. We now calculate:

µk(xk) = µk(fjk(xj)) = Bfjk(µj)(fjk(xj)) = µj(xj) = Bfjk′(µj)(fjk′(xj))

= µk′(xk′)

Let us now show that φ thus defined is a left and right inverse to u. Given a multiset

µ ∈ B(limXi) on threads of limXi, u(µ) is the thread of multisets νi on Xi defined

by νi(x) = µ[p−1
i ({x})], i.e. the mass given by µ to the set of threads going through

x ∈ Xi. This family forms a thread since for every fij : Xi → Xj and y ∈ Xi,

νj(y) = µ[p−1
j ({y})] = µ[p−1

i (f−1
ij (y)] = νi(f

−1
ij (y)) = Bfij(νi)(y)

For µ ∈ B(limXi), let u(µ) = (νi)i∈I . The support supp(νi) is given by the set

Yi ⊆ Xi of points traversed by a thread in the support of µ, and it is therefore not

hard to see that lim supp(νi) with the multiplicities defined by φ is precisely µ, i.e.

φ ◦ u = idB(limXi). Conversely u ◦ φ = idlimXi by universality of limXi.

Finally, we show that the unique u : B(limXi)→ limBXi is a homeomorphism.

We already know that it is continuous and bijective, so it remains to be shown

that it is open. For this we must look at the topologies on B(limXi) and limBXi.

In the former U is an open exactly when q−1
n (U) is open in (limXi)

n for each n

where qn : (limXi)
n � (limXi)

n/Sn. Any subset U of B(limXi) can be written as

an union of sets Un in (limXi)
n/Sn, so it is sufficient to show that u maps opens

of (limXi)
n/Sn (corresponding to sets of multisets of total mass n) to opens in

limBXi. It is not hard to check that U is open in (limXi)
n/Sn iff there exists V

open in (limXi)
n such that qn[V ∗] = U where V ∗ =

⋃
π∈Sn π[V ]. To check that

u(U) is open it is therefore enough to check that u ◦ qn ◦ π[V ] is open for any open

V in (limXi)
n and any π ∈ Sn; and since π is a homeomorphism this really means

checking that u◦ qn[V ] is open when V is. By the definition of the product topology

and of the topology on limXi it is enough to check that u ◦ qn[Y j
k ] is open for Y j

k

the set of n-tuples of threads of limXi whose jth component goes through Yk ⊆ Xk.

The morphism qn collapses such an n-tuple to a multiset on threads and qn[Y j
k ] is

the set of multisets of total mass n which assigns mass at least one to threads going

through Yk.

To check that u sends these open sets to open sets we need to describe the

topology on the codomain. Fortunately is it much simpler. Since each Xi is finite,

Xn
i /Sn is finite, and must therefore have the discrete topology. Since B(Xi) =∐
nX

n
i /Sn is given the final topology for all the injections its topology must also

be discrete. The topology on limB(Xi) is thus generated by the opens of the shape

p−1
i (Ui) where Ui is any subset of B(Xi) and pi is the canonical projection.

We can now check that u is open. Let us denote qn[Y j
k ] = Y n

k the set of multisets

of total mass n which assigns mass at least one to threads going through Yk. It

gets mapped to a set B(pk(Y
k
n )) of multisets on Xk, which in turns defines u(Y n

k ) =

p−1
k (B(pk(Y

k
n ))) which is indeed open. 2

Proposition B.4 Let (Xi)i∈I be a ccd of compact spaces. Then V(limXi) ∼=
limVXi
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Proof. Let (Xi)i∈I be a ccd of compact Polish space; we must show that V limXi =

limVXi. Let us first show that there exists a bijection between these sets. We write

pi : limXi → Xi for the canonical projections. We know that there exists a unique

continuous map u : V limXi → limVXi; it takes a compact K of limXi and maps

it to the thread (pi[K])i∈I of limVXi (since the continuous image of a compact is

compact). Let K,K ′ be two compacts of limXi such that pi[K] = pi[K
′] for every

i ∈ I, for every thread (xi) in limXi it is clear that (xi) ∈ K iff pi(xi) ∈ pi[K] iff

pi(xi) ∈ pi[K ′] iff (xi) ∈ K ′ and thus u is injective.

We now define an inverse map φ : limVXi → V limXi as follows. For each thread

of compacts (Ki)i∈I in limVXi, since each Xi is Hausdorff, each Ki is closed and

thus p−1
i (Ki) is a closed subset of limXi. We define

φ((Ki)i∈I) =
⋂
i

p−1
i (Ki)

To see that this is well-defined, we need to show that φ((Ki)i∈I) is compact. Since

each p−1
i (Ki) is closed, their intersection φ((Ki)i∈I) is closed. We also know that

since each Xi is compact limXi is a closed subspace of the product
∏
Xi which

is compact by Tychonoff’s theorem. It follows that limXi is compact, and since V
sends compacts to compacts (Kechris Theorem 4.26), V limXi is compact. Finally

since φ((Ki)i∈I) is closed in a compact it is itself compact.

To see that φ is a left inverse of u, start with K ∈ V limXi, u(K) = (pi[K])i∈I
and

φ(u(K)) =
⋂
i

p−1
i (pi[K])

Let (xi) be a thread in K, then clearly pi((xi)) = xi ∈ pi[K] for all i, and thus

(xi) ∈ φ(u(K)). Conversely, let (xi) be a thread in φ(u(K)) then by definition of φ,

pi((xi)) ∈ pi[K] for every i, i.e. xi ∈ pi[K] for every i, i.e. (xi) ∈ K, and it follows

that φ ◦ u = idV limXi . Conversely, φ is a right inverse since u ◦ φ = idlimVXi by

universality of u. We have thus established that u is bijective.

Finally, since u : V limXi → limVXi is a continuous bijection with a compact

domain and a Hausdorff codomain, it is a homeomorphism, which concludes the

proof. 2
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