Joris Van Der Hoeven
email: vdhoeven@lix.polytechnique.fr

Multiple precision oating-point arithmetic on SIMD processors

Keywords: oating-point arithmetic, multiple precision, SIMD A.C.M. subject classification: G.1.0 Computer-arithmetic A.M.S. subject classification: 65Y04, 65T50, 68W30

Current general purpose libraries for multiple precision oating-point arithmetic such as Mpfr suer from a large performance penalty with respect to hard-wired instructions. The performance gap tends to become even larger with the advent of wider SIMD arithmetic in both CPUs and GPUs. In this paper, we present ecient algorithms for multiple precision oating-point arithmetic that are suitable for implementations on SIMD processors.

Introduction

Multiple precision arithmetic [START_REF] Brent | Modern Computer Arithmetic[END_REF] is crucial in areas such as computer algebra and cryptography, and increasingly useful in mathematical physics and numerical analysis [START_REF] Bailey | High precision computation: mathematical physics and dynamics[END_REF]. Early multiple precision libraries appeared in the seventies [START_REF] Brent | A Fortran multiple-precision arithmetic package[END_REF], and nowadays GMP [START_REF] Granlund | the GNU multiple precision arithmetic library[END_REF] and MPFR [START_REF] Fousse | MPFR: a multiple-precision binary oating-point library with correct rounding[END_REF] are typically very ecient for large precisions of more than, say, 1000 bits. However, for precisions that are only a few times larger than the machine precision, these libraries suer from a large overhead. For instance, the MPFR library for arbitrary precision and IEEE-style standardized oatingpoint arithmetic is typically about a factor 100 slower than double precision machine arithmetic.

This overhead of multiple precision libraries tends to further increase with the advent of wider SIMD (Single Instruction, Multiple Data) arithmetic in modern processors, such as Intel's AVX technology. Indeed, it is hard to take advantage of wide SIMD instructions when implementing basic arithmetic for individual numbers of only a few words. In order to fully exploit SIMD instructions, one should rather operate on suitably represented SIMD vectors of multiple precision numbers. A second problem with current SIMD arithmetic is that CPU vendors tend to favor wide oating-point arithmetic over wide integer arithmetic, whereas faster integer arithmetic is most useful for speeding up multiple precision libraries.

In order to make multiple precision arithmetic more useful in areas such as numerical analysis, it is a major challenge to reduce the overhead of multiple precision arithmetic for small multiples of the machine precision, and to build libraries with direct SIMD arithmetic for multiple precision oating-point numbers.

One existing approach is based on the TwoSum and TwoProduct operations [START_REF] Dekker | A oating-point technique for extending the available precision[END_REF][START_REF] Muller | Handbook of Floating-Point Arithmetic[END_REF] that allow for the exact computation of sums and products of two machine oating-point numbers. The results of these operations are represented as sums x + y where x and y have no overlapping bits (e.g. blog 2 jxjc > blog 2 jyjc + 53 or y = 0). The TwoProduct operation can be implemented using only two instructions when hardware oers the fused-multiply-add (FMA) and fusedmultiply-subtract (FMS) instructions, as is for instance the case for AVX2 enabled processors. The TwoSum operation could be done using only two instructions as well if we had similar fusedadd-add and fused-add-subtract instructions. Unfortunately, this is not the case for current hardware.

It is well known that double machine precision arithmetic can be implemented reasonably eciently in terms of the TwoSum and TwoProduct algorithms [START_REF] Dekker | A oating-point technique for extending the available precision[END_REF][START_REF] Muller | Handbook of Floating-Point Arithmetic[END_REF][START_REF] Nagai | Fast quadruple precision arithmetic library on parallel computer SR11000/J2[END_REF]. The approach has been further extended in [START_REF] Priest | Algorithms for arbitrary precision oating-point arithmetic[END_REF][START_REF] Muller | A new multiplication algorithm for extended precision using oating-point expansions[END_REF] to higher precisions. Specic algorithms are also described in [START_REF] Lauter | Basic building blocks for a triple-double intermediate format[END_REF] for triple-double precision, and in [START_REF] Hida | Algorithms for quad-double precision oating-point arithmetic[END_REF] for quadruple-double precision. But these approaches tend to become inecient for large precisions.

An alternative approach is to represent oating-point numbers by products m b e , where m is a xed-point mantissa, e an exponent, and b 2 2 N the base. This representation is used in most of the existing multi-precision libraries such as Gmp [START_REF] Granlund | the GNU multiple precision arithmetic library[END_REF] and Mpfr [START_REF] Fousse | MPFR: a multiple-precision binary oating-point library with correct rounding[END_REF]. However, the authors are only aware of sequential implementations of this approach. In this paper we examine the eciency of this approach on SIMD processors. As in [START_REF] Van Der Hoeven | Faster FFTs in medium precision[END_REF], we systematically work with vectors of multiple precision numbers rather than with vectors of digits in base b. We refer to [START_REF] Takahashi | Implementation of multiple-precision oating-point arithmetic on Intel Xeon Phi coprocessors[END_REF][START_REF] Emmart | Optimizing modular multiplication for nvidia's maxwell gpus[END_REF] for some other recent approaches.

Our paper is structured as follows. In section 2, we detail the representation of xed-point numbers and basic arithmetic operations. We follow a similar approach as in [START_REF] Van Der Hoeven | Faster FFTs in medium precision[END_REF], but slightly adapt the representation and corresponding algorithms to allow for larger bit precisions of the mantissa. As in [START_REF] Van Der Hoeven | Faster FFTs in medium precision[END_REF], we rely on standard IEEE-754 compliant oating-point arithmetic that is supported by most recent processors and GPUs. For processors with ecient SIMD integer arithmetic, it should be reasonably easy to adapt our algorithms to this kind of arithmetic. Let be the bit precision of our machine oating-point numbers minus one (so that = 52 for IEEE-754 double precision numbers). Throughout this paper, we represent xed-point numbers in base 2 p by k-tuplets of machine oating-point numbers, where p is slightly smaller than and k > 2.

The main bottleneck for the implementation of oating-point arithmetic on top of xed-point arithmetic is shifting. This operation is particularly crucial for addition, since every addition requires three shifts. Section 3 is devoted to this topic and we will show how to implement reasonably ecient shifting algorithms for SIMD vectors of xed-point numbers. More precisely, small shifts (of less than p bits) can be done in parallel using approximately 4 k operations, whereas arbitrary shifts require approximately (log 2 k + 4) k operations.

In section 4, we show how to implement arbitrary precision oating-point arithmetic in base b = 2. Our approach is fairly standard. On the one hand, we use the left shifting procedures from section 3 in order to normalize oating-point numbers (so that mantissas of non zero numbers are always suciently large in absolute value). On the other hand, the right shifting procedures are used to work with respect to a common exponent in the cases of addition and subtraction. We also discuss a rst strategy to reduce the cost of shifting and summarize the corresponding operation counts in Table 2. In section 5, we perform a similar analysis for arithmetic in base b = 2 p . This leads to slightly less compact representations, but shifting is reduced to multiple word shifting in this setting. The resulting operation counts can be found in Table 3.

The operation counts in Tables 2 and3 really represent the worst case scenario in which our implementations for basic arithmetic operations are required to be black boxes. Multiple precision arithmetic can be made far more ecient if we allow ourselves to open up these boxes when needed. For instance, any number of oating-pointing numbers can be added using a single function call by generalizing the addition algorithms from sections 4 and 5 to take more than two arguments; this can become almost thrice as ecient as the repeated use of ordinary additions. A similar approach can be applied to entire algorithms such as the FFT [START_REF] Van Der Hoeven | Faster FFTs in medium precision[END_REF]: we rst shift the inputs so that they all admit the same exponent and then use a xed-point algorithm for computing the FFT. We intend to come back to this type of optimizations in a forthcoming paper.

So far, we only checked the correctness of our algorithms using a prototype implementation. Our operation count analysis indicates that our approach should outperform others as soon as k > 5 and maybe even for k = 3 and k = 4. Another direction of future investigations concerns correct rounding and full compliance with the IEEE standard, taking example on Mpfr [START_REF] Fousse | MPFR: a multiple-precision binary oating-point library with correct rounding[END_REF].

Notations

Throughout this paper, we assume IEEE arithmetic with correct rounding and we denote by F the set of machine oating-point numbers. We let > 8 be the machine precision minus one (which corresponds to the number of fractional bits of the mantissa) and let E min and E max be the minimal and maximal exponents of machine oating-point numbers. For IEEE double precision numbers, this means that = 52, E min = ¡1022 and E max = 1023.

In this paper, and contrary to [START_REF] Van Der Hoeven | Faster FFTs in medium precision[END_REF], the rounding mode is always assume to be round to nearest. Given x; y 2 F and 2 f+; ¡; g, we denote by (x y) the rounding of x y to the nearest. For convenience of the reader, we denote (x y) = (x y) whenever the result (x y) = x y is provably exact in the given context. If e is the exponent of x y and E max > e > E min + (i.e. in absence of overow and underow), then we notice that j(x y) ¡ x yj 6 2 e¡¡1 . For eciency reasons, the algorithms in this paper do not attempt to check for underows, overows, and other exceptional cases.

Modern processors usually support fused-multiply-add (FMA) and fused-multiply-subtract (FMS) instructions, both for scalar and SIMD vector operands. Throughout this paper, we assume that these instructions are indeed present, and we denote by (x y + z) and (x y ¡ z) the roundings of x y + z and x y ¡ z to the nearest.

Acknowledgment. We are very grateful to the third referee for various suggestions and for drawing our attention to several more or less serious errors in an earlier version of this paper.

Fixed-point arithmetic

Let p 2 f6; :::; ¡ 2g and k > 2. In this section, we start with a survey of ecient xed-point arithmetic at bit precision k p. We recall the approach from [START_REF] Van Der Hoeven | Faster FFTs in medium precision[END_REF], but use a slightly dierent representation in order to allow for high precisions k > 19. We adapted the algorithms from [START_REF] Van Der Hoeven | Faster FFTs in medium precision[END_REF] accordingly and explicitly state the adapted versions. Allowing p to be smaller than corresponds to using a redundant number representation that makes it possible to eciently handle carries during intermediate computations. We denote by = ¡ p > 2 the number of extra carry bits (these bits are sometimes called nails, following GMP [START_REF] Granlund | the GNU multiple precision arithmetic library[END_REF]). We refer to section 3.5 for a table that recapitulates the operation counts for the algorithms in this section.

Representation of xed-point numbers

Given / 1 2 6 C 6 2 and an integer k > 2, we denote by F p;k;C the set of numbers of the form

x = x 0 + x 1 2 ¡p + + x k¡1 2 ¡(k ¡1)p ; (1)
where x 0 ; :::; x k¡1 2 F are such that

x i 2 Z 2 ¡p for 0 6 i < k jx 0 j < 2 jx i j < C for 0 < i < k:
We write x = [x 0 ; :::; x k ¡1] for numbers of the above form and abbreviate F p;k = F p;k;2 . Numbers in F p;k; / 4 5 are said to be in carry normal form.

x 0

x 1 2 ¡p p p 2 ¡2p 2 ¡p 1 & Figure 1. Schematic representation of a xed-point number x = [x 0 ; x 1] = x 0 + x 1 2 ¡p , where & = dlog 2 C e.
Remark 1. The paper [START_REF] Van Der Hoeven | Faster FFTs in medium precision[END_REF] rather uses the representation x = x 0 + + x k¡1 with x i 2 Z 2 ¡(i+1)p and jx i j < C 2 ¡ip . This representation is slightly more ecient for small k, since it allows one to save one operation in the implementation of the multiplication algorithm. However, it is limited to small values of k (typically k 6 19), since (k ¡ 1) p must required to be smaller than ¡E min ¡ . The representation (1) also makes it easier to implement ecient multiplication algorithms at high precisions k, such as Karatsuba's algorithm [START_REF] Karatsuba | Multiplication of multidigit numbers on automata[END_REF] or FFT-based methods [START_REF] Pollard | The fast Fourier transform in a nite eld[END_REF][START_REF] Schönhage | Schnelle Multiplikation groÿer Zahlen[END_REF][START_REF] Harvey | Even faster integer multiplication[END_REF]. We intend to return to this issue in a forthcoming paper.

Remark 2.

Another minor change with respect to [START_REF] Van Der Hoeven | Faster FFTs in medium precision[END_REF] is that we also require x i 2 Z 2 ¡p to hold for the last index i = k ¡ 1. In order to meet this additional requirement, we need two additional instructions at the end of the multiplication routine in section 2.6 below.

Splitting numbers at a given exponent

An important subalgorithm for efficient fixed-point arithmetic computes the truncation of a oating-point number at a given exponent:

Algorithm Split e (x)

a := (x + / 3 2 2 e+) return (a ¡ / 3 2 2 e+)
Proposition 1 from [START_REF] Van Der Hoeven | Faster FFTs in medium precision[END_REF] becomes as follows for rounding to nearest: Proposition 3. Given x 2 F and e 2 fE min ; :::; E max ¡ g such that jxj < 2 e+¡2 , the algorithm Split e computes a number x ~2 F with x ~2 Z 2 e and jx ~¡ xj 6 2 e¡1 .

Carry propagation

Numbers can be rewritten in carry normal form using carry propagition. This can be achieved as follows (of course, the loop being unrolled in practice):

Algorithm CarryNormalize(x)

r k¡1 := x k¡1 for i from k ¡ 1 down to 1 do c i := Split 0 (r i) x ~i := (r i ¡ c i) r i¡1 := (x i¡1 + c i 2 ¡p) x ~0 := r 0 return [x ~0; :::; x ~k¡1] A straightforward adaptation of [

Addition and subtraction

Double length multiplication

The multiplication algorithm of xed-point numbers is based on a subalgorithm LongMul e that computes the exact product of two numbers x; y 2 F in the form of a sum x y = h + `, with the additional constraint that h 2 Z 2 e . Without this additional constraint (and in absence of overow and underow), h and `can be computed using the well known Two Product algorithm: h := (x y), `:= (x y ¡ h). The LongMul e algorithm exploits the FMA and FMS instructions in a similar way.

Algorithm LongMul e (x; y)

a := (x y + / 3 2 2 e+) h := (a ¡ / 3 2 2 e+) `:= (x y ¡ h) return (h; `)
Proposition 4 from [START_REF] Van Der Hoeven | Faster FFTs in medium precision[END_REF] becomes as follows for rounding to nearest: Proposition 6. Let x; y 2 F and e 2 fE min + ; :::; E max ¡ g be such that jx yj < 2 +e¡2 and x y 2 Z 2 e¡ . Then the algorithm LongMul e (x; y) computes a pair (h; `) 2 F 2 with h 2 Z 2 e , h + `= x y, and j`j 6 2 e¡1 .

General xed-point multiplication

For C large enough as a function of k, one may use the following algorithm for multiplication (all loops again being unrolled in practice):

Algorithm Multiply(x; y) (r 0 ; r 1) := LongMul ¡p (x 0 ; y 0) for i from 1 to k ¡ 2 do (h; r i+1) := LongMul ¡p (x 0 ; y i) r i := (r i 2 p + h) for j from 1 to i do (h; `) := LongMul ¡p (x j ; y i¡ j) r i := (r i + h) r i+1 := (r i+1 + `) r k ¡1 := (r k¡1 2 p) for i from 0 to k ¡ 1 do r k¡1 := (x i y k ¡1¡i + r k ¡1) r k ¡1 := Split ¡p (r k¡1) return [r 0 ; :::; r k ¡1]
Notice that we need the additional line r k ¡1 := Split ¡p (r k¡1) at the end with respect to [START_REF] Van Der Hoeven | Faster FFTs in medium precision[END_REF] in order to ensure that r k¡1 2 Z 2 ¡p . Adapting [

Fast parallel shifting

In this section, we discuss several routines for shifting xed-point numbers. All algorithms were designed to be naturally parallel. More precisely, we logically operate on SIMD vectors x = (x 1 ; :::; x w) of xed-point numbers

x i = [x 0 i ; :::; x k ¡1 i].
Internally, we rather work with xed point numbers x = [x 0 ; :::; x k ¡1] whose coecients are machine SIMD vectors x j = (x j 1 ; :::; x j w). All arithmetic operations can then simply be performed in SIMD fashion using hardware instructions. For compatibility with the notations from the previous section, we omit the bold face for SIMD vectors, except if we want to stress their SIMD nature. For actual implementations for a given k, we also understand that we systematically use in-place versions of our algorithms and that all loops and function calls are completely expanded.

Small parallel shifts

Let x = [x 0 ; :::; x k ¡1] be a xed-point number. Left shifts x 2 s and right shifts x 2 ¡s of x with 0 6 s 6 p can be computed by cutting the shifted coecients x i 2 s resp. x i 2 ¡s using the routine Split ¡p and reassembling the pieces. The shift routines behave very much like generalizations of the routine for carry normalization. Proof. In the main loop, we observe that h i := Split ¡p (u x i) and u x i 2 2 s¡2p Z. The assumption C 6 2 ¡s¡2 guarantees that Proposition 3 applies, so that h i 2 Z 2 ¡p and jh i ¡ u x i j 6 2 ¡p¡1 . The operation `i := (u x i ¡ h i) is therefore exact, so that u x i = h i + `i, 2 p `i 2 2 s¡p , and j`ij 6 2 ¡p¡1 . Since ju x i j < C 2 s¡p , we also have

Algorithm SmallShiftLeft(x; s)

u := 2 s¡p `0 := (u x 0) for i from 1 to k ¡ 1 do h i := (u x i + / 3 2 2) h i := (h i ¡ / 3 2 2) `i := (u x i ¡ h i) r i¡1 := (`i ¡1 2 p + h i) r k¡1 := (`k ¡1 2 p) return [r 0 ; :::; r k¡1] Algorithm SmallShiftRight(x; s) u := 2 ¡s h k¡1 := (u x k¡1 + / 3 2 2) h k¡1 := (h k¡1 ¡ / 3 2 2) for i from k ¡ 2 down to 0 do h i := (u x i + / 3 2 2) h i := (h i ¡ / 3 2 2) `i := (u x i ¡ h i) r i+1 := (`i 2 p + h i+1) return [h 0 ;
jh i j < C 2 s¡p + 2 ¡p¡1 . Now j`i ¡1 2 p j 6 / 1 2 if i > 1 and j`i ¡1 2 p j < 2 ¡ C 2 s¡p ¡ 2 ¡p¡1 if i = 1.
Combined with the facts that jh i j < C 2 s¡ p + 2 ¡p¡1 and h i ; `i¡1 2 p 2 Z 2 ¡p , it follows that the operation

r i¡1 := (`i ¡1 2 p + h i) is also exact. Moreover, jr i¡1 j < / 1 2 + C 2 s¡ p + 2 ¡p¡1 if i > 1 and jr i¡1 j < 2 if i = 1. The last operation r k¡1 := (`k ¡1 2 p) is clearly exact and jr k ¡1 j = j`k ¡1 2 p j 6 / 1 2 . Finally, X i=0 k¡1 r i 2 ¡pi = X i=1 k ¡1 r i¡1 2 ¡p(i¡1) + r k¡1 2 ¡p(k¡1) = X i=1 k `i¡1 2 p¡p(i¡1) + X i=1 k¡1 h i 2 ¡p(i¡1) = `0 2 p + X i=1 k ¡1 `i 2 ¡p(i¡1) + X i=1 k¡1 h i 2 ¡p(i¡1) = x 0 2 s + X i=1 k ¡1 x i 2 s¡pi = 2 s X i=0 k¡1 x i 2 ¡pi :
This proves that r = x 2 s .

Proposition 9. Let s 2 f0; :::; pg. Given a xed-point number x 2 F p;k;C with C 6 2 +s¡2 and jx 0 j < min (2 +s¡2 ; 2), the algorithm SmallShiftRight returns r 2 F p;k; / 1 2 +C 2 ¡s +2 ¡p¡1 with jr ¡ x 2 ¡s j 6 2 ¡pk ¡1 .

Proof. Similar to the proof of Proposition 8.

Large parallel shifts

For shifts by s = p bits with < k, we may directly shift the coecients x i of the operand. Let = 0 + 1 2 + + `¡1 2 `¡1 be the binary representation of with 0 ; :::; `¡1 2 f0; 1g. Then we decompose a shift by p bits as the composition of `shifts by either 0 or 2 i p bits for i = 0; :::; `¡ 1, depending on whether i = 0 or i = 1. This way of proceeding has the advantage of being straightforward to parallelize, assuming that we have an instruction to extract a new SIMD vector from two given SIMD vectors according to a mask. On Intel processors, there are several blend instructions for this purpose. In the pseudo-code below, we simply used if expressions instead. Combining with the algorithms from the previous subsection, we obtain the routines ShiftLeft and ShiftRight below for general shifts. Notice that we shift by at most k p bits. Due to the fact that we allow for nail bits, the maximal error is bounded by (C + 1) 2 ¡pk .

Algorithm

Algorithm ShiftLeft(x;

Uniform parallel shifts

The routines LargeShiftLeft and LargeShiftRight were designed to work for SIMD vectors x = (x 1 ; :::; x w) of xed-point numbers and shift amounts = (1 ; :::; w). If the number of bits by which we shift is the same = 1 = = w for all entries, then we may use the following routines instead: Algorithm UniformShiftLeft(x;) for i from 0 to k ¡ 1 do j := i + x i := (if j < k then x j else 0) return [x 0 ; :::; x k ¡1] Algorithm UniformShiftRight(x;) for i from k ¡ 1 down to 0 do j := i ¡ x i := (if j > 0 then x j else 0) return [x 0 ; :::; x k¡1]

Retrieving the exponent

The IEEE-754 standard provides an operation logb for retrieving the exponent e of a machine number x 2 F: if x = / 0, then 2 e 6 jxj < 2 e+1 . It is natural to ask for a similar function on F p;w , as well as a similar function logw in base 2 p (that returns the exponent e with 2 pe 6 jxj < 2 pe+1 for every x 2 F p;k with x = / 0). For x = 0, we understand that logb(x) = logw(x) = ¡1.

The functions LogB and LogW below are approximations for such functions logb and logw. More precisely, for all x 2 F k;p;C in carry normal form with jxj < 1, we have

LogB(x) ¡ 1 6 logb(x) 6 LogB(x) (2) LogW(x) ¡ 1 6 logw(x) 6 LogW(x): (3)
The routine LogB relies on the computation of a number = Compress(x) 2 F with j ¡ xj 6 jxj 2 ¡ that only works under the assumption that k p < ¡E min . It is nevertheless easy to adapt the routine to higher precisions by cutting x into chunks of b¡E min / pc machine numbers. The routine LogW relies on a routine HiWord that determines the smallest index i with x i = / 0. Proof. In Compress, let i be the value of after adding x i 2 ¡ip and notice that i 2 2 ¡pi for all i. If i+1 = i + x i 2 ¡ip for all i, then k = x and Compress returns an exact result. Otherwise, let i be minimal such that i+1 = / i + x i 2 ¡ip . Then j i + x i 2 ¡ip j > 2 +1¡(i+1)p and j i+1 j > 2 +1¡(i+1)p , whence jx i 2 ¡ip j < / 4 5 2 ¡ ¡1 j i+1 j and j i+1 ¡ (i ¡ x i 2 ¡ip)j 6 2 ¡¡1 j i+1 j. Moreover, the exponent e of i+1 is at least + 1 ¡ (i + 1) p. For j > i, we have jx j 2 ¡jp j < / 4 5 2 ¡jp , whence the exponent f of x j 2 ¡jp is at most

Algorithm Compress(x)

:= (x 0 + x 1 2 ¡p) for i from 2 to k ¡ 1 do := (+ x i 2 ¡ip
¡(i + 1) p ¡ 1. This means that (i+1 + x j 2 ¡jp) = i+1 , whence i+1 = i+2 = = k and j k ¡ xj 6 j i+1 ¡ (i ¡ x i 2 ¡ip)j + jx i+1 2 ¡(i+1)p + + x k ¡1 2 ¡(k¡1)p j < 2 ¡¡1 j k j + 2 ¡(i+1)p 6 2 ¡ j k j.
The bound (2) directly follows.

The algorithm HiWord is clearly correct. Assume that x = / [0; :::; 0] and let i be minimal with x i = / 0. Then we have jx i 2 ¡ip j > 2 ¡(i+1)p , whereas jx i+1 2 ¡(i+1)p + + x k ¡1 2 ¡(k ¡1)p j < / 5 6 2 ¡(i+1)p , so that / 1 6 2 ¡(i+1)p < jxj. If i > 0, then we also get jx i 2 ¡ip j < / 4 5 2 ¡ip , whence jxj < / 5 6 2 ¡ip . If i = 0, then jxj < 1 by assumption. This shows that (3) holds as well.

Operation counts

In Table 1 below, we have shown the number of machine operations that are required for the xed-point operations from this and the previous section, as a function of k. Of course, the actual time complexity of the algorithms also depends on the latency and throughput of machine instructions. We count an assignment z := (if b then x else y) as a single instruction.

k

Floating-point arithmetic in base 2

Let p, k and be as in section 2. We will represent oating-point numbers as products

x = m b e ;
where m 2 F p;k is the mantissa of x and e 2 E := f¡2 ; :::; 2 g its exponent in base b 2 2 N . We denote by F p;k b E the set of all such oating-point numbers. We assume that the exponents in E can be represented exactly, by machine integers or numbers in F. As in most existing multiple precision libraries, we use an extended exponent range. For multiple precision arithmetic, it is indeed natural to support exponents of at least as many bits as the precision itself.

In this section, we assume that b = 2. The main advantage of this base is that oating-point numbers can be represented in a compact way. The main disadvantage is that normalization involves expensive shifts by general numbers of bits that are not necessarily multiples of p. Notice that b = 2 is also used in the Mpfr library for multiple precision oating-point arithmetic [START_REF] Fousse | MPFR: a multiple-precision binary oating-point library with correct rounding[END_REF].

Normalization

Given / 1 2 6 C 6 2 , we denote F p;k;C 2 E = fm 2 e : m 2 F p;k;C ; e 2 E g. Numbers in F p;k; / 4 5 2 E are again said to be in carry normal form and the routine CarryNormalize extends to F p;k 2 E by applying it to the mantissa. We say that a oating-point number x = m 2 e with m 2 F p;k is in dot normal form if we either have m = 0 or / 1 2 ¡ 2 ¡p 6 jmj < 1. If x is also in carry normal form, then we simply say that x is in normal form. In absence of overows, normalizations can be computed using the routine Normalize below. In the case when the number to be normalized is the product of two normalized oating-point numbers, we need to shift the mantissa by at most two bits, and it is faster to use the variant QuickNormalize. Proof. If m = 0, then CarryNormalize returns [0; :::; 0] and it is easy to verify that the proposition holds. Assume therefore that m = / 0, so that s < k p. By Proposition , whence m 0 is carry normal. We also have m 2 e = m 0 2 e¡s and 2 1¡s / (1 + 2 ¡) 6 jm 0 j < 2 ¡s , whence / 1 2 ¡ 2 ¡p 6 jm 0 j < 1. This also implies jm 0 j = / 0 and e 0 = e ¡ s, since jm 0 ¡ m 0 0 j 6 C 2 ¡p + + C 2 ¡(k¡1)p . We conclude that m 0 2 e 0 is dot normal and its value coincides with m 2 e . If jmj > 2 +2¡p , then it can be checked that ' := Compress([m 0 ; m 1]) still satises j' ¡ mj 6 jmj 2 ¡ and that s 6 p ¡ 2. From Proposition 8, it again follows that m 0 2 F p;k;C with C = / 1 2 + (/ 1 2 + 2 ¡p) 2 ¡2 + 2 ¡p¡1 < / 4 5 , whence m 0 is carry normal. The remainder of the correctness of QuickNormalize follows as before.

Arithmetic operations

Addition and subtraction of normalized floating-point numbers are computed as usual, by putting the mantissa under a common exponent, by adding or subtracting the shifted mantissas, and by normalizing the result. By increasing the common exponent by two, we also make sure that the most signicant word of the addition or subtraction never provokes a carry. Remark 14. Strictly speaking, for normal numbers m 1 2 e 1 and m 2 2 e 2 , it is still necessary to prove that jMultiply(m 1 ; m 2)j < 1. This conclusion can only be violated if jm 1 j and jm 2 j are very close to one. Now it can be shown that a carry normal mantissa m with m < 1 and 1 ¡ 2 (p¡1)¡kp < m < 1 is necessarily of the form m = [1; 0; :::; 0; ¡"]. For numbers of this form, it is easy to check that jMultiply(m 1 ; m 2)j < 1.

Algorithm Add(m

Shared exponents

If we are computing with an SIMD vector m 2 e = (m 1 2 e 1 ; :::; m w 2 e w) of oating-point numbers, then another way to speed up shifting is to let all entries share the same exponent e = e 1 = = e w . Of course, this strategy may compromise the accuracy of some of the computations. Nevertheless, if all entries are of similar order of magnitude, then the loss of accuracy is usually limited to a few bits. Moreover, by counting the number of leading zeros of the mantissa of a particular entry m i 2 e , it is possible to monitor the loss of accuracy, and redo some of the computations if necessary.

When sharing exponents, it becomes possible to use UniformShiftLeft and Uni-formShiftRight instead of LargeShiftLeft and LargeShiftRight for multiple word shifts. The routine logb should also be adjusted: if the individual exponents given by the vector e = (e 1 ; :::; e w), then logb should now return the vector (e; :::; e) with e = max (e 1 ; :::; e w). Modulo these changes, we may use the same routines as above for basic oating-point arithmetic.

Operation counts

In Table 2, we give the operation counts for the various variants of the basic arithmetic operations +, ¡ and that we have discussed so far. For comparison, we have also shown the operation count for the algorithm from [START_REF] Muller | A new multiplication algorithm for extended precision using oating-point expansions[END_REF] that is based on oating-point expansions (notice that p = is somewhat better for this algorithm, since our algorithms rather use p ¡ 4).

Due to the cost of shifting, we observe that additions and subtractions are the most costly operations for small and medium precisions k 6 8. For larger precisions k > 12, multiplication becomes the main bottleneck.

Floating-point arithmetic in base 2 p

As we can see in Table 2, additions and subtractions are quite expensive when working in base b = 2. This is due to the facts that shifting is expensive with respect to this base and that every addition involves three shifts. For this reason, we will now examine oating-point arithmetic in the alternative base b = 2 p . One major disadvantage of this base is that normalized non zero oating-point numbers may start with as many as p ¡ 1 leading zero bits. This means that k should be increased by one in order to achieve a similar accuracy. We notice that the base b = 2 p is also used in the native mpf layer for oating-point arithmetic in the Gmp library [START_REF] Granlund | the GNU multiple precision arithmetic library[END_REF]. Carry normal forms are dened in the same way as in base b = 2. We say that a oating-point number x = m 2 ep with m 2 F p;k is in dot normal form if jmj < / 4 5 and either m = 0 or m 0 = / 0. We say that x is in normal form if it is both in carry normal form and in dot normal form.

Addition and subtraction

In section 4.2, we increased the common exponent of the summands of an addition by two in order to avoid carries. When working in base 2 p , a similar trick would systematically shift out the least signicant words of the summands. Instead, it is better to allow for carries, but to adjust the routine for normalization accordingly, by temporarily working with mantissas of k + 1 words instead of k.

Multiplication

The dot normalization of a product becomes very particular when working in base 2 p since this can always be accomplished using a large shift by either 0 or p or 2 p bits. Let LargeShiftLeft be the variant of LargeShiftLeft obtained by replacing the condition d < k by d 6 2. In order to achieve an accuracy of about (k ¡ 1) p bits at least, we extend the mantissas by one machine coecient before multiplying them. The routine QuickNormalize suppresses the extra entry.

Algorithm

Operation counts

In Table 2, we give the operation counts for oating-point addition, subtraction and multiplication in base 2 p . In a similar way as in section 4.3, it is possible to share exponents, and the table includes the operation counts for this strategy. This time, additions and subtractions are always cheaper than multiplications.

 r 1 ; :::; r k ¡1] Proposition 8. Let s 2 f0; :::; pg. Given a xed-point number x 2 F p;k;C with C 6 2 ¡s¡2 and jx 0 j < 2 ¡s ¡ C 2 ¡p ¡ 2 ¡p¡1¡s , the algorithm SmallShiftLeft returns r 2 F p;k; / 1 2 +C 2 s¡p +2 ¡p¡1 with r = x 2 s .

 LargeShiftLeft(x;) d := 1 while d < k do b := (and d) = / 0 for i from 0 to k ¡ 1 ¡ d do x i := (if b then x i+d else x i) for i from k ¡ d to k ¡ 1 do x i := (if b then 0 else x i) d := 2 d return [x 0 ; :::; x k¡1] Algorithm LargeShiftRight(x;) d := 1 while d < k do b := (and d) = / 0 for i from k ¡ 1 down to d do x i := (if b then x i¡d else x i) for i from d ¡ 1 down to 0 do x i := (if b then 0 else x i) d := 2 d return [x 0 ; :::; x k¡1] The following propositions are straightforward to prove. Proposition 10. Let s 2 f0; p; :::; (k ¡ 1) pg. Given a xed-point number x 2 F p;k;C with x 0 = = x s/p¡1 = 0, the algorithm LargeShiftLeft returns r 2 F p;k;C with r = x 2 s . Proposition 11. Let s 2 f0; p; :::; (k ¡ 1) pg. Given a xed-point number x 2 F p;k;C with jx 0 j < C, the algorithm LargeShiftRight returns r 2 F p;k;C with jr ¡ x 2 ¡s j < C (1 + 2 1¡ p) 2 ¡pk .

 s) := min (bs/ pc; k ¡ 1) s := min (p; s ¡ p) x := LargeShiftLeft(x;) x := SmallShiftLeft(x; s) return x Algorithm ShiftRight(x; s) := min (bs/ pc; k ¡ 1) s := min (p; s ¡ p) x := LargeShiftRight(x;) x := SmallShiftRight(x; s) return x

Proposition 12 .

 12 1 for i from k ¡ 1 down to 0 do r := (if x i = 0 then r else i) return r Algorithm LogB(x) return logb((Compress(x) (1 + 2 ¡))) The routines Compress, HiWord, LogB and LogW are correct.

Algorithm Normalize(m 2 Proposition 13 .

 213 e) m 0 := CarryNormalize(m) s := ¡1 ¡ LogB(m 0) m 0 := ShiftLeft(m 0 ; s) e 0 := e ¡ s e 0 := max (e 0 ; ¡2) e 0 := (if m 0 0 = 0 then ¡2 else e 0) return m 0 2 e 0 Algorithm QuickNormalize(m 2 e) s := ¡1 ¡ LogB([m 0 ; m 1]) m 0 := SmallShiftLeft(m; s) e 0 := e ¡ s e 0 := max (e 0 ; ¡2) return m 0 2 e 0 Given m 2 e 2 F p;k 2 E with jmj < 1 and e > p k ¡ 2 , the algorithm Normalize returns a normal number m 0 2 e 0 2 F p;k 2 E with m 0 2 e 0 = m 2 e . If jmj > 2 +2¡p , then so does QuickNormalize.

1 2 e 1 ; m 2 2 e 2)

 12 e := max (e 1 ; e 2) + 2 m 1 0 := ShiftRight(m 1 ; e ¡ e 1) m 2 0 := ShiftRight(m 2 ; e ¡ e 2) m := Add(m 1 0 ; m 2 0) return Normalize(m 2 e) Algorithm Subtract(m 1 2 e 1 ; m 2 2 e 2) e := max (e 1 ; e 2) + 2 m 1 0 := ShiftRight(m 1 ; e ¡ e 1) m 2 0 := ShiftRight(m 2 ; e ¡ e 2) m := Subtract(m 1 0 ; m 2 0) return Normalize(m 2 e) Floating-point multiplication is almost as ecient as its xed-point analogue, using the following straightforward: Algorithm Multiply(m 1 2 e 1 ; m 2 2 e 2) m := Multiply(m 1 ; m 2) e := e 1 + e 2 return QuickNormalize(m 2 e)

 k

Algorithm Normalize(m 2] 2 e 0 p

 220 ep) m 0 := [0; m 0 ; :::; m k ¡1] m 0 := CarryNormalize(m 0) := HiWord(m 0) m 0 := LargeShiftLeft(m 0 ;) e 0 := e + 1 ¡ e 0 := max (e 0 ; ¡2) e 0 := (if m 0 0 = 0 then ¡2 else e 0) return [m 0 0 ; :::; m k ¡1 0 Modulo this change, the routines for addition and subtract are now as follows: Algorithm Add(m 1 2 e 1 p ; m 2 2 e 2 p) e := max (e 1 ; e 2) m 1 0 := LargeShiftRight(m 1 ; e ¡ e 1) m 2 0 := LargeShiftRight(m 2 ; e ¡ e 2) m := Add(m 1 0 ; m 2 0) return Normalize(m 2 ep) Algorithm Subtract(m 1 2 e 1 p ; m 2 2 e 2 p) e := max (e 1 ; e 2) m 1 0 := LargeShiftRight(m 1 ; e ¡ e 1) m 2 0 := LargeShiftRight(m 2 ; e ¡ e 2) m := Subtract(m 1 0 ; m 2 0) return Normalize(m 2 ep)

] 2 e 0 p Algorithm Multiply(m 1 2 e 1 p ; m 2 2 e 2 p) m 1 0

 21 QuickNormalize(m 2 ep) m 0 := CarryNormalize(m) := HiWord([m 0 ; m 1 ; m 2]) m 0 := LargeShiftLeft (m 0 ;) e 0 := e ¡ e 0 := max (e 0 ; ¡2) return [m 0 0 ; :::; m k¡1 0 := [(m 1) 0 ; :::; (m 1) k¡1 ; 0] m 2 0 := [(m 2) 0 ; :::; (m 2) k¡1 ; 0] m := Multiply(m 1 0 ; m 2 0) e := e 1 + e 2 return QuickNormalize(m 2 ep)

 Non normalized addition and subtraction of xed-point numbers is straightforward:

	Algorithm Add(x; y)

return [(x 0 + y 0); :::; (x k¡1 + y k¡1)] Algorithm Subtract(x; y) return [(x 0 ¡ y 0); :::; (x k¡1 ¡ y k ¡1)] Proposition 9 from [10] now becomes: Proposition 5. Let x 2 F p;k;C and y 2 F p;k;D with S := C + D + 2 ¡p 6 2 . If jx 0 + y 0 j < 2 , then a = Add(x; y) satises a = x + y 2 F p;k;S . If jx 0 ¡ y 0 j < 2 , then b = Subtract(x; y) satises b = x ¡ y 2 F p;k;S .

 10, Proposition 10], we obtain: Proposition 7. Let x 2 F p;k;C and y 2 F p;k;D with jx 0 j < C, jy 0 j 6 D, C D 6 2 ¡2 , and S := /

k 2 (C D + 1 + 2 2¡ p) 6 2 . Then r = Multiply(x; y) 2 F p;k;S with jr ¡ x yj < S 2 ¡kp .

Table 1 .

 1 Operation counts in terms of machine instructions (the results are not necessarily normalized).

		2 3 4 5 6	7	8	9 10 11 12
	Carry normalize 4 8 12 16 20 24 28 32 36 40 44
	Add/subtract	2 3 4 5 6	7	8	9 10 11 12
	Multiply	8 18 33 53 78 108 143 183 228 278 333
	Small shift	7 11 15 19 23 27 31 35 39 43 47
	Large shift	3 8 10 18 21 24 27 40 44 48 52
	General shift	12 21 27 39 45 53 60 77 85 92 100
	Uniform shift	4 6 8 10 12 14 16 18 20 22 24
	Bit exponent	3 4 5 6 7	8	9 10 11 12 13
	Highest word	3 4 5 6 7	8	9 10 11 12 13

Table 2 .

 2 Operation counts for arithmetic oating-point operations in base 2.

Table 3 .

 3 Operation counts for arithmetic oating-point operations in base 2 p .

Joris van der Hoeven,

Multiple precision floating-point arithmetic on SIMD processors Bibliography