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Duality in nondominated discrete-time models

for Americain options ∗

Shuoqing Deng† Xiaolu Tan‡

April 20, 2016

Abstract

We aim to generalize the duality results of Bouchard & Nutz [10] to the case of
American options. By introducing an enlarged canonical space, we reformulate the
superhedging problem for American options as a problem for European options.
Then in a discrete time market with finitely many liquid options, we show that the
minimum superhedging cost of an American option equals to the supremum of the
expectation of the payoff at all (weak) stopping times and under a suitable family
of martingale measures. Moreover, by taking the limit on the number of liquid
options, we obtain a new class of martingale optimal transport problems as well as
a Kantorovich duality result.

Key words. Super-replication, American option, nondominated model, martingale
optimal transport, Kantorovich duality.
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1 Introduction

In a complete market, where every contingent claim can be perfectly replicated
by a self-financing trading strategy, the option price is given by its replication
cost, under the no-arbitrage assumption. In the classical dominated model, the
no-arbitrage condition is proved to be equivalent to the existence of the equivalent
martingale measures, by the so-called first fundamental theorem of asset pricing,
see e.g. Delbaen & Schachermayer [13], Föllmer & Schied [18], etc.

In a nondominated model, where the market is incomplete, a safe way of pricing
is to use the minimum super-replication cost of the derivative option. Using the
duality result, the super-replication problem is related to a model-free pricing prob-
lem, i.e. the supremum of the expectations of the payoff under a suitable family
of “martingale measures” models. For the continuous time model under “volatility

∗We are grateful to Bruno Bouchard and Monique Jeanblanc for fruitful discussions and suggestions.
We gratefully acknowledge the financial support of the ERC 321111 Rofirm, the ANR Isotace, and the
Chairs Financial Risks (Risk Foundation, sponsored by Société Générale) and Finance and Sustainable
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uncertainty”, this duality result has been established under different formulations,
see, among many others, Denis & Martini [14], Soner, Touzi & Zhang [32], Nutz &
Neufeld [28], Possamäı, Royer & Touzi [31], etc.

Another branch of literature studied the superhedging problem using dynamic
strategy on the underlying risky asset as well as the static strategy on a given
set (finite or infinite) of liquid options. This approach has been initiated by the
seminal work of Hobson [22], with the optimal Skorokhod embedding problem(SEP)
approach, i.e. finding the optimal stopping time on a Brownian motion under a
marginal constraint on the stopped Brownian motion. This approach is justified by
the fact that a continuous martingale can be considered as a time-changed Brownian
motion, and moreover, one can recover the marginal distribution of the underlying
martingale with (infinitely many) liquid call/put option prices of different strikes
but at a fixed maturity (see e.g. Breeden & Litzenberg [9]). We would like refer
to the survey papers [23, 30] for more details on this approach. More recently, this
problem has been studied by the so-called martingale optimal transport (MOT)
approach, starting from [5] and [19], etc. In particular, the superhedging duality
becomes a Kantorovich type duality as in the classical optimal transport problem.
We also refer to [1], [4], [16], [26], [21], [34], etc., among many others, for duality
results in different contexts.

In a discrete-time nondominated model, with presence of finite number (could
be 0) of liquid options, Bouchard & Nutz [10] introduce a notion of no-arbitrage
in a quasi-sure sense, and relate it to the existence of the “dominated” martingale
measures. In particular, a general duality result has been established between
the minimum superhedging cost (in a quasi-sure sense) and the supremum over
a suitable family of martingale measures, for European type derivative options.
Similar techniques and results have then been extended to the continuous time
case with continuous underlying process in Biagini, Bouchard, Kardaras and Nutz
[7]. We also notice that a similar duality result has also been obtained by Burzoni,
Frittelli & Maggis [11] in a slightly different discrete time setting.

The main objective of this paper is to extend the arguments and duality results
in Bouchard & Nutz [10] to the case of American type options, under their “quasi-
sure” no-arbitrage conditions. For American options, the superhedging strategy
should super-replicate the exercise payoff value of the option regardless of its exer-
cise time, and its natural dual formulation should be the supremum of the expected
value of the payoff at all stopping times and under a suitable family of martingale
measures. By introducing an enlarged canonical space, we reformulate the super-
hedging problem for American options as a problem for European options, and its
natural dual problem turns to be the supremum over a family of “weak” stopping
times. Then by adapting the arguments in [10], we obtained a general duality re-
sults. Moreover, restricting to the context where the liquid options are European
call/put options and are numerous enough, so that one can recover the marginal
distribution of the underlying risky assets, it leads naturally to a MOT problem.
By the approximating arguments, we obtain a Kantorovich type duality for the
MOT problem. We also discuss the equivalence between the “weak” and “strong”
stopping time formulations for the supremum (dual) problem.

While most of the literature on the robust hedging problem focuses on the (ex-
otic) European options, some works are devoted to the American options. For
example, Cox & Hoeggerl [12] studies the necessary (and sufficient in some cases)
conditions on the American Put prices for the absence of arbitrage. Dolinsky [15]
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studied the Game options (including American options) in a nondominated discrete-
time market, but without liquid options in the superhedging strategy. Neuberger
[27] considered a discrete time, discrete space market with presence of liquid Euro-
pean vanilla options, and obtained a duality result by using a “weak” dual formu-
lation. This approach has recently been exploited and presented with more fruitful
results in Hobson & Neuberger [24]. Bayraktar, Huang & Zhou [2] studied the
same superhedging problem as our paper, but they only considered the “strong”
stopping times for the dual formulation, which leads to a duality gap in general
cases. More recently, Bayraktar and Zhou [3] prove a duality result by considering
“randomized” stopping times, under some regularity and integrability conditions
on the payoff functions. Our “weak” formulation of the dual problem is more or
less in the same spirit of [27, 24, 3], but our approach leads to a duality results in a
more general setting, and/or under more general conditions (see more discussions
in Section 2.3 and also [25]).

The rest of the paper is organized as follows. Section 2 formulates the main
problem and provides the main results. The proofs are completed in Section 3.

2 Main results

2.1 Setting

Notations We first recall some notations used in Bouchard & Nutz [10]. Given a
measurable space (Ω,A), we denote by B(Ω) the set of all probability measures on
A. If Ω is a topological space, B(Ω) denotes its Borel σ-field. If Ω is a Polish space,
a subset A ⊆ Ω is analytic if it is the image of a Borel subset of another Polish space
under a Borel measurable mapping. A function f : Ω → R := [−∞,∞] is upper
semianalytic if {ω ∈ Ω : f(ω) > c} is analytic for all c ∈ R. Given a probability
measure P ∈ B(Ω) and a measurable function f : Ω → R, we define the expectation

EP[f ] := EP[f+] − EP[f−], with the convention ∞−∞ = −∞.

For a family P ⊆ B(Ω) of probability measures, a subset A ⊂ Ω is called P-polar
if A ⊂ A′ for some A′ ∈ A satisfying P[A′] = 0 for all P ∈ P, and a property is said
to hold P-quasi surely or P-q.s if it holds true outside a P-polar set.

A nondominated discrete-time model Following [10], we will consider a
discrete-time model (with slightly different notations). Let N ∈ N be the time
horizon, Ω0 = {ω0} be a singleton and Ω1 a Polish space. For each k ∈ {1, · · · , N},
we define Ωk := Ωk

1 as the k-fold Cartesian product. For each k, we denote by
F0
k := B(Ωk) and by Fk its universal completion. In particular, we notice that F0

0 is
trivial and we denote Ω := ΩN and F := FN . We shall often see Fk as a sub-σ-field
of FN , and hence obtain a filtration F = (Fk)0≤k≤N on Ω. Let k ∈ {0, · · · , N − 1}
and ω ∈ Ωk, we are given a non-empty convex set Pk(ω) ⊆ B(Ω1) of probability
measures, which represents the set of all possible models for the k + 1-th period,
given state ω at time k. We assume that for each k,

graph(Pk) := {(ω,P) : ω ∈ Ωk,P ∈ Pk(ω)} ⊆ Ωk ×P(Ω1) is analytic. (2.1)
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Given such a kernel Pk for each k ∈ {0, 1, · · · , N − 1}, we define a probability
measure P on Ω by Fubini’s theorem:

P(A) :=

∫

Ω1

· · ·

∫

Ω1

1A(ω1, ω2 · · · , ωN )PN−1(ω1, · · · , ωN−1; dωN ) · · · P0(dω1)

We can then introduce the set P ⊆ B(Ω) of possible models for the multi-period
market up to time N :

P :=
{

P0 ⊗ P1 ⊗ · · · ⊗ PN−1 : Pk(·) ∈ Pk(·), k = 0, 1, · · · , N − 1
}

. (2.2)

Notice that the condition (2.1) ensures that Pk has always a universally measurable
selector: Pk : Ωk → P(Ω1) such that Pk(ω) ∈ Pk(ω) for all ω ∈ Ωk. Then the set P
defined in (2.2) is nonempty.

Let d ∈ N, we equip an F0-adapted process S = (Sk)0≤k≤N , so that Sk =
(S1

k , · · · , S
d
k) : Ω → Rd is Borel measurable. Equivalently, we can consider Sk as a

Borel measurable random vector defined on Ωk, and it represents the (discounted)
price of the traded stocks at time k ∈ {0, 1, · · · , N}. Let H be the set of all F-
predictable Rd-valued (dynamic strategy) processes, then given H ∈ H, we denote

H · S :=
(

(H · S)k
)

k=0,1,··· ,N
, (H · S)k :=

k
∑

i=1

Hi∆Si,

where ∆Si := Si−Si−1 and Hi∆Si denotes the inner product
∑d

j=1H
j
i ∆Sj

i on Rd.

Further, let e ∈ N ∪ {0}, and g = (g1, · · · , ge) : Ω → Re be Borel measurable. For
each i = 1, · · · , e, gi is seen as a liquid option which can be bought or sold at time
k = 0 with price gi0 = 0. Suppose that the options g = (g1, · · · , ge) can only be
traded statically, so that a semi-static hedging strategy is a pair (H,h) ∈ H × Re.
We also denote by Mk(ω) the collection of all probability measures Q on Ω1, such
that Q ≪ P for some P ∈ Pk(ω) and under which EQ[∆Sk+1] = 0.

The following notion of no-arbitrage condition (NA(P)) has been introduced by
Bouchard & Nutz [10].

Definition 2.1. Condition NA(P) holds if for all (H,h) ∈ H × Re

(H · S)N + hg ≥ 0, P-q.s. =⇒ (H · S)N + hg = 0, P-q.s.

Let M be the collection of all probability measures Q on Ω under which S is a
F-martingale, and Q ≪ P for some P ∈ P, we then denote

Me :=
{

Q ∈ M : EQ[gi(X)] = 0, i = 1, · · · , e
}

.

It is proved in [10] that the condition NA(P) is equivalent to the existence of a
martingale measure Q ∈ Me.

Superhedging of American options While the duality result provided in
[10] concerns the superhedging cost of a European type option using semi-static
strategies, we will study the same problem for an American type option.

Without loss of generality, we assume that the studied American option is al-
lowed to be exercised at time k ∈ T := {1, · · · , N}, but not at time 0. Let the payoff
function of the American option is given by Φ = (Φk)1≤k≤N , where Φk : Ω → R is
upper semianalytic.
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Remark 2.2. Here Φk represents the payoff of the American option, at the maturity
N , if the holder exercises it at time k. For a standard American option, Φk should
be assumed to be Fk-measurable. However, we will allow that Φk be FN -measurable
for generality. In particular, it allows to study a portfolio including an American
option and some European options.

Since the American option’s holder can exercise it at any time, a superhedging
portfolio should dominate the payoff of the option, regardless of the exercise time
k = 1, · · · , N . In the contrast, the hedger should be allowed to adjust his dynamic
strategy, at each time k = 1, · · · , N − 1, using the information Fk as well as the
exercise time if it happens before (or at) time k. Therefore, we introduce H as the

collection of all process H = (H
1
, · · · ,H

N
) ∈ (H)N such that for any 1 ≤ i ≤ j ≤

k ≤ N one has H
j
i = H

k
i . Then for any H ∈ H and k ∈ {1, · · · , N}, we define

(H · S)kN := (H
k
· S)N =

N
∑

i=1

H
k
i ∆Si. (2.3)

Notice that for i ≤ k, H
k
i only depends on the information in Fi−1. Then our

minimum sueprhedging cost of the American option Φ using semi-static strategy is
given by

πe(Φ):=inf
{

x : ∃(H,h) ∈ H × Re s.t. x+(H ·S)kN + hg ≥ Φk,P-q.s.,∀k ∈ T
}

.(2.4)

A reformulation of the superhedging problem We next introduce an
enlarged probability space, and reformulate the superhedging problem (2.4) for
American options as a problem for European options.

Let us define an enlarged space Ω := Ω × T with T := {1, · · · , N}, a canonical
process X = (Xk)0≤k≤N and a (canonical) random variable T : Ω → T by Xk(ω̄) :=
ωk and T (ω̄) := θ, for all ω̄ := (ω, θ) ∈ Ω. Moreover, we extend naturally the
definition of S from Ω to Ω, i.e. S(ω̄) := S(ω) for ω̄ := (ω, θ) ∈ Ω. We next

introduce an enlarged filtration F
0

= (F
0
k)0≤k≤N by

F
0
0 := {∅,Ω} and F

0
k := σ

{

Xi, {T ≤ i}, i = 1, · · · , k
}

,

and the universally completed filtration F = (Fk)0≤k≤N by defining Fk as the

universally completion of F
0
k. It follows that the random variable T : Ω → T is

automatically an F
0
-stopping time. Moreover, we can define the class H of dynamic

strategy in the following equivalent way

H :=
{

H : Ω × T → Rd : H is F-predictable
}

.

Then by abusing of notations, we denote also

(H · S)N (ω̄) :=

N
∑

i=1

H i(ω̄)∆Si(ω̄), for all ω̄ = (ω, θ).

Let us denote by P the collection of all probability measures P on (Ω,F
0
N ) such

that, for every k = 0, 1, · · · , N − 1, Pω̄ ◦X−1
k+1 ∈ Pk(ω) for P-a.e. ω̄ = (ω, θ) ∈ Ω,

where (Pω̄)ω̄∈Ω is a family of conditional probability measures of P w.r.t. F
0
k. Let

Φ(ω̄) := Φθ(ω), for every ω̄ = (ω, θ) ∈ Ω,

we then obtain the following equivalent reformulation:
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Proposition 2.3. The superhedging problem πe(Φ) in (2.4) is equivalent to

π′
e(Φ) := inf

{

x : ∃(H,h) ∈ H× Re s.t. x+(H ·S)N + hg ≥ Φ, P-q.s.
}

. (2.5)

Proof. (i) First, we notice that P in (2.2) can be defined equivalently as collection
of all probability measures P on (Ω,F0

N ) such that, for every k = 0, 1, · · · , N − 1,
Pω ◦ X−1

k+1 ∈ Pk(ω) for P-a.e. ω ∈ Ω, where (Pω)ω∈Ω is a family of conditional
probability measures of P w.r.t. F0

k .
Let x ∈ R∪{∞} and (H,h) ∈ H×Re be such that x+(H ·S)N +hg ≥ Φ, P-q.s.

Then for every P ∈ P and k = 1, · · · , N , one has P(dω, dθ) := P(dω) ⊗ δk(dθ) ∈ P ,
and hence x + (H · S)N + hg ≥ Φ, P-a.s. It follows that x + (H · S)kN + hg ≥ Φk,
P-a.s. for all k ∈ T and P ∈ P. Therefore, one has πe(Φ) ≤ π′

e(Φ).

(ii)Next, let P ∈ P , and P := P|Ω be the marginal distribution of P on Ω. Remember
that Pk(ω) is assumed to be convex as in [10], it follows that P ∈ P.

Therefore, let x ∈ R ∪ {∞} and (H,h) ∈ H × Re satisfy x + (H · S)kN + hg ≥
Φk, P-q.s., for each k ∈ T, one has immediately that x+ (H ·S)N +hg ≥ Φ, P-a.s.,
for every P ∈ P, since P(dω, dθ) = P(dω) ⊗ Pω(dθ) where P := P|Ω and (Pω)ω∈Ω is
a family of conditional probability measures of P w.r.t. σ

(

Xk, k ∈ T
)

. It follows
then π′

e(Φ) ≤ πe(Φ).

Remark 2.4. (i) The above reformulation (2.5) can be considered as a minimum
superhedging cost of a European option on a filtered space (Ω,FN ,F) with payoff
Φ : Ω → R, but under the model uncertainty P.

(ii) The above reformulation technique (from an Americain option superreplication
problem to a European option problem) can be easily extended to a more general
context (such as the continuous time case).

(iii) In this discrete time context, if we choose P = B(Ω) to be the collection of
all Borel probability measures on Ω, then P turns to be the collection of all Borel
probability measures on Ω. In this case, the superreplication in (2.4) (and (2.5)) is
in fact in a point-wise sense.

The dual formulation Recall that for a European option defined on Ω, its
minimum superhedging cost equals to the supremum over a suitable family of mar-
tingale measures on Ω as shown in [10]. In view of Remark 2.4, the dual formulation
for the superhedging problem of American option on Ω (or equivalently, that of Eu-
ropean option on Ω) should be the supremum of the expected value of Φ under a
suitable family of martingale measures on the enlarged space Ω.

Let

Me :=
{

Q ∈ B(Ω) : Q ≪ P, EQ[gi(X)]=0, i=1,· · ·, e

and S is a (F
0
,Q)-martingale

}

,

where Q ≪ P means that for every k = 0, 1, · · · , N − 1, and any family of condi-

tional probability measures (Qω̄)ω̄∈Ω of Q w.r.t. F
0
k, one has Qω̄ ◦X−1

k+1 ∈ Mk(ω)

(i.e. Qω̄ ◦X−1
k+1 ≪ P ◦ X−1

k+1 for some P ∈ Pk(ω)) for Q-a.e. ω̄ = (ω, θ) ∈ Ω. We
then introduce the dual formulation of problem (2.4) by

sup
Q∈Me

EQ[ΦT (X)
]

. (2.6)
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Remark 2.5. We should see the probability measure Q ∈ Me as a market model,
consistent with the market price of options (gi)i=1,··· ,e, together with a stopping time
T . However, since T is a priori not a stopping time w.r.t. the filtration generated by
X (neither by S), it is in fact a weak formulation of the model-free pricing problem
in (2.6) (see more discussions in Section 2.3).

2.2 Main results

Our main result is the following duality under the no-arbitrage condition in Defi-
nition 2.1.

Theorem 2.6. Let NA(P) hold true, and Φk : Ω → R is upper semianalytic, for
each k ∈ T. Then the martingale measures set Me is nonempty, and

πe(Φ) = sup
Q∈Me

EQ[ΦT (X)
]

. (2.7)

Moreover, one has (H,h) ∈ H× Re such that

πe(Φ) +
(

H · S
)k

N
+ hg ≥ Φk, P-q.s. for every k ∈ T.

We emphasize that we do not assume that Φk is Fk-measurable throughout the
whole paper.

A martingale optimal transport (MOT) problem We next restrict to
the case Ω1 := Rd,

Ω := (Rd)N , S = X, and Pk(ω) := B(Rd), for all ω ∈ Ω. (2.8)

Moreover, we assume that the liquid options on the market are all vanilla options,
and are numerous enough so that one can recover the marginal distributiosn of
the underlying process S at some maturity times T0 = {t1, · · · , tN0

} ⊆ T, where
tN0

= N . More precisely, we are given a family µ = (µt1 , · · · , µtN0
) of marginal

distributions, such that µk(|x|) < ∞ for all k ∈ T0, and

µi(φ) ≤ µj(φ) for all 1 ≤ i ≤ j ≤ n and convex function φ : Rd → R.

Then the maximization problem (2.6) turns to be a MOT probelm:

P (µ) := sup
Q∈M(µ)

EQ
[

ΦT (X)
]

, (2.9)

where

M(µ) :=
{

Q ∈ B(Ω) : Sk ∼Q µk, k ∈ T0, and S is a (F
0
,Q)-martingale

}

.

Let Λ0 be the class of all Lipschitz function λ : Rd → R, and we denote Λ := ΛN0

0 .
We then introduce the replication problem as follows:

D(µ) := inf
{

µ(λ) : ∃(H,λ) ∈ H × Λ s.t. λ(ω)+(H ·S)kN (ω) ≥ Φk(ω),

for all k ∈ T, ω ∈ Ω
}

, (2.10)

where λ(ω) :=
∑N0

i=1 λi(ωti).
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Theorem 2.7. Suppose that Φk : Ω → R is bounded from above and upper semicon-
tinuous for each k ∈ T, Then in the above context of martingale optimal transport
problem, one has the existence of the optimal martingale Q

∗
∈ M(µ) in (2.9), and

the duality holds true:
P (µ) = D(µ).

2.3 Further discussions

The weak stopping time and the equivalence We should see a probability
measure Q ∈ Me on Ω as a weak (or randomized) stopping time. We say a weak
stopping term α is a term

α =
(

Ωα, Fα, Pα,Fα = (Fα
k )0≤k≤N , (Xα

k )0≤k≤N , (Sα
k )0≤k≤N , τα

)

such that
(

Ωα, Fα, Pα,Fα
)

is a filtered probability space, equipped with a T-
valued stopping time τα, an adapted Ω1-valued process Xα and an Rd-valued Fα-
martingale Sα, and moreover, the transition kernel from Xα

k to Xα
k+1 lies in Pk(ω)

conditioning on (Xα
1 , · · · ,X

α
k ) = ω. Denote by Ae the collection of all weak stop-

ping terms α such that EPα[

gi(X
α
T )

]

= 0 for each i = 1, · · · e, and by A(µ) the
collection of all weak stopping terms α such that Sα

k ∼ µk for all k ∈ T0, in the
context of (2.8).

Proposition 2.8. Let Φ : Ω → R be universally measurable, then

sup
α∈Ae

EPα[

Φτα(Xα)
]

= sup
Q∈Me

EQ[ΦT (X)
]

and sup
α∈A(µ)

EPα[

Φτα(Xα)
]

= sup
Q∈M(µ)

EQ[ΦT (X)
]

Proof. We will only prove the first equality since the second follows by the same
arguments. First, given an arbitrary stopping term α ∈ Ae, it is clear that
(Sα,Xα, τα,Pα) induces a probability measures Q ∈ Me such that EPα[

Φτα(Xα)
]

=

EQ[ΦT (X)
]

. Then one obtains the inequality “≤”. For the inverse inequality, it is
enough to notice that a probability measure Q ∈ Me together with the canonical
space (Ω,F ,F) and the canonical process (X,S) provides a weak stopping term in
Ae.

If the optimization problem in (2.6) can be seen as a weak formulation of the
problem, a natural question is whether it is equivalent to the strong formulation,
i.e. by considering only the stopping time τ ∈ T , where T denotes the class of all
T-valued F-stopping time in Ω. Let us consider the following “strong” formulation:

sup
Q∈Me

sup
τ∈T

EQ
[

Φτ (X)] and sup
Q∈M(µ)

sup
τ∈T

EQ
[

Φτ (X)].

The following example shows that under marginal constraint, the weak formu-
lation and strong formulation are not equivalent.

Example 2.9. Let us consider the case N = 2, T0 = T = {1, 2}, µ1 = δ{0} and

µ2 = 1
4

(

δ{−2} + δ{−1} + δ{1} + δ{2}
)

. Let Φ1(0) = 1, Φ2(±1) = 0 and Φ2(±2) = 2.
Then M(µ) contains only one probability measure, and by direct computation, one
has

EP
[

Φτ (X)] = 1, for all τ ∈ T .
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Let us now construct a martingale measure Q0 by

Q0(dω, dθ) :=
1

4
δ{1}(dθ)⊗

(

δ(0,1)+δ(0,−1)

)

(dω) +
1

4
δ{2}(dθ)⊗

(

δ(0,2)+δ(0,−2)

)

(dω).

Then one can check that Q0 ∈ M(µ) and it follows that

sup
Q∈M(µ)

EQ[ΦT (X)] ≥ EQ0 [ΦT (X)] =
3

2
> 1 = sup

Q∈M(µ)
sup
τ∈T

EQ
[

Φτ (X)].

The next natural question is whether one can obtain the equivalence under
certain conditions. We provide below two cases where the answer is affirmative.
The first is the case without marginal constraints (i.e. e = 0), and the second
case is to add, in the weak formulation, an immersion condition as introduced in
Blanchet-Scalliet, Jeanblanc & Romero [8, Section 3.1.2]. Let us define

M
0
e := {Q ∈ Me : Q[T > k|F

X
n ] = Q[T > k|F

X
k ], for any 0 ≤ k ≤ n ≤ N}.

Notice that (see Section 3.1.2 of [8]) the condition

Q[T > k|F
X
n ] = Q[T > k|F

X
k ], for all 0 ≤ k ≤ n ≤ N (2.11)

is equivalent to say that any (F
X
,Q)-martingale is a (F,Q)-martingale, where F

X

denote the natural filtration generated by X in Ω.

Proposition 2.10. Let Φ : Ω → R be universally measurable, then

sup
Q∈M

0

e

EQ[ΦT (X)] = sup
Q∈Me

sup
τ∈T

EQ
[

Φτ (X)]. (2.12)

Suppose that Φk is upper semianalytic for each k ∈ T and e = 0, then

sup
Q∈M0

EQ[ΦT (X)] = sup
P∈M0

sup
τ∈T

EP
[

Φτ (X)]. (2.13)

The proof will be completed in Section 3.2.

Comparison with Neuberger [27], and Hobson & Neuberger [24]
Neuberger [27] and Hobson & Neuberger [24] studied the same superhedging prob-
lem in a Markovian setting, where the underlying process S takes value in a discrete
lattice X . By considering the weak formulation (which is equivalent to our formu-
lation, as shown by Proposition 2.8 above), they obtain similar duality results.
Moreover, in this Markovian discrete space context, the optimization problem (2.6)
and the dual problem turn to be the linear programming problems under linear con-
straints, which can be solved numerically. Their arguments have also been extended
to a more general context, where S takes value in R+.

Comparing to [27, 24], our idea to consider the “weak” stopping terms turns
to be essentially the same. But our arguments to prove the duality are completely
different. Our setting is more general, as a heritage from the context of Bouchard
and Nutz [10]. Nevertheless, we do not discuss on the numerical computation of
the value π(Φ) nor that of the superhedging strategies.
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Comparison with Bayraktar, Huang & Zhou [2] and Bayraktar &
Zhou [3] In [2], the authors considered the same superhedging problem (2.4),
and established the duality

π(Φ) = inf
h∈Re

sup
τ∈T

sup
Q∈M0

EQ[Φτ − hg], (2.14)

under some regularity conditions (see Proposition 3.1 in [2]). Our duality in Theo-
rem 2.6 is more general and more complete, and moreover, together with Proposi-
tion 2.10, it induces the above duality (2.14). Moreover, we do not assume that Φk

is Fk-measurable, which permits to study the superhedging problem for a portfolio
containing an American option and some European options. Another subhedging
problem supτ∈T infQ∈M EQ[Φτ ] has also been studied in [2]. The corresponding
weak formulation is not clear for our techniques and we will not address to this
problem.

More recently, Bayraktar and Zhou [3] consider the “randomized” stopping
times, and obtain a more complete duality for problem (2.4). The dual formu-
lations in [3] and in our results are more or less in the same spirit (as in [27, 24]).
Nevertheless, the duality in [3] is established under some integrability conditions
and an abstract condition which is checked under regularity conditions (see their
Assumption 2.1 and Remark 2.1). Technically, they use the duality in [10] together
with a minimax theorem to prove their results. Our main idea is to introduce an
enlarged canonical space (together with an enlarged canonical filtration), to refor-
mulate it as a superhedging problem for European options. Then by adapting the
arguments in [10], we establish our duality under general conditions as in [10].

3 Proofs

In preparation of the proofs of Theorem 2.6, let us introduce

M
loc
e := {Q : Q ≪ P, EQ[gi(X)] = 0, i = 1, · · · , e

and S is a (F
0
,Q)-local martingale}.

Then by Proposition 2.8 and Lemma A.1 in Appendix, one can easily obtain the
weak duality:

sup
Q∈Me

EQ[ΦT (X)] ≤ sup
Q∈M

loc
e

EQ[ΦT (X)] ≤ πe(Φ) and P (µ) ≤ D(µ). (3.15)

3.1 Proof of Theorem 2.6 (the case e = 0)

To prepare the proof, let us introduce another filtration F
−

= (F
−
k )0≤k≤N on Ω by

F
−
0 := {∅,Ω} and F

−
k := σ{T ∧ k, Xi, i ≤ k}.

Notice that F
0
k contains all sets {T ≤ i} for i = 1, · · · , k, but F

−
k contains only

these sets for i = 1, · · · , k − 1. Therefore one has, in general, F
−
k ⊆ F

0
k and T

is not a F
−

-stopping time. We also define a restricted enlarged space, for every
k = 1, · · · , N ,

Ωk := Ωk × {1, · · · , k} = (Ω1)k × {1, · · · , k}.
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For each 1 ≤ i ≤ j ≤ N , we introduce an application from Ωj to Ωi (resp. Ωj to
Ωi) by

[ω]i := (ω1, · · · , ωi), [ω̄]i := ([ω]i, θ ∧ i), for all ω̄ = (ω1, · · · , ωj, θ) ∈ Ωj.

Then an F
−
k is the smallest σ-field on Ω generated by [·]k : Ω → Ωk; or equivalently,

a F
−
k -measurable random variable f defined on Ω can be identified as a Borel

measurable function on Ωk. The canonical processes X and S are naturally defined
on the restricted spaces Ωk and Ωk.

Recall that for ω ∈ Ωk, Mk(ω) denotes the collection of all martingale measures
Q on Ω1 such that Q ≪ P for some P ∈ Pk(ω). Then for an upper semianalytic
function f : Ωk+1 → R, we define for each ω̄ = (ω, θ) ∈ Ωk, Ek(f) : Ωk → R,

Ek(f)(ω̄) := sup
Q∈Mk(ω)

(

EQ[f(ω, ·, θ)]1{θ<k} +EQ[f(ω, ·, k)]∨EQ[f(ω, ·, k+1)]1{θ=k}

)

.

Lemma 3.1. Let f : Ωk+1 → R be upper semianalytic, then Ek(f) : Ωk → R is
still upper semianalytic. Moreover, there exist two universally measurable functions
(y1, y2) : Ωk → Rd × Rd such that

Ek(f)(ω̄) + y1(ω̄)∆Sk+1(ω, ·, θ) ≥ f(ω, ·, θ),

and Ek(f)(ω̄) + y2(ω̄)∆Sk+1(ω, ·, θ) ≥ f(ω, ·, k + 1), Pk(ω)-q.s.

for all ω̄ = (ω, θ) ∈ Ωk such that NA(Pk(ω)) holds and f(ω̄, ·) > −∞, Pk(ω)-q.s.

Proof. Notice that f1∨f2 is upper semianalytic whenever f1 and f2 are both upper
semianalytic. Then the above lemma is an immediate consequence of Lemma 4.10
of [10] by the definition of Ek.

Recall that M0 (resp. M
loc
0 ) means Me (resp. M

loc
e ) for the case e = 0. We

next provide a dynamic programming principle result.

Lemma 3.2. Let Φ : Ω → R be upper semianalytic and bounded from above, then

sup
Q∈M0

EQ[ΦT (X)] = E [Φ] := E0 ◦ · · · ◦ EN−1[Φ],

Proof. (i)First, let Q be an arbitrary martingale measure in M0, and (Q
N−1
ω̄ )ω̄∈Ω be

a family of conditional probability measures w.r.t. F
0
N−1, then for Q-a.e. ω̄ ∈ Ω, one

has Q
N−1
ω̄ ◦ S−1

N ∈ M([ω]N−1). Notice also F
−
N−1 ⊂ F

0
N−1, it follows immediately

that
EQ

[

ΦT (X)
∣

∣F
−
N−1

]

≤ EN−1[Φ], Q-a.s.

Next, considering conditional probability measures w.r.t F
0
N−2 and then F

−
N−2, one

obtains
EQ

[

ΦT (X)
∣

∣F
−
N−2

]

≤ EN−2 ◦ EN−1[Φ], Q-a.s.

Repeating the procedure, we then obtain that, for any Q ∈ M0, E
Q[ΦT (X)] ≤ E [Φ].

(ii)To prove the inverse inequality “≥”, we first consider, for a fixed ω̄ = (ω, θ) ∈ Ωk,
two optimization problems:

V1(ω̄) := sup
Q∈M(ω)

EQ
[

E
k+1

(Φ)(ω, ·, θ)
]

and V2(ω̄) := sup
Q∈M(ω)

EQ
[

E
k+1

(Φ)(ω, ·, k+1)
]

.
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Notice that {(ω,Q) : Q ∈ Mk(ω), ω ∈ Ωk} is analytic, then following exactly the
same arguments as in Lemma 4.13 of [10], one can choose a universally measurable
selector

(

Q
ε
k =

(

Q
1,ε
k (ω̄),Q2,ε

k (ω̄)
))

ω̄∈Ωk
such that

EQ
1,ε
k

(ω̄)[E
k+1

(Φ)(ω, ·, θ)] ≥ V1(ω̄)−ε and EQ
2,ε
k

(ω̄)[E
k+1

(Φ)(ω, ·, k+1)] ≥ V2(ω̄)−ε.

Given a probability P on (Ωk,B(Ωk)), we can define a concatenated probability
measures P⊗Q

ε
k on (Ωk+1,B(Ωk+1)) by

EP⊗Q
ε

k [f ] :=

∫

Ω

[

EQ
1,ε
k

(ω̄)[f(ω, ·, θ)]1{θ<k} + EQ
1,ε
k

(ω̄)[f(ω, ·, θ)]1{θ=k,V1(ω̄)≥V2(ω̄)}

+ EQ
2,ε

k
(ω̄)[f(ω, ·, k + 1)]1{θ=k,V1(ω̄)<V2(ω̄)}

]

dP(ω̄).

Let Q
ε

:= Q
ε
0 ⊗ · · · ⊗Q

ε
N−1, under which S is a generalized martingale (and equiv-

alently a local martingale) w.r.t. F. In particular, one has

E(Φ) ≤ EQ
ε

[Φ] + Nε ≤ sup
Q∈M

loc
0

EQ[Φ] + Nε.

Finally, notice that Φ is bounded from above, then by Lemma A.2 in Appendix as
well as the arbitrariness of ε > 0, we conclude the proof.

Proof of Theorem 2.6 (the case e = 0). First, one has the weak duality as in
(3.15)

sup
Q∈Me

EQ[ΦT (X)
]

≤ πe(Φ).

Next, for the inverse inequality, we can assume, with loss of generality, that Φ
is bounded from above. Indeed, by Lemma A.3, one has limn→∞ πe(Φ∧n) = πe(Φ)
(see also the proof of Theorem 3.4 of [10]). Besides, the other approximation

limn→∞ sup
Q∈Me

EQ[ΦT (X) ∧ n] = sup
Q∈Me

EQ[ΦT (X)] is an easy consequence of
the monotone convergence theorem.

When Φ is bounded from, by Lemma 3.2, it is enough to prove that there is
some H ∈ H such that

E [Φ] + (H · S)kN ≥ Φk, for each k = 1, · · · , N, P-q.s. (3.16)

Define E
k
(Φ)(ω̄) := (Ek ◦ · · · ◦ EN−1)(Φ)(ω̄), then by Lemma 3.1, there exist two

universally measurable functions (yk1 , y
k
2 ) : Ωk → Rd × Rd such that

yk1(ω̄)∆Sk+1(ω, ·, θ) ≥ E
k+1

(Φ)(ω, ·, θ) − E
k
(Φ)(ω̄),

and yk2(ω̄)∆Sk+1(ω, ·, θ) ≥ E
k+1

(Φ)(ω, ·, k + 1) − E
k
(Φ)(ω̄), Pk(ω)-q.s.

It follows that

N−1
∑

k=0

Hk+1∆Sk+1 ≥
N−1
∑

k=0

(

E
k+1

(Φ) − E
k
(Φ)

)

= Φ − E(Φ), P-q.s.

with Hk+1(ω̄) := yk1([ω̄]k)1{θ≤k} + yk1 ([ω̄]k)1{θ>k}.
Moreover, we inherit from [10] the existence of the optimal dual strategies.
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3.2 Proof of Proposition 2.10

(i)We follow the proof in Proposition 4.3 of El Karoui and Tan [17]. Let Q ∈ M
0
e, we

denote by Q its marginal distribution on Ω. By the convexity of Pk(ω), one has the

convexity of Mk(ω), and hence one has Q ∈ Me. Let F
X
N := σ(X1, · · · ,XN ) be the

σ-field generated by X1, · · · ,XN , and (Qω)ω∈Ω be a family of regular conditional

probability distribution (r.c.p.d.) of Q w.r.t. F
X
N . Denote then by Fω(t) := Qω[T ≤

t] the distribution function of T under Qω, and by F−1
ω (u) the right-continuous

generalized inverse function of t 7→ Fω(t). Then for fixed u ∈ [0, 1], ω 7→ F−1
ω (u) is

an F-stopping time under the immersion condition (2.11). Let U be an independent
random variable of uniform distribution on [0, 1], it follows that

EQ
[

ΦT (X)
]

=

∫

Ω
EQω

[

ΦT (ω)
]

Q(dω) =

∫

Ω
E
[

Φ
F−1
ω (U)(ω)

]

Q(dω)

=

∫ 1

0
EQ

[

Φ
F−1

X
(u)(X)

]

du ≤ sup
τ∈T

EQ
[

Φτ (X)
]

,

where the last inequality follows from the fact that F−1
ω (u) is a F-stopping time for

every u ∈ [0, 1]. We hence obtain (2.12), since the inverse inequality is trivial.
(ii) To prove (2.13), it is enough to use the dynamic programming. First, by
considering the law Q on Ω induced by (X,S, τ) under some Q ∈ M0, it is clear

that one has inequality supQ∈M0
supτ∈T EQ

[

Φτ (X)
]

≤ sup
Q∈M0

EQ[ΦT (X)]. Next,
let us define a F-stopping time by

τ̂(ω) := inf
{

k ≥ 1 : E
k
[Φ] ≥ sup

Q∈Mk(ω)
EQ

[

E
k+1

[Φ]
]

}

.

Then τ̂ satisfies that supQ∈M0
EQ

[

Φτ̂ (X)
]

≤ supQ∈M0
EQ[ΦT (X)].

3.3 Proof of Theorem 2.6 (the case e ≥ 1)

We will adapt the arguments in Section 5 of Bouchard & Nutz [10] to prove Theorem
2.6 in the context with finitely many options e ≥ 1.

For technical reasons, we introduce

ϕ(T,X) := 1 + |g1(X)| + · · · + |ge(X)| + |ΦT (X)|,

and

M
ϕ
e := {Q ∈ M0 : EQ[ϕ] < ∞ and EQ[gi] = 0 for j = 1, · · · , e}. (3.17)

Moreover, in view of Lemma A.2, one has

sup
Q∈Me

EQ[ΦT (X)] = sup
Q∈M

ϕ
e

EQ[ΦT (X)].

Proof of Theorem 2.6 (the case e ≥ 1). The existence of some Q ∈ Me is an
easy consequence of Theorem 5.1 of [10] under the NA(P) assumption, we will then
focus on the duality results.

First, the duality πe(Φ) = sup
Q∈Me

EQ[ΦT (X)] in (2.7) has already been proved
for the case e = 0, we will use the induction arguments: Suppose that the duality
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(2.7) holds true for the case with e ≥ 0, We aim to prove the duality with e + 1
options:

πe+1(Φ) = sup
Q∈M

ϕ
e

EQ[ΦT (X)],

where the addition option has a Borel-measurable payoff function f ≡ ge+1 such
that |f | ≤ ϕ, and has an initial price f0 = 0. By the weak duality, the “≥” side of
the inequality holds true, we will focus on the “≤” side of the inequality:

πe+1(Φ) ≤ sup
Q∈M

ϕ

e

EQ[ΦT (X)]. (3.18)

If f(X) is replicable using strategies H ∈ H and (g1, · · · , ge), we can then reduce
it to the case with e options and the result is trivial. Let us assume that f is not
replicable, and we claim that there is a sequence (Qn)n≥1 ⊂ Mϕ

e such that

EQn [f(X)] −→ f0 and EQn [ΦT (X)] −→ πe+1(Φ), as n −→ ∞. (3.19)

Next, denote by πs
e(f) the minimum superhedging cost of European option f in

sense of [10], then since f is not replicable, it follows that 0 = f0 < πs
e(f) =

supQ∈Me
EQ[f(X)]. Then there exists some Q+ ∈ Me, s.t. 0 < EQ+[f(X)] < πs

e(f).

With the same argument on −f , we can find another Q− ∈ Me such that

−πs(−f) < EQ
− [f(X)] < f0 < EQ+ [f(X)] < πs(f)

Then one can choose an appropriate sequence of weight λn
−, λ

n
0 , λ

n
+, such that λn

− +
λn
0 + λn

+ = 1, λn
± → 0 and

Q
′
n := λn

−Q− + λn
0Qn + λn

+Q+ ∈ Me, and EQ
′

n [f ] = f0 = 0,

i.e. Q
′
n ∈ M

ϕ
e+1. Moreover, since λn

± → 0, it follows that EQ
′

n [ΦT (X)] → πe+1(Φ)
and we hence have the inequality (3.18).

It is enough to prove the claim (3.19), for which we suppose without loss of
generality that πe+1(Φ) = 0. Assume that (3.19) fails, then one has

0 /∈ {EQ[(f(X),ΦT (X))] : Q ∈ M
ϕ
e } ⊆ R2.

By the convexity of the above set and the separation argument, there is (y, z) ∈ R2

with |(y, z)| = 1, such that

0 > sup
Q∈M

ϕ

e

EQ[yf(X) + zΦT (X)] = πe(yf + zΦ) ≥ πe+1(zΦ). (3.20)

Now, if z > 0, we then have πe+1(Φ) < 0, which contradicts πe+1(Φ) = 0. If

z < 0, then by (3.20), one has 0 > EQ
′

[yf(X) + zΦT (X)] = EQ
′

[zΦT (X)] for some

Q
′
∈ Me+1 ⊆ Me since Me+1 is nonempty under the NA(P) assumption in the

case of e + 1 options. As z < 0, it follows that EQ
′

[ΦT (X)] > 0 = πe+1(Φ), which
contradicts the weak duality result (3.15), and we hence conclude the proof.
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3.4 Proof of Theorem 2.7

A first approach to prove Theorem 2.7 could be following the two steps arguments
as in Guo, Tan and Touzi [21]. First, under the condition that Φk is bounded from
above and upper semicontinuous, we can prove that µ ∈ B((Rd)N0) 7→ P (µ) ∈ R is
concave and upper semicontinuous, where we equip B((Rd)N0) with the Wasserstein
topology. Recall that S = X, then using Fenchel-Moreau theorem, it follows that

P (µ) = D0(µ) := inf
λ∈Λ

{

µ(λ) + sup
Q∈M0

EQ
[

ΦT (S) − λ(S·)
]

}

. (3.21)

Then by solving the maximization problem in (3.21) using Theorem 2.6, we can
easily conclude the proof of Theorem 2.7.

In the following, we will provide another proof, which is based on an approximate
argument. For simplicity, we suppose that T0 = {N}, where the same arguments
work for more general T0. In preparation, let us provide a technical lemma. In the
context of the martingale optimal transport problem (2.8), we introduce a sequence
of basket options with payoff

gk(ω) :=
(

d
∑

i=1

aikS
i
N −Kk

)

+
− ck, with ck :=

∫

Rd

(

d
∑

i=1

aikxi −Kk

)

+
µ(dx),

where (ak)k≥1 ⊂ Rd is a sequence of constant vectors and (Kk)k≥1 a sequence of
constants. We assume that the sequence (ak,Kk)k≥1 is dense in Rd × R.

Next, let us introduce

Mm(µ) :=
{

Q ∈ M : EQ[gk(S·)] = 0, for k = 1, · · · ,m
}

,

and
Pm(µ) := sup

Q∈Mm(µ)

EQ
[

ΦT (S)
]

.

Similarly, an approximate dual problem is given by

Dm(µ) := inf
{

x : ∃(H,h) ∈ H × Rm s.t. for all k ∈ T, ω ∈ Ω,

x +
m
∑

k=1

hkgk(ωN ) + H · Sk
N (ω) ≥ Φk(ω)

}

.

Lemma 3.3. Let (Qm)m≥1 ⊂ M0 be a sequence of martingale measures such that
Qm ∈ Mm(µ) for each m ≥ 1. Then,
(i) (Qm)m≥1 is relatively compact under the weak convergence topology.
(ii) Moreover, the sequence (SN ,Qm)m≥1 is uniformly integrable, and any accumu-
lation point of (Qm)m≥1 belongs to M0(µ).

Proof. (i) We notice that one has supm≥1 E
Qm

[
∑d

i=1 |S
i
N |

]

< ∞. Let us first prove

the relative compactness of (Qm)m≥1. By Prokhorov theorem, it is enough to
find, for every ε > 0, a compact setDε ⊂ Rd such that Qm[Sk /∈ Dε] ≤ ε for
all k = 1, · · · , N . It is then enough to find, for every ε > 0, a constant Kε > 0
such that Qm

[

|Si
k| ≥ Kε

]

≤ ε for all i = 1, · · · , d and k = 1, · · · , N . Next, by

the martingale property, one has EQm [|Si
k|] ≤ EQm[|Si

N |]. Then for every ε > 0,
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one can choose Kε > 0 such that supm≥1 E
Qm

[
∑d

i=1 |S
i
N |

]

≤ Kεε. It follows that

Qm

[

|Si
k| ≥ Kε

]

≤
EQm [|Si

k
|]

Kε
≤ ε, and hence (Qm)m≥1 is relatively compact.

(ii) Let Q0 be an accumulation point of (Qm)m≥1. Since the sequence (ak,Kk)k≥1

is supposed to be dense in Rd × R, it is easy to obtain that Q0 ◦ S
−1
N = µ.

(iii) To conclude the proof, it is enough to show that the martingale property is
preserved for the limiting measure Q0. By abstracting a subsequence, we assume
that Qm → Q0 weakly, and we will prove that for all 1 ≤ k1 < k2 ≤ N , for any
bounded continuous function ϕ : (Rd)k1 × T → R, one has

EQ0

[

ϕ
(

S1, · · · , Sk1 , T ∧ (k1 + 1)
)

(Sk2 − Sk1)
]

= 0. (3.22)

Let K > 0, and χK : Rd → Rd a continuous function uniformly bounded by K
satisfying χK(x) = x when ‖x‖ ≤ K, and χK(x) = 0 when ‖x‖ ≥ K + 1. Then for
every m = 0 or m ≥ 1, one has

∣

∣EQm
[

ϕ(S, T )(Sk2 − Sk1)
]
∣

∣ ≤
∣

∣EQm
[

ϕ(S, T )
(

χK(Sk2) − χK(Sk1)
)]
∣

∣

+|ϕ|∞EQm
[

|Sk2 |1|Sk2
|≥K + |Sk1 |1|Sk1

|≥K

]

, (3.23)

where we simplify ϕ(S1, · · · , Sk1 , T ∧ (k1 + 1)) to ϕ(S, T ).
For every ε > 0, by uniformly integrability of (SN ,Qm)m≥1, there is Kε > 0

such that

|ϕ|∞EQm
[

|Sk2 |1|Sk2
|≥Kε

+ |Sk1 |1|Sk1
|≥Kε

]

≤ ε, for all m = 0, 1, · · · (3.24)

Moreover, for m ≥ 1, Qm is a martingale measure, then EQm
[

ϕ(S, T )(Sk2−Sk1)
]

= 0

and hence
∣

∣EQm
[

ϕ(S, T )
(

χK(Sk2) − χK(Sk1)
)]∣

∣ ≤ ε. Then by taking the limit
m → ∞, it follows that

∣

∣EQ0

[

ϕ(S, T )
(

χK(Sk2) − χK(Sk1)
)]
∣

∣ ≤ ε.

Combining (3.23) and (3.24), and by the arbitrariness of ε > 0, it follows that (3.22)
holds true and we hence conclude the proof.

Proof of Theorem 2.7. We notice that by Theorem 2.6, Pm(µ) = Dm(µ) ≥ D(µ).
Let (Qm)m≥1 be a sequence of probability measures such that Qm ∈ Mm(µ) for
each m ≥ 1 and

lim sup
m→∞

EQm
[

ΦT (S)
]

= lim sup
m→∞

Pm(µ).

It follows by Lemma 3.3 that there is some Q0 ∈ M(µ) and a subsequence Qmk
→

Q0 under the weak convergence topology. It leads the inequality

P (µ) ≥ EQ0

[

ΦT (S)
]

≥ lim sup
m→∞

Pm(µ) ≥ lim sup
m→∞

Dm(µ) ≥ D(µ),

and we hence conclude the proof by the weak duality (3.15)

A Appendix

Lemma A.1. Let Φ : Ω → R and g = (g1, · · · , ge) : Ω → Re be Borel measurable, Q

be a probability measure on (Ω,F
0
N ) under which S is a F-local martingale and such

that EQ[gi(X)] = 0 for all i = 1, · · · , e. Then for any x ∈ R and (H,h) ∈ H × Re

such that x + (H · S)N (ω̄) + hg(ω) ≥ Φ(ω̄), Q-a.s. one has EQ
[

Φ
]

≤ x.

16



Proof. The proof follows by exactly the same arguments as in Lemma A.2 of [10],
using the discrete time local martingale characterization in Lemma A.1 of [10].

Lemma A.2. Let Q be a probability measure under which S is a local martingale,
and ϕ : Ω → [1,∞) be such that |Φk(ω)| ≤ ϕ(ω) for all k ∈ T. Let us denote by

M
Q

ϕ the collection of all probability measures Q
′
under which S is a martingale,

EQ
′

[ϕ(X)] < ∞. Then EQ[ΦT (X)] ≤ sup
Q

′

∈M
Q

ϕ

EQ
′

[ΦT (X)].

Proof. First, by Lemma 3.2, there exists a probability P∗ equivalent to Q on (Ω,FN )

such that EP∗ [ϕ(X)] < ∞. On the filtered probability space (Ω,FN ,F,P∗), one

defines M
loc
∗ as the collection of all probability measures Q

′
dominated by P∗ and

such that S is (F,Q
′
)-local martingale. Then by the classical arguments for the

dominated discrete time market (see e.g. the proof of Lemma A.3 of [10]), one can
easily obtain the inequality

EQ[ΦT (X)] ≤ sup
Q

′

∈M
loc

∗

EQ
′

[ΦT (X)] ≤ sup

Q
′

∈M
Q

ϕ

EQ
′

[ΦT (X)],

which concludes the proof.

Using the same arguments as in Theorem 2.2 of [10], we can obtain a closeness
result for the set of all payoffs which can be superreplicated from initial capital

x = 0. Let us denote by L
0
+ the set of all random variables defined on Ω, and define

C := {(H · S)N : H ∈ H} − L
0
+ = {(H · S)N − ξ : H ∈ H, ξ ∈ C

+
0 }.

Lemma A.3. The set C is closed in the following sense: Let (W n)n≥1 ⊂ C and W
be a random variable such that W n → W P-q.s., then W ∈ C.

Proof. One only needs to adapt the proof of Theorem 2.2 of [10], together with the
new induction technique in our context as in Section 3.1.
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[4] M. Beiglböck, A. Cox and M. Huesmann. Optimal transport and Skorokhod
embedding. preprint, 2013.
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