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Pierre Henry-Labordère† Xiaolu Tan‡ Nizar Touzi§
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Abstract

We propose an unbiased Monte-Carlo estimator for E[g(Xt1 , · · · ,Xtn)], where X

is a diffusion process defined by a multi-dimensional stochastic differential equation

(SDE). The main idea is to start instead from a well-chosen simulatable SDE whose

coefficients are updated at independent exponential times. Such a simulatable process

can be viewed as a regime-switching SDE, or as a branching diffusion process with one

single living particle at all times. In order to compensate for the change of the coeffi-

cients of the SDE, our main representation result relies on the automatic differentiation

technique induced by Bismu-Elworthy-Li formula from Malliavin calculus, as exploited

by Fournié et al. [14] for the simulation of the Greeks in financial applications. In

particular, this algorithm can be considered as a variation of the (infinite variance)

estimator obtained in Bally and Kohatsu-Higa [3, Section 6.1] as an application of the

parametrix method.

MSC2010. Primary 65C05, 60J60; secondary 60J85, 35K10.

Key words. Unbiased simulation of SDEs, regime switching diffusion, linear parabolic

PDEs.

1 Introduction

Let d ≥ 1, T > 0 and W be a d-dimensional Brownian motion, µ : [0, T ] × R
d → R

d

and σ : [0, T ] × R
d → M

d be the drift and diffusion coefficients, where M
d denotes

the collection of all d× d dimensional matrices. Under standard assumptions on these
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coefficients, we consider the process X defined as the unique strong solution of the

multi-dimensional SDE,

X0 = x0, and dXt = µ
(
t,Xt

)
dt + σ

(
t,Xt

)
dWt, (1.1)

Our main focus in this paper is on the Monte-Carlo approximation of the expectation

V0 := E
[
g
(
Xt1 , · · · ,Xtn

)]
, (1.2)

for some function g : R
d×n → R and discrete time grid 0 < t1 < · · · < tn = T .

When n = 1, the analytic formulation of the problem is obtained by the well-known

representation V0 = u(0,X0), where u is the solution of the linear PDE

∂tu+ b(t, x) ·Du+
1

2
Tr

[
σσ⊤(t, x)D2u

]
= 0, uT = g, (1.3)

In practice, the Monte-Carlo method consists in simulating N independent copies of

a discrete-time approximation of X, and then estimating V0 by the empirical mean

value of the simulations. The corresponding error analysis consists of a statistical error

induced by the central limit theorem, and a discretization error which induces a biased

Monte Carlo approximation. Under some smoothness conditions, Talay and Tubaro

[25] proved that the discretization error for the Euler scheme is controlled by a rate

C∆t, where ∆t denotes the time step discretization. Since then, many works focused

on the analysis of the discretization error under various discretization techniques, see

e.g. Kloeden and Platen [23], and Graham and Talay [17] for an overview. However,

the statistical error estimate N− 1

2 is lost in all cases, as its combination with the

discretization error leads to an overall error estimate of the order N− 1

2
+ε for some

ε > 0.

In the context of one-dimensional homogeneous SDEs with constant volatility coef-

ficient, Beskos and Roberts [6] developed an exact simulation technique for X by using

the Girsanov change measure together with a rejection algorithm, see also Beskos, Pa-

paspiliopoulos and Roberts [7], Jourdain and Sbai [22], etc... This technique also

applies to more general SDEs by using of the so-called Lamperti transformation which

reduces the approximation problem to the unit diffusion case. We also refer to the

subsequent active literature of exact simulation of an L
∞−approximation of X, see.

e.g Blanchet, Chen and Dong [5].

An alternative approximation method for V0 was induced by the multilevel Monte-

Carlo (MLMC) algorithm introduced by Giles [15], which generalizes the statistical

Romberg method of Kebaier [18]. One of the main advantages of the MLMC algo-

rithm is to control the global error (sum of discretization error and statistical error)

with a much better rate w.r.t. the computation complexity. We refer to Giles and

Szpruch [16], Alaya and Kebaier [1], Rhee and Glynn [24] for further developments.

In particular, Rhee and Glynn [24] obtained an unbiased simulation method for SDEs

by using a random level in the estimator.

More recently, Bally and Kohatsu-Higa [3] provided a probabilistic interpretation

of the parametrix method for PDEs. In particular, when n = 1, they obtained a

representation formula for V0 in form

E
[
g
(
X̂T

)
WT

]
, (1.4)
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where X̂ is defined by a Euler scheme of X on a random discrete-time grid (the

time step follows an independent exponential distribution), and WT is a corrective

weight function depending on X̂ . The above representation is formally similar to

the stochastic finite element method proposed by Bompis and Gobet [8], where one

replaces X by its Euler scheme solution in (1.2) and then corrects partially the error by

some well-chosen weight functions. Notice that in the above representation of Bally and

Kohatsu-Higa [3], the process X̂ can be exactly simulated and hence it may provide an

unbiased estimator for V0. Nevertheless, the obtained weight function WT is integrable

but has infinite variance, and hence the corresponding Monte-Carlo estimator looses

the standard central limit error estimate.

In this paper, we provide a representation of V0 in the spirit of (1.4), but with an

alternative weight function for the representation. Our results follow from completely

different arguments. More importantly, our unbiased approximation of V0 has finite

variance, and applies for a large class of SDEs.

Our main idea is to consider the Euler scheme solution X̂ as solution to a regime-

switching SDE with some well-chosen coefficients. In order to compensate for the

change of the coefficients of the SDE, we introduce some weight functions obtained by

the automatic differentiation technique induced by Bismut-Elworthy-Li formula from

Malliavin calculus, as exploited by Fournié et al. [14] for the simulation of the Greeks

in financial applications.

The technique introduced in the present paper is inspired by the numerical algo-

rithm introduced in [19, 21], for semilinear PDEs of the form

∂tu+
1

2
∆u+ F0(t, x, u) = 0, uT = g,

for some nonlinearity F0. The main idea in [19, 21] is to use an approximation by a

branching diffusion representation induced by approximating the nonlinearity F0 by a

polynomial in u. Namely, given the nature of the linear operator, the representation

is obtained by means of a Brownian motion with branching driven by the polynomial

approximation of F0.

Loosely speaking, the method developed in the present paper follows by reading

the PDE part of (1.3) in the following equivalent form:

∂tu+
1

2
∆u+ F1(t, x,Du,D

2u) = 0,

where

F1(t, x, z, γ) := b(t, x) · z + 1

2
Tr

[
(σσ⊤(t, x)− I)γ

]
.

However, in contrast with the nonlinearity F0, the above function F1 involves the

gradient and the Hessian of the solution u. Consequently the last PDE can not be

handled by the existing literature on branching diffusion representation of PDEs. The

automatic differentiation technique introduced in the present paper is an important

new idea which allows to convert Du and D2u in F1 into u. Since no powers of u are

involved in the equation, this leads to a representation by means of a Brownian motion
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with exactly one descendent with two different possible types revealed by the weight

function corresponding to the order of differentiation.

We believe that the automatic differentiation trick introduced here has very im-

portant consequences, beyond the particular application of the present paper. Indeed,

in our paper [20], we provide a significant extension of the branching diffusion repre-

sentation to a general class of semilinear PDEs.

The paper is organized as follows. In Section 2, we consider the SDE with constant

diffusion coefficient, and propose an unbiased estimator for V0 for both Markovian

case and path-dependent case. Then in Section 3, we consider the SDE with general

diffusion coefficient function, and obtain a similar representation formula for V0, which

is integrable but of infinite variance. Next, in Section 4, we provide some numerical

examples. Finally, we complete some technical proofs in Section 5. In particular,

an easy example is studied in Section 5.1 to illustrate the main idea of the technical

proofs.

2 Unbiased simulation of SDE with constant

diffusion coefficient

In this section, we will restrict to the constant diffusion coefficient case, and propose

an unbiased estimator for V0 having finite variance.

2.1 The Markovian case

Let us start by the Markovian case, where the diffusion process X is defined by

X0 = x0, dXt = µ(t,Xt) dt + σ0 dWt, (2.1)

for some matrix σ0 ∈ M
d, and our objective is to compute

V0 = E[g(XT )]. (2.2)

for some function g : Rd → R. We impose the following conditions on µ and σ0:

Assumption 2.1. The diffusion coefficient σ0 is non-degenerate, the drift function

µ(t, x) is bounded continuous in (t, x), uniformly 1
2 -Hölder in t and uniformly Lipschitz

in x, i.e. for some constant L > 0,
∣∣∣µ(t, x)− µ(s, y)

∣∣∣ ≤ L
(√

|t− s|+
∣∣x− y

∣∣
)
, ∀(s, x), (t, y) ∈ [0, T ]× R

d. (2.3)

2.1.1 The unbiased simulation algorithm

To introduce our unbiased simulation algorithm, let us first introduce a random discrete

time grid. Let β > 0 be a fixed positive constant, (τi)i>0 be a sequence of i.i.d. E(β)-
exponential random variables. We define

Tk :=
( k∑

i=1

τi

)
∧ T, k ≥ 0, and Nt := max

{
k : Tk < t

}
. (2.4)
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Then (Nt)0≤t≤T is a Poisson process with intensity β and arrival times (Tk)k>0. We

denote also T0 := 0 and ∆Tk+1 := Tk+1 − Tk.

Let W be a d-dimensional Brownian motion independent of (τi)i>0, we introduce

∆WTk
:= WTk

−WTk−1
, k > 0.

and a process X̂ as the Euler scheme of X on the random discrete grid (Tk)k≥0, i.e.

X̂0 = x0 and

X̂Tk+1
:= X̂Tk

+ µ
(
Tk, X̂Tk

)
∆Tk+1 + σ0∆WTk+1

, k = 0, 1, · · · , NT . (2.5)

Then our estimator is given by

ψ̂ := eβT
[
g
(
X̂T

)
− g

(
X̂TNT

)
1{NT>0}

]
β−NT

NT∏

k=1

W1
k, (2.6)

with

W1
k :=

(
µ(Tk, X̂Tk

)− µ(Tk−1, X̂Tk−1
)
)
· (σ⊤0 )−1∆WTk+1

∆Tk+1
. (2.7)

Theorem 2.2. Suppose that Assumption 2.1 holds true, and g is Lipschitz. Then

E
[(
ψ̂
)2]

< ∞ and V0 = E
[
ψ̂

]
.

Proof. (i) We first show that E
[(
ψ̂
)2]

< ∞. For simplicity, we denote ∆X̂k :=

X̂Tk
− X̂Tk−1

for k > 0. Let Lg be the Lipschitz constant of the function g, and set

L0 :=
∣∣(σ0σ⊤0

)−1∣∣ > 0 by the non-degeneracy of σ0. Then using Assumption 2.1, it

follows by direct computation that

∣∣e−βT ψ̂
∣∣ ≤ Lg

(
|g(x0)|+∆T1 + |∆X̂T1

|
) NT∏

k=1

L(
√

∆Tk+1 + |∆X̂Tk+1
|)

β∆Tk+1

∣∣∣(σ⊤0 )−1∆WTk+1

∣∣∣.

Then denoting ÊTk
:= E

[
·
∣∣X̂Tk

,∆Tk+1

]
, we have

ÊTk

[∣∣∣
√

∆Tk+1 + |∆X̂Tk+1|
∆Tk+1

(σ⊤0 )
−1∆WTk+1

∣∣∣
2]

≤ E

[(
1 + |µ|∞

√
T +

∣∣σ0Z
∣∣)2∣∣(σ⊤0 )−1Z

∣∣2
]
,

where |µ|∞ :=
√∑d

i=1 |µi|20, |µi|0 := supt,x |µi(t, x)|, and Z is a standard centered

normal distribution in R
d. This provides

ÊTk

[∣∣∣
√

∆Tk+1 + |∆X̂Tk+1|
∆Tk+1

(σ⊤0 )
−1∆WTk+1

∣∣∣
2]

≤ 2
(
1 + |µ|∞

√
T )2 E

[∣∣(σ⊤0 )−1Z
∣∣2] + 2E

[∣∣σ0Z
∣∣2∣∣(σ⊤0 )−1Z

∣∣2]

= 2
(
1 + |µ|∞

√
T )2 Tr((σ0σ

⊤
0 )

−1) + 2
(
3d+ d(d− 1)

)
=: γ.

We therefore get the following upper bound:

E
[
ψ̂2

]
≤ Ce2βT e−βT+ γL2T

β , where C := L2
gE

[(
|g(0)| +∆T1 + |∆X1|

)2]
. (2.8)

(ii) The equality V0 = E[ψ̂] will be proved in Section 5, with illustration of the main

idea in Section 5.1.
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2.1.2 On the choice of β

Notice that the random variable ψ̂ in (2.6) can be exactly simulated from a sequence

of Gaussian N (0, 1) and exponential E(β) random variables. Then the integrability

and representation results in Theorem 2.2 induce an unbiased simulation Monte-Carlo

method to approximate V0, with error induced by the standard central limit theorem.

We next observe that the constant β > 0 may be chosen so as to minimize the

approximation error relative to the computational effort:

• By the central limit theorem, the error induced by the Monte Carlo estimator

based on the representation ψ̂ is characterized by the variance of ψ̂. For tractabil-

ity reasons, we shall instead replace it by the bound (2.8).

• The computation effort is proportional to the numberNT of arrivals of the Poisson

process before the maturity T , and is thus given by C ′
E[NT ] = C ′βT .

In view of this, we shall choose β by minimizing the ratio of the variance bound (2.8) to

the mean computational effort. This minimization problem is obviously independent

of the constants C,C ′, and reduces to:

min
β>0

f(β), where f(β) :=
1

βT
exp

(
T
(
β +

γL2

β

))
.

Direct computation shows that the equation f ′(β) = 0 has a unique solution on (0,∞)

given by

β∗ :=
√
γL2 + T 2/4 +

T

2
.

As limβց0 f(β) = limβ→∞ f(β) = ∞, this shows that β∗ is the minimizer of the

above defined criterion, and will be taken as our “best sub-optimal” choice of β for

the unbiased estimator ψ̂.

2.2 The path-dependent case

In this part, we would like to provide an extension of the above estimator ψ̂ in (2.6)

to the path-dependent case. Let n > 0, 0 = t0 < t1 < · · · < tn = T , σ0 ∈ M
d be a

non-degenerate matrix, and µ : [0, T ]×R
d×n → R

d be a continuous function, Lipschitz

in the space variable. Let X be the unique solution of SDE, with initial condition

X0 = x0,

dXt = µ(t,Xt1∧t, · · · ,Xtn∧t) dt + σ0 dWt; (2.9)

and the objective is to compute the value,

Ṽ0 := E
[
g
(
Xt1 , · · · ,Xtn

)]
, (2.10)

for some Lipschitz function g : Rd×n → R.

6



Remark 2.3. It is clear that the value Ṽ0 defined above can be characterized by a

parabolic PDE system. Namely, for every k = 1, · · · , n and (x1, · · · , xk−1) ∈ R
d×(k−1),

we define

µk(t, x) := µ(t, x1, · · · , xk−1, x, · · · , x), ∀(t, x) ∈ [tk−1, tk]× R
d. (2.11)

Suppose that (uk)k=1,··· ,n is a family of functions such that uk is defined on [tk−1, tk]×
R
d×k and x 7→ uk(t, x1, · · · , xk−1, x) is a solution (at least in the viscosity sense) of

∂tuk +
1

2
σ0σ

⊤
0 : D2uk + µk ·Duk = 0, (2.12)

with terminal conditions

uk(tk, x1, · · · , xk) = uk+1(tk, x1, · · · , xk, xk), for k = 1, · · · , n − 1,

and un(tn, x1, · · · , xn) = g(x1, · · · , xn). Then we have Ṽ0 = u1(0, x0).

2.2.1 The algorithm

The unbiased simulation algorithm of Ṽ0 can be obtained by an iteration of the estima-

tor (2.6) on each time interval [tk, tk+1]. One should just be careful on the integrability

issue. Let us first introduce the algorithm.

Recall that W be a standard d-dimensional Brownian motion, (τi)i>0 is a sequence

of i.i.d. E(β)-exponential random variables independent of W . Then N = (Ns)0≤s≤t

and (Ti)i>0 are defined in (2.4). Define further for every k = 1, · · · , n, Ñk := Ntk −
Ntk−1

the number of jump arrivals on [tk−1, tk), and T̃
k
0 := tk−1 and T̃

k
j := TNtk−1

+j∧tk,

∆T̃ k
j := T̃ k

j − T̃ k
j−1, W̃ k

j := WT̃ k
j
, ∆W̃ k

j := W̃ k
j − W̃ k

j−1, ∀j = 1, · · · , Ñk + 1.

Example 2.4. We give below an example for the case n = 2. In the following example,

the number of jump arrivals on [0, t1) is Ñ1 = 2, that on [t1, t2) is Ñ2 = 1, and total

number of jump arrivals is NT = 3.

For k = 1, we have T̃ 1
0 = 0, T̃ 1

1 = T1, T̃
1
2 = T2 and T̃ 1

3 = t1; W̃
1
0 = 0, W̃ 1

1 = WT1
,

W̃ 1
2 = WT2

and W̃ 1
3 = Wt1 . For k = 2, we have T̃ 2

0 = t1, T̃
2
1 = T3, T̃

2
2 = t2, and

W̃ 2
0 =Wt1 , W̃

2
1 =WT3

and W̃ 2
2 =Wt2 .

✲

0 T1 T2 t1 T3 t2

We next introduce a process
(
X̃k,x

j

)
, ∀j = 0, 1, · · · , Nk + 1, for each k = 1, · · · , n

and initial condition x = (x0, x1, · · · , xk−1) ∈ R
d×k by X̃k,x

0 := xk−1 and

X̃k,x
j+1 := X̃k,x

j + µk
(
T̃ k
j , X̃

k,x
j

)
∆T̃ k

j+1 + σ0∆W̃
k
j+1.

Similarly, for every j = 1, · · · , Nk, we define a automatic differentiation weight, with

µk defined by (2.11),

W̃k
j :=

(
µk

(
T̃ k
j , X̃

k,x
j

)
− µk

(
T̃ k
j−1, X̃

k,x
j−1

))
·
(
σ⊤0

)−1
∆W̃ k

j+1

∆T̃ k
j+1

.
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We now introduce the algorithm for the path-dependent case, in a recursive way.

First, for x = (x0, x1, · · · , xn) ∈ R
d×(n+1), set ψ̃x

n+1 := g(x1, · · · , xn). Next, for

k = 1, · · · , n, denote

Xk,x := (x0, x1, · · · , xk−1, X̃
k,x

Ñk+1
) and Xk,x,0 := (x0, x1, · · · , xk−1, X̃

k,x

Ñk
1{Ñk>0}).

Then given ψ̃·
k+1, we define

ψ̃x

k := eβ(tk−tk−1)
(
ψ̃X

k,x

k+1 − ψ̃X
k,x,0

k+1 1{Ñk>0}

)
β−Ñk

Ñk∏

j=1

W̃k
j . (2.13)

We finally obtain the numerical algorithm of the path-dependent case:

ψ̃ := ψ̃x0

1 . (2.14)

2.2.2 The integrability and representation result

We notice that the algorithm in the path-dependent case is nothing else than an

iterative algorithm of the Markovian case, as suggested by the PDEs (2.12) in Remark

(2.3). When the random variable ψ̃ in (2.14) is integrable, it is not surprising to obtain

the representation Ṽ0 = E
[
ψ̃
]
as a consequence of Theorem 2.2. However, because of

the renormalization term (i.e.
(
ψ̃X

k,x

k+1 −ψ̃X
k,x,0

k+1 1{Ñk>0}
)
in (2.13)), the variance analysis

becomes less obvious. We provide here a sufficient condition to ensure that ψ̃ has finite

variance.

Theorem 2.5. Suppose that µ : [0, T ] × R
d×n → R

d and g : Rd×n → R are differen-

tiable up to the order n, with bounded derivatives. Then

E
[(
ψ̃
)2]

< ∞ and Ṽ0 := E
[
ψ̃
]
.

We will prove the integrability result here, and leave the proof of the representation

result Ṽ0 := E
[
ψ̃
]
in Section 5. As preparation, let us first provide two technical

lemmas. Let π = (0 = s0 < s1 < · · · < sm = T ) be an arbitrary partition of

the interval [0, T ], µ̄ : [0, T ] × R
d → R

d a R
d−valued function. We define Xπ,x by

Xπ,x
0 := x and

Xπ,x
k+1 := Xπ,x

k + µ̄
(
sk,X

π,x
k

)
∆sk+1 + Wsk+1

−Wsk . (2.15)

Further, let ϕ : Rd → R be a smooth function, ℓ > 0 and i = (i1, · · · , iℓ) ∈ {1, · · · , d}ℓ,
we denote ∂ℓx,iϕ(x) := ∂ℓxi1

···xiℓ
ϕ(x).

Lemma 2.6. Suppose that x 7→ µ̄(t, x) is differentiable up to order n with uniformly

bounded derivatives, and Xπ,x is defined by (2.15) with initial condition Xπ,x
0 = x.

Then x 7→ Xπ,x
k is differentiable up to order n and there is a constant C independent

of the partition π such that

max
1≤ℓ≤n

max
i∈{1,··· ,d}ℓ

max
0≤k≤m

∣∣∂ℓx,iXπ,x
k

∣∣ ≤ C.

8



Proof. For simplicity, we consider the one dimensional d = 1 case, while the multi-

dimensional can be deduced by almost the same arguments. First, let ℓ = 1, we

have

∂xX
π,x
k+1 = ∂xX

π,x
k + ∂xµ̄

(
sk,X

π,x
k

)
∂xX

π,x
k ∆sk+1,

which implies that

∂xX
π,x
k+1 = Πk+1

j=1

(
1 + ∂xµ̄

(
sk,X

π,x
k

)
∆sk+1

)
.

Since ∂xµ̄(t, x) is uniformly bounded, it follows that ∂xX
π,x
k is bounded by some con-

stant C1 independent of 1 ≤ k ≤ m and the partition π. By induction, it is easy to

deduce that for ℓ = 2, · · · , n,

∂ℓxℓX
π,x
k+1 = ∂ℓxℓX

π,x
k + Pℓ

(
∂ixiµ̄(sk,X

π,x
k ), ∂ixiX

π,x
k , i = 1, · · · , ℓ− 1

)
∆sk+1,

where Pℓ is a Polynomial on ∂i
xi µ̄(sk,X

π,x
k ) and ∂i

xiX
π,x
k for i = 1, · · · , ℓ− 1, which is

uniformly bounded by some constant independent of k = 1, · · · ,m and the partition

π. Hence ∂ℓ
xℓX

π,x
k is also bounded by some constant Cℓ independent of k = 1, · · · ,m

and the partition π.

Lemma 2.7. Let (ψ̃x

k )1≤k≤n+1 be defined by (2.13). Then for every k = 2, · · · , n+ 1,

and every x = (x0, x1, · · · , xk−1) ∈ R
d×k, the map xk−1 7→ ψ̃x

k has derivatives up to

order k − 1 and

max
1≤ℓ≤k−1

∣∣∣∂ℓxk−1,i
ψ̃x

k

∣∣∣ ≤ C

n∏

j=k

(Ñ j + 1)j−1. (2.16)

Proof. We will prove it by induction. First, let k = n+1, then ψ̃x

n+1 := g(x, x1, · · · , xn)
and hence |∂ℓxn

ψ̃x| ≤ C for some constant C and for every ℓ = 1, · · · , n.
Next, suppose that (2.16) holds true for ψ̃x

k+1, we know from (2.13) that

ψ̃x

k :=
(
ψ̃X

k,x

k+1 − ψ̃X
k,x,0

k+1 1{Ñk>0}

) Ñk∏

j=1

µk(T̃
k
j , X̃

k,x
j )− µk(T̃

k
j−1, X̃

k,x
j−1)

β∆T̃ k
j+1

· (σ⊤0 )−1∆W̃ k
j+1.

Then using the estimation in Lemma 2.6, we see that (2.16) is also true for ψ̃x

k , and

we hence conclude the proof.

Proof of Theorem 2.5 (i). By Lemma 2.7, we know that x 7→ ψ̃x,x
2 is differentiable

and in particular uniformly Lipschitz with coefficient bounded by 2CΠn
j=2(Ñ

j +1)j−1.

Then the definition of ψ̃x0

1 falls into the Markovian case n = 1, but with terminal

condition x 7→ ψ̃x,x
2 . Notice that Ñk ≤ NT has a Poisson distribution: P(NT = m) =

e−βT (βT )m

m! . It follows that, for some constant C > 0,

E
[∣∣ψ̃x0

1

∣∣2] ≤ E

[
CÑk

4C2
n∏

j=2

(Ñ j + 1)2(j−1)
]

≤ E

[
4C2CNT (NT + 1)n(n−1)

]
< ∞,

which implies that ψ̃ has finite variance.

9



3 Unbiased simulation of general SDEs

Let us now consider the SDE (1.1) with general diffusion coefficient function, i.e. with

drift and diffusion coefficients µ : [0, T ]× R
d → R

d and σ : [0, T ]× R
d → M

d:

X0 = x0, and dXt = µ
(
t,Xt

)
dt + σ

(
t,Xt

)
dWt.

Our objective of study in this section is

V0 = E
[
g(XT )

]
, for some function g : Rd → R.

We will provide a representation result of V0 in the same spirit of that in Section 2.

Remark 3.1 (Lamperti’s transformation). We also notice that in some cases, the

above SDE (1.1) may be reduced to the constant diffusion coefficient case (2.1), by the

so-called the Lamperti transformation.

(i) When d = 1 and σ(t, x) > 0, let us define a function h : [0, T ] ×R → R by

h(t, x) :=

∫ x

0

1

σ(t, y)
dy.

Notice that for fixed t ∈ [0, T ], x 7→ h(t, x) is strictly increasing, we denote h−1(t, ·)
its inverse function. Then by Itô’s formula, it is easy to obtain that Yt := h(t,Xt)

satisfies the SDE

dYt =

(
∂th

(
t, h−1(t, Yt)

)
+
µ(t, h−1(t, Yt))

σ(t, h−1(t, Yt))
− 1

2
∂xσ

(
t, h−1(t, Yt)

))
dt + dWt,

whose diffusion coefficient is a constant as in SDE (2.1).

(ii)When d > 1, σ is non-degenerate and satisfies some further compatibility conditions,

one can also obtain a similar transformation to reduce SDE (5.8) to the constant

diffusion coefficient case.

3.1 An estimator of infinite variance for general SDEs

Let us impose the following conditions on coefficient functions µ and σ.

Assumption 3.2. The function (µ, σ) : [0, T ] × R
d → R

d × M
d and a := 1

2σσ
⊤ :

[0, T ]×R
d → M

d are uniformly bounded, and are uniformly Hölder in the time variable,

uniformly Lipschitz in the space variable, i.e. for some constant L,

∣∣(µ, σ, a
)
(t, x)−

(
µ, σ, a

)
(s, y)

∣∣ ≤ L
(√

|t− s|+
∣∣x− y

∣∣), (3.1)

for all (t, x), (s, y) ∈ [0, T ] × R
d; and σ(t, x) is non-degenerate such that, for some

constant ε0 > 0,

a(t, x) :=
1

2
σσ⊤(t, x) ≥ ε0Id, ∀(t, x) ∈ [0, T ]× R

d.

10



Recall that (Tk)k≥0 are defined by (2.4) with a sequence of i.i.d. E(β)-exponential
random variables, andW is a Brownian motion; the increment of the Brownian motion

are defined by ∆Wtk :=Wtk −Wtk−1
, and ∆Tk := Tk−Tk−1. As in (2.5), we introduce

X̂ as solution of the Euler scheme on discrete grid by X̂0 := x0 and

X̂Tk+1
:= X̂Tk

+ µ
(
Tk, X̂Tk

)
∆Tk+1 + σ

(
Tk, X̂Tk

)
∆WTk+1

k = 0, · · · , NT . (3.2)

We then introduce a representation formula by

ψ̂ := eβT
[
g
(
X̂T

)
− g

(
X̂TNT

)
1{NT>0}

]
β−NT

NT∏

k=1

(
W1

k +W2
k

)
, (3.3)

where, for each k = 1, · · · , NT ,

W1
k :=

[
µ(Tk, X̂Tk

)− µ(Tk−1, X̂Tk−1
)
]
·
(
σ⊤(Tk, X̂Tk

)
)−1

∆WTk+1

∆Tk+1
,

and

W2
k :=

[
a
(
Tk, X̂Tk

)
− a

(
Tk−1, X̂Tk−1

)]

:
[(
σ⊤(Tk, X̂Tk

)
)−1 ∆WTk+1

∆W⊤
Tk+1

−∆Tk+1Id

∆T 2
k+1

σ(Tk, X̂Tk
)−1

]
. (3.4)

Theorem 3.3. Suppose that Assumption 3.2 holds true, and g is Lipschitz. Then

E
[∣∣ψ̂

∣∣] < ∞ and V0 = E[ψ̂].

Proof. (i) Consider the random vectors ξ1k :=
∆WTk√
∆Tk

and ξ2k :=
∆WTk

∆W⊤

Tk
−∆TkId

∆Tk
, for

all k = 1, · · · , NT + 1, which are independent of ∆Tk conditional on {∆Tk > 0} =

{NT ≥ k − 1}, and which have finite second order moment. Notice that µ(t, x) and

a(t, x) are uniformly bounded, and 1/2−Hölder-continuous in t and Lipschitz in x, and

σ is uniformly bounded from below above zero. Then, for each k = 1, · · · , NT ,

∣∣W1
k

∣∣ ≤ C
(√

∆Tk +
∣∣X̂Tk

− X̂Tk−1

∣∣)
∣∣∣
∆WTk+1

∆Tk+1

∣∣∣ ≤ C
(
1 +

√
∆Tk + |ξ1k|

)
|ξ1k+1|

√
∆Tk
∆Tk+1

,

where the constant C > 0 may vary from term by term but is uniformly bounded for

all k. Similarly, one obtains that

∣∣W2
k

∣∣ ≤ C
(
1 +

√
∆Tk + |ξ1k|

)
|ξ2k+1|

√
∆Tk
∆Tk+1

1√
∆Tk+1

.

As ∆Tk ≤ T , it follows that

∣∣W1
k

∣∣+
∣∣W2

k

∣∣ ≤ C
(
1 + |ξ1k|

)(
|ξ1k+1|+ |ξ2k+1|

)
√

∆Tk
∆Tk+1

1√
∆Tk+1

,

for some constant C > 0 independent of k. In addition, we have by the Lipschitz

condition on g that

E

[∣∣g(X̂T )− g(X̂TNT
)
∣∣
∣∣∣∆TNT+1

]
< C

√
∆TNT+1.
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Then, it follows from the expression of ψ̂ in (3.3) that

E
[∣∣ψ̂

∣∣] ≤ CE

[ NT∏

k=1

C√
∆Tk+1

1{NT≥1}
]
+ CE

[∣∣g(X̂T )
∣∣ 1{NT=0}

]

≤ CE

[ NT∏

k=1

C√
∆Tk+1

]
+ CE

[∣∣g(x0 + µ(0, x0)T + σ(0, x0)WT )
∣∣
]

for some constant C > 0, where we have also used the independence of the ξik’s and

their the boundedness of their second order moments. The integrability of ψ̂ is now a

direct consequence of Lemma A.2.

(ii) The proof of the equality V0 = E[ψ̂] will be completed in Section 5.

To conclude, we notice that the variable ψ̂ is of order ΠNT

k=11/
√

∆Tk+1 in general

cases, and the latter is integrable but of infinite variance. Therefore, ψ̂ is not a good

estimator for Monte-Carlo method. Nevertheless, it should still have some theoretical

value as an alternative representation formula obtained by Bally and Kohatsu-Higa [3,

Section 6.1].

3.2 An estimator for one-dimensional driftless SDE

To overcome the problem of variance explosion of the estimator (3.3), we will consider

the higher order approximation X̂ of X, and obtain an estimator of finite variance for

the one dimensional (d = 1) driftless SDE of form

X0 = x0, dXt = σ(t,Xt) dWt, (3.5)

Our objective is to compute

V0 := E
[
g(XT )

]
, for some function g : R → R.

Recall (Tk)k≥0 has been introduced in (2.4) from a sequence of i.i.d. exponential

random variables, independent of the Brownian motion W . We next define X̂ by

X̂0 = x0,

dX̂t =
(
σ(Tk, X̂Tk

) + ∂xσ(Tk, X̂Tk
)
(
X̂t − X̂Tk

))
dWt, on [Tk, Tk+1], (3.6)

for k = 0, 1, · · · , NT . By denoting

ck1 := σ(Tk, X̂Tk
)− ∂xσ(Tk, X̂Tk

)X̂Tk
and ck2 := ∂xσ(Tk, X̂Tk

), (3.7)

then the above linear SDE (3.6) has an explicit solution which is given by

X̂Tk+1
= X̂Tk

+ σ(Tk, X̂Tk
)∆WTk+1

, if ck2 = 0, (3.8)

and

X̂Tk+1
= − ck1

ck2
+

ck1
ck2

exp
(
− (ck2)

2

2
∆Tk+1 + ck2∆WTk+1

)

+ X̂Tk
exp

(
− (ck2)

2

2
∆Tk+1 + ck2∆WTk+1

)
, if ck2 6= 0. (3.9)
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We then define ψ̂ by

ψ̂ := eβT
[
g(X̂T )− g(X̂TNT

)1{NT>0}
]
β−NT

NT∏

k=1

W2
k, (3.10)

where the automatic differentiation weight is given by (see Lemma 5.9 below)

W2
k :=

a(Tk, X̂Tk
)− ãk

2a(Tk, X̂Tk
)

(
− ∂xσ(Tk, X̂Tk

)
∆WTk+1

∆Tk+1
+

∆W 2
Tk+1

−∆Tk+1

∆T 2
k+1

)
, (3.11)

with a(·) := 1
2σ

2(·), ãk := 1
2 σ̃

2
k and σ̃k := σ(Tk−1, X̂Tk−1

) + ∂xσ(Tk−1, X̂Tk−1
)(X̂Tk

−
X̂Tk−1

).

Similarly to the discussion at the end of Section 3.1 (see also Remark 5.8 below),

the variable ψ̂ in (3.10) is integrable but of infinite variance in general. To make the

variance finite, we introduce an alternative estimator using an antithetic variable. Let

X̂−
T be an antithetic variable of X̂T defined by

X̂−
T := X̂TNT

− σ(TNT
, X̂TNT

)∆WTNT
, if cNT

2 = 0,

and

X̂−
T = − cNT

1

cNT
2

+
cNT

1

cNT
2

exp
(
− (cNT

2 )2

2
∆TNT+1 − cNT

2 ∆WTNT+1

)

+ X̂TNT
exp

(
− (cNT

2 )2

2
∆TNT+1 − cNT

2 ∆WTNT +1

)
, if cNT

2 6= 0.

Denote W−
k := W2

k for k = 1, · · · , NT − 1 and

W−
NT

:=
a(TNT

, X̂NT
)− ãNT

2a(TNT
, X̂NT

)

(
∂xσ(TNT

, X̂NT
)
∆WTNT +1

∆TNT+1
+

∆W 2
TNT+1

−∆TNT+1

∆T 2
NT+1

)
.

We then introduce

ψ :=
ψ̂ + ψ̂−

2
with ψ̂− := eβT

[
g(X̂−

T )− g(X̂TNT
)1{NT>0}

]
β−NT

NT∏

k=1

W−
k . (3.12)

Notice that the Brownian motion is symmetric, thus ψ̂− has exactly the same distri-

bution as ψ̂, and it serves as an antithetic variable.

Assumption 3.4. The diffusion coefficient σ(·) satisfies σ(t, x) ≥ ε > 0 for all (t, x) ∈
[0, T ] × R, σ(t, x) is bounded and Lipschitz in (t, x), ∂xσ(t, x) is bounded continuous

in (t, x) and uniformly Lipschitz in x. Further, the terminal condition function g(·) ∈
C2
b (R).

Theorem 3.5. Suppose that Assumption 3.4 holds true. Then

E
[∣∣ψ̂

∣∣] + E
[∣∣ψ

∣∣2] < ∞; and V0 = E
[
ψ̂
]

= E
[
ψ
]
. (3.13)

We will complete the proof in Section 5.4.
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Remark 3.6. (i) As ψ has finite variance, we may use the representation of The-

orem 3.5 to built an unbiased Monte-Carlo estimator of V0. However, given the as-

sumed regularity conditions, and the restriction to the one-dimensional setting, such

a Monte-Carlo approximation is not competitive with the corresponding PDE based

approximation methods. However, we believe that the present methodology is open to

potential improvements, and we hope to improve our results in some future work so as

to address the higher dimensions.

(ii) For a general SDE with drift function and/or d ≥ 1, we can also consider a similar

choice of (µ̂, σ̂), which leads to µ̂(t, x) = c1 + c2x and σ̂(t, x) = c3 + c4x and a linear

SDE

dX̂t =
(
c1 + c2X̂t

)
dt +

(
c3 + c4X̂t

)
dWt, (3.14)

where c1 ∈ R
d, c2, c3 ∈ M

d and c4 is linear operator from R
d to M

d. However, to the

best of our knowledge, the exact simulation of linear SDE (3.14) in high dimensional

case, as well as the associated automatic differentiation (Malliavin) weight as in (3.11)

(see also Lemma 5.9 below), is still an open question.

4 Numerical examples

Notice that our estimator ψ̂ given by (2.6) (resp. ψ̃ given by (2.13) and (2.14)) is an

unbiased estimator for V0 in (2.2) (resp. Ṽ0 in (2.10)). Then the error analysis of the

Monte-Carlo approximation reduces to the statistical error. Hence the computation

cost to achieve the accuracy O(ε) for the approximation of V0 (resp. Ṽ0) is of order

O(ε−2), thus avoiding of the dependence on the discretization error.

By combining different level of simulations, the MultiLevel Monte Carlo (MLMC)

method proposed by Giles [15] achieves a computation cost of order O(ε−2(log ε)2) or

O(ε−2) depending on the strong discretization error rate. In particular, by considering

a randomization of the level, Rhee and Glynn [24] obtained an unbiased estimator.

In the following, we provide some numerical results and comparisons between our

unbiased simulation method with the Euler based MLMC method proposed by [15].

4.1 Two one-dimensional SDEs

Let W be a one-dimensional standard Brownian motion, we consider the SDE given

by

S0 = 1, dSt = 0.1
(√

M ∧ St − 1
)
Stdt +

1

2
StdWt,

where M is a large constant introduced in order to guarantee the Lipschitz property

of the drift coefficient (in our numerical implementation, we have observed that the

value of M is not relevant for large M , and that the numerical finding are not changed

by taking M = ∞; this hints that our results may be extended beyond the case of

Lipschitz coefficients). Applying Lemperti’s transformation Xt := log(St), we reduce

the above SDE to the constant diffusion coefficient case, in form of (2.1),

X0 = 0, dXt =
(
0.1

(√
M ∧ eXt − 1

)
− 1/8

)
dt +

1

2
dWt. (4.1)
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Mean value Statistical error Computation time

US (N = 105) 0.204864 0.00140709 0.016814

MLMC 0.204993 0.000949166 0.032017

US (N = 106) 0.205396 0.000444462 0.171835

MLMC 0.205602 0.000308634 0.234526

US (N = 107) 0.20552 0.000142554 1.63013

MLMC 0.205648 0.0001 1.96197

US (N = 108) 0.205641 4.52282e-05 16.2189

MLMC 0.205638 3.18855e-05 18.3833

Table 1: Numerical results for V0 in (4.2) (case d = 1), US denotes our unbiased simulation

algorithm with β = 0.1, the computation times are expressed in second.

We implement our unbiased simulation method for the two following expectations:

V0 := E
[
(ST −K)+

]
, and Ṽ0 := E

[( 1

n

n∑

k=1

Stk −K
)
+

]
, (4.2)

where we choose K = 1, T = 1, n = 10 and tk := k
nT . Notice that the path-

dependent example does not satisfy the differentiability sufficient condition in Theorem

2.5. However, our numerical findings do not show any numerical difficulty in the

present setting.

Using different numbers N of simulations, we obtain the standard deviation as

(statistical) error of our estimator. Next, using the errors obtained by our unbiased

simulation method, we implement the MLMC algorithm in Section 5 of Giles [15], and

we compare the computation time (in second) of the two methods. More precisely,

the statistical error of the unbiased simulation method is given by

√
Var[ψ̂]/N , where

Var[ψ̂] denotes the estimated variance of ψ̂. For the implementation of MLMC, we

choose M = 4, NL = 104 and use equation (10) in [15] as criteria to stop the loop in

MLMC (see more details in Section 5 of [15] for the meaning of M and NL).

The numerical results are given in Tables 1 and 2. We observe that with the same

Monte-Carlo error, both methods have very close performance. In the present partic-

ular example, the computational time of our methods is slightly smaller. However, the

conclusion may change depending on the nature of the example. Let us consider the

problem

V0 := E
[
sin(XT )

]
, (4.3)

where X is defined by SDE, for some constant µ0 ∈ R,

X0 = 0, dXt = µ0 cos(Xt)dt +
1

2
dWt.

We implement the MLMC algorithm and our unbiased simulation method with dif-

ferent value of β, but with a given fixed error ε = 0.0002. The two methods provide
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Mean value Statistical error Computation time

US (N = 105) 0.127032 0.000762635 0.144998

MLMC 0.127053 0.000536248 0.323337

US (N = 106) 0.126363 0.000241231 1.40843

MLMC 0.126747 0.000169842 1.8194

US (N = 107) 0.126703 7.6418e-05 13.9005

MLMC 0.126643 5.37691e-05 16.7499

Table 2: Numerical results for Ṽ0 in (4.2) (case d = 1), US denotes our unbiased simulation

algorithm with β = 0.05, the computation times are expressed in second.

very close estimation of value V0, so we give a comparison on the computation time

in Figure 1. We can observe that β in the unbiased simulation method should not be

too big nor too small, to minimize the computation effort. When µ0 = 0.2, the com-

putation time of MLMC method is slightly longer than the US method with β ≈ 0.05.

However, when µ0 = 0.5, the computation time MLMC method is always smaller than

the US method for any choice of β > 0. This shows that, in the context of the present

example, the performance of our unbiased simulation method is of the order of that of

the multilevel Monte Carlo method.

4.2 A multi-dimensional SDE

We next consider a d-dimensional SDE with d = 4. Let W = (W 1, · · · ,W 4)⊤ be a

4-dimensional standard Brownian motion, and σ0 the 4 × 4 be the lower triangular

matrix such that

σ0σ
⊤
0 =




1 1/2 1/2 1/2

1/2 1 1/2 1/2

1/2 1/2 1 1/2

1/2 1/2 1/2 1


 .

We consider the SDE

dXt = µ(t,Xt)dt + σ0dWt, Xi
0 = 0, i = 1, · · · , 4,

with drift function µ(t, x) = (µi(t, x), i = 1, · · · , 4) be given by µi(t, x1, · · · , x4) =

0.1
(√

3
4 exp(xi) +

1
4exp(x) − 1

)
− 1

8 , where exp(x) := (ex1 + · · · + ex4)/4. We then

consider two problems:

V0 := E

[(1
4

4∑

i=1

eM∧Xi
T −K

)
+

]
, and Ṽ0 := E

[( 1

4n

n∑

k=1

4∑

i=1

e
M∧Xi

tk −K
)
+

]
, (4.4)

where we choose K = 1, T = 1, n = 10 and tk := k
nT and M is a large number

so as to ensure that the terminal condition is Lipschitz. As in the one-dimensional

case, we implement our unbiased simulation method using different sample sizes N .
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Figure 1: Comparison of the computation time of MLMC method and unbiased simulation

method for problem (4.3), with the same given error.

Then, we use the errors, obtained from our unbiased simulation method, in the MLMC

algorithm in Section 5 of Giles [15], and we compare the computation time (in second)

of the two methods.

The numerical results are given in Tables 3 and 4. We observe that both meth-

ods have very similar performance, with a slightly small advantage for our method.

However, similar to the one-dimensional case, the MLMC algorithm could be better

in other examples.

4.3 A one-dimensional driftless SDE

Finally, we provide an example of a one-dimensional driftless SDE. We recall that

under the assumed regularity in Theorem 3.5, we are not expecting our method to be

competitive with the PDE based approximations. Instead, our objective is to study

numerically the performance of the estimator (3.12).

Let us consider the SDE

X0 = 1, dXt =
2σ

1 +X2
t

dWt, (4.5)

and we aim to compute

V0 = E
[(
XT −K

)
+

]
. (4.6)

We implemented the simple Euler scheme with time step ∆t = 1/10 and simulation

number N = 106, and next the unbiased simulation method (3.12) with β = 0.1 and
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Mean value Statistical error Computation time

US (N = 105) 0.739374 0.00921078 0.109151

MLMC 0.732707 0.00568921 0.136884

US (N = 106) 0.735745 0.00239613 1.06639

MLMC 0.733539 0.00176862 1.15886

US (N = 107) 0.73659 0.000831597 10.6957

MLMC 0.737087 0.000578058 12.171

Table 3: Numerical results for V0 in (4.4) (case d = 4), US denotes our unbiased simulation

algorithm with β = 0.5, the computation times are expressed in second.

Mean value Statistical error Computation time

US (N = 105) 0.382186 0.00247547 0.769847

MLMC 0.381071 0.00167112 2.07589

US (N = 106) 0.382846 0.000762393 7.65796

MLMC 0.383107 0.000535905 10.8444

US (N = 107) 0.383282 0.000244861 85.0265

MLMC 0.383653 0.00017245 104.223

Table 4: Numerical results for Ṽ0 in (4.4) (case d = 4), US denotes our unbiased simulation

algorithm with β = 0.05, the computation times are expressed in second.
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Mean value Statistical error Computation time

Euler scheme 0.161483 0.000196733 0.570541

US 0.160362 9.34729e-05 0.201904

MLMC 0.16057 6.61696e-05 6.65799

Table 5: Numerical results for V0 in (4.6) (case d = 1), US denotes the unbiased simulation

algorithm (3.12) with β = 0.1, the computation times are expressed in second. Notice

also that the unbiased algorithm (3.12) contains implicitly an antithetic variance reduction,

which makes its statistical even error smaller than that of the Eurler scheme.

simulation number N = 106, and then the MLMC scheme using the statistical error

obtained from the unbiased simulation method. The results are given in Table 5,

and we can observe that all three methods provides very similar estimation of V0. In

particular, the unbiased simulation method has a significant advantage.

5 Proofs

5.1 A toy example

Before completing the technical part of the proofs for Theorems 2.2, 2.5 and 3.3, we

would like to illustrate the main idea by studying a simplified example in the one

dimensional case with unit diffusion:

X0 = x0, dXt = µ(t,Xt)dt + dWt.

Let b ∈ R and β > 0, we define a sequence of i.i.d. random variable (τk)k≥1 of

distribution E(β). Then let (Tk)k≥1, ∆Tk+1 := Tk+1−Tk and ∆Wk+1 :=WTk+1
−WTk

be defined in and below (2.4), we introduce X̂ by

X̂t := x0 + bt + Wt.

and then define

ψ = eβT g
(
X̂T

) NT∏

k=1

(
µ(Tk, X̂Tk

)− b
)
∆WTk+1

β∆Tk+1
. (5.1)

Proposition 5.1. Let µ(·, ·) and g(·) be both bounded smooth functions in C2
b . Then

for all constants β > 0 and β > 0, one has

E
[∣∣ψ

∣∣] < ∞ and E
[
g(XT )

]
= E

[
ψ
]
.

Proof. Since µ and g are uniformly bounded, and for some constant C > 0, the

conditional expectation E∆Tk+1
[|∆WTk+1

|] ≤ C/
√

∆Tk+1, then by Lemma A.2, it is
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obvious that ψ is integral. Then it is enough to prove that E
[
g(XT )

]
= E

[
ψ
]
. In

preparation, let us introduce

ψn = eβTn+1

NT∧n∏

k=1

(µ(Tk, X̂Tk
)− b)∆WTk+1

β∆Tk+1

(
g
(
X̂T

)
1NT≤n +

(µ− b

β
∂xu

)(
Tn+1, X̂Tn+1

)
1NT>n

)
.

for all n ≥ 0, with the convention
∏0

k=1 ≡ 1. It is clear that (ψn)n≥0 are all integrable

by Lemma A.2.

(i) Notice that µ and g are both smooth functions, then by Feynmann-Kac formula,

we know E[g(XT )] = u(0, x0), where u ∈ C∞
b ([0, T ] ×R) is a smooth function of PDE

∂tu(t, x) +
1

2
∂2xxu(t, x) + µ(t, x)∂xu(t, x) = 0, for all (t, x) ∈ [0, T )× R,

with terminal condition u(T, x) = g(x). Rewriting the above PDE in the following

equivalent way:

∂tu(t, x) + b∂xu(t, x) +
1

2
∂2xxu(t, x) +

(
µ(t, x)− b

)
∂xu(t, x) = 0,

it follows from the Feynmann-Kac formula that

u(0, x0) = E

[
g(X̂T ) +

∫ T

0

(
µ
(
t, X̂t

)
− b

)
∂xu

(
t, X̂t

)
dt
]

= E

[
eβT g

(
X̂T

)
1{T1≥T} +

eβT1

β

(
µ
(
T1, X̂T1

)
− b

)
∂xu

(
T1, X̂T1

)
1{T1<T}

]
(5.2)

= E
[
ψ0

]
,

where the second equality follows from the fact that T1 = T ∧ τ1, and τ1 is a random

variable independent of X̂, with density function βe−βt1{t≥0}.

(ii) Next, notice that for any t and bounded continuous function φ0, one has by

integration by parts that

∂xE
[
φ0(x+ bt+Wt)

]
= E

[
φ0(x+ bt+Wt)

Wt

t

]
. (5.3)

Notice also that ∆WT1
= WT1

, ∆T1 = T1 and X̂T1
:= x0 + bT1 +WT1

. It follows by

Lemma A.3 that

∂xu(0, x0) = E

[
eβ∆T1

∆WT1

∆T1

(
g
(
X̂T

)
1{T≤T1} +

µ− b

β
∂xu

(
T1, X̂T1

)
1{T1<T}

)]
. (5.4)

Changing the initial condition (0, x0) to (T1, X̂T1
), one obtains that, whenever T1 < T ,

∂xu(T1, X̂T1
) = E

[
eβ∆T2

∆WT2

∆T2

(
g
(
X̂T

)
1{T≤T2}+

µ− b

β
∂xu

(
T2, X̂T2

)
1{T2<T}

)∣∣∣T1, X̂T1

]
.

Plugging the above expression of ∂xu(T1, X̂T1
) into the r.h.s. of (5.2), and using the

fact that T ≤ T2 is equivalent to NT− ≤ 1, and P
[
{NT− ≤ 1} \ {NT ≤ 1}

]
= 0, it

follows that u(0, x0) = E[ψ1].
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(iii) Next, changing the initial condition in (5.4) from (0, x0) to (T2, X̂T2
) when T2 < T ,

and then plugging the corresponding expression of ∂xu(T2, X̂T2
) into ψ1, it follows that

u(0, x0) = E[ψ2]. Repeating the procedure, we have for all n ≥ 0,

E
[
g(XT )

]
= u(0, x0) = E[ψn].

Finally sending n → ∞, and using Lemma A.2 together with the dominated conver-

gence theorem, it follows that E
[
g(XT )

]
= E[limn→∞ ψn] = E[ψ].

Remark 5.2. We can also interpret formally the representation ψ in (5.1) as the

expansion of the diffusion process X around a Brownian motion. Let b = 0 and

µ(t, x) ≡ µ0 for some constant µ0 ∈ R, so that X̂t = Wt and Xt = µ0t +Wt. Using

the fact that P(NT = k) = e−βT (βT )k

k! , ∀k ≥ 0, it follows formally that

E
[
g(XT )

]
= E

[ ∞∑

k=0

(µ0T )
k

k!
g(k)(WT )

]
= E

[
eβT g(WT ) Π

NT

k=1

(
µ0∆Wk+1

β∆Tk+1

)]
, (5.5)

where the second equality follows by the fact that

P[NT = k] = eβT
(βT )k

k!
, and E

[
g(k)

( k∑

i=0

∆Wi+1

)]
= E

[
g
( k∑

i=0

∆Wi+1

)
Πk

i=1

∆Wi+1

∆Ti+1

]
.

In particular, the r.h.s. of (5.5) is exactly E
[
ψ
]
defined by (5.1) in this case.

To conclude this part, we notice that ψ in (5.1) is integrable, but has an infinite

variance in general. In the next subsection, we exploit the arbitrariness of the constant

b which is involved in the definition of ψ. More precisely, we shall choose different

constants b at each time Tk, in an adaptive way. This will lead to the estimator ψ̂ in

Theorems 2.2 and 3.3.

5.2 A regime switching diffusion representation

For d ≥ 1, T > 0, let (µ, σ) : [0, T ] × R
d → R

d ×M
d be bounded continuous functions

satisfying
∣∣µ(t, x)− µ(t, y)

∣∣+
∣∣σ(t, x)− σ(t, y)

∣∣ ≤ L|x− y|; (t, x, y) ∈ [0, T ] × R
d × R

d, (5.6)

for some constant L > 0. We start by considering a linear parabolic PDE

∂tu + µ ·Du + a : D2u = 0, on [0, T )× R
d, (5.7)

with terminal condition u(T, x) = g(x), where a(·) := 1
2σσ

⊤(·), A : B := Tr(AB⊤)
for any two d × d dimensional matrices A,B ∈ M

d, and D,D2 denote the gradient

and Hessian operators with respect to the space variable x. Next, let us consider the

diffusion process (X0,x0
s )s∈[0,T ] defined as unique strong solution of the SDE

X0 = x0, and dXs = µ
(
s,Xs

)
ds+ σ

(
s,Xs

)
dWs, s ∈ [0, T ]. (5.8)

When PDE (5.7) admits a classical solution in C1,3
b ([0, T ]×R

d), i.e. the collection of all

functions φ(t, x) such that φ, ∂tφ, Dφ, D
2φ and D3φ all exit and bounded continuous,

it follows by Feynmann-Kac formula that V0 := E[g(X0,x0

T )] = u(0, x0).
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Remark 5.3. For technical reason, we will assume that u ∈ C1,3
b ([0, T ] × R

d) rather

than in C1,2
b ([0, T ]×R

d). But by approximating the coefficient µ, σ with smooth func-

tions, one can relax this regularity condition in more concrete context.

Recall that for β > 0, (τi)i>0 is a sequence of i.i.d. E(β)-exponential random

variables, which is independent of the Brownian motion W . We define

Tk :=
( k∑

i=1

τi

)
∧ T, k ≥ 0, and Nt := max

{
k : Tk < t

}
.

Then (Nt)0≤t≤T is a Poisson process with intensity β and arrival times (Tk)k>0, and

T0 = 0. We also introduce, for all k > 0, ∆W k
t := W(Tk−1+t)∧Tk

−WTk−1
. It is clear

that the sequence of processes (∆W k
· )k>0 are mutually independent.

Let (µ̂, σ̂) : (s, y, t, x) ∈ [0, T ]×R
d× [0, T ]×R

d −→ R
d×M

d be uniformly bounded,

and continuous in t, Lipschitz in x, we define X̂ by

X̂0 := x0 and dX̂t = µ̂(Θt, t, X̂t)dt + σ̂(Θt, t, X̂t)dWt, (5.9)

with Θt := (TNt , X̂TNt
). In other words, the process X̂ is defined recursively by,

X̂0 = x0 and for all k ≥ 0,

X̂Tk+1
= X̂Tk

+

∫ Tk+1

Tk

µ̂
(
Tk,XTk

, s, X̂s

)
ds+

∫ Tk+1

Tk

σ̂
(
Tk,XTk

, s, X̂s

)
dWs.

Example 5.4. (i) Let (µ̂, σ̂)(s, y, t, x) = (µ, σ)(s, y), then X̂ is defined as a Euler

scheme as in (3.2), i.e. X̂0 = x0, and

X̂Tk+1
= X̂Tk

+ µ(Tk, X̂Tk
)∆Tk+1 + σ(Tk, X̂Tk

)∆WTk+1
.

(ii) When µ̂(·) ≡ 0 and σ̂(s, y, t, x) = σ(s, y) + ∂xσ(s, y)(x− y), then SDE (5.9) turns

to be a linear SDE, whose solution is given explicitly in (3.8).

We first formulate an assumption on the existence of automatic differentiation

weights associated to SDE (5.9). Let θ ∈ [0, T ) × R
d and (t, x) ∈ [0, T ] × R

d, the

process (X̃t,x,θ
s )s∈[t,T ] is defined by SDE

X̃t,x,θ
t := x, dX̃t,x,θ

s = µ̂
(
θ, s, X̃t,x,θ

s

)
ds + σ̂

(
θ, s, X̃t,x,θ

s

)
dWs, (5.10)

Assumption 5.5. There is a pair of measurable functions
(
Ŵ1

θ (·), Ŵ2
θ (·)

)
, called auto-

matic differentiation weights, taking values in R
d×M

d, such that, for all θ ∈ [0, T )×R
d,

(t, x) ∈ [0, T )× R
d, s > t, one has

(
Ŵ i

θ

(
t, x, s− t, (Wr −Wt)r∈[t,s]), i = 1, 2

)
are both

integrable. Moreover, for all bounded continuous function φ : Rd → R,

Di
E
[
φ
(
X̃t,x,θ

s

)]
= E

[
φ
(
X̃t,x,θ

s

)
Ŵ i

θ

(
t, x, s − t, (Wr −Wt)r∈[t,s]

)]
, i = 1, 2,

where D,D2 denote the gradient and Hessian operators with respect to the variable x.
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Let a(·) := 1
2σσ

⊤(·) and â(·) := 1
2 σ̂σ̂

⊤(·), we denote

Θ̂0 = (t, x) and then Θ̂k = (T t
k, X̂Tk

), for all k > 0.

and then for k > 0,

∆fk := (µ, a)
(
Tk, X̂Tk

)
− (µ̂, â)

(
Θ̂k−1, Tk, X̂Tk

)
∈ R

d ×M
d,

and for k ≥ 0,

Ŵk :=
(
Ŵ1

Θ̂k
, Ŵ2

Θ̂k

)(
Tk, X̂Tk

, Tk+1,∆W
k+1
·

)
∈ R

d ×M
d,

with the weight functions
(
Ŵ1

θ (·), Ŵ2
θ (·)

)
given in Assumption 5.5. We then define

ψ̂ := eβT
(
g(X̂T )− g(X̂TNT

)1{NT>0}
)
β−NT

NT∏

k=1

(
∆fk • Ŵk

)
, (5.11)

where (p, P ) • (q,Q) := p · q + P : Q for all p, q ∈ R
d, P,Q ∈ M

d. Here we use the

convention Π0
k=1 = 1. Finally, for all n ≥ 1, we also introduce

ψ̂n = eβTn+1

NT∧n∏

k=1

(
β−1∆fk • Ŵk

) [(
g
(
X̂T

)
− g

(
X̂TNT

)
1{NT>0}

)
1{NT≤n}

+ β−1
(
∆fn+1 •

(
Du,D2u

)(
Tn+1, X̂Tn+1

))
1{NT>n}

]
.(5.12)

Assumption 5.6. (i) The sequence (ψn)n≥0 is uniformly integrable.

(ii) Let (ei)i=1,··· ,d denote the canonical basis of Rd. There is some ε0 > 0, such that

for all (t, x) ∈ [0, T )×R
d and θ ∈ [0, T )×R

d, n ≥ 0 and i = 1, · · · , d, all the following

random vectors is integrable:

Ŵ1
θ (t, x, τ1 ∧ (T − t), (Wr −Wt)r∈[t,(t+τ1)∧T ]),

sup
ε∈(0,ε0]

1

ε

[
Ŵ1

θ

(
t, x+ εei, τ1 ∧ (T − t), (W· −Wt)

)
− Ŵ1

θ

(
t, x, τ1 ∧ (T − t), (W· −Wt)

)]

and

∆fn+1 •
(
Du,D2u

)(
Tn+1, X̂Tn+1

)
Ŵn.

Theorem 5.7. Suppose that the PDE (5.7) has a classical solution u ∈ C1,3
b

(
[0, T ] ×

R
d
)
, suppose in addition that Assumptions 5.5 and 5.6 hold true. Then ψ̂ is integrable

and u(0, x0) = E
[
ψ̂
]
.

Remark 5.8. (i) The condition that u ∈ C1,3
b

(
[0, T ] × R

d
)
may be relaxed in the

concrete applications of Theorem 5.7. This will be indeed performed in Section 3.3

by exploiting the integrability of the automatic differentiation weights
(
Ŵ1

θ , Ŵ2
θ

)
of

Assumption 5.5.

(ii) By definition, the automatic differentiation weight satisfies E
[
Ŵk

]
= 0, then ψ̂ in

(5.11) has the same mean than the estimator

eβT g(X̂T ) β
−NT

NT∏

k=1

(
∆fk • Ŵk

)
.
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However, in practice, the weight function Ŵk is typically of infinity variance, or even

not integrable, in general. Indeed, as we will see in the following, Ŵk is generally

of order 1
∆Tk+1

= 1
Tk+1−Tk

, where conditioning on NT = n, (T1, · · · , TNT
) follows the

law of statistic order of uniform distribution on [0, T ]. Then by direct computation,

one knows E
[
1/∆TNT+1

]
= ∞. In the definition of ψ̂ in (5.11), the additional term

−g
(
X̂TNT

)
1{NT>0} can be seen as a control variate so as to guarantee the integrability

of ψ̂.

(iii) As a consequence of the integrability problems raised in (ii), Assumption 5.6 is

in fact implicitly a restriction on the choice of the coefficients µ̂ and σ̂, and we cannot

expect a representation for u(t, x) with arbitrary µ̂ and σ̂, see Section 5.3 below.

Proof of Theorem 5.7. (i) Recall that u ∈ C1,3
b

(
[0, T ] × R

d
)
is a classical solution

of PDE (5.7). Denote (µ̂θ, âθ)(·) = (µ̂, â)(θ, ·), one can rewrite (5.7) in the following

equivalent way:

−∂tu− µ̂θ ·Du− âθ : D
2u −

(
(µ− µ̂θ) ·Du+ (a− âθ) : D

2u
)

= 0 . (5.13)

Using Feynmann-Kac formula, it follows that

u(0, x0) = E

[
g
(
X̃0,x0,θ

T

)
+

∫ T

0

(
(µ− µ̂θ) ·Du+ (a− âθ) : D

2u
)(
s, X̃0,x0,θ

s

)
ds
]
, (5.14)

where X̃0,x0,θ is defined by (5.10), which coincides with X̂ in (5.9) on [0, T1] whenever

θ = (0, x0).

Recall that T1 = τ1 ∧ T , where τ1 is a random variable of density βe−βs1{s≥0}
independent of the Brownian motion W . Fixing θ = (0, x0), it follows that

u(0, x0)=E

[
eβT1

(
g
(
X̂T

)
1{NT=0} + β−1∆f1 • (Du,D2u)

(
T1, X̂T1

)
1{NT>0}

)]
=E[ψ̂0].

(ii) Let us now go back to the expression (5.14), and derive an expression for the

derivatives Du(0, x0) and D2u(0, x0). First, for Du(0, x0), we use the integrability

condition in Assumption 5.6 with Lemma A.3, and also the fact theDu(·) is continuous,
it follows that

Du(0, x0) = E

[
g
(
X̃0,x0,θ

T

)
Ŵ1

θ (x0, T )

+

∫ T

0

(
(µ− µ̂θ) ·Du+ (a− âθ) : D

2u
)(
s, X̃0,x0,θ

s

)
Ŵ1

θ (x0, s)ds
]
,

where we simplify the notation Ŵ1
θ (0, x0, s, (Wr −Wt)r∈[0,s]) to Ŵ1

θ (x0, s). Then by

the independence of τ1 to the Brownian motion W , and setting θ = (0, x0), it follows

that

Du(0, x0) = E

[
ψ̂0 Ŵ1

(0,x0)
(0, x0, T1,∆W

1
· )
]
. (5.15)

Next, for D2u(0, x0), we use again Lemma A.3 together with the integrability

condition in Assumption 5.6 and Lipschitz property of x 7→ ((µ − µ̂) ·Du+ (a− âθ) :

D2u)(s, x), and the continuity of D2u(·) that

D2u(0, x0) = D2
x0
E
[
g
(
X̃0,x0,θ

T

)]
+

∫ T

0
D2

x0
E

[(
(µ−µ̂θ)·Du+(a−âθ) : D2u

)
(s, X̃0,x0,θ

s )
]
ds.
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Setting θ = (0, x0) and using Assumption 5.5, it leads to

D2u(0, x0) = E

[
ψ̂0 Ŵ2

(0,x0)
(0, x0, T1,∆W

1
· )
]
.

Recall that E[Ŵ2
(0,x0)

(0, x0, T,∆W·)] = 0, we then obtain

D2u(0, x0) = E

[(
ψ̂0 − eβT g(x0)1{NT=0}

)
Ŵ2

(0,x0)
(0, x0, T1,∆W

1
· )
]
. (5.16)

(iii) Changing the initial condition (0, x0) in (5.15) and (5.16) by (T1, X̂1) (remember

ψ̂0 dependent also on the initial condition (0, x0)), then plugging the expression of

D1u(T1, X̂1) andD
2u(T1, X̂1) into the definition of ψ̂0 in (5.12), it follows by identifying

the term that

u(0, x0) = E[ψ1].

(iv) Repeating the arguments by replacing the initial condition (0, x0) by (Tn+1, X̂n+1)

in (5.15) and (5.16) and then plugging the corresponding expression into the definition

of ψn, etc., we obtain that u(0, x0) = E[ψ̂n] for all n ≥ 0. Then letting n −→ ∞, we

obtain

u(0, x0) = lim
n→∞

E
[
ψ̂n

]
= E

[
lim
n→∞

ψ̂n

]
= E

[
ψ̂
]
,

which concludes the proof.

5.3 Proof of the representation results in Theorems 2.2,

2.5 and 3.3.

Using the results in Theorem 5.7, we can easily complete the proof of the representation

results in Theorems 2.2, 2.5 and 3.3.

Proof of Theorems 2.2 (ii) and 3.3 (ii). (i) In the context of Theorems 2.2 and 3.3,

the increment X̂Tk+1
− X̂Tk

, conditional on (Tk, X̂Tk
), is Gaussian. And the estimator

ψ̂ corresponds to the estimator in Theorem 5.7 with automatic differentiation weights

function

Ŵ1
θ

(
·, δt, δw

)
:= (σ⊤0 )

−1 δw

δt
and Ŵ2

θ

(
·, δt, δw

)
:= (σ⊤0 )

−1 δwδw
⊤ − δtId
δt2

σ−1
0 .(5.17)

In particular, it is clear that Assumption 5.5 holds true with the above choice of

automatic differentiation weight functions in (5.17).

(ii) Besides, the uniform integrability conditions and integrability conditions in As-

sumption 5.6 can be easily obtained following the lines in the first part of the proof of

Theorems 2.2 and 2.2, using Lemma A.2.

(iii) Now, suppose in addition that µ, σ and g are bounded smooth functions with

bounded continuous derivatives, so that u ∈ C1,3
b ([0, T ] × R

d). It follows by Theorem

5.7 that V0 = E[ψ̂].
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(iv) Finally, when µ(·) and σ(·) satisfy the Lipschitz condition (3.1) and g is Lipschitz,

we can find a sequence of bounded smooth functions (µε(·), σε(·), gε(·)) which converges

locally uniformly to (µ(·), σ(·), g(·)) as ε→ 0. Let Xε be the solution of

dXε
t = µε(t,X

ε
t )dt + σε(t,X

ε
t )dWt.

Then by the stability of SDEs together with dominated convergence theorem, it follows

that

V ε
0 := E

[
gε(X

ε
T )

]
−→ V0 := E

[
g(XT )

]
, as ε → 0.

Moreover, by Lemma A.2 together with dominated convergence theorem, it is easy to

prove that E[ψ̂ε] → E[ψ̂] as ε → 0, where ψ̂ε denotes the estimator of the algorithm

(3.3) associated to the coefficient (µε, σε, gε). We then conclude the proof.

Proof of Theorem 2.5 (ii). For the path-dependent case, it is enough to use the

same arguments as in Theorem 2.2, together with the PDE system (2.12) in Remark

2.3.

5.4 Proof of Theorem 3.5

To introduce the algorithm in the context of Theorem 5.7, we propose to choose

µ̂(·) ≡ 0 and σ̂(s, y, t, x) = σ(s, y) + ∂xσ(s, y)(x− y).

Before providing the proof of Theorem 3.5, we first give a lemma which justifies

our choice of the automatic differentiation weight function W2
k in (3.11), as well as

some related estimations. Let c1, c2, x ∈ R be constants such that c1 + c2x 6= 0, we

denote by X
0,x

solution of the SDE

X0 = x, dX t =
(
c1 + c2Xt

)
dWt, (5.18)

whose solution is given explicitly by

X
0,x
t =




− c1

c2
+

(
c1
c2

+ x
)
exp

(
− c2

2

2 t+ c2Wt

)
, if c2 6= 0,

x+ c1Wt, if c2 = 0.
(5.19)

Consider also its antithetic variable X̃x
t defined by

X̃0,x
t =




− c1

c2
+

(
c1
c2

+ x
)
exp

(
− c22

2 t− c2Wt

)
, if c2 6= 0,

x− c1Wt, if c2 = 0.

Lemma 5.9. Let x ∈ R, (c1, c2) ∈ R
2 be two constants such that c1 + c2x 6= 0,

φ : R → R a bounded continuous function.

(i) Then for all t ∈ (0, T ],

∂2xxE
[
φ
(
X

0,x
t

)]
= E

[
φ
(
X

0,x
t

) 1

(c1 + c2x)2

(
− c2

Wt

t
+
W 2

t − t

t2

)]
. (5.20)
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(ii) Suppose in addition that φ(·) ∈ C2
b (R). Then there is some constant C independent

of (t, x) such that, for all (t, x) ∈ [0, T ]× R
d,

E

[(
φ
(
X

0,x
t

)
− φ(x)

)2(Wt

t

)2]
+ E

[(
φ
(
X

0,x
t

)
− 2φ(x) + φ(X̃0,x

t )
)2(W 2

t − t

t2

)2]

≤ C(c1 + c2x)
2.

Proof. (i) First, when c2 = 0, it is clear that result is correct (see e.g. Lemma 2.1 of

Fahim, Touzi and Warin [13]). Next, when c2 6= 0, denote v(x) := E
[
φ
(
X

0,x
t

)]
, then

with the expression of X
0,x
t in (5.19), it follows that

v(x) =

∫

R

φ
(
− c1
c2

+
(c1
c2

+ x
)
e−c22t/2+c2

√
ty
) 1√

2π
e−y2/2dy.

Suppose that φ(·) ∈ C2
b (R), then using integration by parts, it follows that

v′(x) =

∫

R

φ′
(
− c1
c2

+
(c1
c2

+ x
)
e−c22t/2+c2

√
ty
)
e−c22t/2+c2

√
ty 1√

2π
e−y2/2dy

=

∫

R

φ
(
− c1
c2

+
(c1
c2

+ x
)
e−c2

2
t/2+c2

√
ty
) 1

c1 + c2x

y√
t

1√
2π
e−y2/2dy

= E

[
φ(X

0,x
t )

1

c1 + c2x

Wt

t

]
.

Similarly, still using integration by parts, and by direct computation, we obtain

v′′(x) = E

[
φ
(
X

0,x
t

) 1

(c1 + c2x)2

(
− c2

Wt

t
+
W 2

t − t

t2

)]
.

When φ(·) is only a bounded continuous function, one can approximate φ(·) by a

sequence of smooth function φε(·) which converges to φ(·) uniformly, and φ′ε and φ′′ε
are bounded continuous. We then obtain

vε(x) := E
[
φε

(
X

0,x
t

)]
→ v(x).

Moreover, the limit limε→0 v
′
ε(x), limε→0 v

′′
ε (x) exist, thus v

′′(x) also exists and

v′′(x) = lim
ε→0

v′′ε (x) = E

[
φ
(
X

0,x
t

) 1

(c1 + c2x)2

(
− c2

Wt

t
+
W 2

t − t

t2

)]
.

(ii) When c2 = 0, the estimation in (ii) of the statement is clear true since φ′ and φ′′

are uniformly bounded.

When c2 6= 0, denote |φ′|0 := supx |φ′(x)|, we obtain, by direct computation, that

E

[(
φ
(
X

0,x
t

)
− φ(x)

)2(Wt

t

)2]
≤ |φ′|0E

[(
X

0,x − x
)2W 2

t

t2

]

= |φ′|0E
[(
c1 + c2x

)2(e−c2
2
t/2+c2Wt − 1

c2Wt − c22t/2

)2W 2
t (c2Wt − c22t/2)

2

t2

]
,

which is clearly uniformly bounded by C(c1 + c2x)
2 for some constant C independent

of (t, x) ∈ [0, T ] × R
d.
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Next, denote ℓ(y) :=
(
x + c1

c2

)(
e−c22t/2+c2y − 1

)
, and define ϕ(y) := φ(x + ℓ(y)).

Then

ϕ′′(y) = φ′′(x+ ℓ(y))(c2 + c1x)
2e−c22t+2c2y + φ′(x+ ℓ(y))(c2 + c1x)c2e

−c22t/2+c2y.(5.21)

It follows by the definition of ϕ as well as its derivative, together with direct compu-

tation, that

E

[(
φ
(
X

0,x
t

)
− 2φ(x) + φ(X̃0,x

t )
)2(W 2

t − t

t2

)2]

= E

[(
ϕ(Wt) + ϕ(−Wt)− 2ϕ(0)

)2(W 2
t − t

t2

)2]
+ E

[
2
(
ϕ(0) − φ(x)

)2(W 2
t − t

t2

)2]

≤ E

[(W 2
t (W

2
t − t)

t2

)2
sup

|z|≤|Wt|
ϕ′′(z)

]

+ E

[
2
(
φ
(
x+

c1 + c2x

c2

(
e−c22t/2 − 1

))
− φ(x)

)2(W 2
t − t

t2

)2]
,

which is also uniformly bounded by C(c1 + c2x)
2 for some constant C > 0,

Proof of Theorem 3.5. (i) Let us first prove that E
[
ψ
2]
< ∞ for ψ defined by

(3.12). First, we notice that Ŵ−
k = Ŵ2

k for all k = 1, · · · , NT − 1, g ∈ C2
b (R), and

with the choice of ck1 and ck2 in (3.7), one has ck1 + ck2X̂Tk
= σ(Tk, X̂Tk

), which is

uniformly bounded. By considering the conditional expectation over (X̂TNT
,∆TNT+1)

using items (ii) of Lemma 5.9, we have E
[∣∣ψ

∣∣2] is bounded by

CE

[
β−2NT

NT∏

k=2

{a(Tk, X̂Tk
)− ãk

2a(Tk, X̂Tk
)

(
− ∂xσ(Tk, X̂Tk

)
∆WTk

∆Tk
+

∆W 2
Tk

−∆Tk

∆T 2
k

)}2 ]
,

for some constant C. Further, by denoting ∆X̂Tk
:= X̂Tk

− X̂Tk−1
, one has

∣∣a(Tk, X̂Tk
)− ãk

∣∣ ≤
(
|σ|0 +

∣∣∂xσ(Tk−1, X̂Tk−1
)∆X̂Tk

∣∣/2
)

(
|∂tσ|0∆Tk +

∣∣∂2xxσ
∣∣
0

(
∆X̂Tk

)2)
,

where |σ|0 := supt,x |σ(t, x)|. Notice that σ ≥ ε > 0, σ and ∂xσ are uniformly bounded,

then to prove that ψ is of finite variance, it is enough to prove that, for some C > 0

large enough, the expectation of

NT∏

k=2

[
C
(
C +

∣∣∂xσ(Tk−1, X̂Tk−1
)∆X̂Tk

∣∣
)2(

C +
∆X̂2

Tk

∆Tk

)2(
C
∣∣∆WTk

∣∣+
∆W 2

Tk

∆Tk
+ 1

)2]
(5.22)

is finite. Similarly to the computation in item (ii) of Lemma 5.9, we have

∆X̂Tk
= X̂Tk

− X̂Tk−1

= σ(Tk−1, X̂Tk−1
)
exp

(
− ∂xσ(Tk−1, X̂Tk−1

)2∆Tk/2 + ∂xσ(Tk−1, X̂Tk−1
)∆WTk

)
− 1

∂xσ(Tk−1, X̂k−1)
.
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Notice again that σ(·) and ∂xσ(·) are uniformly bounded, it follows that

E

{[(
C +

∣∣∂xσ(Tk−1, X̂Tk−1
)∆X̂Tk

∣∣
)(
C +

∆X̂2
Tk

∆Tk

)(
C
∣∣∆WTk

∣∣+ ∆W 2
Tk

∆Tk
+ 1

)]2
∣∣∣ X̂Tk−1

, Tk−1,∆Tk

}
≤ C ′,

for some constant C ′ > 0 independent of X̂Tk−1
, Tk−1,∆Tk. Then the variance of (5.22)

is bounded by CE
[
(C ′)NT

]
<∞ and hence ψ in (3.12) is of finite variance.

(ii) Let us now consider the estimator ψ̂. By the same computation, we obtain that

E
[
ψ̂

∣∣ NT ,∆T1, · · · ,∆TNT+1

]
≤ CNT

1√
∆TNT+1

, for some C > 0,

where the r.h.s. is integrable but of infinite variance (see Lemma A.2). Similarly, it is

easy to check the uniform integrability condition in Assumption 5.6 for ψ̂ in (3.10).

(iii) Finally, using Lemma 5.9 (i) , it follows that Assumption 5.5 holds true. Moreover,

with the regularity condition on σ(t, x) and g in Assumption 3.4, we know u ∈ C1,3
b (R).

We then conclude the proof of u(0, x0) = E[ψ̂] = E[ψ] by Theorem 5.7.

A Appendix

We first provide an estimation on the order statistics of uniform distribution on [0, 1],

which induces an estimation on a functional of the arrival times (Tk)k>0 of the Poisson

process. We next provide a technical result on the automatic differentiation function

related to a SDE.

Lemma A.1. Let p ∈ (0, 1), (Uk)k=1,··· ,m be a sequence of i.i.d. random variable of

uniform distribution on [0, 1], and (U(1) ≤ U(2) ≤ · · · ≤ U(m) be the associated order

statistics. Then

Gm,p := E

[( 1

U(1)

1

U(2) − U(1)
· · · 1

U(m) − U(m−1)

)p
]

≤ m!
1

(1− p)m
.

Proof. First, we notice that for any x ∈ (0, 1),

∫ 1

x

( 1

u− x

)p
du =

(1− x)1−p

1− p
≤ 1

1− p
. (A.1)

Then, since the density of the order statistics (U(1), · · · , U(m)) is provided by

f(u1, · · · , um) := m! 1{0<u1<u2<···<um<1},

it follows by direct computation that

Gm = m!

∫ 1

0

∫ 1

u1

· · ·
∫ 1

um−1

( 1

u1

1

u2 − u1
· · · 1

um − um−1

)p
du1 · · · dum ≤ m!

1

(1− p)m
,

where the last inequality follows from (A.1).
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Let N = (Ns)s≥0 be a Poisson process with arrival times (Tk)k>0, denote ∆Tk+1 :=

Tk+1 − Tk. Let 0 = t0 < t1 < · · · < tn = T < ∞ be a discrete time grid, we define

further

T̃k := min(Tk, ti), whenever Tk−1 ∈ [ti−1, ti) for some i = 1, · · · , n,

and

∆T̃k := T̃k − T̃k−1 for every k = 2, · · · , NT + 1.

Lemma A.2. Let p ∈ (0, 1), then for every constant C > 0, one has

E

[ NT∏

k=1

C

(∆T̃k+1)p

]
< ∞.

Proof. (i) Notice that we can always add points into the time grid 0 = t0 < t1 <

· · · < tn = T , which makes ∆T̃i+1 smaller. Therefore, one can suppose without loss of

generality that tk − tk−1 < (2βC)p−1 for every k = 1, · · · , n.
(ii) For every k = 1, · · · , n, we denote Nk := #{i : Ti ∈ [tk−1, tk)}, and T̃ k

i :=

T̃ki with ki :=
∑

j<kN
j + i for i = 1, · · · , Nk + 1, and ∆T̃ k

i := T̃ k
i − T̃ k

i−1. By

the memoryless property of the exponential distribution, it is clear that
(
∆T̃ 1

i , i =

2, · · ·N1 + 1
)
, · · · ,

(
∆T̃ n

i , i = 2, · · ·Nn + 1
)
are mutually independent. Moreover, we

have

NT∏

i=1

C

(∆T̃i+1)p
=

n∏

k=1




Nk∏

i=1

C

(∆T̃ k
i+1)

p


 . (A.2)

Next, the law of
(
T k
i , i = 1, · · · , Nk

)
conditioning on Nk = m is the law of order

statistics of uniform distribution on [tk−1, tk]. Then it follows by Lemma A.1 that for

every k = 1, · · · , n,

E




Nk∏

i=1

C

(∆T̃ k
i+1)

p


 ≤ e−β(tk−tk−1)

∞∑

m=0

(β(tk − tk−1))
m

m!
m!2m

(
C

(tk − tk−1)p

)m

= e−β(tk−tk−1)
∞∑

m=0

(
2βC(tk − tk−1)

1−p
)m

< ∞,

where the last inequality follows by the fact tk − tk−1 < (2βC)p−1. We then conclude

the proof by (A.2).

Let Xx be the solution of SDE

Xx
0 = x, dXx

t = µ(t,Xx
t )dt + σ(t,Xx

t )dWt,

where (µ, σ) : [0, T ]×R
d → R

d×M
d is continuous and in addition Lipschitz continuous

in x.
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Lemma A.3. Suppose that for all t ∈ [0, T ] and bounded continuous function φ :

[0, T ]× R
d → R, the derivatives

(
∂xi

E
[
φ(t,Xx

t )
]
, ∂2xi,xj

E
[
φ(t,Xx

t )
])

i,j=1,··· ,d exist; and

there is some measurable R
d-valued function Ŵ1

(
x, t, (Ws)s∈[0,t]

)
such that for

∂xi
E
[
φ(t,Xx

t )
]

= E
[
φ(t,Xx

t )Ŵ1
i (x, t, (Ws)s∈[0,t])

]
, i = 1, · · · , d.

Let F (dt) be some probability measure on [0, T ].

(i) Suppose that for each x ∈ R
d, i = 1, · · · , d,

∫ T

0
E

[∣∣Ŵ1
i (x, t, (Ws)s∈[0,t])

∣∣
]
F (dt) < ∞,

and the continuous function φ : [0, T ]× R
d → R (which may be unbounded) satisfies

∫ T

0
E

[∣∣φ(t,Xx
t )Ŵ1

i (x, t, (Ws)s∈[0,t])
∣∣
]
F (dt) < ∞.

Then

∂xi

∫ T

0
E
[
φ(t,Xx

t )
]
F (dt) =

∫ T

0
E

[
φ(t,Xx

t )Ŵ1
i (x, t, (Ws)s∈[0,t])

]
F (dt). (A.3)

(ii) Suppose in addition that φ(t, x) is bounded continuous function and Lipschitz in

x, and for each x ∈ R
d, i, j = 1, · · · d,

∫ T

0

√
E

[∣∣Ŵ1
i (x, t, (Ws)s∈[0,t])

∣∣2
]
F (dt) < ∞,

and
∫ T

0
sup

ε∈[0,ε0]

∣∣∣1
ε
E

[
Ŵ1

i (x+ εej , t, (Ws)s∈[0,t])− Ŵ1
i (x, t, (Ws)s∈[0,t])

]∣∣∣F (dt) < ∞, (A.4)

for some ε0 > 0, where (ej)j=1,··· ,d denotes the canonical basis of Rd. Then

∂2xixj

∫ T

0
E

[
φ(t,Xx

t )
]
F (dt) =

∫ T

0
∂2xixj

E
[
φ(t,Xx

t )
]
F (dt), (A.5)

where, in particular, the partial derivative at the l.h.s. and the integration at the r.h.s.

are well defined.

Proof. (i) First, let us notice that (t, x) 7→ (µ, σ)(t, x) is Lipschitz in x, then by

standard analysis (see e.g. Chapter 7.8 of [17]), there is some constant C independent

of ε > 0 and i = 1, · · · d, such that

E

[∣∣∣X
x+εei −Xx

ε

∣∣∣
2]

≤ C(1 + eCt). (A.6)

(ii) Suppose that φ(t, x) is bounded continuous and Lipschitz in x. It follows that

lim
ε→0

∫ T

0

1

ε
E

[(
φ(t,Xx+εei

t )− φ(t,Xx
t )
)]
F (dt)

=

∫ T

0
lim
ε→0

1

ε
E

[(
φ(t,Xx+εei

t )− φ(t,Xx
t )
)]
F (dt)

= E

[ ∫ T

0
φ(t,Xx

t )Ŵ1
i (x, t, (Ws)s∈[0,t])F (dt)

]
,
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where the first equality follows by the Lipschitz property of x 7→ φ(t, x) and (A.6). We

hence proved (A.3) when x 7→ φ(t, x) is Lipschitz.

(iii) When φ is only continuous, it is enough to approximate it by a sequence (φn)n≥1

which are all bounded, and Lipschitz in x. Then by the integrability of Ŵ1
i (x, t, (Ws)s∈[0,t])

as well as that of φ(t,Xx
t )Ŵ1

i (x, t, (Ws)s∈[0,t]) under P(dω)×F (dt), it follows that (A.3)
holds true for continuous function φ.

(iv) To prove (A.5), let us use (A.3) and obtain that

lim
ε→0

1

ε

[
∂xj

∫ T

0
E
[
φ(t,Xx+εei

t )
]
F (dt)− ∂xj

∫ T

0
E
[
φ(t,Xx

t )
]
F (dt)

]

= lim
ε→0

∫ T

0

1

ε
E

[
φ(t,Xx+εei

t )Ŵ1
j (x+ εei, t, ·) − φ(t,Xx

t )Ŵ1
j (x, t, ·)

]
F (dt)

=

∫ T

0
lim
ε→0

1

ε
E

[
φ(t,Xx+εei

t )Ŵ1
j (x+ εei, t, ·) − φ(t,Xx

t )Ŵ1
j (x, t, ·)

]
F (dt). (A.7)

where the first equality follows by the Lipschitz property of x 7→ φ(t, x) and the

estimation (A.6) together with (A.4), and in particular, the integrable in the last term

of (A.7) is well defined, and hence the limit of the first term of (A.7) exists.

References

[1] Alaya, M. B., and Kebaier, A. Central limit theorem for the multilevel Monte Carlo

Euler method. The Annals of Applied Probability, 25(1):211-234, 2015.

[2] Alanko, S., Avellaneda, M. : Reducing variance in the numerical solution of BSDEs,
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